
PCA Based Kernel Initialization
for Convolutional Neural Networks

Yifeng Wang1, Yuxi Rong1, Hongyue Pan1, Ke Liu1, Yang Hu2, Fangmin Wu2,
Wei Peng2, Xingsi Xue3, and Junfeng Chen4(B)

1 China Three Gorges Corporation, Beijing 100038, China
{wang yifeng1,rong yuxi,pan hongyue,liu ke1}@ctg.com.cn
2 Hangzhou HuaNeng Engineering Safety Technology Co., Ltd.,

Hangzhou 311121, China
mark hnsafet@qq.com, 329537060@qq.com, 12492687@qq.com

3 Fujian Key Lab for Automotive Electronics and Electric Drive,
Fujian University of Technology, Fuzhou 350118, Fujian, China

jack8375@gmail.com
4 College of IoT Engineering, Hohai University, Changzhou 213022, Jiangsu, China

chen-1997@163.com

Abstract. The initialization of Convolutional Neural Networks (CNNs)
is about providing reasonable initial values for the convolution kernels
and the fully connected layers. In this paper, we proposed a convolution
kernel initialization method based on the two-dimensional principal com-
ponent analysis (2DPCA), in which a parametric equalization normal-
ization method is used to adjust the scale between each neuron weight.
After that the weight initial value can be adaptively adjusted accord-
ing to different data samples. This method enables each neuron to fully
back-propagate errors and accelerate network model training. Finally, a
network model was built and experiments were performed using Tanh
and ReLU activation functions. The experimental results verify the effec-
tiveness of the proposed method through the distribution of histograms
and the curve comparison diagrams of model training.

Keywords: Convolutional neural networks · Convolution kernel
initialization · PCA · Parametric equalization normalization

1 Introduction

The Convolutional Neural Networks (CNNs) [2], as representative deep learning
models, have a remarkable ability to extract features directly from the origi-
nal images and recognize the rules of these visual images with minimal prepro-
cessing. The most common form of the CNNs architecture stacks a number of
convolutional and pooling layers optionally followed by fully connected layers.
Most notable among these is the convolution kernel which is a small trainable
matrix used for features detection. The initialization of CNNs is about provid-
ing reasonable initial values for the convolution kernels and the fully connected
layers.
c© Springer Nature Singapore Pte Ltd. 2020
Y. Tan et al. (Eds.): DMBD 2020, CCIS 1234, pp. 71–82, 2020.
https://doi.org/10.1007/978-981-15-7205-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7205-0_7&domain=pdf
https://doi.org/10.1007/978-981-15-7205-0_7


72 Y. Wang et al.

The kernel initialization of the CNNs is an issue worthy of discussion. For
simple Neural Networks (NN), random initialization would be a good choice.
G. Thimm and E. Fiesler designed experiments to test the random weight ini-
tialization methods on the multilayer perceptron and the high order networks
[8]. He et al. found that the rectifying activation unit is very important for the
neural network, and proposed a Parametric Rectified Linear Unit (PReLU) to
generalize the traditional rectified units. It is well to be reminded that they
derived a robust initialization method, particularly considering the rectifier non-
linearities [1]. Sun et al. proposed Multi-layer Maxout Networks (MMN) with
multi-layer which can train active function, and deduced a new initialization
method dedicated to the activation of MMN. The method can reduce the move-
ment of internal covariates when the signal propagates through the layer [6].
A. Pacheco determined the input weights and bias for the Extreme Learning
Machine (ELM) by using the Restricted Boltzmann Machine (RBM), named
as RBM-ELM [4]. Similarly, Zhang and Ji also constructed a RBM model to
pre-train convolution kernels. The trained weight matrix is transformed to ini-
tialize the convolution kernel parameters of the CNNs [11]. Liu et al. proposed
an image extraction algorithm by mixing the AutoEncoder and the CNNs. They
utilized the AutoEncoder to train the basic elements of image and initialized the
convolution kernel of the CNNs [3]. Yang et al. used sparse coding to extract
the convolution kernel for initialization, which can shorten the training time
and raise the recognition rate [9]. In target super resolution, Li et al. proposed
a Multi-channel Convolution image Super-Resolution (MCSR) algorithm, which
used a residual CNN based on sparse coding and an MSRA initialization method
to accelerate model training the convergence [10]. M. S. Seyfioğlu compared two
NN initialization methods, unsupervised pre-training and transfer-learning, in
training the deep NN on small data sets [5]. Tang et al. employed k-means unsu-
pervised feature learning as the pre-training process, instead of the traditional
random initialization weights [7]. So far, there are no unified understanding and
development methods for the initialization problem of the CNNs. Moreover, the
current initialization methods gave no considerations to the sample information
and cannot automatically adapt to variation of the samples. In this paper, we
attempt to employ the Principal Component Analysis (PCA) into kernel initial-
ization and propose a parametric equalization normalization to adjust the scale
among the neuron weights.

The rest of the article is organized as follows. Section 2 reviews the methods
of the convolution kernel initialization. Section 3 proposed the PCA-based con-
volution kernel initialization with balanced normalization. Section 4 presents the
experimental configuration and results; finally, the conclusions are presented in
Sect. 5.

2 Convolution Kernel Initialization

There are mainly three initialization methods: random initialization, Xavier ini-
tialization and MSRA Initialization.



PCA Based Kernel Initialization for Convolutional Neural Networks 73

2.1 Random Initialization

The random initialization method generally refers to the normal distribution
randomization method. It defines a random variable x, which obeys a probability
distribution f (x) with mean μ and standard deviation σ. We have the following
probability density function.

f (x) =
1√
2πσ

exp

(
− (x − μ)2

2σ2

)
(1)

The random variable distribution obeys the normal distribution, referred to
as f (x) ∼ N

(
μ, σ2

)
are set as different values. The mean μ affects the symmetry

center of the curve, and the standard deviation σ influences the smoothness of
the curve. The larger the μ is, the smoother the curve will be. The random ini-
tialization method initializes each parameter of the convolution kernel according
to the Gaussian probability distribution.

2.2 Xavier Initialization

Xavier Glorot et al. [12] proposed the Xavier initialization method whose core
idea is to keep the variance of input and output consistent and prevent all output
values from going to 0. The literature derivation gives the specific form of Xavier
initialization:

W ∼ U

(
−

√
6√

nj + nj+1
,

√
6√

nj + nj+1

)
(2)

where nj is the total number of input neurons for each feature map of the
layer, and nj+1 is the total number of output neurons. The U denotes a uniform
distribution within this range. Each weight parameter is randomly initialized to
random value which obeys this uniformly distribution. The parameters of the
method only depend on the number of input and output neurons, do not need to
manually set parameters, and are completely adaptive to the size of the network
model itself, and are more stable and easy to use than the random initialization
method.

2.3 MSRA Initialization

The MSRA initialization method is an improved method for Xavier. It is partic-
ularly applicable to the most popular Relu function. Its specific form is shown
in (3). It is a normal distribution with a mean 0 and a variance 2/n.

W ∼ G

[
0,

√
2
n

]
(3)

where n is the number of inputs to the layer, and G denotes that obeys a normal
distribution. The parameters of this method are only dependent on the number of
neurons of one input, less than the two parameters of Xavier, and are particularly
suitable for Relu functions.



74 Y. Wang et al.

3 PCA-Based Convolution Kernel Initialization
with Balanced Normalization

In this section, we employ the Two-Dimensional Principal Component Analysis
(2DPCA) to extract the feature vectors of the image and introduce an equaliza-
tion normalization method to adjust the scale of the weight between layers.

3.1 Two-Dimensional Principal Component Analysis

Suppose there is an image sample set X = {X1,X2, · · · ,XN}, the number of
sample sets is N , and the dimension is m × n. Projecting images in both row
and column directions, so that the variance remaining in the subspace is the
largest. The fact that 2DPCA uses orthogonal transformation to eliminate the
correlation between the original vectors should be paid attention too. The two
principal components obtained are linearly independent. Therefore, the principal
component may represent higher information than the original data. The specific
2DPCA calculation steps are as follows:
(1) Calculate the average of all image samples: X= 1

N

∑N
i=1 Xi;

(2) Calculate the covariance matrix: Gt= 1
N

∑
j=1

(Xi − X)
T
(Xi − X);

(3) The eigenvalue decomposition of the covariance matrix Gt is performed
by using the Jacobian method to obtain the corresponding eigenvalue
λ1, λ2, · · · , λd and the eigenvector corresponding to each eigenvalue. The
eigenvector corresponding to the largest k eigenvalues is selected to com-
pose the projection matrix U= [u1, u2, · · · , uk] ∈ Rn×k;

(4) Do feature extraction to every sample data by column: Fj = Xj ·U ∈ Rm×k,
what is obtained is the feature of Xj . The original two-dimensional m × n
size image is now reduced to m×k, that is, the number of bits of the matrix
column vectoris compressed after the feature extraction, and the number of
row is not changed;

(5) After the above process, a new sample Fj , j = 1, 2, · · · , N is obtained. On
the new sample, repeat step (1) (2) construct a new covariance matrix G∗

t :

G∗
t = 1

N

N∑
i=1

(
Fi − F

)T (
Fi − F

)
;

(6) Similarly, repeat step (3) to take the feature vector corresponding to the
largest d eigenvalues to obtain the projection matrix in the row direction
V = [v1, v2, · · · , vd].

Since the variance of each principal component is gradually reduced, the key
information included is also decremented. So generally, the contribution rate can
indicate the amount of information occupied by a principal component. Specifi-
cally, it refers to the proportion of the cumulative value of the total variance of
a principal component, also, the proportion of the sum of a feature value to the
sum of all feature values, which is:

η =
λi

d∑
i=1

λi

(4)



PCA Based Kernel Initialization for Convolutional Neural Networks 75

3.2 2DPCA Initialization

The 2DPCA method is used to initialize each convolution kernel in the network.
The initialization is based on training sample data. The size of the convolution
kernel is Rk × Rk. The size of the input map for each layer is set to Ck × Ck.
There are a total of Dk maps. The process is as follows.

(1) Manually select one picture for each category from all the data. That is,
a total of n pictures can be selected. Each picture can correspond to a
category of its own.

(2) Count the number of neurons input and output for each convolutional layer,
and use the Xavier initialization method to initialize all the parameter
weights Wk,i,j for each convolutional layer in turn. The Wk,i,j denotes the
weight of the j-th window of the i-th convolution kernel in the k-th layer,
and all offsets are initialized to 0.

(3) Do forward-propagating to each picture, and obtain the corresponding fea-
ture map Ck,i,z, z ∈ [1, N ], which denotes the i-th feature map of the k-th
layer of the z-th picture. The size rk of the feature map obtained between
different layers is different. The inputting size of picture of each layer is
Ck − Rk + 1.

(4) Combine the feature maps of the same location corresponding to different
pictures into a set Pk,i, which indicates the i-th feature map of the k-th
layer, and sample the Rk × Rk window size of all the graphs in the set to
obtain the image set Pk,i. And the number of sampling result in Pk,i is
n × (rk − Rk + 1) × (rk − Rk + 1).

(5) Calculating all the images in the set Pk,j according to the 2DPCA steps in
3.3.1, then obtain the corresponding projection matrix Uk,j , Vk,j ∈ RRk×Rk ,
which correspond to the two columns and rows, and the feature value sets
λu and λv corresponding to each feature vector.

(6) After arbitrarily adding the eigenvalues in λu and λv get a new set λ∗, take
the largest Dk values before. Every value corresponds to the two eigen-
vectors ξa

u and ξb
v respectively. Calculating ξb

v ∗ ξaT
u in turn yields a set of

evaluation matrices M = {M1,M2, · · · MT }, where the maximum value of
T is R2

k. Then the initialize the convolution kernel in turn.

3.3 Parametric Equalization Normalization

For an N -layer convolutional neural network, the loss function is defined as
�(zN ). We usually want the gradient of the weight Wk (i, j) of the k-th layer to
satisfy the following form:

C2
k,i,j = Ez0 ∼ D

[
∂

∂Wk (i, j)
� (zN )

]
= Ez0 ∼ D

[
zk−1 (j)

∂

∂zk (i)
� (zN )

]
(5)

where D is the set of input images and yk = ∂
∂zk

� (zN ) is the backpropagation
error. A similar formula can also be applied to offset bk, except that the coefficient
becomes constant 1.



76 Y. Wang et al.

In order to make all parameters be able to learn at the same speed, we need
to scale (5) proportionally, hoping to be a constant for all weights:

C
2

k,i,j =
C2

k,i,j

‖Wk‖22
(6)

Among them, ‖Wk‖22 represents the 2-norm square of matrix Wk, but due to
the effect of nonlinear activation function, this condition is difficult to control
and guarantee, and the change of weight will directly affect the final output value
yk. We therefore need to simplify (6) so that each convolution kernel in the same
layer Wk satisfies about a constant, rather than strictly for all weights:

C
2

k,j =
1
N

∑
i

C
2

k,i,j =
1

N ‖Wk‖22
Ez0 ∼ D

[
z2k−1 (j) ‖yk‖22

]
(7)

where N is the number of rows of the weight matrix. This formula makes all the
values in the same weight matrix have the same trend. At the same time, we can
note that for the input in the layer has little effect on the gradient in the entire
network. It can be seen that zk−1 (j) and ‖yk‖ are independent of each other, so
we can further simplify the objective function:

C
2

k,j ≈ Ez0 ∼ D
[
zk−1(j)

2
] Ez0 ∼ D

[
‖yk‖22

]
N ‖Wk‖22

(8)

The method taking the approximate value is convenient to adjust the change
rate of the weight of each layer.

Intra-layer Equalization Normalization. For the sake of clarity, the pseudo-
code of the intra-layer equalization normalization is shown in Algorithm 1. For
all hidden layers k ∈ {1, 2, · · · , N} in the network, we calculate the mean and
standard deviation of all output values, and make all the output values satisfy
the unit mean β and unit variance, that is, calculate the average value μ̂k (i)
and the variance value σ̂k(i)2 of the output value of each channel zk (i) first, and
then the weights Wk and offsets bk are divided by the coefficients respectively
to make adjustment.

Wk (i, :) ← Wk (i, :)/σ̂k (i) (9)

bk (i) ← β = μ̂k (i) /σ̂k (i) (10)

Inter-layerEqualizationNormalization. The parameter adjustment method
in Intra-layer Equalization Normalization makes the output of each layer satisfy
a variance of 1, and for all the rate of change C2

k,i in Wk is a constant. However,
it does not guarantee the rate of change between layers. Here we use an itera-
tive method to make the rate of change C2

k,i between all layers be a constant. The
pseudo-code of crossover operator is shown in Algorithm 2.



PCA Based Kernel Initialization for Convolutional Neural Networks 77

Algorithm 1 Intra-layer Equalization Normalization
Input: the number of layers N
Output: the weights Wk and offsets bk
1: Randomly initializes weights Wk

2: Set all the offsets as bk=0
3: Select a part of the sample data z0 ∈ D ⊂ D from the training data set;
4: for all z0 ∈ D do
5: Obtain the output of each layer, calculate the mean μ̂k(i) and variance σ̂2

k (i) of
each channel of the output;

6: Update the scale of the weight Wk (i, :) based on Equation (9)
7: Update the value of offset bk (i) based on Equation (10)
8: end for
9: return Wk, bk

Algorithm 2. Inter-layer Equalization Normalization
Input: the number of layers N
Output: the weights Wk and offsets bk

1: Randomly initializes weights Wk

2: Set all the offsets as bk=0
3: Select a part of the sample data z0 ∈ D ⊂ D from the training data set;
4: for all N layers do
5: Calculate the ratio Ck = Ej

[
Ck,j

]
for each layer;

6: Calculate a scale change coefficient rk= C̄
/
C̄k

)α/2
, α is an attenuation factor;

7: Update the weight and offset of each layer: Wk ← rkWk and bk ← rkbk£
8: end for
9: return Wk, bk

3.4 Convolution Kernel Initialization Procedure Based on 2DPCA
and Equalization Normalization

Assume that there are a total of n categories of picture data to be trained, the
size of the convolution kernel of each convolution layer k is Rk ×Rk, the number
of convolution kernels per layer is pi, and N is the number of convolutional layers
which determined by the model:

(1) Get the evaluation matrix set M according to the 2DPCA initialization
process in Sect. 3.2;

(2) If the number of sets M is greater than or equal to the number of convolu-
tion kernels pk, initialize all the pk convolution kernels by taking the matrix
corresponding to the previous pk eigenvalue according to the value size λ∗;
If the number of feature vectors dk is less than the number of convolution
kernels pk, initialize the first dk convolution kernels with all the assignment
matrices, and the remaining uninitialized convolution kernel roulette algo-
rithm randomly selects the assignment matrix into the weight matrix Wk

of the current convolution layer;



78 Y. Wang et al.

(3) Using Algorithm 1, each convolutional layer is calculated separately, and
calculate the mean μ̂k and variance σ̂2

k of pk convolution kernels within
each layer;

(4) Using Algorithm 2, the entire set of weight matrixes are firstly extracted in
the entire network model. The dimensions of each weight are different. The
number of columns and rows in the matrix are the size and the number of
the k-th layer convolution kernel, respectively. Then the iterative operation
of the weight adjustment is performed:

(4.1) Traverse all N weight matrices and calculate Ck for each layer;
(4.2) Calculate the global average ratio C̄;
(4.3) Then calculate the scale factor rk;
(4.4) Adjust the weight Wk and bias bk.

The above operations are iterated until the weight adjustment approaches con-
vergence, and a new set of weight matrices {W ′

1,W
′
2, · · · ,W ′

N} is obtained
and assigned (approximately 10 iterations).

4 Experiments and Results

The experiment of this article is trained on Alibaba Cloud Server. The CPU
model is Intel Xeon Platinum 8163 (dual core). The processor is clocked at
2.5 GHz. It uses only the CPU for training. The operating system is Win-
dows server 2012R, and the memory size is 8 GB. The programming language is
c/c++.

4.1 Histogram Analysis

The output values of six hidden layers are counted in turn. The activation func-
tion uses the Tanh and Relu functions to draw the distribution histograms of
the output values. Their histograms respectively as shown in Fig. 1 and Fig. 2,
respectively.

From Fig. 1 and Fig. 2, it is relatively reasonable for the distribution of each
layer of the two models. The distribution of the output values of each layer is
not much different, and the parameters of back propagation adjustment are all
better, which makes the model easier to training. At the same time, since the
algorithm is based on the specific training sample data after the principal com-
ponent analysis is performed for initialization, the initial value of the convolution
kernel is more suitable for this sample data, and there will be a good starting
point for the optimization of such nonconvex functions.



PCA Based Kernel Initialization for Convolutional Neural Networks 79

Fig. 1. The output distribution histogram with Tanh activation function.

Fig. 2. The output distribution histogram with Relu activation function.

4.2 Model Comparison

In order to verify the performance of the initialization algorithm proposed in
this chapter, the algorithm was applied to the classical hand-written digital
data set MNIST for verification. Relu and Tanh were used as activation func-
tions to calculate the accuracy rate after each training. The experimental results
were compared with other classical Gaussian random initialization, Xavier ini-
tialization, and MSRA initialization methods to detect the rate of increase in
recognition rate. Draw a graph of the accuracy rate of the training process.

The experiment adopts the classical Lenet-5 convolutional neural network
model. The model consists of two convolutional layers and two alternating pool-
ing layers, finally connects to a fully connected layer. Among them, the convolu-
tion kernel size is 5×5, the step length is 1, the pooling window size is 2×2, and
the step size is also 2. That is, using the non-overlapping pooling and the pool-
ing method is the maximum pooling. Whats more, the dropout regularization
mechanism is added in the full connection layer to enhance the generalization
ability of the network. The batch size is 1, that is, every time an image is passed



80 Y. Wang et al.

in, it will adjust weight values by back-propagating and calculate the error. In
order to make comparison images more clearly and avoid the interference caused
by the curve crossover, calculate the overall accuracy rate after every 10 train-
ing charts, that is, the accuracy rate equels the correct number of identification
pictures/the number of trained pictures. The total number of iterations is 400,
that is, the curve obtained by training 4000 images. Each algorithm counts 5
times and takes the average value.

When the activation function takes Relu, the comparison curve of the accu-
racy during the training of the three different initialization methods is shown in
Fig. 3.

Fig. 3. The accuracy curves of different initialization methods with Relu activation
function.

This experiment mainly contrasts the rising rate of recognition rate dur-
ing training, that is, the convergence speed of the network model. From this
experimental comparison chart, it can be seen that the accuracy of the four ini-
tialization methods rises as the training progresses. The recognition rate of the
2DPCA initialization method proposed in this paper rises fastest in the early
stage, and it can reach the accuracy rate of 0.3 at the beginning of the training.
However, the accuracy of the other methods is only 0.1 at the beginning. And
for the 10 classification problem, the probability of random selection is 0.1. It
can be seen that since the 2DPCA initialization is based on the actual data
image initialization, a weight value suitable for the sample data can be initial-
ized directly, and the optimization is started from a good starting point, and the
accuracy rate is increased faster. And the other three methods are not based on
sample data. The MSRA initialization effect is relatively good, it proves that it
is indeed suitable for Relu activation function (Fig. 4).

It can be seen from this experiment that MSRA and Xavier have similar
effects, when Tanh is used as an activation function. Since MSRA is not partic-
ularly suitable for Tanh functions, the effect is lower than Relu as an activation
function, and the Xavier effect on the Tanh function is slightly higher than the
MSRA initialization. Among them, the effect of 2DPCA initialized based on the
sample data is still the best, and the accuracy rate of the initial period is the



PCA Based Kernel Initialization for Convolutional Neural Networks 81

Fig. 4. The accuracy curves of different initialization methods with Tanh activation
function.

fastest. It can be seen that the 2DPCA initialization method both has a good
effect in the Relu activation function and the Tanh activation function, and is
not limited by the type of the specific activation function.

5 Conclusion

This paper studies the initialization method of convolutional neural network,
statistics the output value of each layer under different initialization methods
and draws a histogram, and analyzes the distribution of output values from the
histogram. 2DPCA-based convolution kernel initialization method is proposed
for the problem of its distribution. 2DPCA is used to extract key features from
the sample data and initialize the convolution kernel, and an equalization nor-
malization method is introduced to adjust the size of the weights between the
layers. The method does not need to manually set hyper-parameters, avoids ran-
dom values, and does not have limitations on the types of activation functions.
The parameters are completely determined according to the characteristics of
specific training sample data. Finally, the histogram distribution and the curve
comparison diagram of the model training show that the proposed method can
effectively avoid the uncertainty caused by initializing the weights and accelerate
the training speed of the entire model.

Acknowledgements. This work is supported by the National Key Research and
Development Project (No. 2016YFC0401607), the Fundamental Research Funds for
the Central Universities (No. 2019B22314), and the National Key R&D Program of
China (No. 2018YFC0407101).

References

1. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 1026–1034 (2015)



82 Y. Wang et al.

2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

3. Liu, X., Wang, J., Xu, K.: Novel image feature extraction algorithm based on fusion
autoencoder and CNN. Appl. Res. Comput. 34(12), 3839–3843 (2017)

4. Pacheco, A.G., Krohling, R.A., da Silva, C.A.: Restricted boltzmann machine to
determine the input weights for extreme learning machines. Expert Syst. Appl. 96,
77–85 (2018)

5. Seyfioğlu, M.S., Gürbüz, S.Z.: Deep neural network initialization methods for
micro-doppler classification with low training sample support. IEEE Geosci.
Remote Sens. Lett. 14(12), 2462–2466 (2017)

6. Sun, W., Su, F., Wang, L.: Improving deep neural networks with multi-layer max-
out networks and a novel initialization method. Neurocomputing 278, 34–40 (2018)

7. Tang, J., Wang, D., Zhang, Z., He, L., Xin, J., Xu, Y.: Weed identification based
on k-means feature learning combined with convolutional neural network. Comput.
Electron. Agric. 135, 63–70 (2017)

8. Thimm, G., Fiesler, E.: Neural network initialization. In: Mira, J., Sandoval, F.
(eds.) IWANN 1995. LNCS, vol. 930, pp. 535–542. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-59497-3 220

9. Yang, N., Li, Y., Yang, Y., Zhu, M.: Convolutional neural networks based on
sparse coding for human postures recognition. In: AOPC 2017: Optical Sensing
and Imaging Technology and Applications, vol. 10462, p. 104622B. International
Society for Optics and Photonics (2017)

10. Yunfei, L., Randi, F., Wei, J., Nian, J.: Image super-resolution using multi-channel
convolution. J. Image Graphics 22(12), 1690–1700 (2017)

11. Zhang, Z., Ji, J.: Classification method of FMRI data based on convolutional neural
network. Pattern Recog. Artif. Intell. 30(6), 549–558 (2017)

12. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics. pp. 249–256 (2010)

https://doi.org/10.1007/3-540-59497-3_220

	PCA Based Kernel Initialization for Convolutional Neural Networks
	1 Introduction
	2 Convolution Kernel Initialization
	2.1 Random Initialization
	2.2 Xavier Initialization
	2.3 MSRA Initialization

	3 PCA-Based Convolution Kernel Initialization with Balanced Normalization
	3.1 Two-Dimensional Principal Component Analysis
	3.2 2DPCA Initialization
	3.3 Parametric Equalization Normalization
	3.4 Convolution Kernel Initialization Procedure Based on 2DPCA and Equalization Normalization

	4 Experiments and Results
	4.1 Histogram Analysis
	4.2 Model Comparison

	5 Conclusion
	References




