Skip to main content

Cellulose Nanocrystals Incorporated Proton Exchange Membranes for Fuel Cell Application

  • Conference paper
  • First Online:
Proceedings of the 7th International Conference on Advances in Energy Research

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

The present work deals with the study of proton exchange membrane prepared by employing cellulose nanocrystals (CNC) as a novel, green, cost-effective and sustainable nano-material as reinforcer into poly (ether ether ketone) based polymer matrix. The membranes were fabricated through the solvent casting process and further evaluated by different techniques for their efficiency as suitable polymer electrolyte membranes for fuel cells. The presence of cellulose nanocrystals has a profound effect on the membrane properties especially on proton conduction, a crucial feature determining the performance of fuel cells. A maximum value of 0.14 S/cm at 90 °C under humid conditions was obtained for proton conductivity in the composite membranes with 4% CNC loading which is comparable to the conductivity achieved in similar conditions for Nafion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klemm, D., Heublein, B., Fink, H.P., Bohn, A.: Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem.-Int. Ed. 44, 3358–3393 (2005)

    Article  Google Scholar 

  2. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011)

    Article  Google Scholar 

  3. Bayer, T., Cunning, B.V., Selyanchyn, R., Nishihara, M., Fujikawa, S., Sasaki, K., Lyth, S.M.: High temperature proton conduction in nanocellulose membranes: Paper fuel cells. Chem. Mater. 28, 4805–4814 (2016)

    Article  Google Scholar 

  4. Qiu, X., Ueda, M., Hu, H., Sui, Y., Zhang, Wang, X., L.: Poly(2,5-benzimidazole)-grafted graphene oxide as an effective proton conductor for construction of nanocomposite proton exchange membrane. ACS Appl. Mater. Interfaces 9: 33049–33058 (2017)

    Google Scholar 

  5. Zhang, H., Shen, P.K.: Advances in the high performance polymer electrolyte membranes for fuel cells. Chem. Soc. Rev. 41, 2382 (2012)

    Article  Google Scholar 

  6. Üregen, N., Pehlivanoğlu, K., Özdemir, Y., Devrim, Y.: Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells. Int. J. Hydrogen Energy 42, 2636–2647 (2017)

    Article  Google Scholar 

  7. Gautam, D., Anjum, S., Ikram, S.: Proton exchange membrane (PEM) in fuel cells: A review. IUP J. Chem. 3, 51–81 (2010)

    Google Scholar 

  8. Chhabra, P., Choudhary, V.: Synthesis and characterization of sulfonated naphthalenic polyimides based on 4,4′-diaminodiphenylether-2,2′-disulfonic acid and bis[4-(4- aminophenoxy)phenylhexafluoropropane] for fuel cell applications. Eur. Polymer J. 45, 1467–1475 (2009)

    Article  Google Scholar 

  9. Kim, D.J., Jo, M.J., Nam, S.Y.: A review of polymer-nanocomposite electrolyte mem-branes for fuel cell application. J. Ind. Eng. Chem. 21, 36–52 (2015)

    Article  Google Scholar 

  10. Adriana, S.: Elastic modulus and stress-transfer properties of tunicate. Biomacromolcules 6, 1055–1061 (2005)

    Article  Google Scholar 

  11. Tritt-Goc, J., Jankowska, I., Pogorzelec-Glaser, K., Pankiewicz, R., Ławniczak, P.: Imidazole-doped nanocrystalline cellulose solid proton conductor: Synthesis, thermal properties. Cellulose 25, 281–291 (2018)

    Article  Google Scholar 

  12. Bano, S., Negi, Y.S.: Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydr. Polym. 157, 1041–1049 (2017)

    Article  Google Scholar 

  13. Xing, P., Robertson, G.P., Guiver, M.D., Mikhailenko, S.D., Wang, K., Kaliaguine, S.: Synthesis and characterization of sulfonated poly (ether ether ketone) for proton exchange membranes. J. Membr. Sci. 229, 95–106 (2004)

    Article  Google Scholar 

  14. Bano, S., Negi, Y.S., Illathvalappil, R., Kurungot, S., Ramya, K.: Studies on nano composites of SPEEK/ethylene glycol/cellulose nanocrystals as promising proton exchange membranes. Electrochim. Acta 293, 260–272 (2018)

    Article  Google Scholar 

  15. Ahmed, M., Azizi, S., Alloin, F., Gorecki, W., Sanchez, J.: Dufresne, A: Nanocomposite polymer electrolytes based on poly (oxyethylene) and cellulose nanocrystals. J. Phys. Chem. B 108, 10845–10852 (2004)

    Article  Google Scholar 

  16. Xu, X., Li, R., Tang, C., Wang, H., Zhuang, X., Liu, Y., Kang, W., Shi, L.: Cellulose nano fiber-embedded sulfonated poly (ether sulfone) membranes for proton exchange membrane fuel cells. Carbohyd. Polym. 184, 299–306 (2018)

    Article  Google Scholar 

  17. Wu, H., Nagarajan, S., Zhou, L., Duan, Y., Zhang, J.: Synthesis and characterization of cellulose nanocrystal-graft-poly(D-lactide) and its nanocomposite with poly(L-lactide). Polymer 103, 365–375 (2016)

    Article  Google Scholar 

  18. Hou, X., Liu, Z., Wei, Y., Zhao, Q., Dong, J., Liu, B., Sun, Z., Shi, T., Zhang, M., Hu, W.: Proton conducting nanocomposite membranes of nanocellulose reinforced poly(arylene ether ketone)s containing sulfonic/carboxylic groups. Solid State Ionics 311, 31–40 (2017)

    Article  Google Scholar 

  19. Grunzinger, S. J., Watanabe, M., Fukagawa, K., Kikuchi, R., Tominaga, Y., Hayakawa, T., aki Kakimoto, M.: Hyperbranched-linear poly(ether sulfone) blend films for proton exchange membranes. J. Power Sources 175: 120–126 (2008)

    Google Scholar 

  20. Oh, K.H., Lee, D., Choo, M.J., Park, K.H., Jeon, S., Hong, S.H., Park, J.K., Choi, J.W.: Enhanced durability of polymer electrolyte membrane fuel cells by functionalized 2D bo-ron nitride nanoflakes. ACS Appl. Mater. Interfaces 6, 7751–7758 (2014)

    Article  Google Scholar 

  21. Shabani, I., Hasani-Sadrabadi, M.M., Haddadi-Asl, V., Soleimani, M.: Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications. J. Membr. Sci. 368, 233–240 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Indian Institute of Technology, Roorkee for allowing to carry out the work and to University Grant Commission, India for financial support during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleheen Bano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bano, S., Ali, A., Sauraj, Negi, Y.S. (2021). Cellulose Nanocrystals Incorporated Proton Exchange Membranes for Fuel Cell Application. In: Bose, M., Modi, A. (eds) Proceedings of the 7th International Conference on Advances in Energy Research. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-15-5955-6_109

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5955-6_109

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5954-9

  • Online ISBN: 978-981-15-5955-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics