Skip to main content

Mechanical Behavior at Graphene/Polymer Interfaces Under Biaxial Compression

  • Chapter
  • First Online:
Characterization and Modification of Graphene-Based Interfacial Mechanical Behavior

Part of the book series: Springer Theses ((Springer Theses))

  • 311 Accesses

Abstract

In this chapter, we turn our attention to the interfacial stability issues of graphene embedded in polymer matrix under the biaxial compression. A three-stage feature is revealed in the compressive deformation mode, including elastic compression, Euler buckling and local debonding. The failure mechanisms at the nanoscale interface are further discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Google Scholar 

  2. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    Google Scholar 

  3. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T et al (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308

    Google Scholar 

  4. Akinwande D, Petrone N, Hone J (2014) Two-dimensional flexible nanoelectronics. Nat Commun 5:5678–5689

    Google Scholar 

  5. Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4(5):2865–2873

    Google Scholar 

  6. Das S, Gulotty R, Sumant AV, Roelofs A (2014) All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett 14(5):2861–2866

    Google Scholar 

  7. Lee J, Ha T-J, Li H, Parrish KN, Holt M, Dodabalapur A et al (2013) 25 GHz embedded-gate graphene transistors with high-K dielectrics on extremely flexible plastic sheets. ACS Nano 7(9):7744–7750

    Google Scholar 

  8. Zhu Y, Sun Z, Yan Z, Jin Z, Tour JM (2011) Rational design of hybrid graphene films for high-performance transparent electrodes. ACS Nano 5(8):6472–6479

    Google Scholar 

  9. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35(1):52–71

    Google Scholar 

  10. Wu J, Agrawal M, Becerril HA, Bao Z, Liu Z, Chen Y et al (2010) Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4(1):43–48

    Google Scholar 

  11. Duan F, Li W, Wang G, Weng C, Jin H, Zhang H et al (2019) Can insulating graphene oxide contribute the enhanced conductivity and durability of silver nanowire coating? Nano Res 12(7):1571–1577

    Google Scholar 

  12. Ren H, Zheng L, Wang G, Gao X, Tan Z, Shan J et al (2019) Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. ACS Nano 13(5):5541–5548

    Google Scholar 

  13. Harris K, Elias A, Chung H-J (2016) Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J Mater Sci 51(6):2771–2805

    Google Scholar 

  14. Li H, Al-Aqtash N, Wang L, Qin R, Liu Q, Zheng J et al (2012) Electromechanical switch in metallic graphene nanoribbons via twisting. Phys E Low Dimens Syst Nanostruct 44(10):2021–2026

    Google Scholar 

  15. Koskinen P (2012) Graphene nanoribbons subject to gentle bends. Phys Rev B 85(20):205429

    Google Scholar 

  16. Nathan A, Ahnood A, Cole MT, Lee S, Suzuki Y, Hiralal P et al (2012) Flexible electronics: the next ubiquitous platform. Proc IEEE 100:1486–1517

    Google Scholar 

  17. Dai Z, Weng C, Liu L, Hou Y, Zhao X, Kuang J et al (2016) Multifunctional polymer-based graphene foams with buckled structure and negative Poisson’s ratio. Sci Rep 6:32989

    Google Scholar 

  18. Weng C, Dai Z, Wang G, Liu L, Zhang Z (2019) Elastomer-free, stretchable, and conformable silver nanowire conductors enabled by three-dimensional buckled microstructures. ACS Appl Mater Interfaces 11(6):6541–6549

    Google Scholar 

  19. Anagnostopoulos G, Pappas PN, Li Z, Kinloch IA, Young RJ, Novoselov KS et al (2016) Mechanical stability of flexible graphene-based displays. ACS Appl Mater Interfaces 8(34):22605–22614

    Google Scholar 

  20. Raju APA, Lewis A, Derby B, Young RJ, Kinloch IA, Zan R et al (2014) Wide-area strain sensors based upon graphene-polymer composite coatings probed by Raman spectroscopy. Adv Funct Mater 24(19):2865–2874

    Google Scholar 

  21. Chen H, Lu B-W, Lin Y, Feng X (2013) Interfacial failure in flexible electronic devices. IEEE Electron Device Lett 35(1):132–134

    Google Scholar 

  22. Tapasztó L, Dumitrică T, Kim SJ, Nemes-Incze P, Hwang C, Biró LP (2012) Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene. Nat Phys 8(10):739–742

    Google Scholar 

  23. Wei Y, Wang B, Wu J, Yang R, Dunn ML (2012) Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett 13(1):26–30

    Google Scholar 

  24. Lu Q, Arroyo M, Huang R (2009) Elastic bending modulus of monolayer graphene. J Phys D Appl Phys 42(10):102002

    Google Scholar 

  25. Frank O, Tsoukleri G, Parthenios J, Papagelis K, Riaz I, Jalil R et al (2010) Compression behavior of single-layer graphenes. ACS Nano 4(6):3131–3138

    Google Scholar 

  26. Cranford SW (2013) Buckling induced delamination of graphene composites through hybrid molecular modeling. Appl Phys Lett 102(3):031902

    Google Scholar 

  27. Zang J, Ryu S, Pugno N, Wang Q, Tu Q, Buehler MJ et al (2013) Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat Mater 12(4):321–325

    Google Scholar 

  28. Ma L, He L, Ni Y (2020) Tunable hierarchical wrinkling: from models to applications. J Appl Phys 127(11):111101

    Google Scholar 

  29. Wang Q, Zhao X (2016) Beyond wrinkles: multimodal surface instabilities for multifunctional patterning. MRS Bull 41(02):115–122

    Google Scholar 

  30. Wang G, Liu L, Dai Z, Liu Q, Miao H, Zhang Z (2015) Biaxial compressive behavior of embedded monolayer graphene inside flexible poly (methyl methacrylate) matrix. Carbon 86:69–77

    Google Scholar 

  31. Li SL, Miyazaki H, Song H, Kuramochi H, Nakaharai S, Tsukagoshi K (2012) Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. ACS Nano 6(8):7381–7388

    Google Scholar 

  32. Li XL, Qiao XF, Han WP, Lu Y, Tan QH, Liu XL et al (2015) Layer number identification of intrinsic and defective multilayered graphenes up to 100 layers by the Raman mode intensity from substrates. Nanoscale 7:8135–8141

    Google Scholar 

  33. Gao Y, Li JZ, Liu LQ, Ma WJ, Zhou WY, Xie SS et al (2010) Axial compression of hierarchically structured carbon nanotube fiber embedded in epoxy. Adv Funct Mater 20(21):3797–3803

    Google Scholar 

  34. Calizo I, Balandin A, Bao W, Miao F, Lau C (2007) Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett 7(9):2645–2649

    Google Scholar 

  35. Seely FB, Smith JO (1952) Advanced mechanics of materials. Wiley, New York

    Google Scholar 

  36. Yoon D, Son YW, Cheong H (2011) Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett 11(8):3227–3231

    Google Scholar 

  37. Griffiths SK, Crowell JAW, Kistler BL, Dryden AS (2004) Dimensional errors in LIGA-produced metal structures due to thermal expansion and swelling of PMMA. J Micromech Microeng 14(11):1548–1557

    Google Scholar 

  38. Tsoukleri G, Parthenios J, Papagelis K, Jalil R, Ferrari AC, Geim AK et al (2009) Subjecting a graphene monolayer to tension and compression. Small 5(21):2397–2402

    Google Scholar 

  39. Sakata H, Dresselhaus G, Dresselhaus M, Endo M (1988) Effect of uniaxial stress on the Raman spectra of graphite fibers. J Appl Phys 63(8):2769–2772

    Google Scholar 

  40. Huang M, Yan H, Chen C, Song D, Heinz TF, Hone J (2009) Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc Natl Acad Sci 106(18):7304–7308

    Google Scholar 

  41. Ni Z, Chen W, Fan X, Kuo J, Yu T, Wee A et al (2008) Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys Rev B 77(11):115416

    Google Scholar 

  42. Dresselhaus MS, Dresselhaus G, Sugihara K, Spain IL, Goldberg HA (2013) Graphite fibers and filaments. Springer Science & Business Media

    Google Scholar 

  43. Timoshenko S, Gere JM (2012) Theory of elastic stability. Dover Publications

    Google Scholar 

  44. Gong L, Young RJ, Kinloch IA, Haigh SJ, Warner JH, Hinks JA et al (2013) Reversible loss of Bernal stacking during the deformation of few-layer graphene in nanocomposites. ACS Nano 7(8):7287–7294

    Google Scholar 

  45. Frank O, Bousa M, Riaz I, Jalil R, Novoselov KS, Tsoukleri G et al (2012) Phonon and structural changes in deformed Bernal stacked bilayer graphene. Nano Lett 12(2):687–693

    Google Scholar 

  46. Mohiuddin T, Lombardo A, Nair R, Bonetti A, Savini G, Jalil R et al (2009) Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys Rev B 79(20):205433

    Google Scholar 

  47. Androulidakis C, Koukaras EN, Frank O, Tsoukleri G, Sfyris D, Parthenios J et al (2014) Failure processes in embedded monolayer graphene under axial compression. Sci Rep 4:5271

    Google Scholar 

  48. Mei H, Huang R, Chung JY, Stafford CM, Yu H-H (2007) Buckling modes of elastic thin films on elastic substrates. Appl Phys Lett 90(15):151902–151903

    Google Scholar 

  49. Mei H, Landis CM, Huang R (2011) Concomitant wrinkling and buckle-delamination of elastic thin films on compliant substrates. Mech Mater 43(11):627–642

    Google Scholar 

  50. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63

    Google Scholar 

  51. Fasolino A, Los J, Katsnelson MI (2007) Intrinsic ripples in graphene. Nat Mater 6(11):858–861

    Google Scholar 

  52. Lui CH, Liu L, Mak KF, Flynn GW, Heinz TF (2009) Ultraflat graphene. Nature 462(7271):339–341

    Google Scholar 

  53. Stolyarova E, Rim KT, Ryu S, Maultzsch J, Kim P, Brus LE et al (2007) High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc Natl Acad Sci 104(22):9209–9212

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guorui Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, G. (2020). Mechanical Behavior at Graphene/Polymer Interfaces Under Biaxial Compression. In: Characterization and Modification of Graphene-Based Interfacial Mechanical Behavior. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-8029-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8029-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8028-4

  • Online ISBN: 978-981-15-8029-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics