Skip to main content

Second-Order Sliding Mode Controller Design for Motion Control of PMLM System

  • Conference paper
  • First Online:
Advances in Guidance, Navigation and Control

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 644))

  • 118 Accesses

Abstract

A new motion controller ensuring finite-time stability for permanent-magnet linear motor (PMLM) system is investigated in this paper via second-order sliding mode (SOSM) control technique. Firstly, by choosing position error as sliding mode variable, the position dynamic error system is derived for PMLM system. Then, by appropriate assumption that the lumped disturbance is bounded by a positive function, a new SOSM controller is constructed by using the adding power integrator technique. Strict mathematical analysis is provided to show that the proposed SOSM controller could steer the current position of PMLM to the desired position in finite time. Finally, the claimed performance of the proposed control strategy is illustrated by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin, F.J., Teng, L.T., Chu, H.: Modified Elman neural network controller with improved particle swarm optimization for linear synchronous motor drive. IET Ele. Pow. Appl. 2(3), 201–214 (2008). https://doi.org/10.1049/iet-epa:20070368

    Article  Google Scholar 

  2. Su, W.T., Liaw, C.M.: Adaptive positioning control for a LPMSM drive based on adapted inverse model and robust disturbance observer. IEEE Trans. Pow. Ele. 21(2), 505–517 (2006). https://doi.org/10.1109/TPEL.2005.869729

    Article  Google Scholar 

  3. Tan, K.K., Huang, S.N., Lee, T.H: Robust adaptive numerical compensation for friction and force ripple in permanent-magnet linear motors. IEEE Trans. Magn. 38(1), 221–228 (2002). https://doi.org/10.1109/20.990111

  4. Chen, S.L., Tan, K.K., Huang, S., Teo, C.S.: Modeling and compensation of ripples and friction in permanent-magnet linear motor using a hysteretic relay. IEEE/ASME Trans. Mech. 15(4), 586–594 (2010). https://doi.org/10.1109/TMECH.2009.2030794

    Article  Google Scholar 

  5. Ahn, H.S., Chen, Y.Q., Dou, H.F.: State-periodic adaptive compensation of cogging and coulomb friction in permanent-magnet linear motors. IEEE Trans. Magn. 41(1), 90–98 (2005). https://doi.org/10.1109/TMAG.2004.840182

    Article  Google Scholar 

  6. Du, H.B., Chen, X.P., Wen, G.H., Yu, X.H., Lv, J.H.: Discrete-time fast terminal sliding mode control for permanent magnet linear motor. IEEE Trans. Ind. Ele. 65(12), 9916–9927 (2018). https://doi.org/10.1109/TIE.2018.2815942

    Article  Google Scholar 

  7. Liu, H.X., Li, S.H.: Speed control for PMSM servo system using predictive functional control and extended state observer. IEEE Trans. Ind. Ele. 59(2), 1171–1183 (2012). https://doi.org/10.1109/TIE.2011.2162217

    Article  Google Scholar 

  8. Tan, K.K., Lee, T.H., Dou, H.F., Chin, S.J., Zhao, S.: Precision motion control with disturbance observer for pulse width modulated driven permanent magnet linear motors. IEEE Trans. Magn. 39(9), 1813–1818 (2003). https://doi.org/10.1109/TMAG.2003.810617

    Article  Google Scholar 

  9. Yan, M.T., Shiu, Y.J.: Theory and application of a combined feedback feedforward control and disturbance observer in linear motor drive wire-EDM machines. Int. J. Mach. Tolls. Manu. 48, 388–401 (2008). https://doi.org/10.1016/j.ijmachtools.2007.09.006

  10. Cupertino, F., Naso, D., Mininno, E., Turchiano, B.: Sliding mode control with double boundary layer for robust compensation of payload mass and friction in linear motors. IEEE Trans. Ind. App. 45(5), 1688–1676 (2009). https://doi.org/10.1109/TIA.2009.2027521

    Article  Google Scholar 

  11. Lin, F.J., Hwang, J.C., Chou, P.H., Hung, Y.C.: FPGA-Based intelligent-complementary sliding-mode control for PMLSM srevo-drive system. IEEE Trans. Power Ele. 25(10), 2573–2587 (2010). https://doi.org/10.1109/TPEL.2010.2050907

    Article  Google Scholar 

  12. Armstrong-Helouvry, B., Dupont, P., DeWit, C.C.: A survey of models, analysis tools and compensation methods for the control machines with friction. Automatic 30(7), 1083–1138 (1994). https://doi.org/10.1016/0005-1098(94)90209-7

    Article  MATH  Google Scholar 

  13. Mo, X.H., Lan, Q.X.: Finite-time integral sliding mode control for motion control of permanent-magnet linear motor. Math. Prob. Eng. 2013, Article ID 567610, 7. https://doi.org/10.1155/2013/567610

  14. Gao, W., Chen, X.P., Du, H.B., Bai, S.: Position tracking control for permanent magnet linear motor via continuous-time fast terminal sliding model control. J. Cont. Sci. Eng. 2018, Article ID 3813624, 6. https://doi.org/10.1155/2018/3813624

  15. Lan, Q.X., Li, S.H., Khoo, S.Y., Shi, P.: Global finite-time stabilization for a class of stochastic nonlinear systems by output feedback. Int. J. Cont. 88(3), 494–506 (2015). https://doi.org/10.1080/00207179.2014.962766

    Article  MATH  Google Scholar 

  16. Bhar, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability. Math. Cont. Sig. Syst. 17, 101–127 (2005). https://doi.org/10.1007/s00498-005-0151-x

    Article  MathSciNet  Google Scholar 

  17. Hong, Y.G., Wang, J.K., Cheng, D.Z.: Adaptive finite time control of nonlinear system with parameter uncertainty. IEEE Trans. Autom. Cont. 51(5), 858–862 (2006). https://doi.org/10.1109/TAC.2006.875006

    Article  MATH  Google Scholar 

  18. Feng, Y., Yu, X.H., Man, Z.H.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatic 38, 2159–2167 (2002). https://doi.org/10.1016/j.automatica.2005.07.001

    Article  MATH  Google Scholar 

  19. Yang, J., Ding, Z.T., Li, S.H., Zhang, C.L.: Continuous finite-time oupt regulation of nonlinear systems with unmatched time-varying disturbance. IEEE Contr. Syst. Lett. 2(1), 97–102 (2018). https://doi.org/10.1109/LCSYS.2017.2755363

    Article  Google Scholar 

  20. Lan, Q.X., Li, S.H., Yang, J.: Finite-time tracking control for a class of nonlinear systems with multiple mismatched disturbances. Int. J. Robust. Non. Contr. (2020). https://doi.org/10.1002/rnc.4989

  21. Yu, S.H., Yu, X.H., Shirinzadeh, B., Man, Z.H.: Non-singular terminal sliding mode control of rigid manipulators. Automatic 41, 1957–1964 (2005). https://doi.org/10.1016/s0005-1098(02)00147-4

  22. Lan, Q.X., Li, S.H., Yang, J., Sun, H.B.: Finite-time control for 6DOF spacecraft formation flying system. J. Aero. Eng. 28(5), 040140137 (2015). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000476

  23. Li, S.H., Liu, H.X., Ding, S.H.: A speed control for a PMSM using finite-time feedback control and disturbance compensation. Trans. Inst. Meas. Cont. 32(2), 170–187 (2010). https://doi.org/10.1177/0142331209339860

    Article  Google Scholar 

  24. Guermouche, M.S., Ali, A., Langlois, N.: Super-twisting algorithm for dc motor position control via disturbance observer. IFAC-Papers on line 48(30), 043–048 (2015). https://doi.org/10.1016/j.ifacol.2015.12.351

    Article  Google Scholar 

  25. Kwon, S., Chung, W.K.: A discrete-time design and analysis of perturbation observer for motion control applications. IEEE Trans. Cont. Sys. Tech. 11(3), 399–407 (2003). https://doi.org/10.1109/TCST.2003.810398

    Article  Google Scholar 

  26. Barabanov, N., Ortega, R.: Necessary and sufficient conditions for passivity of the LuGre friction model. IEEE Trans. Auto. Cont. 45(4), 830–832 (2000). https://doi.org/10.1109/9.847131

    Article  MathSciNet  MATH  Google Scholar 

  27. Qian, C.J., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Auto. Cont. 46(7), 1061–1079 (2001). https://doi.org/10.1109/9.935058

    Article  MathSciNet  MATH  Google Scholar 

  28. Ding, S.H., Li, S.H.: Second-order sliding mode controller design subject to mismatched term. Automatic 77, 388–392 (2017). https://doi.org/10.1016/j.automatica.2016.07.038

Download references

Acknowledgements

This work was supported in part by the Key Research and Development and Promotion of Special Project of Henan Province under Grant 202102210142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qixun Lan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, W., Lan, Q., Ma, T. (2022). Second-Order Sliding Mode Controller Design for Motion Control of PMLM System. In: Yan, L., Duan, H., Yu, X. (eds) Advances in Guidance, Navigation and Control . Lecture Notes in Electrical Engineering, vol 644. Springer, Singapore. https://doi.org/10.1007/978-981-15-8155-7_176

Download citation

Publish with us

Policies and ethics