Skip to main content

A Glimpse of Famous Cases in History Solved by DNA Typing

  • Living reference work entry
  • First Online:
Handbook of DNA Profiling

Abstract

DNA fingerprinting technique is considered to be the most irrefutable evidence in the criminal justice system. The technique has been advanced from the RFLP-based analysis to the estimation of alleles of PCR-amplified STR markers by capillary electrophoresis. The present-day forensic DNA practice is witnessing a paradigm shift from CE-based analysis to NGS-based sequence determination of the alleles. Despite all the advancements, the technology has been used successfully in solving many criminal and civil cases of paternity dispute, identification, murder, and sexual assault nature. Few highlighted cases solved by this technique have been discussed in this chapter. Besides, the technology has also been used in solving many cold cases in history as well as exonerating innocents. Though NGS technology is in its preliminary stage of use in forensic DNA analysis, its importance in solving complicated criminal cases has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ballantyne KN, Keer V, Wollstein A, Choi Y, Zuniga SB, Ralf A, Vermeulen M, de Knijff P, Kayser M (2012) A new future of forensic Y-chromosome analysis: rapidly mutating Y-STRs for differentiating male relatives and paternal lineages. Forensic Sci Int Genet 6:208–2018. https://doi.org/10.1016/j.fsigen.2011.04.017

    Article  CAS  PubMed  Google Scholar 

  • Biesecker LG, Bailey-Wilson JE, Ballantyne J, Baum H, Bieber FR, Brenner C, Budowle B, Butler JM, Carmody G, Conneally PM, Duceman B, Eisenberg A, Forman L, Kidd KK, Leclair B, Niezgoda S, Parsons TJ, Pugh E, Shaler R, Sherry ST, Sozer A, Walsh A (2005) DNA identifications after the 9/11 world trade center attack. Science 310:1122–1123

    Article  CAS  Google Scholar 

  • Butler JM (2010) Fundamentals of forensic DNA typing. Academic, London

    Google Scholar 

  • Butler JM, Shen Y, McCord BR (2003) The development of reduced size STR amplicons as tools for analysis of degraded DNA. Journal of Forensic Science 48:1054–1064

    CAS  Google Scholar 

  • Caglia A, Stefanoni P, La Rosa A (2011) Cold cases: new technologies for DNA analysis allow the reopening and solution of unsolved cases. Forensic Science International: Genetics Supplement Series 3:e230–e231. https://doi.org/10.1016/j.fsigss.2011.09.001

    Article  Google Scholar 

  • Clark M, Gill J, Sasinouski K, McGuire A (2019) Cold case homicides: DNA testing of retained autopsy sexual assault smears. J Forensic Sci. https://doi.org/10.1111/1556-4029.14023

  • de Knijf P (2019) From next generation sequencing to now generation sequencing in forensics. Forensic Sci Int Genet 38:175–180

    Article  Google Scholar 

  • Dimo-Simonin N, Grange F, Brandt-Casadevall C (1997) PCR-based forensic testing of DNA from stained cytological smears. Journal of Forensic Science 42:506–509

    Article  CAS  Google Scholar 

  • Foran DR, Starrs JE (2004) In search of the Boston strangler: genetic evidence from the exhumation of Mary Sullivan. Med Sci Law 44:47–54. https://doi.org/10.1258/rsmmsl.44.1.47

    Article  PubMed  Google Scholar 

  • Geis G, Bienen LB (1998) Crimes of the century: from Leopold and Loeb to O.J. Simpson. Northeastern University Press. p 174. ISBN 978-1-55553-360-1

    Google Scholar 

  • Gill P (2002) Role of short tandem repeat DNA in forensic casework in the UK—past, present, and future perspectives. BioTechniques 32:366–385

    Article  CAS  Google Scholar 

  • Jakovski Z, Ajanovska RJ, Stankov A, Poposka V, Bitoljanu N, Belakaposka V (2017) The power of forensic DNA data bases in solving crime cases. Forensic Sci Int Genet Suppl Ser 6:e275–e276. https://doi.org/10.1016/j.fsigss.2017.09.085

    Article  Google Scholar 

  • John Aitken R, Koppers AJ (2011) Apoptosis and DNA damage in human spermatozoa. Asian J Androl 13:36–42. https://doi.org/10.1038/aja.2010.68

    Article  CAS  PubMed  Google Scholar 

  • Johnson ED, Kotowski TM (1996) Chemiluminescent detection of RFLP patterns in forensic DNA analysis. Journal of Forensic Science 41:569–578

    Article  CAS  Google Scholar 

  • Johnson P, Williams R (2004) Post-conviction DNA testing: the UK's first ‘exoneration’ case? Sci Justice 44:77–82. https://doi.org/10.1016/S1355-0306(04)71692-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayser M (2017) Forensic use of Y-chromosome DNA: a general overview. Hum Genet 136:621–635. https://doi.org/10.1007/s00439-017-1776-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YT, Heo HY, Seo TS (2018) Advanced short tandem repeat genotyping for forensic human identification. In: Chang HN (ed) Emerging areas in bioengineering. Wiley-VCH Verlag GmbH & Co. KGaA. ISBN: 9783527340880

    Google Scholar 

  • Leclair B, Frégeau CJ, Bowen KL, Fourney RM (2004) Enhanced kinship analysis and STR-based DNA typing for human identification in mass fatality incidents: the Swissair flight 111 disaster. Journal of Forensic Science 49:939–953

    CAS  Google Scholar 

  • Maguire CN, McCallum LA, Storey C, Whitaker JP (2014) Familial searching: A specialist forensic DNA profiling service utilising the National DNA Database® to identify unknown offenders via their relatives—The UK experience. Forensic Sci Int Genet 8:1–9. https://doi.org/10.1016/j.fsigen.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  • Marks K (2009) New DNA Technology for Cold Cases. Law and Order 57(36–38):40–41,43

    Google Scholar 

  • Mattick JS, Dinger ME (2013) The extent of functionality in the human genome. HUGO J 7. https://doi.org/10.1186/1877-6566-7-2

  • Menotti-Raymond MA, David VA, O'Brien SJ (1997a) Pet cat hair implicates murder suspect. Nature 386:774

    Article  CAS  Google Scholar 

  • Menotti-Raymond M, David VA, Stephens JC, Lyons LA, O'Brien SJ (1997b) Genetic individualization of domestic cats using feline STR loci for forensic applications. Journal of Forensic Science 42:1039–1051

    Article  CAS  Google Scholar 

  • Panneerchelvam S, Norazmi MN (2003) Forensic DNA profiling and database. Malaysian Journal of Medical Sciences 10:20–26

    CAS  Google Scholar 

  • Pearsall A (1989) DNA printing: the unexamined "witness" in criminal trials. California Law Review 77:665–703. https://doi.org/10.2307/3480565

    Article  Google Scholar 

  • Rankin DR, Narveson SD, Birkby WH, Lai J (1996) Restriction fragment length polymorphism (RFLP) analysis on DNA from human compact bone. Journal of Forensic Science 41:40–46

    Article  CAS  Google Scholar 

  • Reif W (2002) September 11: how they identified the victims. The Lancet 360:807–808. https://doi.org/10.1016/S0140-6736(02)09931-2

    Article  Google Scholar 

  • Saad R (2005) Discovery, development, and current applications of DNA identity testing. Proc (Baylor Univ Med Cent) 18:130–133. https://doi.org/10.1080/08998280.2005.11928051

    Article  Google Scholar 

  • Sensabaugh G, Kaye DH (1998) Non-human DNA evidence. Jurimetrics 39:1–16

    Google Scholar 

  • Sobrino B, Carracedo A (2005) SNP typing in forensic genetics: a review. Methods Mol Biol 297:107–126

    CAS  PubMed  Google Scholar 

  • Thompson WC (1996) DNA evidence in the O.J. Simpson trial. University of Colorado Law Review 67:827–857

    Google Scholar 

  • Yang W, Kang X, Yang Q, Lin Y, Fang M (2013) Review on the development of genotyping methods for assessing farm animal diversity. Journal of Animal Science and Biotechnology 4. https://doi.org/10.1186/2049-1891-4-2

  • Yang Y, Xie B, Yan J (2014) Application of next-generation sequencing Technology in Forensic Science. Genomics Proteomics Bioinformatics 12:190–197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dash, H.R., Vajpayee, K., Agarwal, R. (2021). A Glimpse of Famous Cases in History Solved by DNA Typing. In: Dash, H.R., Shrivastava, P., Lorente, J.A. (eds) Handbook of DNA Profiling. Springer, Singapore. https://doi.org/10.1007/978-981-15-9364-2_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9364-2_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9364-2

  • Online ISBN: 978-981-15-9364-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics