®

Check for
updates

RETRACTED CHAPTER: Software Project
Planning Through Comparison of Bio-inspired
Algorithms

Jesus Silval ® @, Noel Varela! @, Harold Neira Molina! ®,
and Omar Bonerge Pineda Lezama?

! Universidad de la Costa, Barranquilla, Colombia
{aviloria7,nvarela2,hneira}@cuc.edu.co

2 Universidad Tecnoldgica Centroamericana (UNITEC), San Pedro Sula, H?@q I

omarpineda@unitec.edu

Abstract. Currently many organizations have adopted the deve ent of soft-
ware projects with agile methodologies, particularly Scrum, which h ore than
20 years of development. In these methodologies, softwarg(s d ed iteratively
and delivered to the client in increments called releas e yeleases, the goal
is to develop system functionality that quickly addsaa e client’s business.
At the beginning of the project, one or more relefses ar nned. For solving the
problem of replanning in the context of releases, {god£l is proposed considering
the characteristics of agile development ysé crum. The results obtained show

that the algorithm takes a little less thai or solutions that propose replan-
ning composed by 16 sprints, whi eq ent to 240 days of project. They
show that applying a repair operato epses the hypervolume quality indicator

in the resulting population.

Keywords: Genetic algdrithm ; Agile software projects - Multi-target

1 Introducti

During thee ion of the project, it is common to note events that affect the plan, which

usually’has defined deadlines, project managers must immediately perform replanning
to minimize economic and operational impacts and meet defined deadlines [5].

In addition, there are at least three other important objectives that must be assessed
in a real project. It is desirable that, when a replanning is carried out, it does not differ

The original version of this chapter was retracted: The retraction note to this chapter is available
at https://doi.org/10.1007/978-981-15-6648-6_28

© Springer Nature Singapore Pte Ltd. 2020, corrected publication 2021
N. Chaubey et al. (Eds.): COMS2 2020, CCIS 1235, pp. 340-351, 2020.
https://doi.org/10.1007/978-981-15-6648-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6648-6_27&domain=pdf
http://orcid.org/0000-0003-2673-6350
http://orcid.org/0000-0001-7036-4414
http://orcid.org/0000-0003-3595-8086
http://orcid.org/0000-0002-8239-3906
https://doi.org/10.1007/978-981-15-6648-6_28
https://doi.org/10.1007/978-981-15-6648-6_27

RETRACTED CHAPTER: Software Project Planning 341

too much from the original one, since it is considered that the initial planning is the best
option for the development of the project [6]. Similarly, the history of user (HU) with
the highest priority for the release must be assigned to the first sprints and thus develop
the most important HU first [7]. In software development, equipment is expensive and
the development time of the employees must be used in the best way to avoid wasting it
[8]. Therefore, five objectives could be considered when performing replanning: time,
cost, stability, release value and wasting development capacity. Therefore, the replanning
problem is a multi-objective optimization problem.

This replanning problem can be seen as a generalization of the assignment problem,
which is well known to belong to the NP-difficult class [9]. In addition, somgyof the

objectives considered are in conflict, for example, if the development tea to
minimize the delivery time increases, the project will be more expensive. thi son,
the solution proposed for this problem is based on a multi-objective orithm,
which considers each objective equally important and seeks to resul&o eplanning

proposals that serve as support for the project leaders. Q

2 Bibliographic Review v

In this section we will present the most importaniai oP’'some articles, in addition to
those focused on agile methodologies, we will @ some that propose solutions to
the re-planning problem.

According to the literature review sofat;@aly [10, 11] study the re-planning problem
in agile methodologies, which are on ctory and only present the characteristics
of the problem, so they do not pre topPto support managers of software projects in
the context of agile methodologi se heuristics and focus on agile methodologies.

In the first [12], a model withglit nning is proposed, so it presents a static model, that
is, without changes over @e present a proposed solution to the project planning

problem, the authors prop netic algorithm and their objectives are the time and cost
of the project. They fi the release phase, but without presenting disruptive events
and planning is fof each sprint, but does not consider re-planning from an existing
to assign employees to tasks. The second [13] only proposes
e project planning/re-planning model in agile methodologies since
an algorithm or model for the problem. In this paper, only the objectives
that seek to use are mentioned, which are time, cost, robustness, stability and

@' on of HU (impact of delayed HU). Being only a proposal, it has no further

d only mentions general disruptive events.
ost articles found take characteristics of the models developed for traditional
methodologies, such as assigning employees to tasks or that planning is done only
at the beginning of the project [14].

[15] considers project planning in an agile context, proposes an entire scheduling
method to solve it, and only targets the time it takes to develop. We did not find any re-
planning, but it presents employee assignment to tasks and does not consider an adequate
estimate for HU.

The articles in which the re-planning problem is modeled emphasize that software
development is a dynamic system. Changes occur during the execution phase because

342 J. Silva et al.

disruptive events occur. But, without counting the works of [16—18], in all cases they
focus on traditional methodologies. They present proposals that seek to solve the problem
of planning software projects, but now in a dynamic environment. In [19] we can find a
model for the re-planning problem, as a solution proposal implements a genetic algorithm
that seeks to minimize project time and cost. Stability is introduced as the objective of
the problem and the disruptive events that it considers are two: arrival of new tasks and
the movement of employees (when they arrive or leave).

As previously mentioned, the re-planning problem is current and in the last two years
we can highlight three documents directed at traditional methodologies, beginning with
that of [20], in which the authors seek to minimize time, cost and project stabilityglhe
disruptive events that trigger a re-planning are: the arrival or withdrawal of empl
the project, as well as when tasks arrive that were not had in the original plafining:
authors seek to model team productivity and how it affects the developme 1r gkills.

As in the previous cases, the proposed solution is based on a genetic algS@thm PZ1].

In the study by [11] we found for the first time a multi-objective otyproposed in
the model, in this way each objective is calculated independently. @oposal presents
as a solution to a set of possible re-planning proposals. The objeqiggs tooe optimized are:
project duration, development time, stability and robustn, y’consider the arrival
of new tasks, the withdrawal of an employee from th d when an employee
joins, as disruptive events. To validate their work, three real-world projects
and compared them with the proposals that their §jlgorihim gave as a solution. As in
the previous case, [22] also presents a multi-gbjec unction which is made up of:
the duration of the project, the cost of dex& ent, the stability between plans, the
robustness to look for an event-tolera an'Qa4 introduce the objective of employee
satisfaction when being assigned to r liking. As a solution proposal they use
an algorithm composed of two hg@isticsAs a global solution they propose a genetic
algorithm which results in a plasning osal, then they try to improve this proposal by
applying an AMDE (Angle V\@aze Differential Evolution) algorithm. They mention
that to validate their algqQrith y were compared with real projects, in addition to
cases created for testing

We realize th ion to time, cost, and stability targets, some of the items
consider robust#es objective is defined as how prone is re-planning to delay
delivery dat&) when a disruptive event occurs. That is, robustness is the ability
of rethinkihg to cope with small changes [24].

To pr model closer to reality, in the work of [25-27], the authors model the
icatfon necessary between employees to carry out a task. This communication
project if many employees are assigned to the same task, because they spend a
e communicating. Finally, we find that in more current jobs the productivity and
learning curve of employees is modeled, we can see that this characteristic is presented
in [28, 29] and improve the model presented in [30].

As we can see, few articles talk about the re-planning problem and only three are
focused on agile methodologies. None have characteristics of agile development using
Scrum, since they do not use concepts such as sprint speed and story points. There-
fore, there is no tool that presents proposals to solve the re-planning problem in agile
methodologies.

RETRACTED CHAPTER: Software Project Planning 343

Our work seeks to propose a re-planning model of projects developed with method-
ologies agile. The model that we present takes into account five objectives to optimize:
time, cost, stability, use of development capacity and release value. These last two
objectives are part of our contributions and are explained later.

3 The Problem of Replanning Releases in Agile Software Projects

The research proposes a model for the planning problem in agile methodologies (Scrum),
especially focused on the replanning of releases. This will be called the release replanning
problem in agile software projects (RPASP). After a disruptive event, the planningghould

be adjusted as soon as possible and with the least number of changes, so that t st
and time of completion are not affected or, if not, that the increase is mi al, sice the
increase in cost must be absorbed by the company that develops it andthigis fianslated

into loss [31].

Releases are focused on delivering specific functionality a
of the increments to the system. Each release is divided into or more iterations,
called sprints, as shown in the example in Fig. 1. In the rele ing, the user stories
needed to fulfill the objective of each release are selectdland(assigned to some sprint to
schedule the order in which they will be developed performing a replanning,
the assignment of HU to the sprint that best syfits thd@ptan is considered, taking into
account the duration, priority and dependencieggf thgse.

rk the'delivery dates

Sprint #1 rint #2 Sprint #3
HU-1 HU -2 -3 Hu 12 = 3 HU - 19

\ HU - 20
B '

HU - 10 HU 14 ju-16

HU,- 5 HU - 18
HU-8 HU - 21
HU-6 W=7 HU-11 HU - 15 HU -17

[High Priority [) Medium [Low Priority
Priority

Fig. 1. Representation of an example of release planning, which consists of three sprints.

The re-planning of releases has its own characteristics, which are mainly aimed at
making the scheduling of HUs more flexible and agile. Before presenting the model, it

344 J. Silva et al.

is important to introduce some concepts that are important in the agile context, and more
specifically in Scrum.

— Story points. In Scrum, the estimation of the effort required to develop user stories
rests with the work team. HUs are estimated with a unit called history points, which
represents the effort required to develop a HU relative to a reference one. This tech-
nique is known as planning poker [33]. In this paper we consider that the team has
made an effort estimate for all HUs before release is planned.

— Sprint speed. On the other hand, sprint speed is a historical metric of the ability that

a
works overtime they may have more development capacity in a sprin eed
increases) [29], but the project will become more expensive, since it i to pay
extra time. In this work we consider 22.5% of extra work, in an 8- thi§)percentage
represents 2 extra hours1.

When a disruptive event occurs and a re-planning has to IW these events are
hodolo

the team has shown to fully develop user stories in a sprint.
Our model considers the extra time that a development team can wor &
S
ss

intended to have the least impact on the project, consideri wing criteria.

— Cost. It is the cost of the work equipment plus t t rs that are needed in the
re-planning. To calculate it, the regular sprint spgrd angl the sprint speed are obtained
considering the extra work.

— Weather. It is the number of sprints that ssary in the re-planning.

— Stability. Refers to the differences ipAuse y assignment to sprints between the
original release schedule and that r om the re-planning. It seeks to minimize
this objective.

— Waste of development capacity: rget measures the sprint speed that re-planning
is “wasting”. We will consjer as waste in the same way that extra time is used when
there is still regular time av. . In the projects, the development time must be used
in the best way, since, tioned before, it is very expensive. A good re-planning
should ensure th imum amount of time available (sprint speed) is occupied in
each sprint. ing the plan after a disruptive event, the new HU assignment
should log, est combination according to the sum of the history points of
each spt t the sprint speed in each one is occupied, preferably in its entirety.

. For the model to fit properly, in a planning or re-planning, the HUs

est priority must be developed in the first sprints. In a release we seek

functionality that brings the greatest value to the customer’s business. For
examnyple, in an online store the priority HUs are those that allow a purchase. When
re-planning after a disruptive event, higher-priority HUs should be assigned to the first
sprints, in order to increase the likelihood of having enough time to develop them.

4 Multi-objective Genetic Algorithm to Solve RPASP

The mentioned solution seeks to provide project leaders with a set of replanning proposals
in a few minutes, since in real projects an expert usually presents a replanning proposal

RETRACTED CHAPTER: Software Project Planning 345

in at least 180 min [16], without guaranteeing that it is a good solution. By modeling
the replanning problem as a multi-objective one, the result is ideally a set of solutions
that present the best values found for each of the objectives and solutions that present a
compensation.

This algorithm calculates the suitability of each of the replanning proposals by imple-
menting the concept of dominance. It is said that a solution x dominates another solution
y if x is at least as good as y for all the objectives and is strictly better in at least one of
them. The solutions with the best aptitude are those that are not dominated by any other,
this is known as non-dominance.

To know the performance of multi-objective algorithms, quality indicators age used,
for example, the hypervolume, which results in a value that represents the per of
one algorithm with respect to another. The hypervolume (HV) indicato] ures
the space covered by the non-dominated solutions with respect to e point
and this gives some information on the convergence and diversityOi@ndividuals in the
population. Therefore, one population is better than another if j

There are several methods to solve multi-objective optimiZj¢ion problems: exact,
heuristic and metaheuristic. Due to the characteristics of tw em under study, we

have used a metaheuristic method, in particular, a eti orithm (AG) based on
NSGA-II [14].

Genetic algorithms are based on the principl e
Broadly speaking, a genetic algorithm considerija fu

1on through natural selection.
1on to be optimized, a represen-

tation of the solution called the chromosome, tic operators, and a function that
measures the fitness of the chromoso search performed by an AG must have
a balance between exploiting and exfitor1 e search space. An algorithm for an AG

consists of [14]:

tion' Y% a chromosome.

1. Representation of the
2. Generation of a popu
3. Repeated applicatig

For our p $ad _sBlution to the re-planning problem, NSGA-II [14] was imple-
mented, which is\@gaulti-objective genetic algorithm that presents elitism and conserves
t thé population. Each individual (chromosome) in the population repre-
lanrAing. NSGA-II implements arapid classification based on non-dominance,

calculate this distance, individuals are increasingly arranged in each of their objectives
and the distance between them is measured. This is obtained by calculating the distance
that the individual has with his two closest neighbors. If the individual is at one end of
the target space, then an infinite distance is assigned to him, since there are no more
individuals next to him. After calculating the level of non-dominance and the stacking
distance, the selection of individuals that will form part of the population in the next
generation begins. As mentioned before, NSGA-II implements elitism so that generation
after generation only the individuals with the best aptitude survive, that is, those with

346 J. Silva et al.

the lowest level of non-dominance [17]. The diversity in the new population depends on
the stacking distance. When the selection of surviving individuals is being carried out,
if two or more individuals have the same level of non-domination, then those who are
in a less populated area, that is, the one with the largest stacking distance, are selected.

4.1 Proposed Multi-target Genetic Algorithm

So far, a function was defined for each of the objectives to be optimized: time, cost,
stability, waste and release value. Likewise, the function that calculates the aptitude of
individuals, which is based on the non-dominance of solutions [13, 14]. Next, th S
of the GA are defined: representation of the solution as chromosome, creati
population and the genetic operators.

— Chromosome. A chromosome is a representation of the shape al a{&a , where
each position i is called a gene and ai is known as an allele. E ene fepresents a
HU and its value is equal to the sprint it is assigned to in the replanigug. The first gene
represents i1, the second one 42 and so on [15].

— Creation of the population. For the creation of the po ion{ the first time the algo-
rithm is executed the individuals are created from t| it nning. This means that
from the initial planning a chromosome is built. Fhe oth&pmembers of the population
are variations of this chromosome, which are obtfiged py mutating the random values
of the original schedule [16].

Selection. It is done with a randomgbinar rnament: two individuals are selected
at random from the population an ith the best aptitude wins. If they are tied
in the non-dominance range, th one’ with the greater stacking distance is chosen
[17].

e at a single point and will have a probability of 0.9.
cause it presented the best preliminary results, and it is
recommende ors of NSGA-II. It should be noted that the two-point cross
was also te e results were not satisfactory [18].
— Mutatiom, To lement this operator, each gene on the chromosome will have a
probatfi 0.2 of being mutated. A gene to gene mutation is implemented, where
t ir omosome is traversed and each gene has a probability between 0 and 1 at
f it is less than or equal to 0.2, then a new sprint is assigned, different from
the Offe that was assigned, which is also obtained at random. This value was chosen
because it also gave the best results in the preliminary tests [19].

— Crossing. The crossin
This value was

Due to the probabilistic nature of GAs, when applying one of the genetic operators
to an individual it may no longer be feasible. The algorithm looks for all individuals in
the population to be, so a repair operator is implemented.

— Chromosome repair. Sometimes solutions leave one or more sprinkles empty. So,
although it is a valid chromosome, it is something undesirable in real projects. At

RETRACTED CHAPTER: Software Project Planning 347

this stage of repair, the chromosome is validated and if it has an empty sprint, it is
removed. The procedure is as follows: The empty sprint is identified. The HU of the
next sprint is run through, to the empty sprint. If there are more empty sprints, the
HU are still run to avoid leaving spaces. If there are no more empty sprints, the empty
sprint(s) that were run at the end of the replanning is eliminated as a result of the
repair [20].

5 Results

Since there are no studies related to the replanning of projects focused on agil thod-
ologies, there are no public test cases to compare this proposal [1, 5, 11, 15, e-
fore, artificial test cases were created and the experiments were divided izfo,two grdsses.
The first one, with small cases, 12 and 17 HU, to test if the algorit oherent
solutions. The second class considers larger test cases, from 40 t HU’ to know if
the repair operator really brings improvement to the performa f th&ralgorithm.

5.1 Experiments with Small Test Cases

Two small test cases were created. The first one, 12 employees, was specially
created to show the impact of the objectives. The this test case were consistent
and small, so the impact of the objectives coul@be visually observed and the behavior
was as expected when simulating some of the dis ve events. The results were similar
to the second test case. It consists of and 4 employees. The replanning that
presented the maximum release val mpty sprint [3].

e history of users so that there are no empty
plementation, the results shown in Fig. 2 were

sprints within the replanning.
obtained.

Sprint1 | Sprint 2 Sp print4 [Sprint 5

w
°
=
3
-
-

Sprint 2 Sprint 3 Sprint 4

HU7 HU2 HU4 HU2

HUS

08

HU6

EE=
=
=

HU12 HU® HUT2

BE]
e
B | |

HU14 HU14

Fig. 2. Release planning after implementing empty sprint repair.

The algorithm results in a set of proposals for replanning, which present a balance
in their objectives or present the best value found for any of them.

348 J. Silva et al.

5.2 Experiments in Large Test Cases

The test cases for this phase were created with the Alba and Chicano test case generator
[12], which was configured to randomly create plans with 40, 70 and 100 HU. For the
number of employees, 4, 5 and 6 were considered, respectively. By running the test case
generator, plans with up to 16 sprints were obtained. In each of the tests, two disruptive
events were modeled: one employee leaves and a new HU is added, as these have the
greatest negative impact on the planning [19, 20].

To check if the empty sprint repair really contributes to the performance of the algo-
rithm, a test case with a number of HU and employees is obtained with the generator.

Then, a disruptive event is simulated and the algorithm is run 10 times. In e e-
cution, the same amount of HU is obtained, the same number of employee €
disruptive event and the sprint repair is applied. From the 10 repetitions, of
the algorithm’s run time and the maximum values of all the runs for eaq§ of tiipfargets
are obtained. This procedure is repeated again, but now without the garin air.

Now there are 10 repeats with repair and 10 without it, beside ets of maximum
values. From the two sets, a new comparison is made again to ggt the 89erall maximums
of the 20 runs. The global maximum are the reference points i%n the hypervolume
of each resultant population is calculated. Finally, the 2 e ypervolume of the 10
populations with repair and the average of the 10 wi @. air were calculated. The
summary of the results of the experiments is showrflin Tabl€ 1. In the first column is the
number of HUs, the second column shows the numb ployees and the third column
shows the disruptive event: A indicates thatdii(@aployee leaves and B represents that a
new HU is added. The last four column, 'n% , respectively, the average execution

time in seconds (t) and the average of volume for the algorithm without repair
and with repair.

Table 1. Data of test cases, disriihtive efent and summary of results obtained with the multi-target
genetic algorithm, without w pair operator.

No.HU | No. E Event | No repair With repair
t HV t HV
40 ‘R& A 112.352 168524.12 110.147 192541.65
40) B 104.100 | 112654.35 135.50 135201.42
7 A 245.20 26527547 |212.62 320354.24
70 4 B 262.70 223014.69 | 252.54 295241.85
100 A 310.54 342315.01 336.25 330124.32
100 B 306.24 335201.05 | 34247 425842.01

The results show that the empty sprint repair helped the algorithm reach a higher
hypervolume. It can be then interpreted that, when empty sprint repair is applied, the
replanning of the result population shows a greater diversity and better results in the
target functions. That is, they find better replanning, since, in general, the population

RETRACTED CHAPTER: Software Project Planning 349

converges to better results for the objectives of time, cost, stability, waste and release
value. It can be noted that, in most cases, the average execution time increases when the
repair is applied, but this is not considerable.

In fact, for the first and fourth experiments, the average execution time with the repair
is less than without it. The results show that applying the repair in the algorithm results
in a population with a higher HV, therefore, the algorithm has a better performance and
does not significantly affect the runtime.

6 Conclusions

This paper presents the replanning of agile software project releases as a mu ive
optimization problem. The literature review indicated that there is not gnhuch k on
optimization problems in agile software development methodologi ore, a
single one that develops its characteristics was not found. So, as a ontribution, the
proposal of a model for the problem of replanning releases of softy¥are projects is
presented. Unlike the studies found in the literature review, thisW§del presents specific
characteristics of agile development such as: the concepts istory points and sprint
speed.

The study introduces the objectives of waste an
the extra time of development of a team as a copfigura
different.

The problem of re-planning of release:En bc*nsidered as a generalization of the
t

ue, besides implementing
parameter, since each team is

allocation problem, which is a proble: NP-difficult class. Therefore, to solve
it, a multi-objective genetic algori plements NSGA-II is proposed. Being
a population-based algorithm, it£0 the need to quickly obtain release re-planning
proposals after a disruptive e occlrs. In the results we can see that our algorithm
presents a set of proposal re- releases in less than 7 min for the most difficult
cases that were tested. TH analysis of the results shows that when applying the repair
in all cases the HV e me increases and therefore the algorithm has a better
performance without affecting the execution time. These solutions present 100
HU, covering rints, which we can compare with approximately 240 days of
project dev nreal projects, an expert generally presents a re-planning proposal
in at leas in’[7], without guaranteeing that it is a good choice.

ure work it is proposed to obtain data from real projects and with that data run
, simulate disruptive events and verify that solutions are feasible in real
JLikewise, it will seek to implement other types of heuristics, such as MOEA /
MS-EMOA. It will seek to implement a second heuristic to improve the result
population (local optimization). Other quality indicators that are important to our results
will be investigated and implemented. Finally, it will seek to generate a support tool for
real projects.

References

1. Semenkina, O.E., Popov, E.A., Ryzhikov, L.S.: Hierarchical scheduling problem in the field
of manufacturing operational planning. In: IOP Conference Series: Materials Science and
Engineering, vol. 537, no. 3, p. 032001. IOP Publishing (2019)

350 J. Silva et al.

2. Phanden, R.K., Jain, A., Davim, J.P. (eds.): Integration of Process Planning and Scheduling:
Approaches and Algorithms. CRC Press, Boca Raton (2019)

3. Jahr, M.: A hybrid approach to quantitative software project scheduling within agile
frameworks. Project Manage. J. 45(3), 35-45 (2014)

4. Roque, L., Aratjo, A.A., Dantas, A., Saraiva, R., Souza, J.: Human resource allocation in
agile software projects based on task similarities. In: Sarro, F., Deb, K. (eds.) SSBSE 2016.
LNCS, vol. 9962, pp. 291-297. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47106-8_25

5. Varas,J.M.,etal.: MAXCMAS project: autonomous COLREGs compliant ship navigation. In:
Proceedings of the 16th Conference on Computer Applications and Information Technology
in the Maritime Industries (COMPIT) 2017, pp. 454-464 (2017)

6. Ge, Y.: Software project rescheduling with genetic algorithms. In: 2009 Internati

ference on Artificial Intelligence and Computational Intelligence, vol. 1, pp. 439443.
Shanghai (2009)
me ybri

7. Ge, Y., Xu, B.: Dynamic staffing and rescheduling in software project ma
approach. PLoS ONE 11(6), e0157104 (2016)
8. Shen, X., Minku, L.L., Bahsoon, R., Yao, X.: Dynamic software pr@hed ing through
6

d

a proactive-rescheduling method. Trans. Softw. Eng. 42(7), 658—-686

9. Shen, X.N., Minku, L.L., Marturi, N., Guo, Y.N., Han, Y.: A g-based memetic
algorithm for multi-objective dynamic software project sched@ling \inf? Sci. 428, 1-29 (2018)

10. Song, Y.J.,Zhang,Z.S., Song, B.Y., Chen, Y.W.: Improve orithm with local search
for satellite range scheduling system and its applicati e mental monitoring. Sustain.
Comput. Inf. Syst. 21, 19-27 (2019)

11. Moosavi, S.H.S., Bardsiri, V.K.: Satin bowerbird o iZer: a new optimization algorithm
to optimize ANFIS for software developme estimation. Eng. Appl. Artif. Intell. 60,
1-15 (2017)

12. Zheng, Z., Guo, J., Gill, E.: Swarm ity sion scheduling & planning using hybrid
dynamic mutation genetic algorithps ronaut. 137, 243-253 (2017)

13. Viloria, A., Acuia, G.C., Franc A., Plernandez-Palma, H., Fuentes, J.P., Rambal, E.P.:
Integration of data mining iquepto PostgreSQL database manager system. Procedia
Comput. Sci. 155, 575-58082019)

14. Deng, M., et al.: A two-p oordinated planning approach for heterogeneous earth-
observation resources itor area targets. IEEE Trans. Syst. Man Cybern. Syst.

15. i ., Makui, A.: An improved robust buffer allocation method for the
blem. Eng. Optim. 49(4), 718-731 (2017)
16. i shi, K.: Control of pneumatic artificial muscles using local cyclic inputs and
; orithin. Actuators 7(3), 36 (2018)
17. i ., Fadzli, S.A.: Core factors for software projects success. JOIV Int. J. Inf.
301), 69-74 (2019)
18. 1Iva Arantes, J., da Silva Arantes, M., Toledo, C.E.M., Junior, O.T., Williams, B.C.:

AnZmbedded system architecture based on genetic algorithms for mission and safety plan-
ning with UAV. In: Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 1049-1056 (2017)

19. Perez, R., Visquez, C., Viloria, A.: An intelligent strategy for faults location in distribution
networks with distributed generation. J. Intell. Fuzzy Syst. 36(2), 1627-1637 (2019)

20. Viloria, A., Robayo, P.V.: Virtual network level of application composed IP networks
connected with systems-(NETS Peer-to-Peer). Indian J. Sci. Technol. 9, 46 (2016)

21. Plice, L., Lau, B., Pisanich, G., Young, L.A.: Biologically inspired behavioral strategies for
autonomous aerial explorers on Mars. In: 2003 IEEE Aerospace Conference Proceedings
(Cat. No. 03TH8652), vol. 1, pp. 1-304. IEEE (2003)

https://doi.org/10.1007/978-3-319-47106-8_25

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

RETRACTED CHAPTER: Software Project Planning 351

Barbagallo, D., Di Nitto, E., Dubois, D.J., Mirandola, R.: A bio-inspired algorithm for energy
optimization in a self-organizing data center. In: Weyns, D., Malek, S., de Lemos, R., Ander-
sson, J. (eds.) SOAR 2009. LNCS, vol. 6090, pp. 127-151. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14412-7_7

Srivastava, P.R., Varshney, A., Nama, P., Yang, X.S.: Software test effort estimation: a model
based on cuckoo search. Int. J. Bio Inspired Comput. 4(5), 278-285 (2012)

Sheta, A.F., Ayesh, A., Rine, D.: Evaluating software cost estimation models using particle
swarm optimisation and fuzzy logic for NASA projects: a comparative study. Int. J. Bio
Inspired Comput. 2(6), 365-373 (2010)

Tempesti, G.: Architectures and design methodologies for bio-inspired computing machines.
In: SNF Professorship Application Research Plan (2003)

Chiang, H.S., Sangaiah, A.K., Chen, M.Y., Liu, J.Y.: A novel artificial bee colon :
algorithm with SVM for bio-inspired software-defined networking. Int. J. P 1
ithni)”

(2018)
Camacho, D., et al.: From ephemeral computing to deep bioinspired new trends

and applications. Future Gener. Comput. Syst. 88, 735-746 (2018

Chis, M.: Introduction: a survey of the evolutionary comp techniques for soft-
ware engineering. In: Evolutionary Computation and Optimization orithms in Software
Engineering: Applications and Techniques, pp. 1-12. IG] Gl 10)

Wang, L., Shen, J.: Towards bio-inspired cost minimi fon\data-intensive service provi-
sion. In: 2012 IEEE First International Conference Economics, pp. 16-23. IEEE
(2012)

Wang, J., Cao, J., Li, B., Lee, S., Sherratt,
based clustering algorithm with mobile si
networks. IEEE Trans. Consum. Elect

Chis, M., (ed.) Evolutionary Com,
neering: Applications and Techni

o-inspired ant colony optimization
1cations in consumer home automation
), 438—444 (2015)

Optimization Algorithms in Software Engi-
ications and Techniques. IGI Global (2010)
Sharma, T.K.: Estimating so ility growth model parameters using opposition-
based shuffled frog-leapin . In: Ray, K., Pant, M., Bandyopadhyay, A. (eds.) Soft
Computing Applicationg pp. 149-2164. Springer, Singapore (2018)

Barocio, E., Regalado, Cugvas, E., Uribe, F., Ziiiga, P., Torres, PJ.R.: Modified bio-
inspired optimisati orithm with a centroid decision making approach for solving a multi-
objective opti r xiow problem. IET Gener. Transm. Distrib. 11(4), 1012-1022 (2017)

https://doi.org/10.1007/978-3-642-14412-7_7

	RETRACTED CHAPTER: Software Project Planning Through Comparison of Bio-inspired Algorithms
	1 Introduction
	2 Bibliographic Review
	3 The Problem of Replanning Releases in Agile Software Projects
	4 Multi-objective Genetic Algorithm to Solve RPASP
	4.1 Proposed Multi-target Genetic Algorithm

	5 Results
	5.1 Experiments with Small Test Cases
	5.2 Experiments in Large Test Cases

	6 Conclusions
	References

