
Chapter 4
Deep RNN Based Obstacle Avoidance
Control for Redundant Manipulators

Abstract In this chapter, we consider the obstacle avoidance problem of redundant
robot manipulators with physical constraints compliance, where static and dynamic
obstacles are investigated. Both the robot and obstacles are abstracted as two crit-
ical point sets, respectively, relying on the general class-K functions, the obstacle
avoidance problem is formulated into an inequality in speed level. The minimal-
velocity-norm (MVN) is regarded as the cost function, converting the kinematic
control problem of redundant manipulators considering obstacle avoidance into a
constraint-quadratic-programmingproblem, inwhich the joint angles and joint veloc-
ity constraints are built in velocity level in form of inequality. To solve it, a novel
deep recurrent neural network based controller is proposed. Theoretical analyses and
the corresponding simulative experiments are given successively, showing that the
proposed neural controller does not only avoid collision with obstacles, but also track
the desired trajectory correctly.

4.1 Introduction

With development of intelligent manufacturing and automation, the research on
robot manipulators is obtaining increasing attention from a large number of scholars,
numerous fruits have been reported on painting, welding and assembly [1, 2] and
so on. With the popularization of robots, higher requirements such as flexibility and
execution ability are imposed on robots, especially working in the complicated envi-
ronment [3]. Consequently, more and more scholars cast light on redundant robots
which show better flexibility, responsiveness [4, 5].

Stem from the considerationof human-machine collaboration, robots are no longer
arranged in a separate area [6–8], which makes the obstacle avoidance for robots
become an important part of kinematic control of the robot manipulators. There
has reported many obstacle avoidance methods applicable to robot manipulators. A
modifiedRRT basedmethod, namely Smoothly RRT,was proposed in [9]. This paper
established a maximum curvature constraint to obtain a smooth curve when avoiding
obstacles. Compared to the traditional RRT based method, the proposed method
achieves faster convergence. In [10], Hsu investigated the probabilistic foundations
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of PRM based methods, obtaining a conclusion that the visibility properties has a
heavier impact on the probability, and the convergence would be faster if extract
partial knowledge could be introduced. However, due to the heavy computational
burdens, those methods can be hardly used online.

Apart from stochastic sampling based algorithms mentioned above, the artificial
potential fieldmethod is also a potentialmethod for obstacle avoidance, andhave been
found their application in [11–15]. Taking advantage of redundant DOFs, obstacles
can be avoided by the self-motion in the null space. Using pseudo-inverse of Jacobian
matrix, the solution can be built as the sum of a minimum-norm particular solution
and homogeneous solutions [16–18].

With parallelism and easier to implement in hardware, neural networks have been
a powerful tool in robot control. Artificial intelligence algorithms based on neural
networks provide a new view for robotic control, these methods are very promising
due to neural networks’ excellent learning ability [19]. For example, in [20], a neural
network based learning scheme was proposed to handle functional uncertainties.
In [21], a bio-mimetic hybrid controller was designed, where the control strategy
consist of an RBF neural network based feed-forward predictive machine and a
feedback servomachine based on a proportional-derivative controller. In [22], a fuzzy
logic controller is proposed for long-term navigation of quad-rotor UAV systems
with input uncertainties. Experiment results show that the controller can achieve
better control performance when compared to their singleton counterparts. In [23],
an online learning mechanism is built for visual tracking systems. The controller
uses both positive and negative sample importance as input, and it is shown that the
proposed weighted multiple instance learning scheme achieves wonderful tracking
performance in challenging environments. The systemmodel of robotmanipulators is
highly nonlinear, however, if the prior information of the model is known in advance,
the neural network can be optimized. This is to say, on one hand, the number of nodes
in neural networks can be reduced. In addition, the excellent learning efficiency
is maintained simultaneously [24]. Therefore, to achieve the real-time control of
robot manipulators, a series of dynamic neural network are proposed, such as [25–
27]. For kinematic control of redundant manipulators, such a time-varying problem
will be transformed into a quadratic programming from perspective of optimization,
where nonlinear mapping from joint space to cartesian space is abstracted as a linear
equation. Dynamic neural networks can be used to solve the quadratic-programming
problem online, therefore, the kinematic control of manipulators is achieved when
the formulated linear equation is ensured. More importantly, these methods can
also handle inequality constraints considering joint physical constraints, and model
uncertainties [28–32]. There are few works on obstacle avoidance using dynamic
neural network. In [33], the obstacle avoidance problem is considered as an equality
constraint, however the parameters of the escape velocity is not easy to get. In [34],
the distance between the robot and obstacles are formulated as a group of distances
from critical points and robot links. On this basis, an improved method is proposed
by Guo et. al. in [35], which can suppress undesirable discontinuity in the original
solutions.
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Motivated by the above observations, in this chapter, a RNN-based obstacle avoid-
ance strategy was proposed for redundant robot manipulators. Both the robot and
obstacles are abstracted as two critical point sets, respectively, relying on the class-K
functions, the obstacle avoidance problem is formulated into an inequality in speed
level. Theminimal velocity-norm (MVN) is regarded as the cost function, converting
the kinematic control problemof redundantmanipulators considering obstacle avoid-
ance into a constraint-quadratic-programming problem, in which the joint angles and
joint velocity constraints are built in velocity level in form of inequality. To solve it, a
novel deep recurrent neural network based controller is proposed. Theoretical anal-
yses and the corresponding simulative experiments are given successively, showing
that the proposed neural controller does not only avoid collision with obstacles, but
also track the desired trajectory correctly. The main contributions of this chapter are
summarized as below:

• A deep RNN-based controller is proposed. Four objectives are achieved at the
same time, i.e, the desired path tracking, obstacle avoidance, physical constraints
compliance considering joint angles and velocity constraints and optimality of
cost functions.

• Relying on a class-K function, a novel obstacle avoidance strategy is given, where
robots and obstacles are abstracted into a set of critical point sets, the distance
between them can be described as the point-to-point distance.

• Numerical results show that the effectiveness of the designed RNN controller, i.e,
the static and dynamic obstacles can be avoided while tracking the desired motion
trajectory.

4.2 Problem Formulation

4.2.1 Basic Description

When a redundant robot is controlled to track a particular trajectory in the cartesian
space, the positional description of the end-effector can be formulated as

x = f (θ), (4.1)

where x ∈ R
m and θ ∈ R

n are the end-effector′s positional vector and joint angles,
respectively. In the velocity level, the kinematic mapping between ẋ and θ̇ can be
described as

ẋ = J (θ)θ̇ , (4.2)

where J (θ) ∈ R
m×n is the Jacobian matrix from the end-effector to joint space.

In engineering applications, obstacles are inevitable in the workspace of a robot
manipulator. For example, robot manipulators usually work in a limited workspace
restricted by fences, which are used to isolate robots from humans or other robots.



66 4 Deep RNN Based Obstacle Avoidance Control for Redundant Manipulators

Fig. 4.1 The basic idea of
obstacle avoidance in this
chapter

This problem could be even more acute in tasks which require collaboration of
multiple robots. Let C1 be the set of all the points on a robot body, and C2 be the
set of all the points on the obstacles, then the purpose of obstacle avoidance of a
robot manipulator is to ensure C1 ∪ C2 = ∅ at all times. By introducing d as a safety
distance between the robot and obstacles, the obstacle avoidance is reformulated as

|Oj Ai | ≥ d, ∀Ai ∈ C1,∀Oi ∈ C2. (4.3)

where |Oj Ai | = √
(Ai − Oj )T(Ai − Oj ) is the Euclidean norm of the vector Ai O j .

Equation (4.3) gives a basic description of obstacle avoidance problem in form
of inequalities. However, there are too many elements in sets C1 and C2, the vast
majority of which are actually unnecessary. Therefore, by uniformly selecting points
of representative significance from C1 and C2, and increasing d properly, Eq. (4.3)
can be approximately described as below

|Oj Ai | ≥ d, (4.4)

with Ai , i = 1, . . . , a and Oj , j = 1, . . . , b being the representative points of the
robot and obstacles, respectively. The schematic diagram of Eq. (4.4) in shown in
Fig. 4.1.

4.2.2 Reformulation of Inequality in Speed Level

In order to guarantee the inequality (4.4), by defining D = |Oj Ai | − d, an inequality
is rebuilt in speed level as

d(|Oj Ai |)/dt ≥ −sgn(D)g(|D|), (4.5)

in which g(•) belongs to class-K . Remarkable that the velocities of critical points
Ai can be described by joint velocities



4.2 Problem Formulation 67

Ȧi = Jai (θ)θ̇ , (4.6)

where Jai ∈ R
m×n is the Jacobian matrix from the critical point Ai to joint space. If

Oj is prior known, the left-side of Eq. (4.5) can be reformulated as

d

dt
(|Oj Ai |) = d

dt
(

√
(Ai − Oj )T(Ai − Oj ))

= 1

|Oj Ai | (Ai − Oj )
T( Ȧi − Ȯ j )

=−−−−→|Oj Ai |T Jai (θ)θ̇ − −−−−→|Oj Ai |T Ȯ j , (4.7)

where
−−−−→|Oj Ai | = (Ai − Oj )

T/|Oj Ai | ∈ R
1×m is the unit vector of

−−−−−→
Ai − Oj . There-

fore, the collision between critical point Ai and object Oj can be obtained by ensuring
the following inequality

Joi θ̇ ≤ sgn(D)g(|D|) − −−−−→|Oj Ai |T Ȯ j , (4.8)

where Joi = −−−−−→|Oj Ai |T Jai ∈ R
1×n . Based on the inequality description (4.8), the

collision between robot and obstacle can be avoided by ensuring

Joθ̇ ≤ B, (4.9)

where Jo = [JT
o1, · · · , JT

o1︸ ︷︷ ︸
b

, · · · , JT
oa, · · · , JT

oa︸ ︷︷ ︸
b

]T ∈ R
ab×n is the concatenated form

of Joi considering all pairs between Ai and Oj , B = [B11, · · · , B1b, · · · , Ba1,

· · · , Bab]T ∈ R
ab is the vector of upper-bounds, in which Bi j = sgn(D)g(|D|) −−−−−→|Oj Ai |T Ȯ j .

Remark 4.1 According to Eq.4.5 and the definition of class-K functions, the origi-
nal escape velocity based obstacle avoidance methods in [34, 35] can be regarded as
a special case of 4.5, in which G(|D|) is selected as G(|D|) = k|D|. Therefore, in
this chapter, the proposed obstacle avoidance strategy ismore general than traditional
methods.

4.2.3 QP Type Problem Description

As to redundant manipulators, in order to take full advantage of the redundant DOFs,
the robot can be designed to fulfill a secondary task when tracking a desired trajec-
tory. In this chapter, the secondary task is set to minimize joint velocity while avoid-
ing obstacles. In real implementations, both joint angles and velocities are limited
because of physical limitations such as mechanical constraints and actuator satura-
tion. Because of the fact that rank(J ) < n, theremight be infinity solutions to achieve



68 4 Deep RNN Based Obstacle Avoidance Control for Redundant Manipulators

kinematic control. In this chapter, we aim to design a kinematic controller which is
capable of avoiding obstacles while tracking a pre-defined trajectory in the Cartesian
space. For safety, the robot is wished to move at a low speed, in addition, lower
energy consumption is guaranteed. By defining an objective function scaling joint
velocity as θ̇Tθ̇/2, the tracking control of a redundant manipulator while avoiding
obstacles can be described as

min θ̇Tθ̇/2, (4.10a)

s.t. x = xd, (4.10b)

θ− ≤ θ ≤ θ+, (4.10c)

θ̇− ≤ θ̇ ≤ θ̇+, (4.10d)

Joθ̇ ≤ B. (4.10e)

It is remarkable that the constraints Eq. (4.10b)–(4.10e) and the objective function
(4.10a) to be optimized are built in different levels, which is very difficult to solve
directly. Therefore, we will transform the original QP problem (4.10) in the velocity
level. In order to realize precise tracking control to the desired trajectory xd, by
introducing a negative feedback in the outer-loop, the equality constraint can be
ensured by letting the end-effector moves at a velocity of ẋ = ẋd + k(xd − x). In
terms with (4.10c), according to the escape velocity method, it can be obtained by
limiting joint speed as α(θ− − θ) ≤ θ̇ ≤ α(θ+ − θ), where α is a positive constant.
Combing the kinematic property (4.2), the reformulated QP problem is

min θ̇Tθ̇/2, (4.11a)

s.t. J (θ)θ̇ = ẋd + k(xd − x), (4.11b)

max(α(θ− − θ), θ̇−) ≤ θ̇ ≤ min(θ̇+, α(θ+ − θ)), (4.11c)

Joθ̇ ≤ B. (4.11d)

It is noteworthy that both the formula (4.11a) and (4.11d) are nonlinear. The
QP problem cannot be solved directly by traditional methods. Using the parallel
computing and learning ability, a deep RNN will be established later.

4.3 Deep RNN Based Solver Design

In this chapter, a deep RNN is proposed to solve the obstacle avoidance problem
(4.11) online. To ensure the constraints (4.11b), (4.11c), and (4.11d), a group of state
variables are introduced in the deep RNN. The stability is also proved by Lyapunov
theory.
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4.3.1 Deep RNN Design

Firstly, by defining a group of state variables λ1 ∈ R
m , λ2 ∈ R

ab, a Lagrange function
is selected as

L = θ̇Tθ̇/2 + λT
1 (ẋd + k(xd − x) − J (θ)θ̇) + λT

2 (Joθ̇ − B), (4.12)

λ1 and λ2 are the dual variables corresponding to the constraints (4.11b) and (4.11d).
According to Karush-Kuhn-Tucker conditions, the optimal solution of the optimiza-
tion problem (4.12) can be equivalently formulated as

θ̇ = PΩ(θ̇ − ∂L

∂θ̇
), (4.13a)

J (θ)θ̇ = ẋd + k(xd − x), (4.13b)
{

λ2 > 0 if Joθ̇ = B,

λ2 = 0 if Joθ̇ ≤ B,
(4.13c)

where PΩ(x) = argminy∈Ω ||y − x || is a projection operator to a restricted interval
Ω , which is defined as Ω = {θ̇ ∈ R

n|max(α(θ− − θ), θ̇−) ≤ θ̇ ≤ min(θ̇+, α(θ+ −
θ))}. Notable that Equation (4.13c) can be simply described as

λ2 = (λ2 + Joθ̇ − B)+, (4.14)

where (•)+ is a projection operation to the non-negative space, in the sense that
y+ = max(y, 0).

Although the solution of (4.13) is exact the optimal solution of the constrained-
optimization problem (4.11), it is still a challenging issue to solve (4.13) online since
its inherent nonlinearity. In this chapter, in order to solve (4.13), a deep recurrent
neural network is designed as

εθ̈ = −θ̇ + PΩ(JTλ1 − JT
o λ2), (4.15a)

ελ̇1 = ẋd + k(xd − x) − J (θ)θ̇ , (4.15b)

ελ̇2 = −λ2 + (λ2 + Joθ̇ − B)+, (4.15c)

with ε is a positive constant scaling the convergence of (4.15).

Remark 4.2 As to the established deep RNN (4.15), the first dynamic equation is
also the output dynamics, which combines the dynamics of state variables λ1 and
λ2, as well as the physical limitations including joint angles and velocities. State
variable λ1 is used to ensure the equality constraint (4.11b), as shown in (4.15b), λ1

is updated according to the difference between reference speed ẋd + k(xd − x) and
actually speed J (θ)θ̇ . Similarly, λ2 is used to ensure the inequality constraint (4.11d),
which will be further discussed later. It is remarkable that ε plays an important role in
the convergence of the deep RNN. The smaller ε, the faster the deep RNN converges.
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Remark 4.3 By introducing the model information such as J , Jo, etc., the estab-
lished deep RNN consists of three class of nodes, namely θ̇ , λ1 and λ2, and the total
number of nodes is n + m + ab. Comparing to traditional neural networks in [19],
the complexity of neural networks is greatly reduced.

4.3.2 Stability Analysis

In this part, we offer stability analysis of the obstacle avoidance method based on
deep RNN based. First of all, some basic Lemmas are given as below.

Definition 4.1 A continuously differentiable function F(•) is said to be monotone,
if ∇F + ∇FT is positive semi-definite, where ∇F is the gradient of F(•).

Lemma 4.1 A dynamic neural network is said to converge to the equilibrium point
if it satisfies

κ ẋ = −ẋ + PS(x − ρF(x)), (4.16)

where κ > 0 and ρ > 0 are constant parameters, and PS = argminy∈S||y − x || is a
projection operator to closed set S.

Lemma 4.2 [37] Let V : [0,∞) × Bd → R be a C1 function, α1, α2 be class-K
functions defined on [0, d) which satisfy α1(||x ||) ≤ V (t, x) ≤ α2(||x ||), ∀(t, x) ∈
[0, d) × Bd, then x = 0 is a uniformly asymptotically stable equilibriumpoint if there
exist some class-K function g defined on [0, d), to make the following inequality hold

∂V

∂t
+ ∂V

∂x
f (t, x) ≤ −α(||x ||),∀(t, x) ∈ [0,∞) × Bd , (4.17)

About the stability of the closed-loop system, we offer the following theorem.

Theorem 4.1 Given the obstacle avoidance problem for a redundant manipulator
in kinematic control tasks, the proposed deep recurrent neural network is stable and
will globally converge to the optimal solution of (4.10).

Proof The stability analysis consists of two parts: firstly, we will show that the
equilibrium of the deep RNN is exactly the optimal solution of the control objective
described in (4.11), which prove that the output of deep RNN will realize obstacle
avoidance while tracking a given trajectory, and then we will prove that the deep
recurrent neural network is stable in sense of Lyapunov.

Part I. As to the deep recurrent neural network (4.15), let (θ̇∗, λ∗
1, λ

∗
2) be the

equilibrium of the deep RNN, then (θ̇∗, λ∗
1, λ

∗
2) satisfies

−θ̇∗ + PΩ(JTλ∗
1 − JT

o λ∗
2) = 0, (4.18a)

ẋd + k(xd − x) − J (θ)θ̇∗ = 0, (4.18b)

−λ∗
2 + (λ∗

2 + Joθ̇
∗ − B)+ = 0, (4.18c)
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with θ̇∗ be the output of deep RNN. By comparing Equation (4.18) and (4.13), we
can readily obtain that they are identical, i.e., the equilibrium point satisfies the KKT
condition of (4.10).

Then we will show that the equilibrium point (output of the proposed deep RNN)
is capable of dealing with kinematic tracking as well as obstacle avoidance problem.
Define a Lyapunov function V about the tracking error e = xd − x as V = eTe/2,
by differentiating V with respect to time and combining (4.11b), we have

V̇ = eTė = eT(ẋd − J (θ)θ̇∗)

= −keTe ≤ 0, (4.19)

in which the dynamic equation (4.18b) is also used. It can readily obtained that the
tracking error would eventually converge to zero.

It is notable that the dynamic equation (4.18c) satisfies

λ∗
2 + Joθ̇

∗ − B − (λ∗
2 + Joθ̇

∗ − B)+ = Joθ̇
∗ − B. (4.20)

According to the property of projection operator (•)+, y − (y)+ ≤ 0 holds for any
y, then we have Joθ̇∗ − B ≤ 0, together with (4.5), the inequality (4.5) is satisfied.
Notable that (4.5) can be rewritten as

Ḋ ≥ −sgn(D)g(|D|). (4.21)

As to (4.21), we first consider the situation when equality holds. Since g(|D|)
is a function belonging to class K, it can be easily obtained that D = 0 is the only
equilibrium of Ḋ = −sgn(D)g(|D|). Define a Lyapunov function as V2(t, D) =
D2/2, and select two functions as α1(|D|) = α2(|D|) = D2/2. It is obvious that
α1(|D|) = α2(|D|) belongs to class-K, and the following inequality will always hold

α1(|D|) ≤ V2(t, D) ≤ α2(|D|). (4.22)

Taking the time derivative of V2(t, D), we have

∂V2

∂t
+ ∂V

∂D
Ḋ = −|D|g(|D|) ≤ 0. (4.23)

According to Lemma 4.2, the equilibrium x = 0 is uniformly asymptotically sta-
ble. Then we arrive at the conclusion that if the equality d(|Oj Ai |)/dt = −sgn(D)g
(|D|) holds, |D| = 0will be guaranteed, i.e., |Oj Ai | − d for all i = 1 · · · a,= 1 · · · b.
Based on comparison principle, we can readily obtain that |Oj Ai | ≥ d when
d(|Oj Ai |)/dt ≥ −sgn(D)g(|D|).

Part II. Then we will show the stability of the deep RNN (4.15). Let ξ =
[θ̇T, λT

1 , λ
T
2 ]T be the a concatenated vector of state variables of the proposed deep

RNN, then (4.15) can be rewritten as
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εξ̇ = −ξ + PΩ̄ [ξ − F(ξ)], (4.24)

where PS(•) is a projection operator to a set S, and F(ξ) = [F1(ξ), F2(ξ), F3(ξ)]T ∈
R

n+m+ab, in which ⎡

⎣
F1

F2

F3

⎤

⎦ =
⎡

⎣
θ̇ − JTλ1 + JT

o λ2

J θ̇ − ẋd − k(xd − x)
−Joθ̇∗ − B

⎤

⎦ .

Let ∇F = ∂F/∂ξ , we have

∇F(ξ) =
⎡

⎣
I −JT JT

o
J 0 0

−JT
o 0 0

⎤

⎦ . (4.25)

According to the definition of monotone function, we can readily obtain that F(ξ) is
monotone. From the description of (4.24), the projection operator PS can be formu-
lated as PS = [PΩ; PR; P�], in which PΩ is defined in (4.13), PR can be regarded
as a projection operator of λ1 to R, with the upper and lower bounds being ±∞,
and P� = (•)+ is a special projection operator to closed set Rab+ . Therefore, PS is a
projection operator to closed set [Ω;Rm;Rab+ ]. Based on Lemma 4.1, the proposed
neural network (4.15) is stable and will globally converge to the optimal solution of
(4.10). The proof is completed. �

4.4 Numerical Results

In this chapter, the proposed deep RNN based controller is applied on a planar 4-
DOF robot. Firstly, a basic case where the obstacle is described as a single point
is discussed, and then the controller is expanded to multiple obstacles and dynamic
ones. Comparisons with existing methods are also listed to indicate the superiority
of the deep RNN based scheme.

4.4.1 Simulation Setup

The physical structure of the 4-link planar robot to be simulated is shown in
Fig. 4.2, in which the critical points of the robot are also marked. As shown in
Fig. 4.2, critical points A2, A4, A6 are selected at the joint centers, and A1, A3, A5,
A7 are selected at the center of robot links. It is notable that Ai and the Jacobian
matrix Joi are essential in the proposed control scheme. Based on the above descrip-
tion of Ai , the D-H parameters of A1 is a1 = 0.15, a2 = a3 = 0, α1 = α2 = α3 = 0,
d1 = d2 = d3 = 0, then both the position and Jacobianmatrix Ja1 of A1 can be calcu-
lated readily. Based on the definition in Eq. (4.8), Jo1 can be obtained. Ai and Joi can
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Fig. 4.2 The planar robot to
be simulated in this chapter

be calculated similarly. The control parameters are set as ε = 0.001, α = 8, k = 8.
As to the physical constraints, the limits of joint angles and velocities are selected
as θ−

i = −3rad, θ+
i = 3rad, θ̇−

i = −1rad/s, θ̇+
i = 1rad/s for i = 1 . . . 4. The safety

distance d is set to be 0.1 m.

4.4.2 Single Obstacle Avoidance

In this simulation, the obstacle is assumed to be centered at [−0.1, 0.2]Tm, the
desired path is set as xd = [0.4 + 0.1cos(0.5t), 0.4 + 0.1sin(0.5t)]Tm, and the ini-
tial joint angles are set to be θ0 = [π/2,−π/3,−π/4, 0]Trad. The class-K function
is selected as G(|D|) = K1|D| with K1 = 200. In order to show the effectiveness
of the proposed obstacle avoidance method, contrast simulations with and without
inequality constraint (4.10e) are conducted. Simulation results are shown in Fig. 4.3.
When ignoring the obstacle, the end-effector trajectories and the corresponding incre-
mental configurations are shown in Fig. 4.3a, although the robot achieves task space
tracking to xd, obviously the first link of the robot would collide with the obstacle.
After introducing obstacle avoidance scheme, the robotmoves other joints rather than
the first joint, and then avoids the obstacle effectively (Fig. 4.3b). Simultaneously,
the tracking errors when tracking the given circle are shown in Fig. 4.3c. From the
initial state, the end-effector moves towards the circle quickly and smoothly, after
that, the tracking error in stable state keeps less than 1 × 10−4m, showing that the
robot could achieve kinematic control as well as obstacle avoidance tasks. To show
more details of the proposed deep RNN based method, some important process data
is given. As the obstacle is close to the first joint, critical points A1 and A2 are more
likely to collide with the obstacle, therefore, as a result, the distances between the
obstacle O1 and A1, A2 are shown in Fig. 4.3d, from t = 2s to t = 6.5s, ||A1O1||
remains at the minimum value d = 0.1, that is to say, using the proposed obstacle
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Fig. 4.3 Numerical results of single obstacle avoidance. a is the motion trajectories when ignor-
ing obstacle avoidance scheme, b is the motion trajectories when considering obstacle avoidance
scheme, c is the profile of tracking errors when considering obstacle avoidance scheme, d is the
profile of distances between critical points and obstacle, e is the profile of joint velocities, f is the
profile of joint angles

avoidance method, the robot maintains minimum distance from the obstacle. The
profile of joint velocities are shown in Fig. 4.3e, at the beginning of simulation, the
robot moves at maximum speed, which leads to the fast convergence of tracking
errors. The curve of joint angles change over time is shown in Fig. 4.3f.

4.4.3 Discussion on Class-K Functions

In this part, we will discuss the influence of different class-K functions in the avoid-
ance scheme (4.5). Four functions are selected as G1(|D|) = K |D|2, G2(|D|) =
K |D|,G3(|D|) = K tanh(5|D|),G4(|D|) = K tanh(10|D|), Fig. 4.4a shows the com-
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Fig. 4.4 Discussions on different obstacle avoidance functions. a is the comparative curves of
different obstacle avoidance functions. b is the profile ofminimumdistance of the robot and obstacle
using different obstacle avoidance functions

parative curves the these functions. Other simulation settings are the same as the
previous one. Simulation results are shown in Fig. 4.4b. When selecting the same
positive gain K , the minimum distance is about 0.08 m, which shows the robot can
avoid colliding with the obstacle using the avoidance scheme (4.5). The close-up
graph of the tracking error is also shown, it is remarkable that the minimum distance
deceases, as the gradient of the class-K function increases near zero. Therefore, one
conclusion can be drawn that the function can be more similar with sign function, to
achieve better obstacle avoidance.

4.4.4 Multiple Obstacles Avoidance

In this part, we consider the case where there are two obstacles in the workspace. The
obstacles are set at [0.1, 0.25]Tm and [0, 0.4]Tm, respectively. Simulation results are
shown in Fig. 4.5. The desired path is defined as xd = [0.45 + 0.1cos(0.5t), 0.4 +
0.1sin(0.5t)]T. The initial joint angle of the robot is selected as θ0 = [1.5,−1 −
1, 0]T. To further show the effectiveness of the proposed obstacle avoidance strategy
4.5, g|D| is selected as g|D| = K1/(1 + e−|D|) − K1/2 with K1 = 200. When λ2

is set to 0, as shown in Fig. 4.5a, the inequality constraint (4.11d) will not work,
in other words, only kinematic tracking problem is considered rather than obstacle
avoidance, in this case, the robot would collide with the obstacles. After introducing
online training of λ2, the simulation results are given in Fig. 4.5b–h. The tracking
errors are shown in Fig. 4.5c, with the transient time being about 4s, and steady state
error less than 1 × 10−3m. Correspondingly, the robot moves fast in the transient
stage, ensuring the quick convergence of the tracking errors. It is remarkable that
the distances between the critical points and obstacle points are kept larger than
0.1m at all times, showing the effectiveness of the proposed method. At t = 14s,



76 4 Deep RNN Based Obstacle Avoidance Control for Redundant Manipulators

-0.5 0 0.5 1
x(m)

-0.25

0.25

0.75

y(
m

)

(a)

-0.5 0 0.5 1
x(m)

-0.25

0.25

0.75

y(
m

)

(b)

0 5 10 15 20
t(s)

-0.1

0

0.1

0.2

Tr
ac

ki
ng

 e
rr

or
(m

)

(c) (d)

0 5 10 15 20
t(s)

-2

-1

0

1

2

Jo
in

t v
el

oc
iti

es
(r

ad
/s

)

(e) (f)

0 5 10 15 20
t(s)

-3
-2
-1
0
1
2
3

Jo
in

t a
ng

le
s(

ra
d)

(g)

0 5 10 15 20
t(s)

-1.5

0

1.5

St
at

e 
va

ria
bl

es

(h)

Fig. 4.5 Numerical results of multiple obstacle avoidance. a is the motion trajectories when ignor-
ing obstacle avoidance scheme. b is the motion trajectories when considering obstacle avoidance
scheme. c is the profile of tracking errors when considering obstacle avoidance scheme. d is the
profile of distances between critical points and obstacles. e is the profile of joint velocities. f is the
profile of λ2. g is the profile of joint angles. h is the profile of λ1
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from Fig. 4.5d and g, when the distance between A3 and O1 is close to 0.1m, the
corresponding dual variable λ2 becomes positive, making the inequality constraint
(4.11d) hold, and the boundary between the robot and obstacle is thus guaranteed.
After t = 18s, ||A3O1|| becomes greater, then λ2 converges to aero. Notable that
although λ1 and λ2 do not converge to certain values, the dynamic change of λ1 and
λ2 ensures the regulation of the proposed deep RNN.

4.4.5 Enveloping Shape Obstacles

In this part, we consider obstacles of general significance. Suppose that there is a
rectangular obstacle in the workspace, with the vertices being [0, 0.5]T, [0.4, 0.5]T,
[0.4, 0.6]T and [0.5, 0.6]T, respectively. By selecting the safety distance d = 0.1m,
and obstacle points as O1 = [0.05, 0.55]T, O2 = [0.15, 0.55]T, O3 = [0.25, 0.55]T
and O4 = [0.35, 0.55]T. It can be readily obtained that the rectangular obstacle is
totally within the envelope defined by Oi and d. The incremental configurations
when tracking the path while avoiding the obstacle are shown in Fig. 4.6b, in which
a local amplification diagram is also given, showing that the critical points A3 is
capable of avoiding O2 and O3. It is worth noting that by selecting proper point
group and safety distance, the obstacle can be described by the envelope shape
effectively. Figure4.6c, h also give important process data of the system under the
proposed controller, including tracking errors, joint angles, angular velocities, and
state variables of deep RNNs. We can observe that the physical constraints as well
as kinematic control task are realized using the controller.

4.4.6 Comparisons

To illustrate the priority of the proposed scheme, a group of comparisons are carried
out.As shown inTable4.1, all the controllers in [12, 16, 34, 35] achieve the avoidance
of obstacles. Comparing to APFmethod in [12, 16] and JP based method in [12, 16],
the proposed controller can realize a secondary task, at the same time, we present a
more general formulation of the obstacle avoidance strategy,which is helpful to gain a
deeper understanding of the mechanism for avoidance of obstacles. Moreover, in this
chapter, both dynamic trajectories and obstacles are considered. The comparisons
above also highlight the main contributions of this paper.
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Fig. 4.6 Numerical results of enveloping shape obstacles. a is the motion trajectories when ignor-
ing obstacle avoidance scheme. b is the motion trajectories when considering obstacle avoidance
scheme. c is the profile of tracking errors when considering obstacle avoidance scheme. d is the
profile of distances between critical points and obstacles. e is the profile of joint velocities. f is the
profile of joint angles. g is the profile of λ2. h is the profile of λ1
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Table 4.1 Comparisons among different obstacle avoidance controllers on manipulators

Method Convergence Secondary
task

Physical
constraints
satisfied

Dynamic
obstacles

Obstacle
avoidance
description

This paper Yes Considered Yes Considered Inequalities

[35]
Yes Considered Yes * Inequalities**

[34]
Yes Considered Yes * Inequalities**

[12]
Yes Not

considered
No Considered Repulsion

[16]
Yes Not

considered
No * Null space

* In [34, 35] and [16], dynamic obstacles are not considered
** Regular escape velocity method is used, which is only a special case of 4.5

4.5 Summary

In this chapter, a novel obstacle avoidance strategy is proposed based on a deep
recurrent neural network. The robots and obstacles are presented by sets of criti-
cal points, then the distance between the robot and obstacle can be approximately
described as point-to-points distances. By understanding the nature escape veloc-
ity methods, a more general description of obstacle avoidance strategy is proposed.
Usingminimum-velocity-norm (MVN) scheme, the obstacle avoidance togetherwith
path tracking problem is formulated as a QP problem, in which physical limits are
also considered. By introducing model information, a deep RNN with simple struc-
ture is established to solve the QP problem online. Simulation results show that the
proposed method can realize the avoidance of static and dynamic obstacles.

References

1. C. Yang, Y. Jiang, W. He, J. Na, Z. Li, B. Xu, Adaptive Parameter Estimation and Control
Design for Robot Manipulators With Finite-Time Convergence. IEEE Transactions on Indus-
trial Electronics 65(10), 8112–8123 (2018)

2. L. Cheng, Z.G. Hou, M. Tan, Adaptive Parameter Estimation and Control Design for Robot
Manipulators With Finite-Time Convergence. Automatica 45(10), 2312–2318 (2009)

3. Y. Pan, C. Yang, L. Pan, H. Yu, Integral Sliding Mode Control: Performance, Modification,
and Improvement. IEEE Transactions on Industrial Informatics 14(7), 3087–3096 (2018)

4. Y. Zhang, Singularity-conquering Tracking Control of A Class of Chaotic Systems Using
Zhang-gradient Dynamics. IET Control Theory & Applications 9(6), 871–881 (2015)

5. J. Ren, B. Wang, M. Cai and J. Yu, “Adaptive Fast Finite-Time Consensus for Second-Order
Uncertain Nonlinear Multi-Agent SystemsWith Unknown Dead-Zone,” ?IEEE Access, vol. 8,
No. 1, pp. 25557-25569, 2020

6. H. Wu, Y. Guan, J. Rojas, A latent state-based multimodal execution monitor with anomaly
detection and classification for robot introspection. Applied Sciences. 9(6), 1072 (2019). Jan



80 4 Deep RNN Based Obstacle Avoidance Control for Redundant Manipulators

7. H. Wu, Z. Xu, W. Yan, Q. Su, S. Li, T. Cheng, X. Zhou, Incremental Learning Introspective
Movement Primitives From Multimodal Unstructured Demonstrations. IEEE Access. 15(7),
159022–36 (2019). Oct

8. H. Wu, Y. Guan, J. Rojas, Analysis of multimodal Bayesian nonparametric autoregressive
hidden Markov models for process monitoring in robotic contact tasks. International Journal
of Advanced Robotic Systems. 16(2), 1729881419834840 (2019). Mar 26

9. K. Wei, B. Ren, A Method on Dynamic Path Planning for Robotic Manipulator Autonomous
Obstacle Avoidance Based on an Improved RRT Algorithm. Sensors 18(2), 571–578 (2018)

10. D. Hsu, J. Latombe, H. Kurniawati, On the Probabilistic Foundations of Probabilistic Roadmap
Planning. International Journal of Robotics Research 25(7), 627–643 (2006)

11. O. Khatib, Real-Time Obstacle Avoidance System for Manipulators and Mobile Robots. Inter-
national Journal of Robotics Research 5(1), 90–98 (1986)

12. A. Csiszar, M. Drust, T. Dietz, A. Verl, C. Brisan, Dynamic and Interactive Path Planning and
Collision Avoidance for an Industrial Robot Using Artificial Potential Field Based Method.
Mechatronics 1(1), 413–421 (2011)

13. C. Tsai, J. Lee, J. Chuang, “Path planning of 3-D objects using a new workspace model,” IEEE
Transactions on Systems, Man, and Cybernetics. Part C (Applications and Reviews) 31(3),
405–410 (2001)

14. T. Tsuji, Y. Tanaka, P. Morasso, V. Sanguineti, M. Kaneko, “Bio-mimetic trajectory generation
of robots via artificial potential field with time base generator,” IEEE Transactions on Systems,
Man, and Cybernetics. Part C (Applications and Reviews) 32(4), 426–439 (2002)

15. G.Wen, S. Ge, F. Tu, Y. Choo, Artificial Potential Based Adaptive H∞ Synchronized Tracking
Control for Accommodation Vessel. IEEE Transactions on Industrial Electronics 64(7), 5640–
5647 (2017)

16. T. Krzysztof, R. Joanna, Dynamically consistent Jacobian inverse for non-holonomic robotic
systems. Nonlinear Dynamics 85(1), 107–122 (2016)

17. B. Cao, G. Dodds, G. Irwin, Redundancy resolution and obstacle avoidance for cooperative
industrial robots. Journal of Robotic Systems 16(7), 405–417 (1999)

18. S.Ali,A.Moosavian, E. Papadopoulos,Modified transpose Jacobian control of robotic systems.
Automatica 43(7), 1226–1233 (2007)

19. S. Jung, S. Kim, Hardware Implementation of a Real-Time Neural Network Controller With a
DSP and an FPGA for Nonlinear Systems. IEEE Transactions on Industrial Electronics 54(1),
265–271 (2007)

20. Y. Pan, T. Sun,Y. Liu,H.Yu,Composite Learning fromAdaptiveBacksteppingNeuralNetwork
Control. Neural Networks 95(1), 134–142 (2017)

21. Y. Pan, H. Yu, Biomimetic Hybrid Feedback Feedforward Neural-Network Learning Control.
IEEE Transactions on Neural Networks and Learning Systems 28(6), 1481–1487 (2017)

22. C. Fu,A. Sarabakha, E.Kayacan,C.Wagner,R. John, J.Garibaldi, InputUncertainty Sensitivity
Enhanced Non-Singleton Fuzzy Logic Controllers for Long-Term Navigation of Quadrotor
UAVs. IEEE/ASME Transactions on Mechatronics 23(2), 725–734 (2018)

23. C. Fu, R. Duan, E. Kayacan, Visual tracking with online structural similarity-based weighted
multiple instance learning. Information Sciences 481(1), 292–310 (2019)

24. J. Fontaine, A. Germain, Model-based neural networks. Computers & Chemical Engineering
25(7), 1045–1054 (2001)

25. D. Chen, S. Li, Q.Wu, X. Luo, Super-twisting ZNN for coordinated motion control of multiple
robot manipulators with external disturbances suppression. Neurocomputing 371(1), 78–90
(2020)

26. Dechao Chen, Shuai Li, “A recurrent neural network applied to optimal motion control of
mobile robots with physical constraints,” Applied Soft Computing, to be published, 2019,
https://doi.org/10.1016/j.asoc.2019.105880.

27. S. Li, Y. Zhang, L. Jin, Kinematic Control of Redundant Manipulators Using Neural Networks.
IEEE Transactions on Neural Networks and Learning Systems 28(10), 2243–2254 (2017)

28. Z. Xu, S. Li, X. Zhou, W. Yan, T. Cheng, D. Huang, Dynamic neural networks based kinematic
control for redundant manipulators with model uncertainties. Neurocomputing 329(1), 255–
266 (2019)

https://doi.org/10.1016/j.asoc.2019.105880.


References 81

29. Y. Zhang, S. Chen, S. Li, Z. Zhang, Adaptive Projection Neural Network for Kinematic Con-
trol of Redundant Manipulators With Unknown Physical Parameters. IEEE Transactions on
Industrial Electronics 65(6), 4909–4920 (2018)

30. Y. Li, S. Li, B. Hannaford, A Model based Recurrent Neural Network with Randomness for
Efficient Control with Applications. IEEE Transactions on Industrial Informatics 15(4), 2054–
2063 (2019)

31. Z. Xu, S. Li, X. Zhou, W. Yan, T. Cheng, H. Dan, “Dynamic Neural Networks for Motion-
Force Control of Redundant Manipulators: An Optimization Perspective”, IEEE transactions
on industrial electronics. Early access (2020). https://doi.org/10.1109/TIE.2020.2970635

32. X. Li, Z. Xu, S. Li, H. Wu, X, Zhou, “Cooperative Kinematic Control For Multiple Redundant
Manipulators Under Partially Known Information Using Recurrent Neural Network”. IEEE
Access 8(1), 40029–40038 (2020)

33. F. Cheng, T. Chen, Y. Wang and Y. Sun, “Obstacle avoidance for redundant manipulators using
the compact QP method,” IEEE International Conference on Robotics and Automation, pp.
41-50, 1993

34. Y. Zhang, J. Wang, “Obstacle avoidance for kinematically redundant manipulators using a dual
neural network,” IEEE Transactions on Systems, Man, and Cybernetics. Part B (Cybernetics)
34(1), 752–759 (2004)

35. D. Guo, Y. Zhang, “A New Inequality-Based Obstacle-AvoidanceMVN Scheme and Its Appli-
cation to Redundant Robot Manipulators,” IEEE Transactions on Systems, Man, and Cyber-
netics. Part C (Applications and Reviews) 42(6), 1326–1340 (2012)

36. Z. Xu, S. Li, X. Zhou, T. Cheng, Dynamic Neural Networks Based Adaptive Admittance
Control for Redundant Manipulators withModel Uncertainties. Neurocomputing 357(1), 271–
281 (2019)

37. Slotine and W. Li, “Applied Nonlinear Control,” China Machine Press, Beijing, China, 2004

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/TIE.2020.2970635
http://creativecommons.org/licenses/by/4.0/

	4 Deep RNN Based Obstacle Avoidance Control for Redundant Manipulators
	4.1 Introduction
	4.2 Problem Formulation
	4.2.1 Basic Description
	4.2.2 Reformulation of Inequality in Speed Level
	4.2.3 QP Type Problem Description

	4.3 Deep RNN Based Solver Design
	4.3.1 Deep RNN Design
	4.3.2 Stability Analysis

	4.4 Numerical Results
	4.4.1 Simulation Setup
	4.4.2 Single Obstacle Avoidance
	4.4.3 Discussion on Class-K Functions
	4.4.4 Multiple Obstacles Avoidance
	4.4.5 Enveloping Shape Obstacles
	4.4.6 Comparisons

	4.5 Summary
	References




