Skip to main content

Graphene Nanocomposite-Based Nanoproducts for Renewable Energy Application

  • Living reference work entry
  • First Online:
Handbook of Consumer Nanoproducts

Abstract

One of the significant challenges of the world is the solution of renewable energy critical and increasing sources. Therefore, the use of renewable energy materials operates one crucial resolution for this challenge. In recent years, solar cell, battery, fuel cell, and energy storage technology is widely investigated as one of the most considerable processes. Graphene nanocomposites are critically presented as a significant solution to world renewable energy difficulties and challenges. On the other hand, graphene-based materials and their composites because of owning the large specific surface areas, hydrophobic properties, etc. have a potential impact in a broad range of fields, including nanoproducts. Hence, in this chapter, after a brief introduction of graphene, renewable energy, more detailed information is followed on new approach processes. Eventually, the graphene-based composite for strategic renewable energy has been described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ma Y, Chen Y (2015) Three-dimensional graphene networks: synthesis, properties and applications. Natl Sci Rev 2(1):40–53

    Article  CAS  Google Scholar 

  2. Wang Q, Chen S, Zhang D (2020) Chapter 10 – CNT yarn-based supercapacitors. In: Miao M (ed) Carbon nanotube fibers and yarns. Woodhead Publishing, pp 243–270

    Chapter  Google Scholar 

  3. Zhang YX, Huo W, Li K, Sun Q, Cao T (2020) Supercapacitor nanomaterials. Advanced nanomaterials for electrochemical-based energy conversion and storage. Elsevier, pp 295–324

    Google Scholar 

  4. Li K, Zhang J (2018) Recent advances in flexible supercapacitors based on carbon nanotubes and graphene. Sci China Mater 61(2):210–232

    Article  CAS  Google Scholar 

  5. Muzaffar A, Ahamed MB, Deshmukh K, Thirumalai J (2019) A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew Sust Energ Rev 101:123–145

    Article  CAS  Google Scholar 

  6. Goudarzian N, Hashemi S, Mirjalili M (2016) Unsaturated polyester resins modified with cresol novolac epoxy and silica nanoparticles: processing and mechanical properties. Int J Chem Pet Sci 5(1):13–26

    Google Scholar 

  7. Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2(2):159–173

    Article  CAS  Google Scholar 

  8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  9. Wee AT (2012) Graphene: the game changer? ACS Publications

    Google Scholar 

  10. Grande L, Chundi VT, Wei D, Bower C, Andrew P, Ryhaenen T (2012) Graphene for energy harvesting/storage devices and printed electronics. Particuology 10(1):1–8

    Article  CAS  Google Scholar 

  11. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81(14):5603–5613

    Article  CAS  Google Scholar 

  12. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355

    Article  CAS  Google Scholar 

  13. Tang B, Hu G (2012) Two kinds of graphene-based composites for photoanode applying in dye-sensitized solar cell. J Power Sources 220:95–102

    Article  CAS  Google Scholar 

  14. Ahmed MS, Jeon S (2012) New functionalized graphene sheets for enhanced oxygen reduction as metal-free cathode electrocatalysts. J Power Sources 218:168–173

    Article  CAS  Google Scholar 

  15. Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A et al (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11(4):1423–1427

    Article  CAS  Google Scholar 

  16. Seger B, Kamat PV (2009) Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J Phys Chem C 113(19):7990–7995

    Article  CAS  Google Scholar 

  17. Mousavi SM, Babapoor A, Hashemi SA, Medi B (2020) Adsorption and removal characterization of nitrobenzene by graphene oxide coated by polythiophene nanoparticles. Phys Chem Res 8(2):225–240

    CAS  Google Scholar 

  18. Yoo E, Zhou H (2011) Li− air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 5(4):3020–3026

    Article  CAS  Google Scholar 

  19. Li Y, Wang J, Li X, Geng D, Li R, Sun X (2011) Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem Commun 47(33):9438–9440

    Article  CAS  Google Scholar 

  20. Xiao J, Mei D, Li X, Xu W, Wang D, Graff GL et al (2011) Hierarchically porous graphene as a lithium–air battery electrode. Nano Lett 11(11):5071–5078

    Article  CAS  Google Scholar 

  21. Hashemi SA, Mousavi SM, Faghihi R, Arjmand M, Rahsepar M, Bahrani S et al (2020) Superior X-ray radiation shielding effectiveness of biocompatible polyaniline reinforced with hybrid graphene oxide-iron tungsten nitride flakes. Polymers 12(6):1407

    Article  CAS  Google Scholar 

  22. Sun L, Xiao M, Liu J, Gong K (2006) A study of the polymerization of styrene initiated by K–THF–GIC system. Eur Polym J 42(2):259–264

    Article  CAS  Google Scholar 

  23. Xiao M, Sun L, Liu J, Li Y, Gong K (2002) Synthesis and properties of polystyrene/graphite nanocomposites. Polymer 43(8):2245–2248. https://doi.org/10.1016/S0032-3861(02)00022-8

    Article  CAS  Google Scholar 

  24. Li Y, Zhu J, Wei S, Ryu J, Wang Q, Sun L et al (2011) Poly(propylene) nanocomposites containing various carbon nanostructures. Macromol Chem Phys 212(22):2429–2438. https://doi.org/10.1002/macp.201100364

    Article  CAS  Google Scholar 

  25. Li Y, Zhu J, Wei S, Ryu J, Sun L, Guo Z (2011) Poly(propylene)/graphene nanoplatelet nanocomposites: melt rheological behavior and thermal, electrical, and electronic properties. Macromol Chem Phys 212(18):1951–1959. https://doi.org/10.1002/macp.201100263

    Article  CAS  Google Scholar 

  26. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  27. Ibrahim NA, Ahmad Zaini MA (2020) Chapter 2 – Nanomaterials in detergents and cosmetics products: the mechanisms and implications. In: Hussain CM (ed) Handbook of nanomaterials for manufacturing applications. Elsevier, pp 23–49

    Chapter  Google Scholar 

  28. Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128(24):7720–7721. https://doi.org/10.1021/ja060680r

    Article  CAS  Google Scholar 

  29. Liang M, Luo B, Zhi L (2009) Application of graphene and graphene-based materials in clean energy-related devices. Int J Energy Res 33(13):1161–1170. https://doi.org/10.1002/er.1598

    Article  CAS  Google Scholar 

  30. Pendolino F, Armata N (2017) Graphene oxide in environmental remediation process. Springer

    Book  Google Scholar 

  31. Yoo BM, Shin HJ, Yoon HW, Park HB (2014) Graphene and graphene oxide and their uses in barrier polymers. J Appl Polym Sci 131(1)

    Google Scholar 

  32. Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43(1):291–312

    Article  CAS  Google Scholar 

  33. Cheng C, Li S, Thomas A, Kotov NA, Haag R (2017) Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem Rev 117(3):1826–1914

    Article  CAS  Google Scholar 

  34. Su C, Bu X, Xu L, Liu J, Zhang C (2012) A novel LiFePO4/graphene/carbon composite as a performance-improved cathode material for lithium-ion batteries. Electrochim Acta 64:190–195

    Article  CAS  Google Scholar 

  35. Tang Y, Huang F, Bi H, Liu Z, Wan D (2012) Highly conductive three-dimensional graphene for enhancing the rate performance of LiFePO4 cathode. J Power Sources 203:130–134

    Article  CAS  Google Scholar 

  36. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A et al (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  37. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375

    Article  CAS  Google Scholar 

  38. Zhou X, Wang F, Zhu Y, Liu Z (2011) Graphene modified LiFePO 4 cathode materials for high power lithium ion batteries. J Mater Chem 21(10):3353–3358

    Article  CAS  Google Scholar 

  39. Mahmoudi T, Wang Y, Hahn Y-B (2018) Graphene and its derivatives for solar cells application. Nano Energy 47:51–65

    Article  CAS  Google Scholar 

  40. Yang Z-Y, Zhao Y-F, Xiao Q-Q, Zhang Y-X, Jing L, Yan Y-M et al (2014) Controllable growth of CNTs on graphene as high-performance electrode material for supercapacitors. ACS Appl Mater Interfaces 6(11):8497–8504

    Article  CAS  Google Scholar 

  41. Wang H, Sun K, Tao F, Stacchiola DJ, Hu YH (2013) 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew Chem Int Ed 52(35):9210–9214

    Article  CAS  Google Scholar 

  42. Hashemi SA, Mousavi SM, Bahrani S, Ramakrishna S (2020) Integrated polyaniline with graphene oxide-iron tungsten nitride nanoflakes as ultrasensitive electrochemical sensor for precise detection of 4-nitrophenol within aquatic media. J Electroanal Chem 114406

    Google Scholar 

  43. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L-C (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys PCCP 13:17615–17624. https://doi.org/10.1039/c1cp21910c

    Article  CAS  Google Scholar 

  44. Hu Y, Li X, Wang J, Li R, Sun X (2013) Free-standing graphene–carbon nanotube hybrid papers used as current collector and binder free anodes for lithium ion batteries. J Power Sources 237:41–46

    Article  CAS  Google Scholar 

  45. Fan W, Zhang L, Liu T (2017) Graphene-CNT hybrids for energy applications. Graphene-carbon nanotube hybrids for energy and environmental applications. Springer, pp 53–90

    Book  Google Scholar 

  46. Song Y, Chang S, Gradecak S, Kong J (2016) Visibly-transparent organic solar cells on flexible substrates with all-graphene electrodes. Adv Energy Mater 6(20):1600847

    Article  CAS  Google Scholar 

  47. Shi E, Li H, Yang L, Zhang L, Li Z, Li P et al (2013) Colloidal antireflection coating improves graphene–silicon solar cells. Nano Lett 13(4):1776–1781

    Article  CAS  Google Scholar 

  48. Conibeer G (2007) Third-generation photovoltaics. Mater Today 10(11):42–50

    Article  CAS  Google Scholar 

  49. Tang Q, Wang X, Yang P, He B (2016) A solar cell that is triggered by sun and rain. Angew Chem 128(17):5329–5332

    Article  Google Scholar 

  50. Yin Z, Sun S, Salim T, Wu S, Huang X, He Q et al (2010) Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 4(9):5263–5268

    Article  CAS  Google Scholar 

  51. Díez-Pascual AM, Luceño Sánchez JA, Pena Capilla R, Garcia DP (2018) Recent developments in graphene/polymer nanocomposites for application in polymer solar cells. Polymers 10(2):217

    Article  CAS  Google Scholar 

  52. Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X et al (2008) Organic photovoltaic devices based on a novel acceptor material: graphene. Adv Mater 20(20):3924–3930

    Article  CAS  Google Scholar 

  53. Jung C-H, Noh Y-J, Bae J-H, Yu J-H, Hwang I-T, Shin J et al (2017) Polyacrylonitrile-grafted reduced graphene oxide hybrid: an all-round and efficient hole-extraction material for organic and inorganic-organic hybrid photovoltaics. Nano Energy 31:19–27

    Article  CAS  Google Scholar 

  54. An CJ, Kim SJ, Choi HO, Kim DW, Jang SW, Jin ML et al (2014) Ultraclean transfer of CVD-grown graphene and its application to flexible organic photovoltaic cells. J Mater Chem A 2(48):20474–20480

    Article  CAS  Google Scholar 

  55. Yu D, Yang Y, Durstock M, Baek J-B, Dai L (2010) Soluble P3HT-grafted graphene for efficient bilayer− heterojunction photovoltaic devices. ACS Nano 4(10):5633–5640

    Article  CAS  Google Scholar 

  56. Liu Z, He D, Wang Y, Wu H, Wang J, Wang H (2010) Improving photovoltaic properties by incorporating both SPFGraphene and functionalized multiwalled carbon nanotubes. Sol Energy Mater Sol Cells 94(12):2148–2153

    Article  CAS  Google Scholar 

  57. Miller AR. Applications – Transportation | Rail vehicles: fuel cells. 2013.

    Google Scholar 

  58. Leccese F (2013) Fuel cells: technologies and applications. Open Fuel Cell J 6:1–20. https://doi.org/10.2174/1875932720130719001

    Article  Google Scholar 

  59. Tietz F (2008) Solid oxide fuel cells. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S et al (eds) Encyclopedia of materials: science and technology. Elsevier, Oxford, pp 1–8

    Google Scholar 

  60. Cologna M (2009) Advances in the production of planar and micro-tubular solid oxide fuel cells. University of Trento

    Google Scholar 

  61. Watanabe T (2012) Molten carbonate fuel cells. In: Chen W-Y, Seiner J, Suzuki T, Lackner M (eds) Handbook of climate change mitigation. Springer, New York, pp 1729–1754

    Chapter  Google Scholar 

  62. Gülzow E, Schulze M (2008) Chapter 3 – Alkaline fuel cells. In: Gasik M (ed) Materials for fuel cells. Woodhead Publishing, pp 64–100

    Chapter  Google Scholar 

  63. Scott K, Shukla A (2004) Polymer electrolyte membrane fuel cells: principles and advances. Rev Environ Sci Biotechnol 3(3):273–280

    Article  CAS  Google Scholar 

  64. Choudhury SR (2007) Phosphoric acid fuel cell technology. In: Recent trends in fuel cell science and technology. Springer, pp 188–216

    Chapter  Google Scholar 

  65. Wang C-Y (2008) Principles of direct methanol fuel cells for portable and micro power. Mini-micro fuel cells. Springer, pp 235–242

    Google Scholar 

  66. Yadav R, Subhash A, Chemmenchery N, Kandasubramanian B (2018) Graphene and graphene oxide for fuel cell technology. Ind Eng Chem Res 57(29):9333–9350

    Article  CAS  Google Scholar 

  67. Farooqui UR, Ahmad AL, Hamid NA (2018) Graphene oxide: a promising membrane material for fuel cells. Renew Sust Energ Rev 82:714–733. https://doi.org/10.1016/j.rser.2017.09.081

    Article  CAS  Google Scholar 

  68. Cao Y-C, Xu C, Wu X, Wang X, Xing L, Scott K (2011) A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J Power Sources 196(20):8377–8382

    Article  CAS  Google Scholar 

  69. Wang LS, Lai AN, Lin CX, Zhang QG, Zhu AM, Liu QL (2015) Orderly sandwich-shaped graphene oxide/Nafion composite membranes for direct methanol fuel cells. J Membr Sci 492:58–66

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin Wei Lai .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mousavi, S.M., Hashemi, S.A., Lai, C.W., Behbudi, G. (2021). Graphene Nanocomposite-Based Nanoproducts for Renewable Energy Application. In: Handbook of Consumer Nanoproducts. Springer, Singapore. https://doi.org/10.1007/978-981-15-6453-6_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6453-6_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6453-6

  • Online ISBN: 978-981-15-6453-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics