Skip to main content

Targeting Oxidative Stress in Cancer

Opportunity for Natural and Synthetic Compounds, and Cancer Stem Cell Therapy

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

Oxidative stress plays an immense role in modulating all aspects of cancer and also correlated with the different types of carcinogenesis in the form of tumor-bearing state in the different organs as well as treatment strategy to counteract with the carcinogenesis. The oxidative stress arises from exogenous origins, i.e., ultraviolet rays as well as endogenous origins at the cellular level with the involvement of mitochondria. Modifications of the oxidative stress producing indices trigger gene mutations with alteration of the intracellular signal transduction and transcription leading to carcinogenesis. It also initiates the cellular systems into tumor bearing state with active oxygen production by tumor cells as well as abnormal oxidation-reduction control in the system. Anticancer agents and radiation therapy are beneficial to exert their effects through apoptosis of different cancer cells. Modulation of reactive oxygen species (ROS) is highly significant for cancer therapy because commonly used radio- and chemotherapeutic drugs influence tumor outcome through ROS modulation. In addition, natural compounds, synthetic compounds, and cancer stem cell therapy also play a vital role in modulating oxidative stress and preventing progression of the carcinogenesis. Therefore, these three types of treatment strategy would be the novel biomarkers to forecast the clinical responses through prooxidant therapies of the cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal C, Sharma Y, Agarwal R (2000) Anticarcinogenic effect of a polyphenolic fraction isolated from grape seeds in human prostate carcinoma DU145 cells: modulation of mitogenic signaling and cell-cycle regulators and induction of G1 arrest and apoptosis. Mol Carcinog 28(3):129–138

    Article  CAS  PubMed  Google Scholar 

  • Anitha P, Priyadarsini RV, Kavitha K, Thiyagarajan P, Nagini S (2013) Ellagic acid coordinately attenuates Wnt/β-catenin and NF-κB signaling pathways to induce intrinsic apoptosis in an animal model of oral oncogenesis. Eur J Nutr 52(1):75–84

    Article  CAS  PubMed  Google Scholar 

  • Arriagada F, Correa O, Günther G, Nonell S, Mura F, Olea-Azar C, Morales J (2016) Morin flavonoid adsorbed on mesoporous silica, a novel antioxidant nanomaterial. PLoS One 11:e0164507

    Article  PubMed  PubMed Central  Google Scholar 

  • Awad AB, Downie AC, Fink CS (2000) Inhibition of growth and stimulation of apoptosis by beta-sitosterol treatment of MDA-MB-231 human breast cancer cells in culture. Int J Mol Med 5(5):541–545

    CAS  PubMed  Google Scholar 

  • Couder-García BDC, Jacobo-Herrera NJ, Zentella-Dehesa A, Rocha-Zavaleta L, Tavarez-Santamaría Z, Martínez-Vázquez M (2019) The Phytosterol Peniocerol inhibits cell proliferation and tumor growth in a Colon Cancer Xenograft model. Front Oncol 9:1341

    Article  PubMed  PubMed Central  Google Scholar 

  • De Stefani E, Boffetta P, Ronco AL, Brennan P, Deneo-Pellegrini H, Carzoglio JC, Mendilaharsu M (2008) Plant sterols and risk of stomach cancer: a case-control study in Uruguay. Nutr Cancer 37(2):140–144

    Article  Google Scholar 

  • Deligiannakis Y, Sotiriou GA, Pratsinis SE (2012) Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with gallic acid. ACS Appl Mater Interfaces 4:6609–6617

    Article  CAS  PubMed  Google Scholar 

  • Dorai T, Cao YC, Dorai B, Buttyan R, Katz AE (2001) Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate 47(4):293–303

    Article  CAS  PubMed  Google Scholar 

  • Ebabe Elle R, Rahmani S, Lauret C, Morena M, Bidel LP, Boulahtouf A, Balaguer P, Cristol JP, Durand JO, Charnay C, Badia E (2016) Functionalized Mesoporous Silica Nanoparticle with Antioxidants as a New Carrier That Generates Lower Oxidative Stress Impact on Cells. Mol Pharm 13(8):2647–60

    Google Scholar 

  • Festjens N, Kalai M, Smet J, Meeus A, Van Coster R, Saelens X, Vandenabeele P (2006) Butylated hydroxyanisole is more than a reactive oxygen species scavenger. Cell Death Differ 13:166–169

    Article  CAS  PubMed  Google Scholar 

  • Furukawa R, Yamada Y, Takenaga M, Igarashi R, Harashima H (2011) Octaarginine-modified liposomes enhance the anti-oxidant effect of Lecithinized superoxide dismutase by increasing its cellular uptake. Biochem Biophys Res Commun 404:796–801

    Article  CAS  PubMed  Google Scholar 

  • Gupta V, Aseh A, Ríos CN, Aggarwal BB, Mathur AB (2009) Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomedicine 4:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husain N, Kumar A (2012) Reactive oxygen species and natural antioxidants: a review. Adv Biores 3(4):164–175

    CAS  Google Scholar 

  • Jafari N, Kim H, Park R et al (2017) CRISPR-Cas9 mediated NOX4 knockout inhibits cell proliferation and invasion in HeLa cells. PLoS One 12(1):e0170327

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalashnikova I, Mazar J, Neal CJ, Rosado A, Das S, Westmoreland T, Seal S (2017) Nanoparticle Delivery of Curcumin Induces Cellular Hypoxia and ROS-mediated Apoptosis via Modulation of Bcl-2/Bax in Human Neuroblastoma. Nanoscale 9:10375

    Google Scholar 

  • Kamm JJ, Dashman T, Newmark H, Mergens WJ (1977) Inhibition of amine-nitrite hepatotoxicity by alpha-tocopherol. Toxicol Appl Pharmacol 41(3):575–583

    Article  CAS  PubMed  Google Scholar 

  • Kang DW, Kim CK, Jeong HG et al. (2017) Biocompatible custom ceria nanoparticles against reactive oxygen species resolve acute inflammatory reaction after intracerebral hemorrhage. Nano Res 10:2743–2760

    Google Scholar 

  • Katiyar SK, Korman NJ, Mukhtar H, Agarwal R (1997) Protective effects of silymarin against photocarcinogenesis in a mouse skin model. J Natl Cancer Inst 89(8):556–566

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Rajput R, Nag P, Kumar S, Singh M (2017) Synthesis, characterization and evaluation of antioxidant properties of catechin hydrate nanoparticles. J Drug Delivery Sci Technol 39:398–407

    Article  CAS  Google Scholar 

  • Khalil Yehye WA, Etxeberria AE, Alhadi AA, Dezfooli SM, Julkapli NBM, Basirun WJ, Seyfoddin A (2019) Nanoantioxidants: recent trends in antioxidant delivery applications antioxidants. Baseline 9(1):24

    Google Scholar 

  • Kim MJ, Kim H (2015) Anticancer effect of lycopene in gastric carcinogenesis. J Cancer Prev 20(2):92–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotcherlakota R, Barui AK, Prashar S, Fajardo M, Briones D, Rodríguez-Diéguez A, Patra CR, Gómez-Ruiz S (2016) Curcumin loaded mesoporous silica: An effective drug delivery system for cancer treatment. Biomater Sci 4:448–459

    Google Scholar 

  • Kumari S, Badana AK, G MM, G S, Malla R (2018) Reactive oxygen species: a key constituent in cancer survival. Biomark Insights 13:1–9

    Article  Google Scholar 

  • Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD (2008) Dual roles of Nrf2 in cancer. Pharmacol Res 58(5–6):262–270

    Google Scholar 

  • Li B, Cao Y, Meng G et al. (2018) Targeting glutaminase 1 attenuates stemness properties in hepatocellular carcinoma by increasing reactive oxygen species and suppressing Wnt/beta-catenin pathway. EBioMedicine, The Lancet, Elsevier. pp 2352–3964

    Google Scholar 

  • Li Y, Hu J, Liu X, Liu Y et al (2019) Photodynamic therapy-triggered on-demand drug release from ROS responsive core-cross-linked micelles toward synergistic anti-cancer treatment. Nano Res 12(5):999–1008

    Article  CAS  Google Scholar 

  • Lian B, Li J et al (2018) miR-128 targets the SIRT1/ROS/DR5 pathway to sensitize colorectal cancer to TRAIL-induced apoptosis. Cell Physiol Biochem 49:2151–2162

    Article  CAS  PubMed  Google Scholar 

  • Limtrakul P, Anuchapreeda S, Lipigorngoson S, Dunn FW (2001) Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin. BMC Cancer 1:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SS, Hung CF, Tyan YS, Yang CC, Hsia TC, Yang MD, Chung JG (2001) Ellagic [correction of ellagica] acid inhibits arylamine N-acetyltransferase activity and DNA adduct formation in human bladder tumor cell lines (T24 and TSGH 8301). Urol Res 29(6):371–376

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wu YM, Zhang PY (2015) Protective effects of curcumin and quercetin during benzo(a)pyrene induced lung carcinogenesis in mice. Eur Rev Med Pharmacol Sci 19(9):1736–1743

    CAS  PubMed  Google Scholar 

  • Liu P, Tang H, Lu M, Gao C, Wang F, Ding Y, Zhang S, Yang M (2017) Preparation of nanosilica-immobilized antioxidant and the antioxidative behavior in low density polyethylene. Polym. Degrad Stab 135:1–7

    Article  CAS  Google Scholar 

  • Mbah Chika J, Orabueze I, Okorie Ndiamaka H (2019) Antioxidant properties of natural and synthetic chemical compounds:theraputic effects on biological system. Acta Scientific Pharm Sci 3(6):28–42

    Article  Google Scholar 

  • Medhe S, Bansal P, Srivastava MM (2014) Enhanced antioxidant activity of gold nanoparticle embedded 3, 6-dihydroxyflavone: a combinational study. Appl Nanosci 4:153–161

    Article  CAS  Google Scholar 

  • Moses T, Papadopoulou KK, Osbourn A (2014) Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 49(6):439–462

    Google Scholar 

  • Nayak D, Minz AP, Ashe S, Rauta PR, Kumari M, Chopra P, Nayak B (2016) Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: characterization and cytotoxic effect on MCF-7 breast cancer cell lines. J Colloid Interface Sci 470:142–152

    Article  CAS  PubMed  Google Scholar 

  • Nie Z, Liu KJ, Zhong CJ, Wang LF, Yang Y, Tian Q, Liu Y (2007) Enhanced radical scavenging activity by antioxidant-functionalized gold nanoparticles: a novel inspiration for development of new artificial antioxidants. Free Radic Biol Med 43(9):1243–54

    Google Scholar 

  • Noda N, Wakasugi H (2001) Cancer and oxidative stress. JMAJ 44(12):535–539

    Google Scholar 

  • Nunes XP, Silva VS, Almeida JRGS, Lima JT, Ribeiro LAA, Junior LJQ, Filho JMB (2012) Biological oxidations and antioxidant activity of natural products. In: Rao V (ed) Phytochemicals as Nutraceuticals–global approaches to their role in nutrition and health. InTech, Europe, pp 1–20

    Google Scholar 

  • Polkowski K, Mazurek AP (2000) Biological properties of genistein. A review of in vitro and in vivo data. Acta Pol Pharm 57(2):135–155

    CAS  PubMed  Google Scholar 

  • Postovit L, Widmann C, Huang P, Gibson SB (2018) Harnessing oxidative stress as an innovative target for cancer therapy. Oxidative Med Cell Longev 2018:1–2

    Article  Google Scholar 

  • Pu HL, Chiang WL, Maiti B, Liao ZX, Ho YC, Shim MS, Chuang EY, Xia Y, Sung HW (2014) Nanoparticles with dual responses to oxidative stress and reduced pH for drug release and anti-inflammatory applications. ACS Nano 8:1213–1221

    Article  CAS  PubMed  Google Scholar 

  • Rauscher R, Edenharder R, Platt KL (1998) In vitro antimutagenic and in vivo anticlastogenic effects of carotenoids and solvent extracts from fruits and vegetables rich in carotenoids. Mutat Res 413(2):129–142

    Article  CAS  PubMed  Google Scholar 

  • Reczek CR, Chandel CS (2016) The two faces of reactive oxygen species in cancer. Annu Rev Cancer Biol 1:4.1–4.20

    Google Scholar 

  • Reddy L, Odha B, Bhoola KD (2003) Natural product for cancer prevention: a global perspective. Pharmacol Ther 99(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahiner N, Sagbas S, Aktas N (2016) Preparation and characterization of monodisperse, mesoporous natural poly (tannic acid)–silica nanoparticle composites with antioxidant properties. Microporous Mesoporous Mater 226:316–324

    Article  CAS  Google Scholar 

  • Sekhar KR, Crooks PA, Sonar VN, Friedman DB, Chan JY, Meredith MJ, Starnes JH, Kelton KR, Summar SR, Sasi S, Freeman ML (2003) NADPH oxidase activity is essential for Keap1/Nrf2-mediated induction of GCLC in response to 2-indol-3-yl-methylenequinuclidin-3-ols. Cancer Res 63(17):5636–45

    Google Scholar 

  • Seol SK, Kim D, Jung S et al (2013) One-step synthesis of PEG-coated gold nanoparticles by rapid microwave heating. J Nanomater 2013:6

    Google Scholar 

  • Serafim TL, Carvalho FS, Marques MP, Calheiros R, Silva T, Garrido J, Milhazes N, Borges F, Roleira F, Silva ET, Holy J, Oliveira PJ (2011) Lipophilic caffeic and ferulic acid derivatives presenting cytotoxicity against human breast cancer cells. Chem Res Toxicol 24(5):763–774

    Article  CAS  PubMed  Google Scholar 

  • Shah BR, Zhang C, Li Y, Li B (2016) Bioaccessibility and antioxidant activity of curcumin after encapsulated by nano and Pickering emulsion based on chitosan-tripolyphosphate nanoparticles. Food Res Int 89:399–407

    Article  CAS  PubMed  Google Scholar 

  • Shirzad M, Beshkar P, Heidarian E (2015) The effects of hesperetin on apoptosis induction and inhibition of cell proliferation in the prostate cancer PC3 cells. J Herbmed Pharmacol 4(4):121–124

    CAS  Google Scholar 

  • Siess MH, Le Bon AM, Canivenc-Lavier MC, Suschetet M (2000) Mechanisms involved in the chemoprevention of flavonoids. Biofactors 12(1–4):193–199

    Article  CAS  PubMed  Google Scholar 

  • Song W, Muthana M, Mukherjee J, Falconer RJ, Biggs CA, Zhao X (2017) Magnetic-Silk Core-Shell Nanoparticles as Potential Carriers for Targeted Delivery of Curcumin into Human Breast Cancer Cells. ACS Biomater. Sci Eng 3(6):1027–1038

    Google Scholar 

  • Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12(1):376–390

    Article  CAS  PubMed  Google Scholar 

  • Spinozzi F, Pagliacci MC, Migliorati G, Moraca R, Grignani F, Riccardi C, Nicoletti I (1994) The natural tyrosine kinase inhibitor genistein produces cell cycle arrest and apoptosis in Jurkat T-leukemia cells. Leuk Res 18(6):431–439

    Article  CAS  PubMed  Google Scholar 

  • Stahl W, Heinrich U, Jungmann H, Sies H, Tronnier H (2000) Carotenoids and carotenoids plus vitamin E protect against ultraviolet light-induced erythema in humans. Am J Clin Nutr 71(3):795–798

    Article  CAS  PubMed  Google Scholar 

  • Suh HJ, Chung MS, Cho YH, Kim JW, Kim DH, Han KW, Kim CJ (2005) Estimated daily intakes of butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ) antioxidants in Korea. Food Addit Contam 22(12):1176–1188

    Article  CAS  PubMed  Google Scholar 

  • Szekeres M, Illes E, Janko C, Farkas K, Toth IY, Nesztor D, Zupko I, Foldesi I, Alexiou C, Tombacz E (2015) Hemocompatibility and biomedical potential of poly (gallic acid) coated iron oxide nanoparticles for theranostic use. J Nanomed Nanotechnol 6:252

    Google Scholar 

  • Sznarkowska A, Kostecka A, Meller K, Bielawski KP (2017) Inhibition of cancer; antioxidant defense by natural compounds. Oncotarget 8(9):15996–16016

    Article  PubMed  Google Scholar 

  • Takahashi M, Uechi S, Takara K, Asikin Y, Wada K (2009) Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem 57:9141–9146

    Article  CAS  PubMed  Google Scholar 

  • Tannenbaum SR (1989) Preventive action of vitamin C on nitrosamine formation. Int J Vitam Nutr Res Suppl 30:109–113

    CAS  PubMed  Google Scholar 

  • Theodorescu D, Laderoute KR, Calaoagan JM, Guilding KM (1998) Inhibition of human bladder cancer cell motility by genistein is dependent on epidermal growth factor receptor but not p21ras gene expression. Int J Cancer 78(6):775–782

    Article  CAS  PubMed  Google Scholar 

  • van der Reest J, Gottlieb E (2016) Anti-cancer effects of vitamin C revisited. Cell Res 26(3):269–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Cervantesa GI, Villasenor-Aguayoa K, Hernandez-Damiana J, Aparicio-Trejoa OE, Medina-Camposa ON, Lopez-Marureb R, Pedraza-Chaverria J (2018) Antitumor effects of nordihydroguaiaretic acid (NDGA) in bladder T24 cancer cells are related to increase in ROS production and mitochondrial leak respiration. Nat Prod Commun 13(11):1523–1526

    Google Scholar 

  • Wang H, Bouzakoura S, Mey S et al (2017a) Auranofin radiosensitizes tumor cells through targeting thioredoxin reductase and resulting overproduction of reactive oxygen species. Oncotarget 8(22):35728–35742

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Zhao Y, Guan L, Zhang Y, Dang Q, Dong P, Li J, Liang X (2017b) Preparation of astaxanthin-loaded DNA/chitosan nanoparticles for improved cellular uptake and antioxidation capability. Food Chem 227:9–15

    Article  CAS  PubMed  Google Scholar 

  • Wei PL, Huang CY, Chang YJ (2019) Propyl gallate inhibits hepatocellular carcinoma cell growth through the induction of ROS and the activation of autophagy. PLoS One 214(1):1–18

    Google Scholar 

  • Weisburg JH, Schuck AG, Reiss SE, Wolf BJ, Fertel SR, Zuckerbraun HL, Babich H (2013) Ellagic acid, a dietary polyphenol, selectively cytotoxic to HSC-2 Oral carcinoma cells. Anticancer Res 33(5):1829–1836

    CAS  PubMed  Google Scholar 

  • Xia C, Zeng H, Zheng Y (2019) Low-intensity ultrasound enhances the antitumor effects of doxorubicin on hepatocellular carcinoma cells through the ROS-miR-21-PTEN axis. Mol Med Rep 21:989–998

    Google Scholar 

  • Zhang Y, Choksi S, Chen K, Pobenzinskaya Y, Linnoila I, Liu ZG (2013) ROS plays a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor associated macrophages. Cell Res 23(7):898–914

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge Department of Zoology, The University of Burdwan.

Conflicts of Interest Statement

There are none.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mandal, P., Goswami, A., Adhikari, S., Sarkar, S. (2022). Targeting Oxidative Stress in Cancer. In: Chakraborti, S., Ray, B.K., Roychoudhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-9411-3_19

Download citation

Publish with us

Policies and ethics