
Chapter 47
Transportation Modeling

Eric J. Miller

Abstract Informatics are rapidly and radically transforming urban transportation
in ways not seen since the introduction of the automobile over a hundred years
ago. Near-ubiquitous smartphone usage, pervasive cellular and Wi-Fi connectivity,
powerful and cost-effective computing capabilities, advanced GIS software and
databases, advanced platforms for managing and scheduling service operations, etc.,
are combining to enable the introduction of new mobility services and technologies
that are increasingly disrupting conventional trip-making behavior and the “rules
of the game” in terms of transportation network operations and the regulation of
system performance. The implications of these major informatics-driven changes
for transportation modeling are equally disruptive and major. These include changes
in: travel behavior; transportation system performance; the data available for model
development and application; and modeling methods. Each of these broad areas of
impact are discussed in this chapter.

47.1 Introduction

Use of large, computer-based models of travel demand and transportation system
performance is standard practice in urban regions worldwide for transportation plan-
ning and decision-support purposes (Meyer and Miller 2013). They enable planners
to estimate quantitatively the likely future impacts of a wide variety of policy options,
including investment in major new transportation infrastructure (roads, transit, etc.),
land-use policies, pricing/fare policies, new technologies, population and employ-
ment growth trends, etc. Detailed discussion of thesemodels is well beyond the scope
of this chapter, but the state of the art is extensively documented in the literature (see,
for example, Ben-Akiva andLerman 1985; Train 2009;Ortuzar andWillumsen 2011;
Castiglione et al. 2015). Rather, this chapter explores current and emerging impacts
of urban informatics on transportation modeling needs, capabilities, opportunities,
and challenges1.
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Informatics are rapidly and radically transforming urban transportation in ways
not seen since the introduction of the automobile over a hundred years ago. Near-
ubiquitous smartphone usage, pervasive cellular and Wi-Fi connectivity, powerful
and cost-effective computing capabilities, advanced GIS software and databases,
advanced platforms for managing and scheduling service operations, etc. are
combining to enable the introduction of new mobility services and technologies
that are increasingly disrupting conventional trip-making behavior and the “rules of
the game” in terms of transportation network operations and the regulation of system
performance.

The implications of these major informatics-driven changes for transportation
modeling are equally disruptive and major. These include:

• Changes in travel behavior.
• Changes in transportation system performance.
• Changes in the data available for model development and application.
• Changes in modeling methods.

Each of these topics are discussed in detail in the following four sections. Looming
over this discussion of technology-driven changes in the transportation system and
associated modeling needs is the potential for the introduction into widespread usage
within a currently ill-defined but still foreseeable future of electric vehicles (EVs) and
connected and autonomous vehicles (CAVs), whichmay also be electrified (CAVEs).
Full discussion of these technologies and their potential impacts goeswell beyond the
topic of urban informatics per se. But some possible impacts of eventual CAV impacts
on travel behavior and transportation network performance are briefly discussed in
Sects. 47.2 and 47.3.

47.2 Informatics and Travel Behavior

The primary impacts of informatics on travel behavior to date derive from two related
informatics-based services:

• Real-time travel-related information.
• New mobility services and technologies.

These are discussed in the following two sub-sections. As becomes clear in this
discussion, the driving technology enabling all these services are cellular- and Web-
based apps running on smartphones and other computing devices, tied to centralized
computing platforms that receive and send massive amounts of data and that process
customer data requests for information and services, match customers with service
providers, etc. The evolution andwidespread adoption of smartphones among a broad
segment of trip-makers, in particular, has been fundamental to the development and
implementation of these various services.
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47.2.1 Real-Time Travel-Related Information

A veritable plethora of Web- and smartphone-based apps exist that trip-makers can
use to plan their trip destination, mode, and route choices prior to traveling and
to dynamically choose their travel route during their trip. Many of these apps are
provided by private companies, but public-sector apps also exist. For example, most
public transit agencies provide some form of route guidance, as well as schedule and
fare information.

Perhaps the most pervasive and impactful of these apps are the wide range of
route-guidance apps based on the Global Positioning System (GPS) and available
either on-boardmany automobiles or as apps for smartphones or othermobile devices
such as tablets. These sense the current location of the device (and, hence, vehicle)
and provide real-time estimates of current traffic conditions on the roadway being
used. They also provide estimates of current travel times to a user-specified destina-
tion, along with recommended best routes to take to this destination. The definition
of best route may be based either on shortest distance or shortest expected travel
time, with the latter being the preferred and, increasingly, the most common option.
Link and route travel times are determined based on crowd-sourced information on
speeds gathered from all the users of the service, aswell as possibly other information
that may be available to the service provider (police/traffic center advisories, other
roadway sensor data, etc.). They also depend critically on access to very precise and
accurate geographic information system (GIS) representations of the road network,
including speed limits and other road attributes. Huge effort over the past several
decades has gone into developing such detailed maps for much of the world, partic-
ularly, in urbanized areas. Thus, these route-guidance apps represent an advanced
marriage of GPS tracking and GIS mapping and analysis capabilities.

Both real-time and historical data are used in the calculations. The quality of
the travel-time and route-selection calculations obviously depends on the number of
users in the system at any one time, the depth and relevance of the available historical
information, and, critically, the quality and accuracy of the (typically proprietary)
algorithms used by the service provider to do these calculations. Machine learning
methods (running on powerful cluster/cloud computing platforms) play a key role in
sifting through themassive real-time and historical data to identify traffic patterns and
to make short-term predictions of best routes to recommend. While these algorithms
still are not 100% perfect under all conditions and in all places, their accuracy in
making short-run predictions of roadway performance is typically quite impressive.

In addition to on-board route-guidance apps, conventional variable message signs
on roadways and radio traffic reports have for decades provided a certain amount
of high-level, real-time information concerning current travel conditions on major
roadways, although these rarely provide route guidance. That is, a variable message
sign might indicate that the roadway is congested ahead, but will not actually suggest
or advise to take an alternative route. This is both due to legal concerns (if a driver
takes a suggested alternative route and gets into an accident, who is liable?) and to



914 E. J. Miller

minimize the potential for introducing instability into the system (what if everyone
took the alternative route?).

Many apps also exist for providing static or real-time information concerning
public transit routes, schedules, fares, and travel times. Most transit agencies now
provide such an app, but many private and open-source public apps also exist. Such
apps may provide information concerning: when the next transit vehicle is expected
to arrive at a given stop; assistance for planning a trip from a given origin to a given
destination at a given time of day; fare policies and payment options; service disrup-
tions notices, etc. In addition to mobile-device-based apps, many transit agencies
also provide real-time information at transit stops and stations concerning expected
next-vehicle arrival times, by transit line. Various apps also exist to help bicyclists
track their bike usage and routes are taken. Personal fitness apps for tracking distance
walked also exist.

Although not generally thought of as being particularly travel-related, a vast array
of Web sites provides information concerning every form of activity imaginable—
restaurants, stores, entertainment venues, hotels, etc. These activity locations are
potential destinations for trip-making that is not related to work or school, and the
ubiquitous and voluminous availability of such data may well influence trip-makers’
decision-making, especially regarding trip destination.

In general, most of these apps and services can be used for pre-trip planning
(“Where should I go for dinner tonight”? “Should I drive or take transit for this
trip?”) as well as for on-route dynamic decision-making (“Accident ahead; let’s get
off the freeway”). While usage of these various apps is clearly very widespread,
the actual impacts of this usage on travel behavior are not at all well understood.
What percentage of the population are using what kinds of apps? Does this usage
significantly influence choice of mode or destination, or timing of trips? Route-
guidance apps must be affecting route choices, given their widespread use, but how
great are the resulting deviations from the routes that drivers would have chosen in
the absence of the app? To what extent is congestion being reduced (or increased?)
through extensive use of these apps? These issues are discussed in greater detail
below.

47.2.2 New Mobility Services and Technologies

Current and emerging information and communications technology (ICT) is not
only dramatically increasing and improving the information available to trip-makers
to help them in their travel decision-making, it is also revolutionizing the services
available to them by which they may travel. New ICT-based mobility services and
technologies are emerging virtually daily that provide new travel options for trip-
makers.Aswith the new information services, these critically dependon smartmobile
devices for communicating with potential customers of the service and on powerful
computing platforms to manage the service.
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As discussed in detail by Calderón and Miller (2019, 2020), a mobility service
can be defined as an operation that enables a person to complete a trip from an origin
to a destination by means of a given mode (technology) and service process. Public
transit and conventional taxis are traditional mobility services. But a wide range of
informatics-enabled mobility services has emerged in recent years. These take many
forms, including:

• Ridehailing: Services such as Uber and Lyft (also conventional taxi), in which a
service provider connects drivers with passengers to provide passengers with a
door-to-door trip from their origin to their destination. Ridehailing can be further
sub-divided into single-user and shared-ride services, with the latter involving
passengers sharing the vehicle with other passengers and, as a result, experiencing
some amount of trip deviation from a direct origin-to-destination trip in order
to accommodate the pickups and drop-offs of the other passengers sharing the
vehicle.

• Vehicle-sharing: These services provide short-term rentals of vehicles to
customers who pick up the vehicle from where it is parked, use it to execute
one or more trips, and then leave the vehicle safely parked once they are finished
with it. Different services use different types of vehicles, including: automobiles
(car-share), bicycles (bike-share, using both conventional bicycles and e-bikes),
and, most recently, e-scooters. Vehicles usually are parked at designated stations
(parking lots, bike-share docking stations, etc.), but dockless systems increasingly
exist, in which the car, bike, e-scooter, etc., can be left anywhere, and is picked
up by the next customer from wherever it was last left. Such dockless systems
obviously depend on GPS tracking of the vehicle so that its location is known at
all times. Vehicle-sharing services are usually provided by a for-profit company,
but examples of peer-to-peer systems also exist in which private individuals offer
their vehicle for usage by others when they do not need it for their personal use.1

• Demand-responsive transit (DRT)/microtransit: A wide variety of transit services
exist (or can be imagined) that deviate from conventional fixed-route, fixed-
schedule (typically large-vehicle) transit operations, including various combina-
tions of route deviation, flexible stop location, on-demand scheduling of vehicle
routing, and, usually, use of smaller vehicles that are cost-effectively matched
to travel demand levels. Various forms of DRT have operated basically as long
as public transit has existed. In particular, in much of the world jitney oper-
ations (along with other forms of privately operated informal transit services)
are critical components of urban transportation, especially for lower-income trip-
makers. In additional, DRT (often referred to as paratransit) services are a standard
means of providing on-demand transit to mobility-impaired trip-makers who are
unable to use conventional transit services. Platform-based informatics systems
are redefining and enhancing the capabilities and potential applications of such

1Examples of peer-to-peer shared-ride systems also exist in which a platform connects private
individuals who are willing to share rides with other individuals. A common example of such a
system occurs on many university campuses, in which students offer rides to other students to travel
back and forth between the university and nearby home cities during holiday weekends, etc.
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services by significantly improving both the quality of service that can be offered
to customers (through improved real-time scheduling and more efficient routing)
and the cost-effectiveness with which the service can be provided.

While a wide diversity of mobility services exists, they all involve some combina-
tion of a generic set of operating functions (Calderón and Miller 2019, 2020). These
consist of:

• Matching trip-maker requests for service with drivers and vehicles.
• Rebalancing vehicle fleets to maintain an appropriate spatial distribution of

vehicles available for service.
• Trip pricing and payment.
• Pooling customers within vehicle tours for shared-ride operations.

Clearly not all operations pertain to all services. Bike-share services, for example,
only provide real-time information concerning the current availability of bicycles by
location, leaving customers to find their way to and rent one of these available bicy-
cles. They do, however, have to deal with rebalancing, since usage patterns often
result in large numbers of bicycles at popular destinations and too few bicycles
at some origin locations. Ridehailing operators, on the other hand, primarily are
concerned with matching customers to vehicles so as to both maximize the customer
experience (usually meaning minimizing service wait times) and minimizing oper-
ating costs (e.g. avoiding very long dead-heading of vehicles). They may or may
not engage in active attempts to rebalance the locations of the vehicles currently in
service.2 Pooling, of course, only pertains to shared-ride operations, but is a very crit-
ical component of the service, since the classical weakness of shared-ride services
has been poor customer experiences: long wait times and circuitous routing (and
hence long travel times relative to a more direct origin–destination journey).

Pricing levels and policies vary from one service to another and vary to the
extent that prices dynamically vary with demand levels (so-called surge pricing)
and, possibly, other factors (such as weather). Online payment systems based on
credit cards are, however, an important feature of all new mobility systems. The
convenience of this automated payment system should not be underestimated. At the
end of the day, differences between a conventional taxi and an Uber are arguably
not that great,3 but the convenience of being able to simply step out of the car at the
end of the trip (as well as the convenience of booking the trip with a few key-strokes
on a smartphone) appears to be a significant factor in the success of new mobility
services.

The role of informatics-basedplatforms, involving an integrated ofGPS,GIS, real-
time cell- andWeb-based communications, combined with high-capacity computing
and data processing and analytics based on artificial intelligence (AI) is fundamental

2Since ridehailing services currently depend on independent driver contractors, the ability of the
ridehailing platform provider to influence their locations when not in service tends to be indirect at
best.
3Although differences clearly exist, particularly, perceptual differences. Taxis, for example, are
often criticized as being “dirty”. Safety/security differences also exist, as do price differentials.
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to all such mobility services. It is such platforms that have allowed both conventional
taxi and transit services to be re-invented and for new technologies and services such
as bike- and e-scooter share services to emerge.

The concept of mobility as a service (MaaS) generalizes mobility services by
extending the platform concept to integrate two or more mobility services to provide
seamless, and door-to-door mobility solutions that dynamically mix and match
mobility services customer by customer to optimize their travel experience within
a one-stop-shopping process. MaaS is seen by many as the future of transportation,
withMaaS platforms acting as brokers that piece together different mobility services
to bestmeet the trip-maker’s needs and preferences. In such a future, a trip-makermay
be picked up at her door in a suburb by a ridehailing company, taken to a commuter
rail station just in time to board her train, and then have an e-bike waiting for her at
her downtown egress station to complete her journey to her office, all for one fare
automatically charged to her credit or debit card (perhaps with various loyalty points
as well).

Such complete mobility solutions do not generally currently exist, although many
companies and organizations are working toward their implementation. A particu-
larly important policy question exists concerning the extent to whichMaaS solutions
can be integrated to improve the cost-effectiveness and attractiveness of public transit,
so as to maintain it as a primary mass mover of trip-makers in high-density corri-
dors. Urban areas worldwide are currently overwhelmed by auto congestion, and it is
essential, however MaaS plays out, that it enables more efficient usage of transporta-
tion networks through the promotion of transit (where appropriate) and congestion
reductions, while still accommodating the growth in travel that is inevitable as urban
regions continue to grow. Notably, there is a growing literature that indicates that
current mobility services are both adversely impacting conventional transit usage
and increasing the amount of congestion (at least in central areas) in many cities (Li
et al. 2019; Graehler et al. 2019; Rayle et al. 2016).

While an academic literature exists that explores the potential impact of route-
guidance information on travel behavior, most of this is based on stated preference
surveys or hypothetical simulation experiments rather than real-world data. A major
barrier to investigating these questions is that the vast bulk of data concerning app
usage and subsequent behavior is proprietarily held by private companies who are
usually unwilling to share it with public agencies or academic researchers.

Enormous speculation currently exists concerning the potential impacts on travel
behavior of the ubiquitous availability of fully autonomous vehicles. Exploration
of this issue is well beyond the scope of this chapter. We simply note that CAVs
potentially might dramatically alter auto ownership levels (people may simple rent
mobility on a per-trip basis), public transit usage, and roadway congestion levels,
among many possible other impacts. Transit ridership impacts are a particularly
important policy question. CAVs might be used to support the use of higher-order
transit by providing first- and last-mile solutions for getting to and from transit in
low-density suburban neighborhoods. Or ubiquitous automated ridesharing services
might decimate transit usage, likely leading to increased, rather than decreased,
congestion on urban streets. In any event, increasing connectivity and automation of
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the transportation system will further increase the availability of massive, dynamic
real-time information concerning travel and the associated need for advanced infor-
matics methods for the storage and analysis of these data for transportation planning
and operations purposes.

47.3 Informatics and Transportation Network Performance

Transportation network performance is the emergent outcome of a short-run (day-
to-day, hour-by-hour, minute-by-minute) demand–supply interaction, in which the
performance of a network link (road or transit line segment) depends on the volume
of flow (cars, passengers, etc.) using the link at a given time. That is, the travel time
required to traverse the link (and associated congestion level) depends on the level
of link usage, while the number of users of the link depends (at least in part) on the
travel time experienced on the link.

Route-guidance apps surely have an impact on the route choices of individual
trip-makers (otherwise, why would they use them?), and, hence the distribution of
flows across links and paths within the network, and ultimately on link and path
travel times. Such apps are used both for pre-trip planning (What’s the best way of
getting there? What’s a good time to leave to avoid traffic?) and dynamic on-route
guidance. The actual impacts of such route-guidance apps on trip-makers’ route
choices, however, are typically unknown, since only the app companies usually see
the data and they are generally not telling.

Note that a major impact of CAVs is likely to be to take route choice deci-
sions largely out of the hands of the trip-maker and place them under control of
the vehicle and its associated automated route-guidance system. This should help
improve roadway performance since vehicles will be more likely to be spread across
network paths so as to minimize overall congestion. But this may also involve an
ethical issues of whether it is appropriate to impose a longer trip on one user so that
other users may benefit from shorter travel times (which is usually what is required
in order to reduce overall delay in the system).

Informatics-based connectivity (whether in an automated or conventional vehicle)
offers the potential for ubiquitous road pricing, in that if every vehicle’s location is
known and local roadway congestion levels are also known at each point in the
network, then usage of the road system can be dynamically priced to encourage
more system-optimal route choices by trip-makers, or, at least, to charge trip-makers
the actual social cost of their trip. Such a system addresses the ethical issue raised
above by creating the potential of offering multiple route choices to trip-makers: for
example, a quicker but more expensive route (since it involves higher social marginal
costs associated with the trip) or a slower but less expensive one (in which socially
beneficial behavior is encouraged or rewarded by a discounted travel cost).

Parking could be similarlymonitored and dynamically charged to reduce on-street
parking on congested streets, direct cars to vacant parking spaces, etc. Parking lots
and garages take up an enormous amount of valuable space, on-street parking very
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significantly reduces the capacity of our streets to carry traffic of all sorts (i.e. bicycles,
transit, etc. in addition to cars and trucks), and drivers cruising to find (cheap) parking
is a major source of congestion in its own right in most urban centers. Even with
conventional cars, informatics-based parking apps and usage monitoring systems
in parking lots can reduce these impacts considerably, as is being demonstrated,
for example, by the SF Park demand-responsive parking pricing experiment in San
Francisco (https://sfpark.org/). A major asserted benefit of CAVs is that they may
eliminate most on-street parking as well as significantly reduce parking lot needs,
especially in urban cores. As with all aspects of CAVs, these benefits are at the
moment speculative, but are the subject of considerable research (Nourinejad et al.
2018).

Informatics is also extensively (and increasingly) used in transportation network
operational control. Traditionally, roadway performance (volumes, speeds, conges-
tion levels) has beenmonitored by electromagnetic loop detectors embedded in road-
ways that detect vehicles passing over the detector by the magnetic signature of
the vehicle. While useful, such loop-detector systems are expensive to install and
maintain and are often subject to failure. Numerous other technologies now exist for
monitoring roadway traffic, including video cameras (which require advanced image-
processing methods for automated data gathering from the video images), Bluetooth
detectors (which detect the unique MAC addresses of vehicles, smartphones, and
other Bluetooth-enabled devices, thereby being able to trace the paths and average
speeds of these vehicles as they pass a sequence of detectors within the network),
and purchasing of on-board route-guidance and other passive location-detection app
data from third-party providers. In the case of public transit, many agencies have
automatic vehicle location (AVL) systems for tracking transit vehicles in real time
and automatic passenger counting (APC) systems for measuring real-time passenger
boardings and alightings per vehicle at each stop along a given transit route.

47.4 Informatics and Data Support for Travel-Demand
Modeling

The informatics-based services and apps discussed in Sect. 47.2 are generating
tremendous amounts of data, day after day, concerning millions of trips being made
within a given metropolitan region.

Travel-demand modeling has always depended heavily on large cross-sectional
surveys of trip-makers within an urban region. Such surveys are expensive and time-
consuming to undertake, subject to various sampling and other biases, and often
facing increasing challenges in terms of being able to generate representative samples
(Miller et al. 2012; Srikukenthiran et al. 2018). While traditional large household
travel surveys are likely to continue be undertaken for the foreseeable future (Miller
et al. 2018), current and emerging informatics methods offer promising alternatives
and complements to traditional surveys in terms of both newmodes and technologies

https://sfpark.org/


920 E. J. Miller

for conducting surveys and new passive (non-survey) methods for observing travel-
related behavior, which are discussed in the following two sub-sections. Common to
all these sources of data is the problem of imputingmissing attributes of the trip or the
trip-maker, which requires advanced statistical data fusion and modeling methods,
which are briefly discussed in the third sub-section.

47.4.1 Informatics-Based Survey Methods

The primary two informatics-based survey methods are Web-based surveys and
smartphone-app-based surveys and trackers. Web-based surveys have become a de
facto standard method for undertaking travel surveys, replacing or complementing
more traditional methods such as telephone interviews, self-completed mail-back
surveys, and face-to-face interviews.4 Web-based surveys can be very cost-effective
since they eliminate the need to hire interviewers, and the marginal cost per survey
completion is very low once the up-front cost of the survey development and imple-
mentation is accounted for. On the other hand, establishing and contacting a repre-
sentative sample can be challenging, response rates can be low, and the quality of
responses can also be sometimes problematic given the lack of supervision and assis-
tance provided by an interviewer. This last problem, however, can be significantly
mitigated by very careful software design to maximize the clarity of the questions
being asked and to minimize respondent burden (Loa et al. 2015; Chung et al. 2020;
Srikukenthiran et al. 2018).

Similarly, many custom smartphone apps exist that have been explicitly designed
to track persons’ trip-making and to gather information concerning trip and trip-
maker attributes. These generally involve a brief up-front survey to gather key demo-
graphic and socio-economic information concerning the trip-maker (and, ideally, the
trip-maker’s household). The app then is designed to actively track all movements by
the person over multiple days, or even possibly weeks, using the smartphone’s on-
board GPS and other tracking capabilities. This generates space–time traces of the
person’s movements while carrying the smartphone (assuming that it’s turned on!).
The potential to gather detailed information concerning personal travel behavior is
considerable. In particular, route choice and information concerning active modes,
both of which are typically challenging to gather with conventional survey methods,
are readily gathered by such apps (Grond and Miller 2016; Lue and Miller 2019).
Numerous technical issues, however, are not fully resolved, thus limiting their current
widespread usage. These include issues of phone battery life versus the precision of
the route tracking (the more precise the tracking, the greater the drain on the battery);
the ability to impute travel mode and trip purpose purely from the trip trace; and the
representativeness of the smartphone-based samples and sample recruitmentmethods
(Rashed et al. 2015a; b).

4Even for these traditional survey modes, tablet-based Web software is being used to conduct and
record the interviews. See, for example, Chung et al. (2020) and Harding et al. (2017).
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Considerable processing of the raw traces also needs to be undertaken in order
to identify the end (stop) point of a trip in space and time (e.g. has the person
stopped for a quick shopping activity in a store or is she or he just waiting a long
time at a bus stop?), the purpose of the trip (i.e. the type of activity engaged in at
the trip end), and the mode of travel used to undertake the trip. Location, purpose,
and mode are all essential trip attributes if these data are to be useful for travel-
behavior analysis and modeling. Ideally, these attributes should be imputable from
the trace data themselves, combined with additional available data, notably GIS
datasets concerning land use and points of interest (POI—schools, stores, etc.) and
transportation network data concerning road and transit networks. That is, the respon-
dents are passively tracked, without having to explicitly query them concerning their
trip-making. If sufficient multiple-day data for enough trip-makers are available, then
machine learning methods can, in principle, be used to impute trip stop, mode, and
purpose. The current state of practice, however, is such that it is generally required
to actively gather at least some information concerning the trips being made, either
on the fly as the trips are being detected or at the end of a day through retrospective
questioning of the respondents. This active questioning allows labels to be attached
to the detected trips (this trip was by car to go shopping) that greatly enhances the
ability to train the automated attribute imputation models, at the price of imposing
an on-going response burden on the survey participants. Thus, active questioning is
often undertaken for a few days at the beginning of the survey period and then turned
off with the tracking app running totally passively for the remainder of the survey
under the assumption that the imputation apps can be sufficiently trained with the
sample of active data obtained (Faghih Imani et al. 2020;Harding et al. 2020;Harding
et al. 2016a, b).

47.4.2 Passive Trip Tracking

Numerous informatics-based methods exist to gather information concerning trip-
making behavior. These include (Miller et al. 2012):

• Passive smartphone-based location trackers.
• Cellphone traces.
• Transit smartcard transaction data.
• Bluetooth sensors.
• Credit card transaction data.

Passive Location Trackers: As discussed in Sect. 47.2.1, vast quantities of infor-
mation concerning trip-making are being collected by route-guidance apps, as well
as other apps that track smartphone locations for a variety of purposes. In addition
to facilitating route guidance, the data collected by such apps can be used to identify
origin-destination trips by time of day. These data can be distinguished from the
smartphone-app data discussed in the previous section in that they do not require
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involvement of the phone user in any way and they are completely anonymized (and
generally aggregated in one way or another).

CellphoneTraceData:Whenever turned on, all cellphones are in constant commu-
nication with their cellular network. Movements of cellphones (and, hence, their
owners) can thus be tracked through time and space. These cellphone traces require
significant processing in order to be useful for the analysis of travel behavior, but
many analysts are working with such processed data to develop datasets on origin-
destination trips by time of day in many urban regions (see Faghih Imani and Miller
(2018) for a comprehensive review). The primary attraction for cellphone trace data
is its ubiquity in providing massive amounts of travel data, day after day, in virtually
every urban region worldwide. Also, given the very deep penetration of cellphones in
today’s society, these traces can likely be treated as being reasonable representative
of the trip-making public. The major limitation of these, data, however, is that the
spatial-temporal resolution of the traces is inherently limited by the spacing of the cell
towers receiving the cellphone transmissions. Achievable resolutions vary consider-
ably within an urban region. The relatively gross resolution generally achieved poses
significant challenges with respect to imputing trip mode (which generally requires
good speed measurements) and trip destination activity type (Caceres et al. 2013;
Faghih Imani et al. 2018).

An interesting special use of cellphone tracking data is to identify intercity trips.
When a cellphone is detected in a city other than its home city, one can impute that
an intercity trip has occurred. Intercity travel is a particularly difficult travel market
to survey effectively, and so use of cellphone data for this purpose is a promising
avenue of research (Bekhor et al. 2013; Janzen et al. 2017).

Transit Smartcard Transaction Data: Another major informatics-enabled source
of travel data are data from smartcard transactions collected by public transit agen-
cies. Most major cities worldwide employ some form of smartcard for riders to
use to pay their fares, with these cards becoming almost universal in usage. These
data thus provide a near-complete record of transit usage in a city. These smart-
card systems vary in technical sophistication, but they generally involve one of two
primary designs: tap-on systems, in which transit riders tap into the system when
they first board a transit vehicle or enter a transit station; and tap-on-and-off systems,
in which riders must also again tap the card when they exit the system. These latter
systems obviously provide a complete record of all trips made from a first-boarding
stopor station to a last-alighting stopor station, by timeof day.Tap-on systems require
extensive processing to impute trip-alighting locations (typically by observing the
boarding location of the next transit trip), but still provide very usable information
concerning transit usage (Trépanier et al. 2007; Munizaga and Palma 2012; Parada
and Miller 2017).

Bluetooth Sensor Data: As noted in the previous section, Bluetooth detectors can
be used to track the passage of Bluetooth-enabled vehicles and personal devices as
they pass by detectors mounted along the side of a road. Using records frommultiple
antennas makes it possible to derive travel times between antenna locations. Hence,
depending on the setting, data could be used to derive O-D matrix and partial route
choice of a sample of vehicles (cordon setting). While the available data have mostly
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been used to provide information on vehicle movements, it is also becoming possible
to study pedestrian behavior. Malinovskiy et al. (2012) investigated the feasibility of
using Bluetooth for pedestrian studies using two separate sites. Their results suggest
that “given sufficient populations, high-level trend analysis can provide insights into
pedestrian travel behavior.”

Credit Card Transaction Data: Although not currently widely used due to lack of
access to the data, credit card transaction records can provide detailed information
concerning travel for a wide variety of purposes (basically any activity that involves
paying with a credit card at an out-of-home location for a good or a service). It also
provides expenditure data along with the activity/travel data, something which is not
generally gathered in conventional surveys, but could be very useful in modeling
not just time but monetary budget allocations. Further, it could provide information
concerning in-home versus out-of-home shopping/recreation expenditures, again,
something that is of considerable interest for understanding travel behavior. The
major limitations of this data source, of course, are whether access to such data can
be obtained, and the protection of the confidentiality of the data.

While each of these passive data types have their individual strengths and
weaknesses, they share common strengths in terms of:

• Providing a continuous stream of data over days, weeks, and even longer periods
of time, thereby permitting time-series analysis of travel trends and dynamics
(as opposed to the typically one-day cross-sectional snapshots obtained through
conventional surveys).

• Generating massive amounts of data, potentially for thousands or even millions
of trip-makers in a large urban region (as opposed to the small samples that can
typically be observed in conventional surveys); they truly are big data.

• Being total passive—they require no effort (or perhaps even awareness) on the
part of the trip-maker for the data to be collected.

They also, however, share common, significant challenges in their usage in travel-
behavior analysis and modeling:

• The data are inevitably anonymized to preserve confidentiality, and, thus, no
personal attributes of the trip-makers are known.

• The data are individual-based, not household-based. That is, we generally know
nothing about the other members of the trip-maker’s household. Household inter-
actions and constraints, however, generally significantly affect an individual’s
travel behavior.

• As with passive smartphone-app survey data, trip attributes beyond origin, desti-
nation, and trip start and end times are generally unknown. That is, trip mode5

and purpose need to be imputed.
• The spatial-temporal precision of the trace data can vary considerably from one

type of data source to another, and even fromone trip to anotherwithin a given data

5Except, of course, in the case of transit smartcard data, where the travel model obviously is transit.
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type. Cellphone traces are particularly problematic in this regard, often making
mode and purpose imputation challenging.

47.4.3 Data Fusion and Imputation

As discussed above, there are many sources of information concerning travel
behavior, ranging from traditional surveys to various informatics-based passive data
streams. Virtually all such datasets are incomplete in one way or another in terms of
missing one or more attributes of the trip-maker or the trip that are desirable for travel
analysis andmodeling purposes. Thismay range from trip-makers’ incomes not being
collected in a household travel survey to a complete lack of information concerning
trip-maker characteristics in most passive datasets. Passive location-tracking data
also often lack explicit information concerning key trip attributes such as travel mode
and trip purpose. In all such cases, it is desirable to impute the missing information
through the fusing of two or more datasets to create a new, combined dataset that
contains a richer set of attributes than either original dataset. A common, relatively
simple example of this is using census data to impute missing income information
in a household travel survey. This is done by using the correlation between income
and other household attributes observed in the census data to impute the missing
incomes for households observed in the survey, based on the household attributes
that are observed in both the census and survey datasets (Bonnel et al. 2009).

Awide typology of data fusion and imputation use cases exist, withmanymethods
available for addressing these cases. Detailed discussion of these use cases and
methods is well beyond the scope of this chapter, but can be found in a range of
sources, including the work of Miller et al. (2012) and Srikukenthiran et al. (2018).
Only two observations are included here. The first is that a particularly important
type of data needed for many data fusion exercises that have not yet been mentioned
herein are data based on GIS concerning the spatial distributions of people (and their
attributes), jobs, and other economic and social activities (stores, schools, etc.). These
may be stored at various levels of spatial aggregation (traffic zones, census tracts,
etc.), but are also often available in increasingly accurate and comprehensive POI
datasets from a variety of commercial and open-source providers. POI data provide
information concerning land uses at the very fine level of detail of the individual
building, parcel, or geocoded point in space. They thus enable highly disaggregated
analysis of point-to-point travel behavior, which is increasingly the level of detail at
which travel-demand models are being developed.

Second, as in virtually every sphere of data analysis today, machine learning
methods are being increasingly applied to a wide variety of transportation data fusion
problems (Gao et al. 2017). One such example involves the use of transit smartcard
transaction data, combined with conventional household survey travel data, to train
a deep neural network model to predict travel mode. This model is then applied to
cellphone trace data to impute the travel mode for the trips represented by these
traces (Vaughan et al. 2020).
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47.5 Informatics and Modeling Methods

As noted at the beginning of the chapter, a thorough discussion of travel-demand
modeling methods is well beyond the chapter’s scope. A few characteristics of the
current state of best practice, however, include those by Miller (2018, 2019):

• Essentially, all best-practicemodels are based on activities and tours, in which: (a)
travel is the emergent outcome of the need to participate in out-of-home activities;
and (b) individual trips are modeled within the context of the overall tours or
trip-chains that people engage in throughout their daily activity pattern, so that
within-tour decision-making interactions can be accounted for (e.g. if a car leaves
the driveway it must eventually return home).

• Travel behavior is largely modeled using sophisticated discrete-choice models
based on random utility theory, which provides a very strong behavioral
foundation for operational models.

• Increasingly, these activity- and tour-based models are implemented within an
agent-based microsimulation modeling framework (see Chap. 44).

• The development of such models has been based on sophisticated, but
classic, econometric parameter-estimation techniques (typically maximizing
log-likelihood functions).

• Even very complex model systems for large urban regions are developed based
on relatively small, cross-sectional samples of a region’s trip-making population.

Modern informatics is providing both challenges to the current modeling status
quo and opportunities for the development of next-generation models. As noted in
Sects. 47.1 and 47.2, informatics-based apps are providing enhanced information
and influencing travel choices in ways that are not completely understood and that
definitely are not being captured in currently operational models. However, it might
also be noted that current models typically assume implicitly that trip-makers have
perfect information concerning their travel options and attributes. Hence, it might be
argued that these new information sources are actually bringing behavior more in line
with modeling assumptions since trip-makers now do have much better information
to use in their decision-making!

While the future is perhaps more uncertain than ever before, a few important,
specific, and informatics-related observations concerning the current and emerging
state of the art in travel-demand modeling can be made with reasonable confidence
and are provided below.

First, current best-practice models definitely are not well suited for analyzing new
mobility systems, let alone CAVs (Miller 2019). These models need to be redesigned
and rebuilt to much better represent both demand decisions and the performance and
supply characteristics of these new services (Calderón and Miller 2019, 2020). As
data concerning the performance and usage of a wide variety of mobility services
become available, the potential for developing improved models increases. New
informatics-enabled survey methods also provide the opportunity to gather data on
trip-maker preferences and attitudes that will assist in this endeavor.
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Second, the increasing availability of massive and passive big data is going to
profoundly change how we model travel behavior. While significant technical issues
remain, they will provide the opportunity to:

• Develop dynamicmodels of travel-behavior evolution, freeing us from the tyranny
of infrequent, cross-section survey datasets as a basis for model building.

• Establish much more comprehensive and complete representations of travel in an
urban region, freeing us from dependency on small-sample surveyswhich, despite
their richness in socio-economic information, inevitably contain significant
sampling and response biases.

Third, machine learning and other AI-based methods are rapidly being applied
to travel-demand modeling (Yin et al. 2016). While such methods often produce
better fits to base data than conventional econometric methods, whether they actually
represent improved models for policy analysis and forecasting is very much an open
question.A very interesting panel sessionwas held at theUSTransportationResearch
BoardAnnualMeeting in 2017 titled “MachineLearning Is fromVenus, Econometric
Modeling Is from Mars: Two Different Travel Forecasting Perspectives.” The very
strong consensus coming out of this session was that the two modeling approaches
are primarily complementary, and that travel-demand modeling needs to optimize its
exploitation of both modeling disciplines if it is to meet the profession’s modeling
needs. In particular, the notion that the advent of big data and AI-based analysis
methods will mean the death of (travel demand) models does not appear to be either
a likely or attractive alternative. Longer-term, strategic forecasting requires models
that can generate emergent, out-of-sample, extrapolated behavioral responses to new
scenarios, policies, etc. They cannot just extrapolate current patterns. Further, the
interpretability of model sensitivities, elasticities, etc., is a critical component of
travel-demand modeling, something that machine learning methods are notoriously
poor.

More speculatively, two final questions concerning how informatics-based data
and methods might fundamentally change travel-demand modeling in the coming
years are the following.

First, can the relatively rich theory of travel behavior that the field has devel-
oped over the past sixty years, combined with advanced simulation, data fusion, and
machine learning methods be used to both bridge the socio-economic information
gaps typical in big data and to merge complementary data sets together to create
much more comprehensive representations of travel behavior? Vaughan et al. (2019)
provide one example of this approach, in which cellphone traces, transit smartcard
transactions, and conventional home-interview travel survey datasets are merged to
create a more comprehensive representation of base-year travel than it is possible to
achieve from any of the three datasets independently.

Second, is there a quantum theory of travel behavior out there? That is, is there
a more explicitly statistical (as opposed to behavioral) approach to modeling that
is better suited to the strengths (and weaknesses) of the new datasets? But such a
theory or model would still need to be predictive to answer what-if questions. In
physics, prediction is the ultimate proof of a theory: Einstein’s theories of special
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and general relativity were accepted, not because of their elegance, but because they
are capable of predicting actual behavior. And, indeed, quantum theory’s acceptance
rests on its ability to predict real-world phenomena (and despite the objections of
Einstein on philosophical grounds). The great question facing travel behavior theo-
rists and modelers going forward is how urban informatics-based data and methods
will enable us to obtain deeper understanding of actual travel behavior, and, building
on this understanding, to developmore powerful and compelling theories andmodels
of travel behavior that enable us to better predict travel behavior in support of
transportation policy analysis and forecasting.

47.6 Chapter Summary

This chapter has examined the many ways in which informatics has been changing
transportation modeling. These include disruptive changes to: travel behavior,
transportation system performance, the data available for model development and
application, and modeling methods themselves.

Travel behavior is being influenced primarily by two types of informatics-based
services. The first is travel-related Web- and smartphone-based apps that provide
a wide range of real-time information, including roadway route guidance, transit
service information, and information concerning alternative activity locations. This
information is used in both trip preplanning and on-route dynamic decision-making.
The second disruptor of travel behavior is the wide variety of new informatics-
enabledmobility services that provide trip-making alternatives to conventional travel
modes such as public transit, taxis, and even the privately owned car. Most notable
are the Uber and Lyft ridehailing services. Other mobility service types include
ridesharing (UberPool), car-sharing, bike-sharing, e-scooters, and various forms of
demand-responsive transit and microtransit. The mobility service field is evolving
rapidly, and the final steady state with respect to these services and their impacts on
travel behavior is very difficult to predict. It is clear, however, that travel-demand
models will need to evolve considerably if they are to be adequate tools for modeling
these impacts and to provide the level of policy guidance needed to ensure socially
beneficial outcomes with respect to these services.

These changes in travel behavior and mobility service options are also impacting
transportation network performance, notably in terms of roadway congestion and
transit usage. Informatics also can support improved real-time control of road and
transit operations, implementation of road pricing schemes, and managing parking
supply and pricing.

Informatics technologies are also dramatically changing the data available to
support travel-demand modeling. Web-based and custom app-based survey methods
are complementing, and increasingly replacing, conventional survey methods for
collecting travel-behavior information. In addition, a wide variety of sources for
passively tracking trips are available, where by passive is meant that the trip-maker is
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not required to interact with the tracking device or answer any questions. Passive trip-
tracking data sources include: smartphone-based location-tracking apps (the route-
guidance apps discussed above, but many other apps routinely track the phone’s
location); cellphone traces; transit smartcard transaction data; Bluetooth sensors;
and credit card transaction data. All these data sources offer massive amounts of
information, gathered continuously over time concerning trip-making in a given
region. They also share common issues concerning lack of socio-economic infor-
mation about the trip-makers, as well as lack of key trip attributes such as travel
mode and trip purpose. A variety of data fusion and imputation methods (including
machine learning methods), however, can often be used to augment the passive data,
thereby enhancing their utility for modeling.

Given the increasing availability of large, passive datasets, travel-demand
modeling will inevitably evolve to exploit these data. Continuous time-series streams
of data should support the development ofmore dynamic (adaptive)models. The very
large samples of trip-makers observable within these datasets should lead to models
that are more representative and comprehensive relative to current models, which
have relied on relatively small-sample survey data for their development. Machine
learning and other AI-basedmethods will continue to play an increased role in model
development and application. And, finally, it is possible that travel-demand models
may adopt a more explicitly statistical approach to modeling travel behavior (as
opposed to the current emphasis on a more behavioral approach) as the optimal way
of exploiting the massive, passive datasets with which modelers will be increasingly
working.

The challenges facing transportation modelers in the emerging informatics-
enriched and informatics-enabled world are large. But the opportunities to develop
significantly improved and more powerful models for policy analysis and decision
support are also great. It is an exciting time to be a transportation modeler!
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