Skip to main content

Nonlinear Asymptotic Attitude Tracking Control for an Unmanned Helicopter Using Repetitive Learning

  • Conference paper
  • First Online:
Advances in Guidance, Navigation and Control

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 644))

  • 179 Accesses

Abstract

This paper proposes a learning based attitude tracking control method for unmanned helicopters. Because of the influences of uncertain system parameters, unmodeled dynamics and external disturbances, a control scheme based on repetitive learning is designed to realize the precise attitude control of the helicopter for a periodic desired attitude trajectory. The helicopter dynamics system is divided into periodic part and aperiodic part, and the feed-forward component based on repetitive learning is used to compensate for the periodic part, and the high gain component is used to restrain the aperiodic part. The proposed controller compensates for the structural and unstructural uncertain dynamics and account for the disturbances via repetitive learning process. The asymptotic convergence of helicopters attitude tracking error is proved via Lyapunov-based stability analysis. The results of simulation experiment verify the availability of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarenga, J., Vitzilaios, N.I., Valavanis, K.P., Rutherford, M.J.: Survey of unmanned helicopter model-based navigation and control techniques. J. Intell. Robot. Syst. 80(1), 87–138 (2015)

    Article  Google Scholar 

  2. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 29(2), 315–378 (2012)

    Article  Google Scholar 

  3. Godbolt, B., Vitzilaios, N.I., Lynch, A.F.: Experimental validation of a helicopter autopilot design using model-based pid control. J. Intell. Robot. Syst. 70(1–4), 385–399 (2013)

    Article  Google Scholar 

  4. Gadewadikar, J., Lewis, F.L., Subbarao, K., Peng, K., Chen, B.M.: H-infinity static output-feedback control for rotorcraft. J. Intell. Rob. Syst. 54(4), 629–646 (2009)

    Article  Google Scholar 

  5. Liu, H., Lu, G., Zhong, Y.: Robust lqr attitude control of a 3-dof laboratory helicopter for aggressive maneuvers. IEEE Trans. Industr. Electron. 60(10), 4627–4636 (2012)

    Article  Google Scholar 

  6. Sheng, S., Sun, C.: An adaptive attitude tracking control approach for an unmanned helicopter with parametric uncertainties and measurement noises. Int. J. Control Autom. Syst. 14(1), 217–228 (2016)

    Article  MathSciNet  Google Scholar 

  7. Marantos, P., Bechlioulis, C.P., Kyriakopoulos, K.J.: Robust trajectory tracking control for small-scale unmanned helicopters with model uncertainties. IEEE Trans. Control Syst. Technol. 25(6), 2010–2021 (2017)

    Article  Google Scholar 

  8. Ma, D., Xia, Y., Li, T., Chang, K.: Active disturbance rejection and predictive control strategy for a quadrotor helicopter. IET Control Theory Appl. 10(17), 2213–2222 (2016)

    Article  MathSciNet  Google Scholar 

  9. Shin, J., Kim, H.J., Kim, Y., Dixon, W.E.: Autonomous flight of the rotorcraft-based uav using rise feedback and nn feedforward terms. IEEE Trans. Control Syst. Technol. 20(5), 1392–1399 (2011)

    Article  Google Scholar 

  10. Coza, C., Nicol, C., Macnab, C., Ramirez-Serrano, A.: Adaptive fuzzy control for a quadrotor helicopter robust to wind buffeting. J. Intell. Fuzzy Syst. 22(5), 267–283 (2011)

    Article  MathSciNet  Google Scholar 

  11. Ju, E., Won, J., Lee, J., Choi, B., Noh, J., Choi, M.G.: Data-driven control of flapping flight. ACM Trans. Graph. 32(5), 1–12 (2013)

    Article  Google Scholar 

  12. Sun, Y., Qiang, H., Mei, X., Teng, Y.: Modified repetitive learning control with unidirectional control input for uncertain nonlinear systems. Neural Comput. Appl. 30(6), 2003–2012 (2018)

    Article  Google Scholar 

  13. Bhasin, S., Kamalapurkar, R., Johnson, M., Vamvoudakis, K.G., Lewis, F.L., Dixon, W.E.: A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems. Automatica 49(1), 82–92 (2013)

    Article  MathSciNet  Google Scholar 

  14. Hwangbo, J., Sa, I., Siegwart, R., Hutter, M.: Control of a quadrotor with reinforcement learning. IEEE Robot. Autom. Lett. 2(4), 2096–2103 (2017)

    Article  Google Scholar 

  15. dos Santos, S.R.B., Givigi, S.N., Nascimento, C.L.: Autonomous construction of multiple structures using learning automata: description and experimental validation. IEEE Syst. J. 9(4), 1376–1387 (2015)

    Article  Google Scholar 

  16. Huang, D., Xu, J.X., Yang, S., Jin, X.: Observer based repetitive learning control for a class of nonlinear systems with non-parametric uncertainties. Int. J. Robust Nonlinear Control 25(8), 1214–1229 (2015)

    Article  MathSciNet  Google Scholar 

  17. Qian, Y., Fang, Y., Lu, B.: Adaptive repetitive learning control for an offshore boom crane. Automatica 82, 21–28 (2017)

    Article  MathSciNet  Google Scholar 

  18. Liu, X., Xian, B., Zhang, Y., Zhang, X.: Nonlinear asymptotic attitude tracking control for an unmanned helicopter with input constraints. In: Proceedings of the 2014 American Control Conference, pp. 1402–1407 (2014)

    Google Scholar 

  19. Cai, G., Chen, B.M., Lee, T.H.: Unmanned rotorcraft systems. Springer Science & Business Media (2011)

    Google Scholar 

  20. De Queiroz, M.S., Dawson, D.M., Nagarkatti, S.P., Zhang, F.: Lyapunov-based control of mechanical systems. Springer Science & Business Media (2012)

    Google Scholar 

  21. Fang, Y., Feemster, M., Dawson, D., Jalili, N.M.: Nonlinear control techniques for an atomic force microscope system. J. Control Theory Appl. 3(1), 85–92 (2005)

    Article  MathSciNet  Google Scholar 

  22. Dixon, W.E., Zergeroglu, E., Dawson, D.M., Costic, B.T.: Repetitive learning control: a lyapunov-based approach. IEEE Trans. Syst., Man, Cybern., Part B (Cybern.) 32(4), 538–545 (2002)

    Google Scholar 

  23. Xian, B., Jianchuan, G., Yao, Z., Bo, Z.: Sliding mode tracking control for miniature unmanned helicopters. Chin. J. Aeronaut. 28(1), 277–284 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Xian, B. (2022). Nonlinear Asymptotic Attitude Tracking Control for an Unmanned Helicopter Using Repetitive Learning. In: Yan, L., Duan, H., Yu, X. (eds) Advances in Guidance, Navigation and Control . Lecture Notes in Electrical Engineering, vol 644. Springer, Singapore. https://doi.org/10.1007/978-981-15-8155-7_107

Download citation

Publish with us

Policies and ethics