Chapter 43 ®)
Al and Deep Learning for Urban i
Computing

Senzhang Wang and Jiannong Cao

Abstract In the big data era, with the large volume of available data collected by
various sensors deployed in urban areas and the recent advances in Al techniques,
urban computing has become increasingly important to facilitate the improvement
of people’s lives, city operation systems, and the environment. In this chapter, we
introduce the challenges, methodologies, and applications of Al techniques for urban
computing. We first introduce the background, followed by listing key challenges
from the perspective of computer science when Al techniques are applied. Then we
briefly introduce the Al techniques that are widely used in urban computing, including
supervised learning, semi-supervised learning, unsupervised learning, matrix factor-
ization, graphic models, deep learning, and reinforcement learning. With the recent
advances of deep-learning techniques, models such as CNN and RNN have shown
significant performance gains in many applications. Thus, we briefly introduce
the deep-learning models that are widely used in various urban-computing tasks.
Finally, we discuss the applications of urban computing including urban planning,
urban transportation, location-based social networks (LBSNs), urban safety and secu-
rity, and urban-environment monitoring. For each application, we summarize major
research challenges and review previous work that uses Al techniques to address
them.
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43.1 Background

In the big data era, sensing technologies (e.g., GPS and environment sensors) and
large-scale computing infrastructures (e.g., distributed storage and computing) have
produced and stored a variety of big data generated in urban space in real time,
such as human-mobility data, air-quality data, transportation data, urban noise data,
and urban crime data. Generally, big data can be defined as a field that studies the
methodologies of effectively and efficiently storing, processing, extracting informa-
tion from, discovering valuable knowledge from, and visualizing the datasets that are
too large in data volume or too complex in data formats to be handled by traditional
data storage, processing, and analytic paradigms. Usually, big data can be charac-
terized by five Versus: volume, variety, velocity, veracity, and value (Ishwarappa
and Anuradha 2015). The first primary characteristic of big data is its sheer volume.
Variety means that the data can be unstructured, and the data types are much richer,
including images, texts, videos, graphs, etc. As the data are usually generated in
real-time and new data keep on coming, the characteristic of velocity requires that
the new streaming data can be processed in near real time. Veracity refers to the trust-
worthiness of the data. Big data usually also mean big noise, such as in social-media
data. The value hidden in the data can be low and may require carefully designed
machine-learning or data-mining methods to discover useful knowledge from the
massive data.

Mining knowledge hidden in the big data generated in urban areas is critically
important to facilitate many real applications for smart cities, including relieving
traffic congestion, urban crime prediction, real-time air pollution monitoring, urban
planning, etc. To this aim, artificial intelligence (Al) techniques are urgently needed
for knowledge discovery from the large-volume, noisy, heterogeneous, and ever-
growing urban data (Zheng et al. 2014a, b). Recently, Al techniques driven by big
data, such as the popular deep-learning models, have been widely used to solve
diverse urban-computing tasks and have achieved success (Wang et al. 2019, 2020).
For example, urban-traffic prediction and navigation driven by Al have been widely
explored and applied in many applications such as the Gaode map for navigating and
the City Brain system developed by Alibaba (Zhang et al. 2019a, b). As an interdisci-
plinary research field, knowledge discovery from urban big data is an indispensable
part of urban computing, and Al techniques play a critically important role in mining
correlations and patterns and predicting trends from the data.

Figure 43.1 shows a general framework to illustrate how Al techniques, especially
machine learning, are used for various applications in urban computing. As shown
in Fig. 43.1, there are three phases in general. The first phase is data acquisition.
Diverse types of data generated from various sensors deployed in different locations
in a city are collected, including GPS position data, air-quality data, weather data,
data on social relations, points of interest (POIs), transportation networks, and social
events. The collected raw data usually need to be preprocessed for further analysis.
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Fig. 43.1 Framework of applying Al techniques for urban computing

The data preprocessing operations include data cleaning, normalization, transfor-
mation, and instance selection. Next, the machine-learning phase performs pattern
learning or knowledge discovery from the data. For traditional machine-learning
methods, features need to be first extracted and selected from the data manually
through feature engineering. In machine learning, features refer to a set of measur-
able properties or characteristics of the objects under study. They are used as the
input of the machine-learning algorithms to be mapped to the output. Discriminating
features can be extracted and selected from the raw data based on domain knowledge,
and then fed into a machine-learning model such as the SVM classifier or logistic
regression for training. Note that for the deep-learning models that are extremely
popular nowadays, they do not need handcrafted features. Deep-learning models
can automatically learn features from the raw data and integrate the feature learning
and model learning in an end-to-end way, which is a significant advantage. The
third phase is using the trained machine-learning models to support various urban-
computing applications, such as urban planning, traffic prediction, public safety, and
energy saving. The results of machine-learning models can provide us with knowl-
edge, predictions, and guidance to help us make decisions on how to build a smarter
city.
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In the remainder of the chapter, we first present the challenges of using Al tech-
niques for analyzing and discovering knowledge from urban data. Then, we introduce
both traditional Al models and recent deep-learning models that are widely used in
various tasks of urban computing. Next, we classify urban computing into several
application categories and review-related work, respectively.

43.2 Challenges

Compared with other types of data, there are some unique challenges for conducting
machine learning using the big data generated from various urban sensors.

Data acquisition: Usually, a large number of sensors should be deployed in
different locations of a city for data collection. However, there are several reasons
why the sensors cannot be massively deployed all around the city. First, some sensors
are expensive, such as cameras and sensors in air-quality monitoring stations. Second,
due to the energy consumption constraint, the number of sensors is usually limited.
Sometimes it is difficult to select suitable locations to deploy sensors for data acqui-
sition. It is also nontrivial to estimate the data at a location where there are no sensor
readings, based on the observed sensor data from other locations.

Large volume and streaming data: The volume of the data generated from an
urban area is usually very large considering the large number of sensors deployed in
a city; and the data volume grows quickly, considering that the sensors generate data
continuously in real time. Traditional machine-learning or data-mining techniques
usually need a large number of labeled training samples and thus are time consuming.
Many urban-computing tasks need real-time data analysis, such as traffic prediction
and air-quality monitoring. Therefore, it is challenging for existing Al techniques to
process this large volume of data continuously and almost instantly.

Heterogeneous data: Solving a specific task in urban computing usually involves
multiple datasets rather than only one dataset. For example, city-wide air-pollution
prediction involves the simultaneous study of multiple types of data, including traffic
flow, weather, and land uses. Different datasets usually present diverse data formats or
types. Traditional data-mining and machine-learning techniques are usually designed
to handle one type of data, such as image, text, and graphics. How to fuse the hetero-
geneous data with different formats and structures involved in one learning task to
serve the urban-computing application of interest is difficult, and also a hot research
topic currently.

Complex dependencies among the data: Different types of urban data can be
highly correlated, such as traffic data, air-quality data, and weather data. Traffic
congestion is usually highly correlated with POI distribution, time of day, and social
events. Itis difficult for traditional statistics-based methods to capture the correlations
and dependencies among the data without the help of domain expertise. Mining the
dependencies among the data may be especially important to help improve various
urban-computing applications such as urban planning, policy making, and intelligent
transportation systems.
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Noisy and incomplete data: Most data in urban computing are generated by urban
sensors which are deployed in an open environment (e.g., the air-quality sensors
deployed on the field). The sensors may fail to work normally and produce wrong
or noisy data from time to time. In addition, some sensors are expensive, and only a
limited number of sensors are deployed due to this cost limitation. For example, the
road cameras for traffic monitoring are usually only installed in some intersections of
a road network due to the high cost. Performing a task such as city-wide air-quality
and traffic monitoring with such noisy and incomplete data is challenging.

Distributed data storage and processing: As the urban sensors are deployed at
different locations, and the data volume increases rapidly, a distributed data-storage
and processing infrastructure is usually required for more efficient computation of
various machine-learning and data-mining algorithms. Considering the heterogeneity
of the urban data, the complex dependencies among the data, and the nonuniform
distributions of the data sensors, it is very challenging to design such a distributed
data-storage and processing infrastructure.

Data privacy: Urban data are mostly collected from users. For example, users’
mobility data can be collected from users’ smartphones, and the urban-traffic
data can be collected from the GPS module installed in private vehicles. How to
protect the data privacy of the users and at the same time use the data to facilitate
various applications such as navigation and travel route recommendation is a non-
trivial problem. There needs a tradeoff between data privacy and data utility (see
Chap. 32).

To address the above-mentioned challenges, various Al techniques are being
explored in different application scenarios of urban computing, such as super-
vised learning, semi-supervised learning, unsupervised learning, matrix factoriza-
tion, graphic models, deep learning, and reinforcement learning. Next, we briefly
introduce the concept and preliminary knowledge of the methods and then discuss
how these models can be used in different tasks of urban computing in detail.

43.3 Traditional AI Techniques

43.3.1 Supervised Learning

Supervised learning, such as classification and regression, is a type of machine
learning that learns a function mapping the input features to an output label or vari-
able, based on a set of training input—output pairs (Caruana and Niculescu Mizil
2006). Note that in supervised learning, a training dataset that contains both the
input data and the corresponding output labels or variables is needed, and the goal
is to learn a mapping function from the training dataset.

Supervised learning is widely used in many urban-computing tasks when a large
number of labeled training data samples are available, such as traffic prediction
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(Castro-Neto et al. 2009), region classification (Toole et al. 2012), and POI recom-
mendation (Daniel and Sebastian 2000). For example, Toole et al. (2012) studied the
problem of inferring the types of urban land-use from users’ mobile-phone activity
data. A supervised classification algorithm was used to identify four types of land
uses with similar zoned uses and mobile-phone activity patterns. The training data
of the algorithm contained three weeks of call records for about 600,000 users in the
Boston region. Castro-Neto et al. (2009) proposed a supervised regression algorithm
called online support vector machine to predict short-term freeway traffic flow under
both typical and atypical conditions.

43.3.2 Unsupervised Learning

Significantly different from supervised learning, unsupervised learning does not need
any labeled data for training. Unsupervised learning aims to capture the underlying
structures, patterns, or distributions from the input data without the guidance of output
labels or variables. Unsupervised learning can be generally grouped into clustering
and association. Clustering is the task of grouping a set of objects so that objects in
the same group are more similar to each other than to those in other groups. Each
object group is called a cluster. Association-rule learning is a rule-based machine-
learning method for discovering interesting relations between variables or patterns in
large databases. Association-rule learning algorithms intend to identify such strong
rules or patterns in the given dataset using measures of interestingness.

In many real application scenarios, there are no labeled data at all. In such a
case, unsupervised learning techniques can be used for mining knowledge from the
massive data. For example, mining patterns from the trajectories of moving objects is
an important research topic in spatial-temporal data mining (Giannotti et al. 2007).
There are no labeled training data for discovering new patterns in trajectories, and
thus the unsupervised pattern-mining methods are applied. Another example is city-
boundary detection driven by big data. This task aims to discover the real borders
of a city according to the interactions between people, using GPS tracks or phone-
call records, and there are no ground-truth labels for the boundary of a city. To
solve this problem, Rinzivillo et al. (2012) proposed to first build a location network
based on human interaction and then partition the network using an unsupervised
community-detection method. The boundaries of regions can be thus characterized
by the discovered location clusters, with denser interaction between locations in the
cluster.

43.3.3 Semi-supervised Learning

Semi-supervised learning falls between unsupervised learning, which does not have
labeled training data at all, and supervised learning which has complete labeled
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Fig. 43.2 Three types of machine-learning methods

training data. Semi-supervised learning makes use of both a small amount of avail-
able labeled data and a large amount of unlabeled data for training (Zhu 2005).
As it is usually expensive and time-consuming to label a large number of training
data for supervised learning, semi-supervised learning is widely used based on the
observation that unlabeled data, when used in conjunction with a small amount of
labeled data, can achieve considerable performance improvement over unsupervised
learning. Semi-supervised learning also has broad applications in urban computing.
For example, Zheng et al. (2013) proposed a semi-supervised learning approach based
on a co-training framework to predict the air quality of a location where there is no
air-quality monitoring station already. The used co-training framework consisted of
two separated classifiers, with one using spatially related features and the other using
temporally related features. Figure 43.2 compares three types of machine-learning
methods.

43.3.4 Matrix Factorization

Matrix factorization, which is also called matrix decomposition, decomposes a matrix
into a product of two or three smaller matrices. It is an approach that can simplify some
complex matrix operations, since these can be performed on the decomposed smaller
matrices rather than on the original large matrix (Daniel and Sebastian 2000). Popular
matrix factorization methods include LU decomposition, QR decomposition, Jordan
decomposition, and SVD. From an application point of view, matrix factorization
can be used to discover the latent features underlying the interactions between two
types of entities, such as users and items in recommendation systems. For example,
SVD is widely used in collaborative filtering (Zhou et al. 2015), which factorizes the
product-rating matrix A into the product of three smaller matrices, the left singular
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vectors U, the singular values D, and the right singular vectors V! as shown in
Fig. 43.3. Matrix factorization has very broad applications in machine learning, such
as image processing, data compression, spectral clustering, recommendation, and
matrix completion. For example, when the original matrix A is incomplete, with
many unknown entry values, we can approximate it with three factorized low-rank
matrices and estimate the missing entries in A to complete it.

Matrix factorization is widely used in many estimation or inference-related urban-
computing tasks such as location recommendation, urban noise estimation, and
urban-traffic estimation. For example, Zheng et al. (2010) proposed to collaboratively
recommend location and activity to users through factorizing the location-activity
matrix constructed from users’ GPS historical trajectory data. Zheng et al. (2014a, b)
integrated tensor composition and matrix composition to infer the fine-grained noise
distribution at different times of day for each region of NYC. The noise distribution
of NYC was modeled with a three-dimension tensor, whose three dimensions are
regions, noise categories, and time slots. Supplementing the missing entries of the
noise distribution tensor using the proposed tensor-matrix co-factorization approach,
the noise distribution throughout the entire NYC can be inferred. Wang et al. (2019,
2020) proposed a locally balanced inductive matrix factorization model to infer the
bike usage of a city at different hours of the day for dockless bike-sharing systems.
The bike usage demand was modeled as a matrix whose two dimensions are region
ID and time slot, and the entries are the needed number of bikes. The unknown
entries of the bike-demand matrix are inferred through a proposed inductive matrix
factorization method.
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43.3.5 Graphical Model

A graphical model uses a graph to express the conditional dependency relationships
among different random variables and is also called the probabilistic graphical model
(PGM; Koller and Friedman 2009). It is widely used in probability theory, Bayesian
statistics, and machine learning. Generally, graphical models use a graph-based repre-
sentation to encode the variable distributions over a multi-dimensional space, which
provides a general framework for modeling large collections of random variables
with complex interactions. There are two types of commonly used graphical repre-
sentations of variable distributions: Bayesian networks and Markov random fields.
Figure 43.4 shows an example of a simple graphical model. Each node in the graph
denotes a variable, and each arrow indicates a dependency relationship between two
variables. In this example, D depends on A, B, and C; and C depends on B and D;
whereas A and B are independent to each other.

In many urban-computing tasks, the data can be heterogeneous and collected from
different sources, and the interactions and correlations among the data are usually
complex. Graphical models can be used to model the dependencies among the data
and make accurate estimates or inference. For example, in urban-traffic estimation
and prediction, the traffic conditions of a road segment can be affected by both
the neighboring road segments and the external factors such as weather, holidays,
and rush hours. Wang et al. (2016a, b) proposed to use a coupled hidden Markov
model for road-network-level traffic-congestion estimation. In this model, the traffic
condition of a road segment at time ¢ depends on its previous traffic condition at t —
1 and the traffic conditions of its neighboring road segments at # — 1. To model the
complex dependencies among them, a graphical model that uses multiple coupled
Markov chains was proposed. Shang et al. (2014) studied the problem of instantly
inferring the gas consumption and pollution emission of the vehicles traveling on a
road network of a city, based on the GPS trajectory data collected from a sample

Fig. 43.4 A toy example of
a graphical model
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of vehicles. To address this task, they proposed an unsupervised dynamic Bayesian
network model called the traffic volume inference model (TV]) to infer the number of
vehicles passing each road segment per minute. TVI can model the effect of multiple
external and internal factors on the traffic volume, including the travel speed, weather
conditions, and the geographic features of a road.

43.4 Deep Learning

Deep learning is a type of machine-learning method whose structure, called an arti-
ficial neural network (ANN), is inspired by the structure and function of the human
brain. The initial form of an artificial neural network is the perceptron, which was
proposed in the 1950s (Rosenblatt 1957). Although ANNs have been proposed and
studied for many years, early ANN models were not that successful compared with
other machine-learning models, such as the Bayesian model and SVM, due to their
shallow structures with only two or three layers of neurons. In recent years, ANN
models with much deeper model structures containing tens of or even hundreds of
neural layers are gaining popularity due to their supremacy in terms of prediction
accuracy when trained with huge amounts of data (LeCun et al. 2015). Figure 43.5
shows the performance curves of deep-learning methods and most other traditional
machine-learning methods with increasing amounts of training data. One can see that
the learning performance of traditional methods first increases with an increase in
the data amount and then reaches a performance bottleneck. More data will not lead
to better performance due to the limited learning ability of traditional methods. For
deep learning; however, the performance keeps on increasing with more and more
training data, which is mainly due to its deep structure and powerful hierarchical
feature-learning ability.

Deep
learning

Traditional
machine learning

Performance

Amount of training data

Fig. 43.5 Performance curves of deep learning and traditional machine learning with increasing
amounts of training data
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Besides the powerful learning ability from big data, another significant difference
and advantage of deep learning compared with traditional machine learning is that
deep learning does not need handcrafted features and can learn features from the input
raw data automatically. Figure 43.6 shows a pipeline comparison between traditional
machine learning and deep learning. We can see that for traditional machine-learning
models, given the raw input data, feature engineering is first conducted to manually
extract the features, and then, the features are input into the machine-learning model
for classification. For deep-learning models, feature engineering is not needed any
more. Feature learning and model learning are performed in an end-to-end learning
way for deep-learning models.

Deep-learning architectures such as deep neural networks (DNN), deep belief
networks (DBN), recurrent neural networks (RNN), and convolutional neural
networks (CNN) have been widely applied in the fields of computer vision,
speech recognition, natural-language processing, audio recognition, social-network
analysis, machine translation, bioinformatics, medical-image analysis, and urban
computing, where they have produced results comparable to and in some cases supe-
rior to humans. Next, we will briefly introduce some deep-learning models that are
widely used in the tasks of urban computing.

43.4.1 Restricted Boltzmann Machines (RBM)

A restricted Boltzmann machine is a two-layer stochastic neural network (LeCun
etal. 2015), which is broadly used for dimensionality reduction, classification, feature
learning, and collaborative filtering. As shown in Fig. 43.7, RBM generally contains
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two layers. The first layer of RBM is called the visible layer with the neuron nodes
{x1,x2, ..., x;u}, and the second layer is the hidden layer with the neuron nodes {4,
hy, ..., hy}. The structure of RBM can be considered as a fully connected bipartite
undirected graph. All nodes in RBM are connected to each other across layers by
undirected weight edges {wi, w2, ..., Wy }, but no two nodes of the same layer
are linked. The standard type of RBM has binary-valued neuron nodes and also bias
weights. Depending on the particular task, RBM can be trained in either supervised
or unsupervised ways.

43.4.2 CNN

A convolutional neural network (CNN) is initially designed to analyze visual imagery.
Typically, CNN contains the following layers as shown in Fig. 43.8: the input layer,
the convolutional layer, the pooling layer, the fully connected layer, and the output
layer. Some CNN structures also have the normalization layer after the pooling layer.
When it is used for image processing, the raw images are first input into the convo-
Iutional layer to learn the high-level and more abstract features. The convolutional
layer captures the high-level latent features through multiple filters called kernels.
A kernel is usually a k x k square matrix, which moves in the input image matrix
from left to right and from top to bottom. A filtering operation is performed with
the kernels on the corresponding positions of the input image matrix for generating
high-level features. Then, the pooling layer performs a down-sampling operation on
the high-level features based on the spatial dimensionality, to reduce the number of
parameters. Finally, several fully connected layers are stacked to perform nonlinear
transformation of the output high-level features from the pooling layers. Compared
with a traditional multi-layer perceptron neural network, CNN has the following
distinguishing characteristics that make it generalize well on vision problems: 3D
volumes of neurons, local connectivity, and shared weights.
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Fig. 43.8 Structure of CNN

43.4.3 RNN and LSTM

A Recurrent neural network (RNN) is designed to recognize the sequential character-
istics of the input data and use the previous patterns to predict the future output. It is
widely used in many areas such as speech recognition, natural-language processing,
and time series data analysis. Figure 43.9 shows the general structure of an RNN
network, where x; is the input data, A are the parameters of the RNN network, and
h; is the learned hidden state. As shown in Fig. 43.9, the output of the previous time
step t — 1 is input into the neurons of the next time step #. In this way, the histor-
ical information in the past time steps can be stored and conveyed to the future. A
major shortcoming of the standard RNN is that it only has a short-term memory
due to the issue of vanishing gradients. To solve this problem, the LSTM network
was invented, which is capable of capturing the dependencies of the input data in a

Fig. 43.9 Structure of an RNN
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much longer time period. Compared with RNN, LSTM can remember the long-term
historical information of input due to its specially designed memory unit. As shown
in the middle part of Fig. 43.10, an LSTM unit is composed of the following three
gates: input gate, forget gate, and output gate. The input gate controls whether to let
new input in, the forget gate controls whether to ignore some unimportant historical
information, and the output controls whether to let the historical information impact
the current output.

43.4.4 Autoencoder (AE)

An autoencoder is a type of artificial neural network that aims to learn compact data
coding in an unsupervised manner (Hinton and Salakhutdinov 2013). As shown in
Fig. 43.11, AE generally contains three types of layers: the input layer, the hidden
layers, and the output layer. The raw data are first fed into the input layer, and then,
one or multiple hidden layers are stacked to form an encoder for coding the input as
compact latent representation vectors. Then, a decoder which is also composed of
one or several hidden layers is used to reconstruct the raw input from the compact
latent vector learned by the encoder. AE learns a compact representation of the input
data in an unsupervised manner, which can be considered as a way of dimensionality
reduction. As an effective learning technique for unsupervised feature representation,
AE facilitates various downstream data-mining and machine-learning tasks such
as classification and clustering. A stacked autoencoder (SAE) is a neural network
consisting of multiple stacked AEs in which the outputs of the current AE are wired
to the inputs of the successive AE (Bengio et al. 2006).

43.5 Reinforcement Learning

Reinforcement learning is more general than supervised/unsupervised learning
(Richard and Andrew 1998). It learns from the interactions with the environment to
get as much reward as it can over the long term. Intuitively, reinforcement learning
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tries to imitate the human stress reaction. As shown in Fig. 43.12, imagine that you
are a child in a living room with a stove in it, assume that you feel cold and are far
from the stove, and then you try to approach it. You feel good and understand that
the stove is a positive thing. But if you stay too close to the stove, your hand will be
burned. From the interaction with the stove, you will learn that the stove is positive
when you are a sufficient distance away because it produces warmth. But if you get
too close to it, you will be burned. So too close to the stove will produce negative
reward.

Get
Fire close
DanGER ‘—

( Dangerous) | negarive-1

Leave

. awa
Fire Y

—_—

( Danger;ﬁs) Positive +1

Fig. 43.12 A toy example to illustrate how humans learn through interaction with the environment
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Similar to humans learning through interaction with the environment, the
reinforcement-learning algorithms learn to choose the most appropriate action
through trail-and-error. The general idea of reinforcement-learning algorithms is
illustrated in Fig. 43.13, which mainly consists of the four key elements: environ-
ment, reward, action, and state. A reinforcemsent-learning agent tries to learn how
to best match states and actions in order to get the maximum long-term accumulated
return (reward). As a result, the strategy will more frequently perform the actions that
obtain positive rewards, while the actions that lead to negative punishment are less
frequently performed.

Reinforcement-learning algorithms have broad application in the fields of
robotics, optimal control, chess games, strategic games, flight control, missile guid-
ance, predictive decision making, financial investment, and urban-traffic control, as
they try to solve the general issues about how to best match the states and actions
(Haldorai et al. 2019). Taking urban transportation as an example, where the city
transportation network needs to control the traffic lights of multiple intersections
and roads. Even without domain knowledge about how to control, by specifying the
rule of reward, the reinforcement-learning algorithms can autonomously learn an
optimal traffic light control strategy, such that all vehicles can pass the intersection
in the shortest time (Rizzo et al. 2019). Even today, due to the complexity of urban-
computing problems, learning control strategies through reinforcement-learning
algorithms still face challenges of consuming a huge amount of computational time.
However, with the development of computing power, reinforcement learning will
enable an evolution from computational intelligence to artificial intelligence (Li
et al. 2019).

43.6 Applications of AI Techniques in Urban Computing

The Al techniques described above have been widely applied in various urban-
computing application scenarios, including urban planning, intelligent transporta-
tion systems, location-based social networks LBSNs, urban safety and security, and
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urban environmental monitoring. Next, we discuss these applications in detail. For
additional discussion of the use of urban-mobility data, see Chaps. 28 and 29.

43.6.1 Urban Planning

Urban planning refers to the technical and political process concerned with the design
and development of land use, and especially the spaces that the public share in urban
areas. The goal of urban planning is to make cities safe, healthy, and enjoyable places
to live. Urban planning is a very challenging task because a lot of complex factors
should be considered, such as urban-traffic flow, human mobility, POI distribution,
and urban functional regions. Traditionally, urban planners need to conduct surveys
to guide them in making decisions on urban planning, which is less accurate, time
consuming, and labor intensive. In the big data era, a lot of data generated in the
urban area are increasingly available, and such data can be used to facilitate more
effective and rational urban planning. Recently, research has tried to use big data
and Al techniques in various urban planning tasks such as road-network planning
(Zheng et al. 2011; Berlingerio et al. 2013), functional-regions discovery; (Zheng
et al. 2014a, b; Yuan et al. 2012; Manley 2014), and city-boundary detection (Ratti
et al. 2010; Rinzivillo et al. 2012).

Zheng et al. (2011) used the GPS trajectories of taxicabs traveling in urban areas
to detect flawed urban planning in a city. They focused on detecting the pairs of
regions with salient traffic problems and discovering the linking structure as well as
correlations among them. The proposed model contains two steps: city-wide traffic
modeling and flawed planning detection. In citywide traffic modeling, the urban area
is first partitioned into disjoint regions based on major roads, and thus each region
stands for acommunity containing some neighborhoods. Then, the origin—destination
locations of the GPS trajectories of taxicabs are mapped to the partitioned regions, so
that in each hour of a day the region transition matrices can be constructed. In flawed
planning detection, the skyline of each region transition matrix is first detected, and
then, a graph pattern-mining method is used to identify flawed planning from the
skylines. Berlingerio et al. (2013) studied how to use large-scale cellphone mobility
data of users to help transit operators better perform urban transportation planning.
A system called AllAboard was developed for optimizing public transport with the
guidance of people’s cellphone data. AllAboard first infers the origin—destination
(OD) flows in the city through a large volume of people’s mobile phone location
data. The OD flows are then converted to ridership on the existing transit network.
Next, the sequential travel patterns are extracted from the flow data over the transit
network, which can be used to propose new candidate transit routes. Finally, an
optimization model is proposed to evaluate which new routes would best improve
the existing transit network to increase ridership.

A functional region refers to a geographic area centered around a specific focal
point with a specific function such as education, business, or transportation. Auto-
matic functional-regions discovery and identification are particularly helpful to many
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urban-computing applications such as urban planning and city management. Yuan
etal. (2012) proposed a data-driven approach called DRoF to discover different func-
tional regions of a city by using both the human-mobility data among regions and the
POI distributions in the regions. DROF first segments a city into disjointed regions
based on the major roads such as arterial roads, highways, and urban expressways.
Then, the functions of each region are inferred by a proposed graphic-based proba-
bilistic inference model. By borrowing the idea from topic model in natural-language
processing, DROF regards a region as a document, a region function as a topic, and
the human-mobility trips (when people reach or leave which region) as words. The
POl distribution in each region is also incorporated as the side information to help the
model achieve more accurate inference accuracy. Evaluations are conducted on the
three-month taxi GPS trajectory data generated by over 12,000 taxicabs in Beijing.
Nine types of different functional regions labeled by humans are identified by DRoF.
Manley (2014) applied the community-detection algorithm over the traffic network
of a city to identify functional urban regions. The traffic network was constructed
from the travel routes of about 1.5 million minicab trips. The region communities
discovered from the large volume of traffic flow data can help identify areas of the
road network that are used together, and thus help city planners to have a better
understanding of the functional structure of the city. People’s mobile phone data of
a city can be also used to understand the spatio-temporal distribution of people in
different regions of the city. For example, call detail records (CDR), which provide
information on the locations of mobile phones where a call is made or a text message
is sent, can be used to infer the dynamics of urban land use (Toole et al. 2012). A
supervised classification algorithm is used to identify clusters of functional zones
that present similar mobile phone activity patterns.

As the city expands rapidly and people move among different regions of the city,
the boundaries of a city and its regions change quickly. It is very challenging for
traditional methods to capture the dynamics of city boundaries. To tackle this issue,
recently there have been studies using human-mobility data or activity data (e.g., GPS
trajectories and CDR data) to better discover the real borders of city regions with
data-driven approaches. Ratti et al. (2010) proposed a novel approach for regional
delineation by analyzing networks of billions of individual human transactions. Given
a geographic area and some measure of the strength of links between its inhabitants,
Ratti et al. (2010) partitioned the area into disjoint smaller regions based on the rule
that the disruption to each person’s links in different regions should be minimized.
The proposed method was tested on a large human interaction network containing
20.8 million nodes, which is inferred from a large telecommunications database in
Great Britain. The human interaction network can be also inferred from other types
of data such as the vehicle GPS tracks. Rinzivillo et al. (2012) first extracted region
clusters from the human-interaction network constructed from the vehicle GPS data.
Then, the region clusters were mapped back onto the territory of a city and were
shown to match well with the existing administrative city borders.
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43.6.2 Urban Transportation

Currently, most vehicles are installed with GPS devices for real-time positioning and
navigation. The large-scale vehicle GPS data reflect the urban-traffic conditions in
real time and thus are crucially important for intelligent transportation systems. Both
deep-learning models and traditional machine-learning models are used to address
various issues in urban transportation such as traffic flow prediction (Zhang et al.
2019a, b; Du et al. 2019) and traffic-congestion prediction (Wang et al. 2015; Wang
et al. 2016a, b).

To address the issue that traditional traffic flow-prediction methods cannot effec-
tively capture the nonlinear, stochastic, and time-varying characteristics of the traffic
data, Zhang et al. (2019a, b) proposed a network-scale deep traffic-prediction model
GCGAN. The framework of the GAGAN model is shown in Fig. 43.14, which
combines adversarial training and graph CNN. GCGAN is a prediction framework
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based on a Generative Adversarial Net, and thus can make more robust predictions
by introducing adversarial training loss. As shown in the upper part of Fig. 43.14,
GCGAN uses an encoder—decoder framework that is sequence-to-sequence based
to encode the traffic conditions of a road network in previous time intervals and
to decode the traffic conditions in future time intervals as the prediction. To model
the spatial correlations among the road links of a transportation network, a graph
convolution network (GCN) is used in both the generator and the discriminator
for feature learning. LSTM is also used to capture the temporal dependencies. Du
et al. (2019) studied the problem of predicting urban-traffic passenger flows with
various types of traffic passenger flow data, including subway, taxi, and bus flows.
Considering the complex factors such as hybrid transportation lines, mixed traffic
models, transfer stations, and some extreme weather, a deep irregular convolutional
residual LSTM network model called DST-ICRL was proposed by Du et al. (2019).
The passenger flows among different traffic lines in a transportation network are
first modeled as multi-channel matrices analogous to the RGB pixel matrices of
an image. Then, a deep-learning framework that integrates an irregular convolu-
tional residential network and LSTM units is proposed to learn the spatial-temporal
feature representations from the passenger flow matrices. DST-ICRL samples both
the short-term and long-term historical traffic data for model training to capture both
the periodicity and the long-term trend of the traffic passenger flows.

Although deep-learning models are popular nowadays, some traditional machine-
learning models such as matrix factorization and Markov models may perform better
when there are multiple types of heterogeneous traffic data that need to be fused
for traffic analysis. Wang et al. (2015) used a coupled matrix and tensor factor-
ization model to infer city-wide traffic-congestion conditions by fusing multiple
types of data including social-media data, social-event data, road physical features,
and traffic-congestion patterns. As shown in Fig. 43.15, the proposed model used
a coupled matrix and tensor factorization scheme to collaboratively factorize the
traffic-congestion matrix X with the congestion correlation matrix Z, event tensor
A, and the road feature matrix Y. By assuming that these matrices and tensor share
the common latent factor matrix U in the road-segment dimension, these data are
jointly factorized in order to fuse all the information. The traffic-congestion matrix
of an entire city is then completed by multiplying the low-rank latent factor matrices
U and V. Wang et al. (20164, b) further extended the model of Wang et al. (2015)
by incorporating GPS probe data. Wang et al. (2016a, b) constructed two traffic-
congestion matrices: one was inferred from social-media data and the other from
GPS probe data. The final estimation result is the weighted combination of the two
matrices. Wang et al. (2016a, b) proposed an extended coupled hidden Markov model
(E_CHMM) to combine GPS probe data and social-media data for traffic-congestion
prediction. Figure 43.16 shows the framework of E_CHMM, which contains a data
collection and processing part and the model part. Besides the vehicle GPS probe
data, the tweets that report traffic events are also collected and used in this model.
From each traffic-related tweet, the traffic event type, location, and time information
are extracted. For each road link, Wang et al. (20164, b) assumed that the occurrence
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of traffic events follows a multinomial distribution, and the traveling speed of vehi-
cles in a particular time interval follows a Gaussian distribution. In the model part,
the traffic-congestion states of the road links in a road network are hidden and need
to be inferred, while the GPS probe readings and traffic events extracted from tweets
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are observations. The goal of E_CHMM is to accurately infer the hidden traffic-
congestion states of a road network based on the fusion of two types of observations:
GPS probe readings and traffic event-related tweets.

43.6.3 Location-Based Social Networks (LBSNs)

LBSNs such as Foursquare and Flickr are social networks that use GPS features to
locate users and enable users to share their locations and contents to their friends
through mobile devices. They are more and more popular as they can connect users
in both physical and virtual worlds. When users come to favorable restaurants, new
POIs, or tourist attractions, they can check-in through their mobile phones immedi-
ately, so that their friends nearby can know their locations and join. Al techniques
can be used to support many applications in LBSNs, including next check-in loca-
tion prediction or recommendation (Ye et al. 2010; Gao et al. 2013; Bao et al. 2012),
potential friends recommendation (Scellato et al. 2011; Bao et al. 2015), and check-in
time prediction (Yang et al. 2018).

In LBSNs, there usually exist strong social and geospatial ties among users and
their favorite locations. To take this into consideration for better check-in location
recommendation, Ye et al. (2010) proposed a novel friendly collaborative filtering
(FCF) approach for location recommendation based on the collaborative ratings on
the places made by social friends. Motivated by the fact that a user’s preferences
for the check-in locations may change continuously over time, Gao et al. (2013)
considered the temporal effects in location recommendation in LBSNs. Two types of
temporal properties of a user’s daily check-in preferences were considered: (1) non-
uniformness, which means that a user has different check-in preferences at different
hours of aday; and (2) consecutiveness, which means that a user’s check-in preference
in consecutive hours is more similar than that in non-consecutive hours. The two
properties demonstrate that a user’s check-in time and the corresponding preferred
check-in locations can be highly correlated. Therefore, Gao et al. (2013) proposed
a new check-in location recommendation framework by considering the temporal
effects based on the observed two temporal properties. Besides a user’s preference,
other factors such as a user’s current location and the opinions about a location
given by the others may also be helpful for location recommendation. Bao et al.
(2012) proposed a location-based and preference-aware recommender system that
recommended POIs such as restaurants and shopping malls to a user by considering
the user preferences, the current location of the user, and the opinions of the POIs
given by other users.

Friend recommendation is a critically important service in social networks to
help users find new friends and expand their social circles. In LBSNs, the location
information can help to improve the effectiveness of social-friend recommendation.
The basic intuition is that a user’s preference can be revealed by his or her visited
locations in LBSNs. Similar location histories imply similar preferences, thus such
users are more likely to become friends (Bao et al. 2015). For example, Scellato et al.
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(2011) analyzed the LBSN data from Gowalla, from which they found that the link-
prediction space can be largely reduced by considering the similarity of the visited
locations of the users. Based on this observation, a supervised link-predication model
that considers the users’ visited locations was proposed by Scellato et al. (2011) to
predict which users will become friends in the future. Check-in time prediction aims
to predict the time when a user will check-in to a given location. Generally, check-
in time prediction can be formulated as a regression problem by considering time
as a continuous variable. However, directly applying a regression model may not
achieve desirable performance due to the check-in data scarcity issue. To deal with
this, Yang et al. (2018) formulated check-in time prediction as a survival analysis
problem and proposed a recurrent-censored regression (RCR) model to address it.
RCR first uses the gated recurrent units (GRUs) to learn the latent representations
of historical check-ins of a user and then inputs the latent representations into a
censored regression model to predict the check-in time at a given location.

43.6.4 On-Demand Service

On-demand services (e.g., Uber, Mobike, DiDi, GoGoVan, etc.) are becoming
increasingly popular nowadays due to the wide use of mobile phones and the preva-
lence of the sharing economy. A large volume of on-demand service data is generated
continuously and needs to be analyzed in real time to help the service providers meet
customer needs and improve the user experience. Many challenging tasks in on-
demand services, such as demand—supply prediction (Wang et al. 2019, 2020) and
user behavior prediction (Wang et al. 2017a, b), require effective Al techniques.
Wang et al. (2017a, b) studied the order response-time prediction problem in on-
demand logistics services. In on-demand logistics services, users can make goods
delivery orders via a mobile application, and registered van drivers would respond
to take these orders in a very short period of time (usually less than several minutes).
Making and taking orders through such an online app installed in mobile phones
is much faster than the traditional way through van calling centers, and thus makes
the logistics service much more efficient. An important task to help the service
providers improve their services is the accurate prediction of the response time of
the van drivers to the posted delivery orders, because the response time can largely
reflect the preference of the drivers for the order. Wang et al. (2017a, b) formulated
the response-time prediction task as a matrix factorization problem, and proposed a
coupled sparse matrix factorization model to fuse the heterogeneous and sparse data
from different domains, including historical order data, personalized requirements
of the user, and location-relevant features, for more accurate prediction. Currently,
dockless bike-sharing systems have emerged as a new type of on-demand service in
China. Users can check-out and check-in a bike conveniently at any location through
scanning the QR-code on the bike with an app installed in their mobile phones.
The demand—supply analysis of the bikes in dockless bike-sharing systems is a very
important yet challenging problem for efficient and effective system management.
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Wang et al. (2019, 2020) proposed a data-driven approach for bike usage demand—
supply inference in dockless bike-sharing systems. The idea is that before massively
deploying a large number of bikes in an entire city, the system operator will first
pre-deploy a relatively small number of bikes in certain regions of the city for data
collection. The demands in some regions are first estimated from a small number of
observed bike check-out/in data directly, and then, they are used as seeds to infer bike
usage demands in other regions of the city. Wang et al. (2019, 2020) formulated the
problem as a matrix completion task by considering the regions and time intervals
as the two dimensions of the bike usage demand and supply matrices. As the two
matrices are sparse and only partial entries are known due to the bike trip data in
limited regions, a matrix factorization model was designed to complete the demand
and supply matrices.

Deep-learning models such as CNN and LSTM are also widely used for demand—
supply prediction in on-demand services. Lin et al. (2018) proposed a graph CNN
model to predict the station-level hourly demand in a large-scale bike-sharing
network. The model proposed by Lin et al. (2018) combined convolutional neural
networks and LSTM to learn the underlying correlations of bike usage between the
bike stations. Wang et al. (2017a, b) studied the supply—demand prediction problem
for online car-hailing services with deep-learning methods. An end-to-end learning
framework called DeepSD was proposed by Wang et al. (2017a, b) which used a novel
deep neural network structure to automatically discover complicated supply—demand
patterns from the car-hailing service data.

43.6.5 Urban Safety and Security

Crimes, traffic accidents, and environmental disasters can seriously threaten urban
safety and security. In the big data era, urban safety- and security-related data such as
crimes and traffic accidents can be recorded and stored in a database. Recently, there
has been increasing research interest in studying whether and how Al techniques
can be applied to analyzing these data, and to help address various urban safety- and
security-related issues such as disaster detection (Lee and Sumiya 2010; Song et al.
2013) and crime prediction (Duan et al. 2017; Huang et al. 2018).

Lee and Sumiya (2010) developed a nation-wide geo-social event detection and
monitoring system by collecting a large number of messages from Twitter. The
proposed geo-social event detection model contains the following main steps: (1)
collecting geo-tagged tweets using a Twitter monitoring system; (2) identifying
regions of interest of Twitter users and measuring geographic regularities of crowd
behaviors, and (3) detecting geo-social events through a comparison of the regular-
ities. Song et al. (2013) analyzed and modeled the evacuation behaviors of people
during the Great East Japan Earthquake and Fukushima nuclear accident based on
a large volume of people’s real mobility data in daily life. A population mobility
database was constructed to store and manage people’s mobility data of GPS records
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from approximately 1.6 million individuals throughout Japan over one year. A prob-
abilistic inference model was developed to effectively represent people’s mobility
patterns. The proposed model can help researchers toward a better understanding
of human evacuation behaviors during a disaster, and how those behaviors can be
impacted by various cities during disasters. The system developed by Song et al.
(2013) can be used to simulate and predict population mobility when disasters happen
in cities so as to improve future disaster relief and management.

Many governments and law-enforcement agencies make city crime data (e.g.,
crime type, location, and time information) publicly available, so that researchers can
use Al techniques for crime-data analysis. An important application of Al for crime-
data analysis is crime prediction. Huang et al. (2018) developed a crime-prediction
framework based on a deep neural network, called DeepCrime. DeepCrime can
capture the dynamic crime patterns and explore the evolving inter-dependencies
between different types of crimes to predict how many crime incidents will occur
in the future in different regions of a city. A region-category interaction encoder is
used to learn the complex interactions between regions and occurred crime categories.
Then a hierarchical recurrent framework was proposed to jointly encode the temporal
dynamics of crime patterns and capture the inherent interrelations between crimes
and other ubiquitous data such as POIs. Finally, an attention mechanism was used
to capture the unknown temporal relevance and automatically assign importance
weights to the learned hidden states in different time frames. Duan et al. (2017)
applied deep convolutional neural networks (CNNs) for automatic crime-referenced
feature extraction and crime prediction. The urban area under study was first divided
into grid regions. Then, the crimes in all the grid regions can be considered as an
image, where each grid region is a pixel and the crime number is the gray value of
the pixel. CNNs are applied on the image-like crime data of all the grid regions for
feature learning.

43.6.6 Urban Environment Monitoring

Currently, a large number of diverse sensors are deployed all around a city to monitor
environmental variables, weather conditions, and air-quality indexes (AQI) in real
time. With a large amount of data collected from these sensors, Al techniques are
required to process and analyze the data for smart environment monitoring.

Some air-quality monitoring stations have been built in different locations to
collect a city’s real-time air-quality indexes (AQI) such as PM; s, NO,, and CO.
However, due to the high cost of building and maintaining such stations, only a very
limited number of stations can be built in a city; it is then a challenge to accurately
obtain the AQI data of the entire city. Zheng et al. (2013) inferred the fine-grained AQI
throughout a city by fusing the AQI data of limited locations with other types of data,
including the meteorology, traffic flow, human mobility, structure of road networks,
and POIs. A semi-supervised learning approach based on the co-training framework
was proposed. This approach contains an artificial neural network to model the spatial
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correlation between the AQI of different locations, and a temporal classifier to model
the temporal dependency of AQI in a location. Cheng et al. (2018) proposed a deep-
learning model named ADAIN for urban air-quality inference. ADAIN combines
feedforward and recurrent neural networks for modeling static and sequential features
as well as capturing deep feature interactions effectively. An attention mechanism
was also applied in a pooling layer of ADAIN to automatically learn the different
weights of features from different monitoring stations.

Due to population expansion in big cities, urban noise pollution currently is
becoming a more and more serious issue that threatens public health. Al techniques
can also be used to help monitor, estimate, and analyze urban noise. Rana et al. (2010)
designed an end-to-end participatory urban noise mapping system called Ear-Phone.
Ear-Phone leverages compressive sensing to address the issue of recovering the noise
map from the incomplete and random samples obtained by crowdsourcing noise-
pollution data. The noise data are collected by the sound sensors installed in mobile
phones. Zheng et al. (2014a, b) studied how to infer the fine-grained noise situa-
tion, including a noise-pollution indicator and the composition of noises at different
times of a day in New York City, by using multi-sourced data including citizens’
complaint data about city noise, social media, road-network data, and POIs. The
noise situation of New York City was modeled as a three-dimensional tensor, where
the three dimensions stand for regions, noise categories, and time slots. By filling
in the missing entries of the tensor through a context-aware tensor decomposition
approach, the noise situation throughout New York City can be recovered.

43.7 Conclusion

Recently, mining knowledge from the data generated in urban spaces for supporting
urban-computing tasks to help build smart cities is a critically important and substan-
tially challenging research topic. The large volume of heterogeneous data that are
continuously generated in urban spaces, and recent advances in Al techniques, espe-
cially deep learning, have provided us with unprecedented opportunities to tackle
the big challenges in urban computing. In this chapter, we conducted a comprehen-
sive review of the challenges, methodologies, and frameworks that arise when Al
techniques are applied in urban computing, and categorized the application domains
of urban computing. To address the unique challenges for learning knowledge from
urban data, we introduced both the traditional Al techniques and recently popular
deep-learning models that are widely used for urban computing, including super-
vised learning, semi-supervised learning, unsupervised learning, matrix factoriza-
tion, graphic models, deep learning, and reinforcement learning. We also categorized
the utilization of Al techniques in different urban-computing applications including
urban planning, urban transportation, location-based social networks (LBSNs), urban
safety and security, and urban environmental monitoring.
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