
Chapter 16
Urban Pollution

Janet E. Nichol, Muhammad Bilal, Majid Nazeer, and Man Sing Wong

Abstract This chapter depicts the state of the art in remote sensing for urban pollu-
tion monitoring, including urban heat islands, urban air quality, and water quality
around urban coastlines. Recent developments in spatial and temporal resolutions
of modern sensors, and in retrieval methodologies and gap-filling routines, have
increased the applicability of remote sensing for urban areas. However, capturing
the spatial heterogeneity of urban areas is still challenging, given the spatial reso-
lution limitations of aerosol retrieval algorithms for air-quality monitoring, and of
modern thermal sensors for urban heat island analysis. For urban coastal applications,
water-quality parameters can now be retrieved with adequate spatial and temporal
detail even for localized phenomena such as algal blooms, pollution plumes, and
point pollution sources. The chapter reviews the main sensors used, and develop-
ments in retrieval algorithms. For urban air quality the MODIS Dark Target (DT),
Deep Blue (DB), and the merged DT/DB algorithms are evaluated. For urban heat
island and urban climatic analysis using coarse- and medium- resolution thermal
sensors, MODIS, Landsat, and ASTER are evaluated. For water-quality monitoring,
medium spatial resolution sensors including Landsat, HJ1A/B, and Sentinel 2, are
evaluated as potential replacements for expensive routine ship-borne monitoring.

J. E. Nichol (B) · M. S. Wong
Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University,
Hong Kong, China
e-mail: janet.nichol@connect.polyu.hk

J. E. Nichol
Department of Geography, University of Sussex, Brighton, UK

M. Bilal
School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing,
China

M. Nazeer
Key Laboratory of Digital Land and Resources, East China University of Technology, Nanchang,
China

Earth and Atmospheric Remote Sensing Lab (EARL), Islamabad, Pakistan

© The Author(s) 2021
W. Shi et al. (eds.), Urban Informatics, The Urban Book Series,
https://doi.org/10.1007/978-981-15-8983-6_16

243

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8983-6_16&domain=pdf
mailto:janet.nichol@connect.polyu.hk
https://doi.org/10.1007/978-981-15-8983-6_16


244 J. E. Nichol et al.

16.1 Monitoring Air Quality in Urban Areas

The gathering of air-quality data for urban areas and their source regions is a major
challenge because the large areas involved cannot be represented by ground stations.
Although satellite sensing systems and methodologies have recently been developed
with an adequate spectral and temporal resolution for monitoring aerosols, it is diffi-
cult to obtain fine spatial resolution because the atmospheric signal being sensed is
only a small proportion of the total image reflectance; thus large areas corresponding
to large pixels, giving a higher measurable signal, are required.

The most accessible remotely sensed parameter of air quality is aerosol optical
depth (AOD). This is a unit-less measure of the total amount of aerosol in the
atmospheric column and is based on the opacity of the atmosphere in a partic-
ular waveband. There is no general algorithm which can retrieve aerosol properties
over every kind of surface. Instead, different algorithms have been developed for (i)
water, (ii) dark vegetation, (iii) bright surfaces, and (iv) heterogeneous land surfaces
respectively, the latter two of which include urban surfaces. However, techniques
for retrieving aerosol over low-reflecting surfaces of water and vegetation are better
developed than those over land, because assumptions can be made that the surface
reflectance is either zero or near zero. Based on this, Kaufman and Tanré (1988)
developed an algorithm which first uses the NDVI (Normalized Difference Vegeta-
tion Index) to detect dense dark vegetation (DDV) pixels, then used the short-wave
infrared (SWIR, 2.1µm) band, which is not affected by aerosol, to obtain the surface
reflectance for the DDV pixels. Then based on the relationship

Lsur f0.49 = 0.25 ∗ Lsur f2.1
Lsur f0.66 = 0.5 ∗ Lsur f2.1 (Kaufman and Sendra 1988),

the apparent surface reflectance in the blue (0.49µm) and red (0.66µm) bands can be
obtained. The difference between the actual surface reflectance in these bands and the
observed (top of the atmosphere, TOA) reflectance is assumed to be due to aerosol.
This amount is then fitted to a best-fit aerosol model, with knowledge of the expected
aerosol types in the study area—for example, continental, industrial/urban, biomass
burning, and marine—to arrive at AOD from the image blue and red wavebands.

From this DDV concept, NASA developed the MODIS Dark Target (DT) AOD
product (MOD04; Kaufman and Tanré 1998) covering the globe. Although the DT
product at 10 km spatial resolution only provides meaningful depictions on a broad
regional scale, it is capable of giving an overview of air-quality conditions prevailing
over a city’s region. The expected error (EE) of the DT algorithm is± (0.05+ 0.15×
AOD) (Levy et al. 2013), which represents about 66% of retrievals within the EE on
a global scale (Levy et al. 2010). The most recent version of the DT algorithm is the
MODIS Collection 6.1 (C6.1) AOD product (Bilal et al. 2018a; Gupta et al. 2016).
The C6.1 product addresses uncertainties due to the heterogeneity of urban surfaces,
and updates the surface reflectance ratios using NASA’s MOD09 surface reflectance
product, which newly incorporates information on land cover type for pixels with
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urban cover > 20% (Gupta et al. 2016). The Deep Blue (DB)AOD retrieval algorithm
(Hsu et al. 2004) provides estimates of AOD over bright urban and desert, as well as
dark surfaces, using the deep blue channels 412 and 470 µm in which these surfaces
appear dark, as well as the red channel (0.65 µm) for dark surfaces. The EE of DB
depends on geometry (Hsu et al. 2013; Sayer et al. 2013). The MODIS C6 product
(including DT and DB algorithms) has been evaluated over urban areas with varying
accuracies. For example, over Beijing, both the DT and DB C6 products (MOD04
and MYD04) were found to overestimate during highly polluted days due to a large
error in the surface reflectance estimation (Bilal and Nichol 2015; Tao et al. 2015).

Within C6, a combined DT/DB algorithm has also been produced at 10 km, which
combines both DT and DB algorithms in the same image, to retrieve AOD over both
dark and bright surfaces including urban areas (Levy et al. 2013). However, accuracy
overAsian citieswas observed to be low,with only 57%of retrievals fallingwithin the
expected error. Bilal et al. (2017) introduced a customized algorithm which specifies
the use of the DB algorithm when NDVI > 0.3, which cancels out the tendency
of the DT and DB algorithms respectively, to under- and overestimate the surface
reflectance, and which improved the percentage of retrievals within the expected
error to 65%.

Although both DT and DB algorithms use MODIS 500 m resolution wavebands,
their AODproducts are produced at the spatial resolution of 10 km because the 500m
pixels are amalgamated into windows of 20 × 20 (400) pixels to increase the signal-
to-noise ratio. Then, to eliminate clouds and water surfaces, dark and bright pixels,
which are unsuitable for retrieval of AOD, are deselected, with at most 120 pixels
remaining. Because the MODIS DT and DB products are unable to resolve city-
level features, the MODIS aerosol team produced a global DT product at 3 km, the
MOD04_3K/MYD04_3K, within the operational C6 aerosol product (Remer et al.
2013). Comparison with AERONET (AErosolROboticNETwork) ground stations
suggests that the MOD_3K is less reliable than the 10 km products (Bilal et al.
2018b). This may be because only a maximum of 11 pixels remain in the deselection
window, making the product noisier than that at 10 km.

Yang et al. (2018) conducted a preliminary investigation of an AOD product at
1 km resolution using the geostationary Advanced Himawari Imager (AHI) satellite,
based on the DT algorithm, with results showing some overestimation compared to
AERONET data, with a correlation coefficient of 0.83 and RMSE of 0.11. Due to the
recent availability of AHI, the AOD retrievals could not be thoroughly evaluated but
are consideredpromising. In viewof the superior temporal resolutionof geostationary
satellites (10-minutes for AHI), along with future improvement in spatial resolution,
semi-continuous monitoring of particulate concentrations at the city district scale
will be possible.

Contributions of the DB and DT retrievals to future global aerosol monitoring
projects such as ESA’s EarthCARE mission (Illingworth et al. 2015), with 10 km
radar and LiDAR,WMO’s GALION project, a ground-based aerosol LiDAR system
(Bösenberg et al. 2008), ESA’s ADM-AEOLUSmission, a space-based wind profiler
system launched in 2018 (Lolli et al. 2013), andNASA’s on-goingCALIPSOmission
with satellite-based aerosol LiDAR (Winker et al. 2010), will be very important.
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As with AOD retrieval, the estimation of other gaseous pollutants from satellite-
image wavebands is constrained by the weakness of the signal relative to the total
image reflectance, thus necessitating large pixel sizes. The MOPITT (Measurement
of Pollution in the Troposphere) sensor, which measures CO emissions from the
Earth’s surface, has 22 km spatial resolution at nadir, and OMI (Ozone Monitoring
Instrument) for ozone and NO2 estimation with a spatial resolution of 13 km ×
24 km, are not readily applicable for retrieval of urban-scale pollutant concentrations.
AlthoughBechle (2013) found that theOMI sensor aboardNASA’sAura satellitewas
able to measure spatial variability in NO2 exposure over a large urban area, detailed
district-level concentrations were constrained by the coarse resolution of the sensor.
These constraints have been lessened somewhat by the TROPOMI sensor onboard
the European Space Agency’s Sentinel 5P satellite launched in October 2017, which
measures ozone, NO2, SO2, methane, and CO at 7 km× 3.5 km resolution. However,
this is still too coarse for application at urban scales, and since algorithms developed
for complex land areas are difficult to apply, the task of deriving accurate air-quality
products for urban areas remains challenging.

16.2 Remote Sensing of the Urban Heat Island

Urban heat islands are caused by the replacement of natural evaporative and porous
land surfaces with non-evaporative human-made surfaces (Chandler 1965). These
disperse a much greater proportion of energy received into the surrounding atmo-
sphere as sensible heat, compared with the predominantly latent heat loss of rural
surfaces. Along with the generally lower albedo of urban surfaces, this results in
significantly higher air temperatures in cities compared with their rural surround-
ings, and the difference (�T (u-r)) reaches a maximum at night. As most cities have
few air-monitoring stations, the level of detail of intra-city temperatures is inade-
quate, whereas satellite thermal data provide a dense grid of continuous and time-
synchronized land surface temperatures (LSTs) over a whole city. Since cities are
identifiable on thermal satellite images for their temperature contrasts, as much as for
their optical differences with surrounding rural areas, many remote-sensing studies
have taken place (Roth et al. 1989;Weng 2009; Zhou et al. 2019). However, there are
numerous constraints to the use of the data in urban climatology, which are discussed
below.
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16.2.1 Spatial Resolution of Satellite Sensors Related
to Scales of Urban Climate

Due to the inverse relationship between wavelength and signal strength, longer-
wavelength thermal infrared sensors generally have a coarse resolution. Therefore
the thermal waveband of MODIS, at 1 km resolution, has only been used for general
temperature-trend analysis over city regions (Bonafoni 2016; Hulley et al. 2014). The
60 m and 90 m resolution sensors of Landsats 5–7/8 and 90 m of ASTER have also
been used for urban climatic analysis at the district and even the street scale within
cities (Nichol 1996a; Nichol et al. 2009; Feng and Myint 2016; Meng et al. 2018).
To overcome the limitation of spatial resolution, various ways of disaggregating the
thermal signal to provide more spatial detail have been presented (Nichol 2009;
Rodriguez-Galliano et al. 2012; Zhou et al. 2019). Figure 16.1 shows the effects
of emissivity modulation on an ASTER thermal image of a suburban area of Hong
Kong. The original resolution of 90 m (Fig. 16.1c) is disaggregated to a 10 m pixel
size (Fig. 16.1a), while correcting for surface emissivity differences (Nichol et al.
2009).

16.2.2 Relationship Between Surface Temperature and Air
Temperature

The conception as well as the usefulness of the UHI concept derives from its repre-
sentation of urban air temperatures which affect human comfort. More specifically
these are air temperatures within the urban canopy layer comprising the space within
streets between the surface and the top of the buildings (Oke 1976). However, satel-
lite thermal sensors measure the surface radiometric temperature or land surface
temperature (LST). Thus, the surface heat island (SUHI) represents the radiometric
temperature difference between urban and non-urban surfaces (Zhou et al. 2019).
Since the satellite-derived heat island is based on LST, the optimum usefulness of
these data depends on defining their relationship to a more conventional view of the
urban heat island, such as screen-level air temperature at the time of imaging (Nichol
et al. 2009; Schwarz et al. 2012; Clay et al. 2016). Li et al. (2018) developed an air-
temperature dataset at 1 km resolution covering the entire USA by combining daily
air-temperature data from weather stations with gap-filled MODIS LST data and
an elevation model. The method proved satisfactory, generating root mean square
errors of 2.1 and 1.9 °C, andR2 of 0.95 and 0.97 for dailyminimum andmaximum air
temperature, respectively. Sun et al. (2015) estimated air temperatures over Beijing
from MODIS LST data combined with vegetation indices, obtaining accuracies of
approximately 2°K compared with weather station data.



248 J. E. Nichol et al.

Fig. 16.1 Surface temperatures of a mixed urban/suburban district in Hong Kong from: a ASTER
nighttime thermal image at 10.42 pm on 31.01.07 after emissivity modulation, bAerial photograph
showing land cover types, c Original ASTER thermal image with 90 m resolution
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16.2.3 Time of Imaging in Relation to Heat Island Maximum

Most space-borne thermal sensors such as the Landsat series and ASTER record
mainly during the daytime when densely built, high-rise areas may constitute a heat
sink (Nichol 2005; Rasul et al. 2017). Tropical cities (Nichol 2003) or arid zones
in summertime (Nassar et al. 2016; Rasul et al. 2017) may also exhibit heat sinks
during the day. Furthermore, the timing of the satellite overpass may not be ideal for
detecting temperature differences. Landsat for example at 9.30–10.30 am local time
is near themorning thermal crossover timewhenminimal thermal contrasts would be
expected. Differences in surface temperature are largest during the daytime, thus the
surface heat island based on LST is more pronounced than that of the conventional
UHI based on air temperature, for which the greatest differences are at night (Nichol
2005). Additionally, Sun et al. (2015) observed that LST was more similar to air
temperatures within the urban canopy layer at night but considerably different during
the day. The relationship may even be negative, as LST in urban districts increases
due to early-morning warming, while high-rise urban districts in shadow when the
sun angle is still low may constitute a heat sink (Nichol 2005).

In changing environmental conditions, satellite images taken at a single instant
may be unrepresentative. However, Nichol and To (2012) found that in Hong Kong,
due to a more stable boundary layer at night, nighttime ASTER thermal images
were representative of commonly occurring climatic conditions for a 13-h period
surrounding the image acquisition time, andwere significantly correlatedwith ground
air temperatures over the city, for 93% of hot summer nights.

16.2.4 Anisotropy of the Satellite View

Satellites record the temperature of horizontal surfaces, which may only represent
the complete radiating surface in flat rural areas. The effective (active) surface area
of a city, especially in high-rise areas, and using narrow field-of-view sensors, is
much larger than the equivalent countryside of the same size (Voogt and Oke 1996).
In high-rise housing estates in Singapore, for example, the active surface was found
to be 1.7 times greater than the planimetric (satellite seen) surface (Nichol 1998).
Thus nadir views would be warmer or cooler than off-nadir views depending on the
sun position. Hu et al. (2016) quantified anisotropic effects for two high-rise cities—
New York and Chicago—observing that daytime maximum temperature bias due to
anisotropywas up to 9°K for themost urbanized areas.When averaged over the entire
SUHI as measured byMODIS LST, the UHI magnitude was modified by 2.3°K, that
is, 25–30%, due to surface anisotropy. Voogt and Oke (1996) recommended using
ground-based observations to construction models for the weighting of temperatures
according to area and sun position (see also Nichol et al. 2014).
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16.2.5 The Need for Emissivity and Atmospheric Correction

Although satellite-derived radiance values can readily be converted to equivalent
black-body temperature (or brightness temperature) using Planck’s Law, this under-
estimates the surface radiometric temperature if corrections for emissivity differences
according to the type of land cover are not carried out. For example, a metal roof of
emissivity 0.92, and tile roof of emissivity 0.98, both with a radiometric tempera-
ture of 27 °C, will have brightness temperature (image) values of 20.8 and 25.5 °C
respectively. However for UHI studies, measurement of individual surface tempera-
tures is both impossible and unnecessary, as emitted radiation from each pixel is an
aggregated value of all surfaces within the pixel, and subject to anisotropic effects
according to look angle and the pixel’s horizontal/vertical surface ratio. To address
this, Yang et al. (2015, 2016) developed an urban emissivity model based on the sky
view factor (SVF), which accounted for surface material type and building geometry,
and found that a decrease in SVF was accompanied by increased emissivity due to
multiple scattering among buildings. Another potential source of error in thermal
image values is that they can only be considered accurate in clear, dry atmospheres,
and a further correction using atmospheric data in a radiative transfer model such
as MODRAN (Berk et al. 2014) should be made, if absolute temperatures are desir-
able. In humid atmospheres, energy absorption by atmospheric water vapor may
account for brightness temperatures up to 15 °C cooler than the surface radiometric
temperature (Nichol 1996b).

16.3 Monitoring Water Quality Along Urban Coastlines

Coastal waters are spatially complex, as they comprise a mixture of both saline and
brackish water, as well as containing different types of land runoff. Urban coastlines
are especially complex due to additional anthropogenic inputs, from both point and
non-point sources, with often severe impacts on water quality (WQ). For this reason,
WQ along urban coasts is subject to greater spatial and temporal variability than
other coastlines, andWQmonitoring from remote-sensing platforms requires sensors
with fine spatial as well as temporal resolution. A further challenge is due to the
wide range of organic and inorganic inputs to urban coastal waters making them
optically complex for ocean color monitoring. A common problem in countries with
unregulated drainage is high nutrient inputs from agricultural, industrial, and urban
waste, resulting in eutrophication and algal bloom events. These may be toxic to
humans as well as affecting a wide variety of marine organisms.
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Due to these factors, sensors frequently used for marine applications such as
the Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS), the Moderate Resolution
Imaging Spectroradiometer (MODIS), the Visible and Infrared Imager/Radiometer
Suite (VIIRS), the Geostationary Ocean Color Imager (GOCI), and the Ocean and
Land Color Imager (OLCI), with spatial resolutions of several hundred meters, are
unable to resolve the necessary spatial detail, although they may have good temporal
and spectral resolutions. Recent space-based sensors with moderate resolution used
for retrieval of water-quality indicators (WQIs) includeNASA’s Landsat, the Chinese
HJ1 A/B, and ESA’s Sentinel series. The most recent Landsat 8 carries the Opera-
tional Land Imager (OLI), with 9 spectral wavebands, 5 in the optical spectrum from
430–880 nm, which are being used for ocean color monitoring (Franz et al. 2015;
Vanhellemont and Ruddick 2015). OLI has 30 m spatial resolution and a repeat cycle
of 16 days, which is increased to 8 days if combined with Landsat 7. The MultiSpec-
tral Instrument (MSI) on ESA’s Sentinel-2 platform carries 12 wavebands, including
three ocean color bands, blue (490 nm), green (560 nm) and red (665 nm) at 10 m
resolution, and three Near InfraRed (NIR) bands (705–783 nm) at 20 m resolution.
OLI has a 16-day repeat cycle.

Clearwater shows low reflectance in the visible spectrum and absorbsmost energy
in the NIR region, but the optical properties of water are affected by a range of
substances. These have given rise to the concept of ocean color sensing (Morel and
Prieur 1977), as dissolved organic matter (DOM) is strongly absorptive in the blue
(490 nm) spectral region, chlorophyll-a (Chl-a) in phytoplankton and algal pigments
mainly absorbs sunlight in the blue and red regions of the spectrum, and suspended
solids (SS) mainly reflect in the red and NIR regions (600–800 nm). Due to the
difficulty of retrieving an adequate reflected signal from the water column which
absorbs most light energy, the atmospheric component may be dominant unless
it is first removed, thus atmospheric correction is an essential pre-processing step
(Pahlevan et al. 2017). Algorithms for retrieval of WQIs from the water column
have undergone refinement as the spatial and spectral resolutions of space-borne
sensors and computing power have improved. Improvements in temporal resolution
with more satellite sensors and more frequent repeat cycles have released more
data for testing and validation of retrievals, which require close synchronization
with sea-station data (Pahlevan et al. 2019). Algorithms for retrieval of WQPs are
usually based on obtaining a substantial number of synchronous image and station
samples for regression against image wavebands, and a further substantial number
for validating the results.
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For example, a study of water quality around the heavily urbanized coastlines of
Hong Kong and the Pearl River Delta (PRD; Nazeer and Nichol 2016a) was able to
obtain 240 co-located samples of Chl-a and SSwithin two hours of image acquisition
when combining images from Landsat TM/ETM + and HJ1 A/B sensors over a 13-
year period (2000 to 2012). However due to the complexity of the coastal waters,
with PRD river sediments to the west, urban runoff in the central section, and clear
waters of the South China Sea to the east, retrieval algorithms developed across the
whole region were less accurate than those applied to individual water-quality zones
delineated by fuzzy c-means clustering. Thus, for Chl-a a low root mean square error
(RMSE) of 1.61µg/l was obtained for individual water-quality zones compared with
4.59 µg/l when applied to the whole spectrum of different water types across the
region. For SS concentrations, a significant improvement was also observed, with
the RMSE reducing from 2.72 mg/l to 1.19 mg/l when the models were applied to
individual zones.These results are good, considering thewide rangeof concentrations
obtained in the ship-sampled datasets, namely a Chl-a range of 0.30 to 13.0 µg/l and
SS concentration range of 0.5 to 56.0 mg/l, and suggest that space-borne sensors
are capable of providing spatially detailed, accurate, and cost-effective water-quality
status around urban coastlines.

With urbanization of coastlines, an increasing incidence of red tide events caused
by massive algal blooms from high nutrient inputs is being seen around the world,
but especially in rapidly urbanizing parts of Asia such as China and the Philippines
(Azanza et al. 2008;Nazeer et al. 2017). Such events are toxic to themarine ecosystem
and pose dangers to human health; thus, environmental authorities need timely and
detailed information on their occurrence. However, since the occurrence of a red
tide does not usually correspond with routine ship-borne water sampling missions
(monthly in Hong Kong), many go undetected. In Hong Kong, which is a thriving
international port but still has diverse coastal ecosystems, a severe red tide event from
December 2015 to February 2016 saw 220 tons of fish kills reported (SCMP 2016).
A remote sensing study of chlorophyll-a concentrations around the complex coastal
waters of Hong Kong using Landsat TM/ETM + (Fig. 16.2; Nazeer and Nichol
2016b) observed that a ratio of the red (630–690 nm) with the square of the blue
(450–520 nm) bands were most capable of representing actual Chl-a concentrations
due to the differential response of the red and blue wavebands to the Chl-a signal. A
correlation coefficient of 0.89 and mean absolute error (MAE) of 1.02 µg/l obtained
for the study indicated a good degree of confidence in remote sensing for routine
monitoring of red tide events along urban coastlines.
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Fig. 16.2 Red tide along the Chinese coast adjacent to Hong Kong, on 25th November 2014.
a Location of red tide, bAerial photograph of red tide (photo credits Xinhua), c Chl-a concentration
map in µg/l of red-tide-affected area using the ratio of Landsat/HJ1 blue (450–520 nm) and red
bands(630–690 nm)
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