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Abstract XcalableMP(XMP) supports a global-view model that allows program-
mers to define global data and to map them to a set of processors, which execute
the distributed global data as a single thread. In XMP, the concept of a coarray
is also employed for local-view programming. In this study, we port Gyrokinetic
Toroidal Code - Princeton (GTC-P), which is a three-dimensional gyrokinetic PIC
code developed at Princeton University to study the microturbulence phenomenon
in magnetically confined fusion plasmas, to XMP as an example of hybrid memory
model coding with the global-view and local-view programming models. In local-
view programming, the coarray notation is simple and intuitive compared with
Message Passing Interface (MPI) programming, while the performance is com-
parable to that of the MPI version. Thus, because the global-view programming
model is suitable for expressing the data parallelism for a field of grid space data,
we implement a hybrid-view version using a global-view programming model to
compute the field and a local-view programming model to compute the movement
of particles. The performance is degraded by 20% compared with the original MPI
version, but the hybrid-view version facilitates more natural data expression for
static grid space data (in the global-view model) and dynamic particle data (in
the local-view model), and it also increases the readability of the code for higher
productivity.
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1 Introduction

In XMP, the global-view model allows programmers to define global arrays, which
are distributed to processors by adding the directives. Some typical communication
patterns are supported by directives, such as data exchange between neighbor
processors in stencil computations. In contrast to the global-view model, the local-
view model describes remote memory access using the node (processor) index. This
operation is implemented as one-sided communication. XMP employs the coarray
concept from Coarray Fortran as a local-view programming model. A coarray is
a distributed data object, which is indexed by the coarray dimension that maps
indices to processors. In XMP, the coarray is defined in C as well as Fortran. In the
local-view model, a thread on each processor executes its own local computations
independently with remote memory access to data located in different processors
by coarray access. The local-view model requires that programmers define their
algorithms by explicitly decomposing the data structures and controlling the flow in
each processor. The data view is similar to that in MPI, but coarray remote access
provides a more intuitive view of accessing the data in different processors, thereby
increasing productivity.

In this chapter,1 we consider a hybrid-view programming approach, which
combines the global-view and local-view models in XMP according to the char-
acteristics of the distributed data structure of the target application. The global-view
model allows programmers to express regular parallel computations such as domain
decomposition with stencil computation in a highly intuitive manner simply by
adding directives to a serial version of code. However, it is difficult to describe
parallel programs in the global-view model when more irregular communication
patterns and complex load balancing are required on the processing. Thus, local-
view programming is necessary in these situations.

We apply this hybrid-view programming for Gyrokinetic Toroidal Code -
Princeton (GTC-P)[4], which is a large-scale plasma turbulence code that can
be applied at the International Thermonuclear Experimental Reactor (ITER [13])
scale and beyond for next-generation nuclear fusion simulation. The GTC-P is an
improved version of the original GTC[2] and it is a type of gyrokinetic Particle-
in-Cell (PIC) code with two basic data arrays: global grid data that corresponds to
the physical problem space and particle data that corresponds to particles moving
around the grid space. The original GTC-P was written in C as a form of hybrid
programming with OpenMP and MPI. In this code, the grid data and particle data
are mapped onto MPI processes and exchanged. As found with most codes of this
type, it is difficult to manage complex data distributions and communication for both
grid data and particle data during code development. Furthermore, to simulate the

1The original version of this chapter was published in: Keisuke Tsugane, Taisuke Boku, Hitoshi
Murai, Mitsuhisa Sato, WilliamM. Tang, Bei Wang, “Hybrid-view programming of nuclear fusion
simulation code in the PGAS parallel programming language XcalableMP.” Parallel Computing
57: 37–51 (2016).
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microturbulence phenomenon in plasmas for magnetically confined fusion devices,
non-flat domain decomposition is necessary in one dimension, as well as paralleliz-
ing multiple dimensions, to obtain accurate large-scale simulations. Therefore, the
number of computations becomes extremely large for next-generation and large-
scale reactors such as ITER.

We consider both types of data models in XMP, i.e., global-view and local-
view models, which are suitable for representing grid space data and particle data,
respectively, because of their data distribution and communication pattern. In this
study, we implement the GTC-P code in two ways: using XMP with a local-
view only model, and with a combination of local-view and global-view models,
where we evaluate the performance and productivity of these approaches. As the
preliminary result, we implemented and evaluated the GTC-P in XMP hybrid-view
model[15]. Moreover, we indicate the causes of performance degradation for GTC-
P in XMP and evaluate the GTC-P of hybrid versions written in XMP+OpenMP and
MPI+OpenMP in this study.

The remainder of this chapter is organized as follows. Next, we briefly describe
the GTC-P nuclear fusion simulation code in Sect. 2. Section 3 describes the
implementation of GTC-P using Hybrid programing model of XMP. We report the
performance and productivity evaluation in Sect. 4, and related works in Sect. 5.
Finally, we conclude our study in Sect. 6.

2 Nuclear Fusion Simulation Code

Typical methods used to simulate the microturbulence phenomenon in magnetically
confined fusion plasmas include the Monte Carlo method and the PIC method. In
this study, we only consider the gyrokinetic PIC method among them as a target
application to explain the GTC and GTC-P code briefly.

2.1 Gyrokinetic PIC Simulation

The simulation of the gyrokinetic PIC method uses a space grid to calculate the field
and for the particle trajectory calculation, which does not depend on the grid when
moving in the free space. Figure 1 shows an image of a gyrokinetic PIC simulation
with a two-dimensional block distribution. The typical behavior of the gyrokinetic
PIC code is as follows.

1. Add the charge of the particle to the nearby grid points.
2. Solve the electric field affected by the electrostatic potential by calculating the

charge density of the nearby grid points using Poisson’s equation.
3. Interpolate the electric field in the current position based on each particle in the

nearby grid points and move the position of the particle in the space.
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Fig. 1 Image from a gyrokinetic PIC simulation with a two-dimensional block distribution; (A)
Calculation of the field using the nearby grid points and (B) the movement of a particle. The dashed
lines indicate processor boundaries

During each step, a process must communicate with another if that process holds
the data for the space in the grid that is affected, as shown in Fig. 1 (A), or if the
particle data move from or to that process, as shown in Fig. 1 (B). Based on the
above, if the size of the distributed domain, e.g., the grid in Fig. 1, is not changed, the
data distribution employed in the global-view programming model is suitable and
the communication between nearby grid points can be described by the reflect
directive in XMP coding. In contrast, if the number of particles on each distributed
domain changes dynamically during each time step of the simulation, such as
particle motion, coarray communication is required using local-view programming.

2.2 GTC

GTC is a three-dimensional (3D) gyrokinetic PIC code, which was developed by
DOE SciDAC, UC Irvine, etc.[2] for studying the microturbulence phenomenon
in plasmas for magnetically confined fusion devices. Figure 2 shows a conceptual
image of a 3D torus physical space. GTC treats the physical space and the movement
of particles in three directions: the toroidal direction around the major axis, the
poloidal direction around the magnetic axis, and the radial direction of the minor
radius from the magnetic axis. The cross-section of the toroidal direction is known
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Fig. 2 Conceptual image of the three-dimensional torus space in GTC-P[10]

as the poloidal plane. GTC-P is a modified version of GTC, where there are several
differences in the parallelization scheme. Moreover, GTC-P is implemented as two
versions in the C and Fortran languages, whereas the original GTC is coded in
Fortran. In this study, we focus on the C implementation of GTC-P.

GTC parallelizes the problem according to three levels. Processing on the
space grid domain in the toroidal direction and the processing of particles in each
domain are mapped onto MPI processes. Also, the grid-related calculation and
particles in each distributed domain are further subdivided using OpenMP for each
process. GTC-P has four levels of parallelism with additional parallelism in the
radial direction. The total number of MPI processes that need to be executed is
Nt × Nr × Nrp, where Nt is the number of domains decomposed in the toroidal
direction,Nr is the number of domains decomposed in the radial direction, andNrp

is the number of particles decomposed in each of the distributed domains.
There is a difference in the number of grid points on the poloidal plane, as

demonstrated in Fig. 3 (left). The toroidal domain can be distributed with equally
sized intervals, but the radial domain cannot be distributed with equally sized
intervals due to the large difference in the domain size depending on its position
in space. Therefore, in order to align as much as possible the number of grid points
to be mapped on each process, the outer area of the radial domain is distributed as
short radial interval and its inner area is distributed as long radial interval, such as
Fig. 3 (right).

GTC-P has mainly six computational kernels. The charge kernel deposits the
charge from particles onto the grid using the four-point approximation of nearby
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radial direction

poloidal angle

radial interval

Fig. 3 Example showing the grid points on the poloidal plane in GTC-P[3] (left). Image of
the radial domain decomposition on poloidal plain. The dashed line shows the border of the
decomposition (right)

grid points. The poisson, field, and smooth kernels solve the gyrokinetic
Poisson’s equation, compute an electric field, and smooth the charge and potential
with a filter on the grid, respectively. The push kernel interpolates the electric field
onto particles using the field. The charge and push kernels account for large
percentage of the elapsed time in this simulation [4, 16].

3 Implementation of GTC-P by Hybrid-view Programming

In this section, we describe how to implement GTC-P using hybrid programming
model of XMP.

3.1 Hybrid-View Programming Model

XMP allows the use of hybrid-view programming, which combines the global-view
and local-viewmodels. The global-viewmodel allows programmers to express regu-
lar parallel computations, such as domain decomposition with stencil computation,
in a highly intuitive manner simply by adding directives to a serial version of the
code. On the other hand, when the data distribution cannot be simply described
in domain decomposition manner or the communication pattern is complicated,
the global-view model is not suitable, and more dynamism is required to express
the code naturally. Thus, the coarray notation provided by the local-view model is
required in this case, and it is possible to program in a flexible manner using these
models.

Figure 4 shows a skeleton code of the implementation of a gyrokinetic PIC
simulation with XMP. In this example, the grid uses a two-dimensional block
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1 double f[X][Y]; /* Electric field data */
2 double p[N]; /* Particle data */
3 double send[N], recv[N]:[*];
4 #pragma xmp align f[i][j] with T(i, j)
5 #pragma xmp shadow f[1:1][1:1]
6
7 for(t=0; t<TIME; t++) {
8 /* Calculate the grid−related work */
9 #pragma xmp reflect(f)

10 /* Calculate the particle−related work */
11 /* Pack the communication elements from array "p" to array "send" */
12 /* Calculate the destination process "pe" and communication size "icount" */
13 recv[0:icount]:[pe] = send[0:icount];
14 xmp_sync_all(NULL); /* Synchronization */
15 }

Fig. 4 Example showing the implementation of a gyrokinetic PIC simulation with XMP

distribution and each block has a sleeve area, which is used to calculate the field with
the nearby grid points based on the shadow directive. The particle movement is
represented by the coarray notation where the communication elements are packed
in the array send. Based on the above, we describe the two implementations of
GTC-P using XMP. First, we implement the XMP-localview version using coarray
communication, which is equivalent to using MPI point-to-point communication
with the exception of MPI collective communication (as shown below). Next, the
XMP-hybridviewversion is implemented by describing the fields using a distributed
array with the reflect directive for overlapped sleeve area communication and
the distributed data in the global-view programming model, as well as using the
coarray notation to move the particle data. In addition, we use the bcast and
reduction directives instead of MPI collective communication (MPI_Bcast
and MPI_Allreduce) in both versions.

3.2 Implementation Based on the XMP-Localview Model:
XMP-localview

In GTC-P, the communication processes required to move particles between
grids and to exchange grid points are represented by MPI_Sendrecv or
MPI_Isend/Irecv, where most of the communication is performed between
adjacent processes in one dimension. GTC-P has the steady state exchange
of particles between neighboring subdomains. Because the number of particles
changes dynamically, this implementation uses the coarray notation in the local-
view programming model.
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Figures 5 and 6 show the particle data movement using MPI and the corre-
sponding the coarray notation in GTC-P, respectively. In the exchange of coarray
notation for particle data movement, it communicates the number of particles and
the particle data, i.e., nsendright and sendright, with the adjacent process
on the neighbor to the right. In addition, Figs. 7 and 8 show the exchange of grid
points using MPI and the corresponding coarray notation in GTC-P, respectively. In
the example of the coarray notation for the exchange of grid points, after copying
a value to a one-dimensional array, i.e., sendr or Xsendr, it communicates with
the adjacent process on the neighbor to the right. Because the coarray notation is
non-blocking communication, xmp_sync_image on the sixth line of Fig. 6 and
the seventh line of Fig. 8 are required to guarantee that communication has been
completed between two processes, in this case, the neighboring (right_pe) and
current processes.

1 /* send # of particles to right neighbor and recv from left neighbor */
2 MPI_Sendrecv(&nsendright, 1, MPI_INT, right_pe, sendtag,
3 &nrecvleft, 1, MPI_INT, left_pe, recvtag, comm, &status);
4 /* send particles to right neighbor and recv from left neighbor */
5 MPI_Sendrecv(sendright, nsendright, MPI_DOUBLE, right_pe, sendtag,
6 recvleft, nrecvleft, MPI_DOUBLE, left_pe, recvtag, comm, status);

Fig. 5 Particle data movement using MPI point-to-point communication in GTC-P

1 /* send # of particles to right neighbor */
2 nrecvleft:[right_pe] = nsendright;
3 /* send particles to right neighbor */
4 recvleft[0:nsendright]:[right_pe] = sendright[0:nsendright];
5 /* synchronization */
6 xmp_sync_image(right_pe, NULL);

Fig. 6 Particle data movement using the coarray notation in GTC-P

1 double *sendr, *recvl;
2
3 for(i=0;i<nloc_over;i++)
4 sendr[i]=phitmp[i*(mzeta+1)+mzeta];
5
6 MPI_Sendrecv(sendr,nloc_over,MPI_DOUBLE,right_pe,
7 isendtag,recvl,nloc_over,MPI_DOUBLE,left_pe,
8 irecvtag,toroidal_comm,&istatus);

Fig. 7 Exchange of grid points using MPI point-to-point communication in GTC-P
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1 double Xsendr[nloc_over],Xrecvl[nloc_over]:[*];
2
3 for(i=0;i<nloc_over;i++)
4 Xsendr[i]=phitmp[i*(mzeta+1)+mzeta];
5
6 Xrecvl[0:nloc_over]:[right_pe]=Xsendr[0:nloc_over];
7 xmp_sync_image(right_pe, NULL);

Fig. 8 Exchange of grid points using the coarray notation in GTC-P

3.3 Implementation Based on the XMP-Hybridview Model:
XMP-Hybridview

In the XMP-hybridview implementation, all of the space grid data are denoted by
a global-view model with compile-time mapping and the sleeve data are exchanged
by XMP directives, whereas the particle data movements are denoted by a local-
view model with the coarray notation, as shown Fig. 6. It is necessary to represent
an unequal block size for domain decomposition in the radial dimension. Because
this dimension’s space grid is denoted in the global-view model, we apply the
gblock notation to represent it correctly in the same manner as the original MPI
implementation. The gblock notation can control the variable block size of each
domain on the mapped space position. This feature is especially important for
portingGTC-P onto XMPwith a global-viewmodel. Figure 10 shows an example of
the GTC-P implementation with the XMP global-view programming model using
gblock. The 11th line of this example denotes the block size distribution in the
radial dimension. Because of describing the data distribution by global-viewmodel,
we can describe the loop distribution only to insert loop directive onto the serial
code that is from the 28th to 30th lines of this example. In addition, OpenMP
directives can be combined with XMP such as the 27th line.

The calculation of the grid-related works, such as the deposit of the charge
from particles onto the grid using a four-point approximation of grid points, the
computation of an electronic field, and the interpolation of the electronic field onto
particles, are similar to four-point stencil calculation on the poloidal plain. In these
codes, we can describe the loop parallelization by inserting loop directive onto the
serial version. Appropriate directives are used for each dimension of the distributed
array in XMP, and we further synchronize the sleeve data that overlap at each end of
the distributed domain, which we can describe simply using the reflect directive.
Figure 9 shows an example of the reflect directive, which is the same as the
communication described in Figs. 7 and 8. Thus, we can describe it using a directive
on one line, which is much simpler compared with the MPI notation in Figs. 7 and 8.
When the width clause is specified, it can be designated as part of the sleeve
elements and the periodic is used to update the sleeve area of the global lower
(upper) bound based on the global upper (lower) bound (Fig. 10).
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1 #define n_t 2
2 /* Number of the toroidal domain decomposition */
3 #define n_r 4
4 /* Number of the radial domain decomposition. */
5 #define n_rp 2
6 /* Number of the particle decomposition. */
7
8 #define nloc_over 107722
9

10 double phitmp[nloc_over_all][2*n_t];
11 int b[n_r*n_rp]
12 = {10967,10967,14086,14086,16164,16164,12644,12644};
13 /* Block size of each process in the "gblock" distribution. */
14
15 #pragma xmp nodes P2(n_r * n_rp, n_t)
16 /* Number of processes (nodes). */
17 #pragma xmp template T(0:nloc_over−1, 0:2*n_t−1)
18 /* Template length. */
19 #pragma xmp distribute T(gblock(b), block) onto P2
20 /* Distribution format of the template. */
21 #pragma xmp align phitmp[i][j] with T(i, j)
22 /* Alignment of an array with a template.*/
23 #pragma xmp shadow phitmp[0][1:0]
24 /* Assignment of the sleeve area. */
25 /* ... */
26 #pragma xmp loop (i, j) on T(i, j)
27 #pragma omp parallel for
28 for (i = 0; i < nloc_over; i++)
29 for (j = 0; j < mzeta; j++)
30 phitmp[i][j] = func(i, j);

Fig. 9 Exchange of grid points using the reflect directive in GTC-P

1 #pragma xmp reflect (phitmp) width (0,/periodic/1:0)

Fig. 10 Example showing GTC-P implementation using the XMP global-view programming
model
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4 Performance Evaluation

4.1 Experimental Setting

We evaluated the performance of our two implementations using a massively paral-
lel GPU cluster: HA-PACS[1] at the Center for Computational Sciences, University
of Tsukuba. Table 1 shows the computing environment employed for one node. HA-
PACS is a GPU cluster, but we only utilized CPUs in this study. We have a plan to
extend this research using a GPU-enabled version of XcalableMP, XcalableACC
[9] to make use of GPU of HA-PACS. We apply the optimization option for
NUMA with ‘numactl -localalloc’, and disable the CPU affinity setting
of MVAPICH2 with MV2_ENABLE_AFFINITY=0.

As preliminary evaluations, we investigate the amount of the memory usage and
the performance of communication using XMP and MPI. First, we indicate the
comparison of the memory usage when one array is allocated in the local-view
model, global-view model, and MPI. They are evaluated with ‘getpid()’ and
‘grep VmHWM /proc/[pid]/status’ from C program during execution.
An array size is 1MB. We show the minimum size in the each amount of the
memory usage when four node execution. The tests showed that the amount of mem-
ory usage of all programming models is almost same according to Table 2. Then,
we evaluate the performance of XMP and MPI communication with Ping-Pong
program, which is defined by a power of two communication size, because XMP
coarray is implemented by GASNet[6] which is a communication library optimized
for some interconnections specifies, e.g., InfiniBand and Gemini. Figure 11 shows
the performance of XMP coarray and MPI_Send/Recv communication. XMP is
a good performance if the transfer size is about 65,536Bytes or less, whereas MPI
is a good performance if it is more than about 65,536Bytes. We used a parameter
of GASNet GASNET_IBV_PORTS="mlx4_0:1+mlx4_0:2" which specifies

Table 1 Machine
environment (HA-PACS
cluster)

Intel Xeon E5-2670 × 2 (2.6 GHz)

CPU CPU (8 cores/CPU) × 2 = 16 cores

Memory 128GB, DDR3 1600MHz

Interconnection InfiniBand : Mellanox Connect-X3

Dual-port QDR

OS CentOS 6.4

C Compiler gcc 4.4.7

MPI MVAPICH2 2.0

GASNet 1.24.0

Table 2 The amount of the memory usage for several different programming models (KB)

MPI Local-view Global-view

19,488 19,532 19,888
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Fig. 11 Ping-Pong communication bandwidth with MPI (MPI_Send/Recv) and XMP (coarray)

Table 3 Evaluation of the
weak scaling of
decomposition for each
domain using problems
ranging from 16 to 512
processes

Problem size A Default Toroidal Radial Particle

mstep 100 20 20 20

mpsi 90 90 90–2880 90

mzetamax 64 2–64 2 2

Particles per cell 100 100 100 100–3200

to use two ports of Infiniband, but we could get the performance of only single port
of Infiniband. It may be an issue with GASNet library.

The GTC-P simulation size is determined by several important numerical
parameters. Table 3 shows the default parameters for problem size A provided
by GTC-P, where we modified the parameters to evaluate weak scaling based on
problem size A. Strong scaling was evaluated using the minimum parameters in the
decomposition of each domain shown in Table 3, where mstep is the number of
calculation steps, mzetamax is the number of grid points in the toroidal dimension,
and mpsi is the number of grid points in the radial domain. Because the number of
grid points in the poloidal plane and in the toroidal domain must be the same during
decomposition, this was also changed in the parameter set for problem size A.

First, we used up to 32 nodes of HA-PACS where 16 processes ran on each node
and the total number of processes ranged from 16 to 512. The processes mapped to
evaluate the decomposition on each domain are shown in Table 4. As described
above, three problem dimensions were considered: toroidal, radial, and particle.
When we decomposed these dimensions into parallel processes, we always fixed the
decomposition number on two dimensions (e.g., toroidal and radial) as 2 × 2 and
we varied the decomposition size in the other dimension (e.g., particle) from 4 to
128, thereby scaling the total number of processes from 16 to 512. However, during
decomposition on the toroidal dimension, we fixed the decomposition number on the
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Table 4 Process mapping to
evaluate the scaling of
decomposition for each
domain (NtxNrxNrp)

Processes Toroidal Radial Particle

16 2× 2× 4 2× 4× 2 2× 2× 4

32 4× 2× 4 2× 8× 2 2× 2× 8

64 8× 2× 4 2× 16× 2 2× 2× 16

128 16 × 2× 4 2× 32× 2 2× 2× 32

256 32 × 2× 4 2× 64× 2 2× 2× 64

512 64 × 2× 4 2× 128× 2 2× 2× 128

radial and particle dimensions as 2 × 4. This was due to variations in the number
of calculations because increasing the toroidal dimension also changes the poloidal
planes, as described above. We used this scheme to change the scaling dimension.

Second, we used 16 nodes where one process ran on each node and the number of
threads ranged from 1 to 16 in each process. The processes mapped on each domain
to evaluate the decomposition are 2 × 4 × 2 and 2 × 2 × 4.

4.2 Results

With weak scaling, Figs. 12, 13, and 14 shows the elapsed time for both calculation
and communication of MPI, XMP-localview, and XMP-hybridview required to
scale the number of processes from 16 to 512, where decomposition on the toroidal

Fig. 12 Elapsed time of the decomposition on toroidal dimension from 16 to 512 processes in
weak scaling
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Fig. 13 Elapsed time of the decomposition on radial dimension from 16 to 512 processes in weak
scaling

Fig. 14 Elapsed time of the decomposition on particle dimension from 16 to 512 processes in
weak scaling
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and particle dimensions exhibited good scalability, whereas scaling on the radial
dimension was poor. Figure 13 shows that the performance of decomposition on the
radial dimension decreased as the number of nodes increased compared with the
other two types of domain decomposition, as shown in Figs. 12 and 14. Most of the
communications are performed at the neighboring surface during decomposition on
any dimension and the total amount of communication data does not vary greatly;
thus, we focused on the calculation load balance between processes. Table 5 shows
the difference between the maximum and minimum calculation times required
for each type of decomposition, where the calculation time was defined as the
computational time required for each process except the communication time. This
table shows that the calculation time for processes differed greatly with radial
dimension decomposition as the number of processes increased. This phenomenon
occurred with all three implementations, including MPI.

This may be explained by the method used to decompose the domain in the radial
dimension. For other dimensions, it is easy to decompose the domain completely
and equally for all processes. However, decomposition is complicated in the radial
dimension because the domain volume varies in the inner part and outer part due to
the torus form of the problem space. The volume and the corresponding grid size

Table 5 Load imbalance:
maximum and minimum
times required to calculate the
processes with toroidal,
radial, and particle
decomposition [s] (number of
local grid points in each
poloidal plane)

Toroidal

Processes Minimum Maximum

16 8.408406 (19805) 8.548204 (19916)

32 8.440145 (19805) 8.541321 (19916)

64 8.44846 (19805) 8.631631 (19916)

128 8.511492 (19805) 8.718713 (19916)

256 8.6418 (19805) 8.853517 (19916)

512 8.865397 (19805) 9.109388 (19916)

Radial

Processes Minimum Maximum

16 8.114932 (10967) 8.270015 (16164)

32 8.083982 (12104) 8.539186 (24200)

64 8.075058 (14130) 9.487029 (33462)

128 8.070919 (17422) 11.014277 (74745)

256 8.232447 (23198) 12.686402 (141700)

512 8.763279 (34522) 16.508915 (270844)

Particle

Processes Minimum Maximum

16 8.408406 (19805) 8.548204 (19916)

32 8.406107 (19805) 8.558563 (19916)

64 8.394203 (19805) 8.565195 (19916)

128 8.394159 (19805) 8.562974 (19916)

256 8.393343 (19805) 8.591214 (19916)

512 8.390172 (19805) 8.641762 (19916)
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Fig. 15 Breakdown of the minimum and maximum calculation times on the radial domain
decomposition using 512 processes

are calculated based on the formula used to describe the torus shape, which implies
that an error is incurred during integer rounding to determine the number of grids.
Table 5 shows that the number of total grid points assigned to the processes with the
maximum and minimum calculation times differed greatly. Also, Fig. 15 shows the
breakdown of the minimum and maximum calculation times on the radial domain
decomposition 512 processes. The difference between the calculation times of the
grid-related works, such as charge, push, poisson, field, and smooth,
increased on radial domain decomposition. During each time step, the computation
of all processesmust be bounded as a barrier operation and the increase in the integer
rounding error according to the problem size (i.e., weak scaling) causes a greater
load imbalance, which degrades the overall performance.

On the other hand, the communication time of XMP-localview and XMP-
hybridview on the radial dimension increases as the number of nodes increased
compared with the MPI, as shown in Fig. 13. We explored the number of send calls
and each communication size because the performance of communication on XMP
and MPI are reversed at about 65,536Bytes according to Fig. 11. Figure 16 shows
the number of send calls in process number 0 on each domain decomposition
classified as the communication size of more than 65,536Bytes and 65,536Bytes
or less. In the radial domain decomposition, the number of send calls at more
than 65,536Bytes increases compared with the toroidal and particle decomposition.
Therefore, the performance of XMP-localview and XMP-hybridview is degraded
compared with MPI. The results were the XMP-localview implementation obtains
approximately the same performance as the MPI implementation while the perfor-
mance degradation using XMP-hybridview is increased by up to 20% compared
with the MPI implementation.

With strong scaling, Figs. 17 and 18 show the elapsed time for both calculation
and communication of MPI, XMP-localview, and XMP-hybridview, where the
decomposition on the radial and particle dimensions, respectively. The perfor-
mances of XMP-localview and XMP-hybridview on the particle dimension are
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Fig. 16 Number of send calls in process number 0 on each domain decomposition from 16 to
512 processes in weak scaling

Fig. 17 Elapsed time of the decomposition on radial dimension from 16 to 512 processes in strong
scaling

almost same compared with MPI, as shown Fig. 18, while the elapsed time of the
decomposition on the radial dimension increases as the number of nodes increases,
as shown Fig. 17.
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Fig. 18 Elapsed time of the decomposition on particle dimension from 16 to 512 processes in
strong scaling

Fig. 19 Number of send calls in process number 0 on each domain decomposition from 16 to
512 processes in strong scaling

We explored the number of send calls and each communication size same as
weak scaling. Figure 19 shows the number of send calls in process number 0 on
radial and particle domain decomposition classified as the communication size of
more than 65,536Bytes and 65,536Bytes or less. The number of send calls on the
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Fig. 20 Elapsed time of the decomposition on radial and particle dimension from 1 to 16 threads

radial domain decomposition at 65,536Bytes or less increases compared with the
particle decomposition. Therefore, the performance of XMP-localview and XMP-
hybridview are increased compared with MPI on radial domain decomposition from
128 to 512 processes in strong scaling.

Figure 20 shows the elapsed time of the decomposition on radial and particle
dimension, i.e., 2 × 4 × 2 and 2 × 2 × 4, ranged from 1 to 16 threads per
process using 16 nodes where one process ran on each node. The results were the
performance of XMP implementation with thread parallelization is scaled the same
as MPI.

4.3 Productivity and Performance

A good programming environment should facilitate high performance and high pro-
ductivity, but high performance is sometimes obtained by low-level programming
such as MPI, which unfortunately yields low productivity.

The XMP-localview implementation is simple and intuitive compared with MPI
because the coarray communication is expressed in the form of an array assignment
statement, as shown Figs. 6 and 8. In coarray notation, the communication size
and data are intuitively represented by array section and the data type is checked
automatically. The performance of XMP-localview is comparable to that of the MPI
version.

In XMP-hybridview, the global data structure required for the field data is
described in the global-view model, which is almost the same as that in the serial
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code without particle calculation to communicate to the other process, and its data
distribution is annotated by the directives, as shown in Fig. 10. This improves the
readability of the code because it is unnecessary for users to describe the many
arguments on a line such as MPI APIs, thereby facilitating the easy maintenance
of the program and simple parallelization from the original sequential code. For
the global data structure, the communication with the overlapped sleeve area in the
distributed calculation domain can be described in only one line of the reflect
directive, as shown in Fig. 9.

Table 6 shows the delta Source Lines of Code (SLOC) [14] for several imple-
mentations. This metric indicates how many lines of code changed from the serial
implementation of GTC-P, which shows modified, added, and deleted lines. Due
to the reasons described above, the amount of code added and modified from the
serial implementation is smaller with the XMP-hybridview implementation than
the MPI implementation. In both of XMP implementations, the deleted lines are
larger than MPI implementation because the explicit memory free is unnecessary
for the distributed array and communication buffer for coarray in the global scope.
In summary, XMP-hybridview implementation increases productivity.

The difference in performance between XMP-hybridview andMPI is attributable
to the increase in the communication size of the reflect directive. The reflect
directive is responsible for the communication designated as the sleeve area by the
width clause, but it cannot update partially the sleeve area. Figure 21 shows that
the two-dimensional array is distributed to two nodes and exchanged the sleeve area
in MPI and XMP implementations. In GTC-P, there is a communication pattern
updated only in inner sleeve area which is represented as the hatching areas in
Fig. 21 (left).

Table 6 Differences in the
delta SLOC from Serial
implementation for several
different implementations of
GTC-P

XMP

Serial MPI Localview Hybridview

SLOC 4110 5427 5398 5179

Modified – 170 168 158

Added – 1319 1303 1112

Deleted – 2 15 43

Total delta SLOC – 1491 1486 1313

Fig. 21 Updating of the sleeve area with MPI and XMP-localview (left), and XMP-hybridview
(right) in GTC-P. The hatching areas are communicated to nearby node



Hybrid-View Programming of Nuclear Fusion Simulation Code in XcalableMP 201

5 Related Research

GTC or GTC-P have been executed and optimized on some platforms. X. Liao
et al.[7] optimized GTC to use offload-programming model for the Intel Xeon
Phi accelerator, and evaluated the performance on MilkyWay-2 supercomputer. K.
Madduri et al.[8] described the optimization for multi- and many-core systems,
and evaluated on some systems including Graphic Processing Unit (GPU) based
on NVIDIA Fermi architectures. In our study, we focus on the evaluation of not
only the performance but also the productivity for GTC-P.

PIC method is often implemented some PGAS parallel programming languages.
H. Sakagami and T. Mizuno[12] implemented 2D particle code, ESPAC2: 2D
electrostatic plasma, based on PIC method using High Performance Fortran (HPF)
[5] which is directive-based language similar to OpenMP and supports the global-
view model. The particle data is distributed into the block, while the electrostatic
field is replicated onto each process. After the distributed particle data is calculated
in each process, the reduction operation is executed to update the particle data of
electrostatic field on each time step. The data distribution is an easy expression
which is annotated by directives in HPF. R. Preissl et al.[11] introduced hybrid
PGAS+OpenMP approach for 3D PIC code, Gyrokinetic Tokamak Simulation
(GTS) which is implemented in MPI+OpenMP. As PGAS parallel programming
language, they used Coarray Fortran. The one-sided communication in Coarray
Fortran is simple and more intuitive notation compared with MPI programming
because it is expressed in the form of array assignment statement. However, the
description of data distribution is same as MPI. To use simple coarray communica-
tion and easy data distribution by directives, we consider a hybrid-view approach,
which combines the global-view and local-view models in XMP.

6 Conclusion

In this study, we implemented two versions of GTC-P, a large-scale nuclear fusion
simulation code, using the global-view and local-view programming models in
XMP for parallel programming languages, and we evaluated their performance and
productivity. The first version, XMP-localview, only uses coarray communication
in the local-view programming model, which simply replaces MPI point-to-point
communication, except for collective communication such as MPI_Allreduce. The
second version, XMP-hybridview, uses the distribution of the calculation domain
and the reflect directive in the global-view programming model, as well as
coarray communication for particle motion in the local-view programming model.
Experimental evaluations showed that the XMP-localview implementation obtained
approximately the same performance as MPI, whereas the XMP-hybridview imple-
mentation degraded the performance by 20%. In addition, we obtained high
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productivity with the XMP implementation. In XMP-localview, the coarray notation
is simpler and more intuitive compared with MPI programming, and the XMP-
hybridview allows more natural data expression for both static grid space data (in
the global-viewmodel) and dynamic particle data (in the local-viewmodel), thereby
increasing the readability of the code.
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