Skip to main content

Mycobacterium Biofilms Synthesis, Ultrastructure, and Their Perspectives in Drug Tolerance, Environment, and Medicine

  • Chapter
  • First Online:
Microbial Polymers

Abstract

Bacteria protect their cells from harsh environmental conditions by naturally forming biofilms. Biofilms consist of bacterial cells, exopolysaccharides, extracellular protein as well as extracellular DNA regulated by different genetic and environmental factors include medium, nutrient availability, matrix properties, pH, temperature, organic material, etc. During biofilm synthesis, bacteria use quorum sensing activity for cell-to-cell signaling for biofilm development as well as biofilm maintenance. In mycobacteria, glycopeptidolipids are supportive in biofilms formation and surface attachment. Mycolic acids of acid-fast bacteria contribute to the formation of the mycobacterial envelope with overall structure and functions. It also provides a permeability barrier to resist the microbes from many common therapeutic agents like antibiotics and disinfectants. Several reports showed that drug-tolerant biofilms formed by mycobacterial species were resistant to antibiotics and disinfectants in vitro. Therefore, in this time we have to focus to develop new strategies to combat biofilm formation in mycobacterium and other pathogenic bacterial species which give drug tolerance, host defense, and protection from adverse environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arora K, Whiteford DC, Lau-Bonilla D, Davitt CM, Dahl JL (2008) Inactivation of lsr2 results in a hypermotile phenotype in Mycobacterium smegmatis. J Bacteriol 190:4291–4300. https://doi.org/10.1128/JB.00023-08

    Google Scholar 

  • Berbari EF, Hanssen AD, Duffy MC, Steckelberg JM, Osmon DR (1998) Prosthetic joint infection due to Mycobacterium tuberculosis: a case series and review of the literature. Am J Orthop 27:219–227

    Google Scholar 

  • Burmolle M, Thomsen TR, Fazli M, Dige I, Christensen L, Homøe P et al (2010) Biofilms in chronic infections—a matter of opportunity—monospecies biofilms in multispecies infections. FEMS Immunol Med Microbiol 59:324–336

    Google Scholar 

  • Carter G, Wu M, Drummond DC, Bermudez LE (2003) Characterization of biofilm formation by clinical isolates of Mycobacterium avium. J Med Microbiol 52:747–752. https://doi.org/10.1099/jmm.0.05224-0

    Google Scholar 

  • Chakraborty P, Kumar A (2019) The extracellular matrix of mycobacterial biofilms: could we shorten the treatment of mycobacterial infections? Microb Cell 6(2):105

    Google Scholar 

  • Chen JM, German GJ, Alexander DC, Ren H, Tan T, Liu J (2006) Roles of Lsr2 in colony morphology and biofilm formation of Mycobacterium smegmatis. J Bacteriol 188:633–641. https://doi.org/10.1128/JB.188.2.633-641.2006

    Google Scholar 

  • Costerton JW, Gessey GC, Cheng KJ (1978) How bacteria stick. Sci Am 238:86–95. https://doi.org/10.1038/scientificamerican0178-86

    Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Google Scholar 

  • Costerton JW, Montanaro L, Arciola CR (2005) Biofilm in implant infections: its production and regulation. Int J Artif Organs 28:1062–1068

    Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    Google Scholar 

  • Esteban J, Marta G (2018) Mycobacterium biofilms. Front Microbiol 8:2651

    Google Scholar 

  • Esteban J, Martín-de-Hijas NS, Kinnari TJ, Ayala G, Fernández-Roblas R, Gadea I (2008) Biofilm development by potentially pathogenic non-pigmented rapidly growing mycobacteria. BMC Microbiol 8:184

    Google Scholar 

  • Esteban J, García-Pedrazuela M, Muñoz-Egea MC, Alcaide F (2012) Current treatment of nontuberculous mycobacteriosis: an update. Expert Opin Pharmacother 13:967–986. https://doi.org/10.1517/14656566.2012.677824

    Google Scholar 

  • Falkinham JO III (2002) Nontuberculous mycobacteria in the environment. Clin Chest Med 23:529–551. https://doi.org/10.1016/S0272-5231(02)00014-X

    Google Scholar 

  • Falkinham JO III (2009) Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol 107:356–367. https://doi.org/10.1111/j.1365-2672.2009.04161.x

    Google Scholar 

  • Falkinham JO III, Williams MD, Kwait R, Lande L (2016) Methylobacterium spp. as an indicator for the presence or absence of Mycobacterium spp. Int J Mycobacteriol 5:240–243. https://doi.org/10.1016/j.ijmyco.2016.03.001

    Google Scholar 

  • Faria S, Joao I, Jordao L (2015) General overview on nontuberculous mycobacteria, biofilms, and human infection. J Pathog 2015:809014

    Google Scholar 

  • Fennelly KP, Ojano-Dirain C, Yang Q, Liu L, Lu L, Progulske-Fox A et al (2016) Biofilm formation by Mycobacterium abscessus in a lung cavity. Am J Respir Crit Care Med 193:692–693. https://doi.org/10.1164/rccm.201508-1586IM

    Google Scholar 

  • Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40

    Google Scholar 

  • Garvey MI, Ashford R, Bradley CW, Bradley CR, Martin TA, Walker J et al (2016) Decontamination of heater-cooler units associated with contamination by atypical mycobacteria. J Hosp Infect 93:229–234. https://doi.org/10.1016/j.jhin.2016.02.007

    Google Scholar 

  • Grange JM, Yates MD, Boughton E (1990) The avian tubercle bacillus and its relatives. J Appl Bacteriol 68(5):411–431

    Google Scholar 

  • Greendyke R, Byrd TF (2008) Differential antibiotic susceptibility of Mycobacterium abscessus variants in biofilms and macrophages compared to that of planktonic bacteria. Antimicrob Agents Chemother 52:2019–2026

    Google Scholar 

  • Ha KY, Chung YG, Ryoo SJ (2005) Adherence and biofilm formation of Staphylococcus epidermidis and Mycobacterium tuberculosis on various spinal implants. Spine 30:38–43

    Google Scholar 

  • Hall-Stoodley L, Stoodley P (2005) Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol 13:7–10. https://doi.org/10.1016/j.tim.2004.11.004

    Google Scholar 

  • Hall-Stoodley L, Brun OS, Polshyna G, Barker LP (2006) Mycobacterium marinum biofilm formation reveals cording morphology. FEMS Microbiol Lett 257:43–49. https://doi.org/10.1111/j.1574-6968.2006.00143.x

    Google Scholar 

  • Harris KA, Kenna DT (2014) Mycobacterium abscessus infection in cystic fibrosis: molecular typing and clinical outcomes. J Med Microbiol 63:1241–1246. https://doi.org/10.1099/jmm.0.077164-0

    Google Scholar 

  • Hoiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PØ et al (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55

    Google Scholar 

  • Kohler P, Kuster SP, Bloemberg G, Schulthess B, Frank M, Tanner FC et al (2015) Healthcare-associated prosthetic heart valve, aortic vascular graft, avium in Acanthamoeba lenticulata. Appl Environ Microbiol 79:3185–3192. https://doi.org/10.1128/AEM.03823-12

    Google Scholar 

  • Kumon H, Tomochika K, Matunaga T, Ogawa M, Ohmori H (1994) A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiol Immunol 38:615–619

    Google Scholar 

  • Li L, Mendis N, Trigui H, Oliver JD, Faucher SP (2014) The importance of the viable but nonculturable state in human bacterial pathogens. Front Microbiol 5:258

    Google Scholar 

  • Mah T-F (2012) Biofilm-specific antibiotic resistance. Future Microbiol 7:1061–1072

    Google Scholar 

  • Mah T-F, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Google Scholar 

  • Maisonneuve E, Gerdes K (2014) Molecular mechanisms underlying bacterial persisters. Cell 157:539–548

    Google Scholar 

  • Marciano-Cabral F, Jamerson M, Kaneshiro ES (2010) Free-living amoebae, Legionella and Mycobacterium in tap water supplied by a municipal drinking water utility in the USA. J Water Health 8:71–82. https://doi.org/10.2166/wh.2009.129

    Google Scholar 

  • Marsollier L, Brodin P, Jackson M, Kordulakova J, Tafelmeyer P, Carbonnelle E et al (2007) Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis. PLoS Pathog 3:e62. https://doi.org/10.1371/journal.ppat.0030062

    Google Scholar 

  • McCarty SM, Cochrane CA, Clegg PD, Percival SL (2012) The role of endogenous and exogenous enzymes in chronic wounds: a focus on the implications of aberrant levels of both host and bacterial proteases in wound healing. Wound Repair Regen 20:125–136

    Google Scholar 

  • Menozzi FD, Rouse JH, Alavi M, Laude-Sharp M, Muller J, Bischoff R et al (1996) Identification of a heparin-binding hemagglutinin present in mycobacteria. J Exp Med 184:993–1001. https://doi.org/10.1084/jem.184.3.993

    Google Scholar 

  • Monzón M, Oteiza C, Leiva J, Lamata M, Amorena B (2002) Biofilm testing of Staphylococcus epidermidis clinical isolates: low performance of vancomycin in relation to other antibiotics. Diagn Microbiol Infect Dis 44:319–324

    Google Scholar 

  • Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR Jr, Hatfull GF (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873. https://doi.org/10.1016/j.cell.2005.09.012

    Google Scholar 

  • Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y et al (2008) Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69:164–174

    Google Scholar 

  • Ojha AK, Jacobs WR Jr, Hatfull GF (2015) Genetic dissection of mycobacterial biofilms. Methods Mol Biol 1285:215–226

    Google Scholar 

  • Ortiz-Perez A, Martin-de-Hijas N, Alonso-Rodriguez N, Molina-Manso D, Fernandez-Roblas R, Esteban J (2011) Importance of antibiotic penetration in the antimicrobial resistance of biofilm formed by non-pigmented rapidly growing mycobacteria against amikacin, ciprofloxacin and clarithromycin. Enferm Infecc Microbiol Clin 29:79–84

    Google Scholar 

  • Oubekka SD, Briandet R, Fontaine-Aupart MP, Steenkeste K (2002) Correlative time resolved fluorescence microscopy to assess antibiotic diffusion reaction in biofilms. Antimicrob Agents Chemother 56:3349–3358

    Google Scholar 

  • Patino S, Alamo L, Cimino M, Casart Y, Bartoli F, Garcia MJ et al (2008) Autofluorescence of mycobacteria as a tool for detection of Mycobacterium tuberculosis. J Clin Microbiol 46:3296–3302. https://doi.org/10.1128/JCM.02183-07

    Google Scholar 

  • Purdy GE, Pacheco S, Turk J, Hsu FF (2013) Characterization of mycobacterial triacylglycerols and monomeromycolyl diacylglycerols from Mycobacterium smegmatis biofilm by electrospray ionization multiple-stage and high-resolution mass spectrometry. Anal Bioanal Chem 405:7415–7426. https://doi.org/10.1007/s00216-013-7179-4

    Google Scholar 

  • Qvist T, Eickhardt S, Kragh KN, Andersen CB, Iversen M, Hoiby N et al (2015) Chronic pulmonary disease with Mycobacterium abscessus complex is a biofilm infection. Eur Respir J 46:1823–1826. https://doi.org/10.1183/13993003.01102-2015

    Google Scholar 

  • Recht J, Kolter R (2001) Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J Bacteriol 183:5718–5724

    Google Scholar 

  • Recht J, Martinez A, Torello S, Kolter R (2000) Genetic analysis of sliding motility in Mycobacterium smegmatis. J Bacteriol 182:4348–4351

    Google Scholar 

  • Richards JP, Ojha AK (2014) Mycobacterial biofilms. Microbiol Spectr 2:MGM2-0004-2013. https://doi.org/10.1128/microbiolspec.MGM2-0004-2013

  • Schulze-Robbecke R, Fischeder R (1989) Mycobacteria in biofilms. Zentralbl Hyg Umweltmed 188:385–390

    Google Scholar 

  • Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764

    Google Scholar 

  • Solano C, Echeverz M, Lasa I (2014) Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18:96–104

    Google Scholar 

  • Stewart PS, William Costerton J (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Google Scholar 

  • Thoen CO, Karlson AG, Himes EM (1981) Mycobacterial infections in animals. Rev Infect Dis 3:960–972

    Google Scholar 

  • Vaerewijck MJ, Huys G, Palomino JC, Swings J, Portaels F (2005) Mycobacteria in drinking water distribution systems: ecology and significance for human health. FEMS Microbiol Rev 29:911–934. https://doi.org/10.1016/j.femsre.2005.02.001

    Google Scholar 

  • Wallace RJ Jr (1987) Nontuberculous mycobacteria and water: a love affair with increasing clinical importance. Infect Dis Clin North Am 1:677–686

    Google Scholar 

  • Wilkins M, Hall-Stoodley L, Allan RN, Faust SN (2014) New approaches to the treatment of biofilm-related infections. J Infect 69:S47–S52

    Google Scholar 

  • Yang Y, Thomas J, Li Y, Vilchèze C, Derbyshire KM, Jacobs WR Jr et al (2017) Defining a temporal order of genetic requirements for development of mycobacterial biofilms. Mol Microb 105:794–809

    Google Scholar 

  • Young LS, Inderlied CB, Berlin OG, Gottlieb MS (1986) Mycobacterial infections in AIDS patients, with an emphasis on the Mycobacterium avium complex. Rev Infect Dis 8:1024–1033

    Google Scholar 

  • Zambrano MM, Kolter R (2005) Mycobacterial biofilms: a greasy way to hold it together. Cell 123:762–764

    Google Scholar 

  • Zamora N, Esteban J, Kinnari TJ, Celdran A, Granizo JJ, Zafra C (2007) In-vitro evaluation of the adhesion to polypropylene sutures of nonpigmented, rapidly growing mycobacteria. Clin Microbiol Infect 13:902–907

    Google Scholar 

Download references

Acknowledgments

Authors are very thankful to DBT, New Delhi and NRDC, New Delhi for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kundan Kumar Chaubey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaubey, K.K., Abdullah, M., Gupta, S., Navabharath, M., Singh, S.V. (2021). Mycobacterium Biofilms Synthesis, Ultrastructure, and Their Perspectives in Drug Tolerance, Environment, and Medicine. In: Vaishnav, A., Choudhary, D.K. (eds) Microbial Polymers. Springer, Singapore. https://doi.org/10.1007/978-981-16-0045-6_19

Download citation

Publish with us

Policies and ethics