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Abstract We revisit a generic compiler from a two-party key exchange (KE) pro-
tocol to a group KE (GKE) one by Just and Vaudenay. We then give two families of
GKE protocols from static assumptions, which are obtained from the general com-
piler. The first family of the GKE protocols is a constant-round GKE by using secure
key derivation functions (KDFs). As special cases, we have such GKE from static
Ring-LWE (R-LWE), where “static” means that the parameter size in the R-LWE
does not depend on the number of group members, n, and also from the standard
SI-DDH and CSI-DDH assumptions. The second family consists of two-round GKE
protocols from isogenies, which are proven secure from new isogeny assumptions,
the first (resp. second) of which is based on the SIDH (resp.CSIDH) two-party KE.
The underlying new static assumptions are based on indistinguishability between a
product value of supersingular invariants and a random value.

Keywords Post-quantum cryptography · Constant-round group key exchange ·
Static assumptions · Lattice-based cryptography · Isogeny-based cryptography

1 Introduction

1.1 Background

It is well known that widely deployed cryptographic schemes (e.g., RSA and ECC)
can be broken by using a large-scale quantum computer (Shor 1997). Hence, we
should develop new cryptosystems based on quantum-resistant mathematical prob-
lems (called post-quantum cryptography (PQC)).

Group key exchange (GKE) is an important cryptographic primitive, and has been
studied for a long time (since the seminal two-party Diffie–Hellman key exchange).
InGKE, the number of rounds is a crucial measure for evaluating the efficiency and to
obtain a constant-round GKE protocol is considered as a minimum desirable require-
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ment. Traditionally, the Burmester and Desmedt (BD) KE protocol (Burmester and
Desmedt 1994) has been widely known from its simplicity and small round complex-
ity, just two rounds. Subsequently, Just and Vaudenay (JV) (1996) generalized the
BD construction in which any two-party KE can be used for obtaining GKE. How-
ever, their description was sketchy and a rigorous security proof was not presented
before (see Boyd and Mathuria 2003 also).

In the post-quantum setting, there exist two variants BD-type GKE protocols from
lattices (Apon et al. 2019) and isogenies (Furukawa et al. 2018).1 Apon et al. (2019)
proposed a lattice-based BD-type GKE from the Ring-LWE (R-LWE) assumption
(in the random oracle model), in which the authors elaborately adjusted the original
security proof to their new post-quantum setting. However, since the underlying
R-LWEassumption depends on the number of groupmembers, n, the size of data also
gets large depending on n. Furukawa et al. (2018) proposed an isogeny-based BD-
type GKE protocol called SIBD. However, the security proof of SIBD (Theorem 4 in
Furukawa et al. 2018) is imperfect, and several points remain unclear, for example,
on how to simulate some public variables. Applying the JV-type compiler to a post-
quantum two-party KE is also considered as a reasonable approach, however, we
should give a rigorous treatment on its (post-quantum) security proof.

As a result, we lack a post-quantum constant-round GKE protocol with a rigorous
and reasonable security proof. We next consider what are reasonable underlying
assumptions. The size of a problem instance in the above R-LWE setting is linear in
the number of group members, n. Traditionally, in pairing-based cryptography, such
linear-sized assumptions are called “non-static”, “dynamic”, or “q-type”, which are
not desirable from efficiency and security viewpoints. And, in a line of researches,
we succeeded to replace q-type ones to static ones (e.g., Kowalczyk and Wee 2019;
Okamoto and Takashima 2010; Takashima 2014) in paring cryptography. Hence, we
have the following problem as our target:

Can we obtain (provably secure) post-quantum constant-round group key
exchange from static assumptions ?

Recent cryptography research also considers tight security reduction (from a static
assumption). In fact, the original BD GKE is proven tightly secure from the standard
DDH assumption (Theorem6). For obtaining tight security proof, it is not enough
to employ a general form of the JV-type transformation which includes a general
KDF function to a cyclic group G (denoted KDFG). We need a construction without
using (general) KDFG functions for tight security since KDFG breaks mathematical
structures in the underlying two-party KE.

1Boneh et al. (2018) recently proposed a one-round GKE from isogenies. However, it has a crucial
mathematical difficulty so that it cannot be realized yet.
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1.2 Our Contributions

We revisit previous post-quantum BD-type GKE schemes (Apon et al. 2019;
Furukawa et al. 2018 and the JV compiler for GKE Boyd and Mathuria 2003; Just
and Vaudenay 1996, and reformulate them under a provably secure generic compiler.
We have two families of GKE protocols from static assumptions.

Thefirst family ofGKEprotocols obtained from the general compiler is a constant-
roundGKE (from a two-party KE protocol) by using a secure KDFG (Theorem3). As
special cases, we have such GKE from static Ring-LWE (R-LWE), where “static”
means that the parameter size in the R-LWE does not depend on the number of
groupmembers,n (Corollary1) and the standardSI-DDHandCSI-DDHassumptions
(Corollary2). The first family has a limitation that they cannot have a tight security
proof since a general KDFG is used.

The second family consists of two-round GKE protocols, which are proven secure
from new isogeny assumptions, the first (resp. second) of which is based on the SIDH
(resp.CSIDH) KE (Theorem4 (resp.Theorem5)). They are called SI-PBD and CSI-
PBD GKEs, respectively. The underlying new static assumptions are obtained from
indistinguishability between a random product value of supersingular invariants and
a random value (in some appropriate finite field), which seem to have independent
interests. They are called DSJP (Decisional Supersingular j-invariants Product) and
DSMP (Decisional Supersingular Montgomery coefficients Product) assumptions,
respectively. As the second family needs no KDFG’s, it may have some merits for
approaching to tightly secure GKE. (However, we do not yet succeed it.)

Note that we have the Katz–Yung (KY) generic compiler from KE to authenti-
cated KE (AKE) (Katz and Yung 2007), in which a signature scheme is required.
Very interestingly, the first practical isogeny-based signature scheme, CSI-FiSh, was
recently proposed (Beullens et al. 2019). Therefore, we have a practical authenticated
GKE (AGKE) by applying the KY compiler to our isogeny-based GKE and CSI-
FiSh, both of which are post-quantum from isogenies. (Refer to Bernstein et al.
2019; Peikert 2019 for recent estimates on post-quantum security of CSIDH and
CSI-FiSh.) Since we have several lattice-based signatures, e.g., Ducas et al. (2018),
Fouque et al. (2017), Akleylek et al. (2017), we also have lattice-based AGKE from
our lattice GKE.

1.3 Key Techniques

Hereafter, the user indices are taken in a cycle: for example, hn+1 := h1 and h0 := hn .
We first review the BD GKE protocol briefly. It is defined on a cyclic group G of a
prime order q and a generator g ∈ G as follows:

Round-1. Each user i generates ai ←R Z/qZ, hi := gai and broadcasts hi .
Round-2. Each user i calculates Ji−1,i := (hi−1)

ai , Ji,i+1 := (hi+1)
ai and ui :=

Ji,i+1 · J−1
i−1,i . User i broadcasts ui .

KeyComp. User i calculates Ki := J n
i−1,i · un−1

i · un−2
i+1 · · · ui−2. Then, K := Ki =

J1,2 · J2,3 · · · Jn,1 is the shared key among the n users.
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In the (tight) security proof of the BD key exchange protocol from DDH on G, we
should simulate broadcast values (hi , ui )i∈[n] as well as embed the DDH challenge
element into the challenge shared key K .

The SIBD protocol (Furukawa et al. 2018) is obtained from the above BDGKE by
replacing (hi , Ji )with invariants of supersingular elliptic curves. Since the invariants
are given by elements in finite fields, we also have

ui := Ji,i+1 · J−1
i−1,i , K := Ki := J n

i−1,i · un−1
i · un−2

i+1 · · · ui−2. (1)

We revisit the JV construction (Just and Vaudenay 1996), whose original descrip-
tion was sketchy and the security proof was not given there. Hence, we first give a
security proof for JV carefully. Based on the proof, we present our isogeny-based
GKE from newly proposed assumptions. Then, as is shown in the proof of Theo-
rem3, if Ji−1,i ’s are uniformly and independently distributed in G, the n elements
K , u1, . . . , ui−1, ui+1, . . . , un are also uniformly and independently distributed in
G for i ∈ [n] (and ui is given as ui = (u1 · · · ui−1 · ui+1 · · · un)−1). It means that
if Ji−1,i ’s are distributed uniformly and independently, the target shared key K is
changed to a random one just by using an information-theoretic game transforma-
tion. This is a key lemma on the BD-type encoding (Lemma6).

However, for the SIBD protocol (Furukawa et al. 2018), since Ji−1,i are given by
supersingular j-invariants, we have an efficient algorithm for distinguishing between
Ji−1,i and a uniformly random element in the finite field (see Sutherland 2012).
Hence, for fixing the situation, we introduce new decisional assumptions called d-
DSJP and d-DSMPones. For simplicity, herewe just show the 2-DSJP assumption, in
which a product of two j-invariants, J (1)

i−1,i and J (2)
i−1,i , that is, J

(1)
i−1,i · J (2)

i−1,i , should be
indistinguishable from a uniformly random variable. At present, we have no efficient
algorithm for the problems, and considered them as plausible assumptions.

According to the above ideas, in Sect. 4.1, we give a JV-type generic transforma-
tion from KE to GKE based on the BD-type encoding of (ui ) and K from (Ji−1,i )

given in Eq. (1). We then consider the following two approaches for obtaining uni-
formly random Ji−1,i ’s:

1. Using a secure KDFG function ϕ to obtain random Ji−1,i := ϕ(κi−1,i ) where
κi−1,i ’s are shared keys by secure two-party KE: By this approach, we obtain a
new GKE from the “static” R-LWE assumption (Sect. 4.2). We also obtain new
GKE protocols from SI-DDH and CSI-DDH assumptions.

2. Using new assumptions on supersingular invariants: By using new DSJP and
DSMP assumptions, the local outputs, (Ji−1,i ) and (Mi−1,i ), from two-party key
exchange can be computationally changed to random ones, and we obtain new
GKE from these post-quantum assumptions (Sects. 4.3 and 4.4) without KDFG.

1.4 Organization

In Sect. 2, we introduce several preliminary facts: definition of group key exchange,
supersingular invariants andunderlying assumptions for SIDHandCSIDH. InSect. 3,
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our new assumptions on supersingular invariants are presented. In Sect. 4, we propose
new PQ GKE, i.e., lattice-based and isogeny-based GKE from static assumptions.

Notations. When A is a set (resp. a random variable), y ←R A denotes that y
is uniformly generated from A (resp. randomly generated from A according to its
distribution).We denote the finite field of order q by Fq . We denote the set {1, . . . , n}
by [n].

2 Preliminaries

2.1 Group Key Exchange

We give definitions of group key exchange, its correctness and security.

Definition 1 (GroupKeyExchange (GKE))An algorithm� := �r,n(λ) is called as a
r -round n-party key exchange protocol if it is composed of probabilistic polynomial-
time algorithms (Setup, (Round-r ′)rr ′=1,KeyComp), where Setup takes a security
parameter λ as input, and outputs public parameters params�, Round-r

′ for each
user i takes previous all public variables and his/her own secrets and outputs (broad-
casts) the r ′th his/her public values, and KeyComp for each user i takes all public
variables and his/her own secrets and outputs the shared secret value Ki .

We call � is correct if all (shared) keys K1, . . . , Kn are the same values, i.e.,
K := K1 = · · · = Kn . The key space (or key set) is denoted by K := K(λ) whose
cardinality #K is exponentially large in λ (or has enough entropy).

For a GKE protocol �, we let Exec�(λ) denote an execution of the protocol,
resulting in a transcript � of all messages sent during the course of that execution,
along with the shared key K computed by the parties. We let Adv�

A (λ) denote the
advantage of a polynomial-time quantum adversary A in distinguishing between the
following two distribution ensembles:

{ (�, K ) : (�, K ) ←R Exec�(λ) }λ∈N and

{ (�, K ′) : (�, K ) ←R Exec�(λ), K ′ ←R K }λ∈N.

Protocol� is post-quantumly secure ifAdv�
A (λ) is negligible inλ for anypolynomial-

time quantum A .

2.2 SIDH and CSIDH Key Exchange

In this section, we introduce two efficient Diffie–Hellman-type key exchange pro-
tocols using isogenies of supersingular elliptic curves: SIDH (Feo et al. 2014) and
CSIDH (Castryck et al. 2018).
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2.2.1 Supersingular Isogenies and Invariants

We summarize facts about elliptic curves. For details, see Washington (2008), for
example.

Let p be a prime greater than 3 and Fp be the finite field with p elements. Let Fp

be its algebraic closure. Here, an elliptic curve E overFp is given by theMontgomery
normal form

E : δy2 = x3 + mx2 + x (2)

for m and δ ∈ Fp, where the discriminant of the RHS of Eq. (2) and δ are nonzero.
We denote the point at infinity on E by OE . Elliptic curves are endowed with a
unique algebraic group structure, with OE as a neutral element. The j-invariant and
Montgomery coefficient of E are given as j (E) := 256(m2−3)3

m2−4 , m(E) := m. Two

elliptic curves over Fp are isomorphic if and only if they have the same j-invariant.
For j ∈ Fp, E( j) denotes an elliptic curve whose j-invariant is j . For N ∈ Z>0, the
N -torsion points is E[N ] := {P ∈ E(Fp) | N P = OE }.

Given two elliptic curves E and E ′ over Fp, a homomorphism φ : E → E ′ is
a morphism of algebraic curves that sends OE to OE ′ . A nonzero homomorphism
is called an isogeny, and a separable isogeny with the cardinality 	 of the kernel is
called 	-isogeny. We consider only separable isogenies in this paper. We compute
the 	-isogeny by using Vélu’s formulas (Vélu 1971) for a small prime 	 = 2, 3, . . ..
For explicit formulas, see Jao et al. (2017) for SIDH and see Castryck et al. (2018)
for CSIDH.

An elliptic curve E over Fp is called supersingular if there are no points of order
p, i.e., E[p] = {OE }. The j-invariants of supersingular elliptic curves lie in Fp2 . We
define two sets as below, for SI-DDH and CSI-DDH assumptions.

Jp2 := { j-invariants of supersingular elliptic curves over Fp2}, (3)

Mp := {Montgomery coefficients of supersingular elliptic curves over Fp}. (4)

2.2.2 SIDH Key Exchange and SI-DDH Assumption (Feo et al. 2014)

The detailed description of SIDH key exchange, i.e., � := SIDH, is given in
Appendix 3.1. Here, we summarize necessary facts on SIDH for later sections. Pub-
lic parameters are given as paramsSIDH := (p, E; PA, QA, PB, QB). All the mes-
sages during an execution are also given as transcript �AB := (paramsSIDH, EA,

φA(PB), φA(QB), EB, φB(PA), φB(QA)). Alice’s andBob’s shared keys, i.e., KA :=
j (EAB) and KB := j (EBA), are equal, and the value is denoted by K .

Definition 2 (Supersingular Isogeny Decision Diffie–Hellman (SI-DDH) assump-
tion Feo et al. 2014; Fujioka et al. 2018) Let (�AB, j (EAB)) ←R ExecSIDH(λ),
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where�AB := (
paramsSIDH, EA, φA(PB), φA(QB), EB, φB(PA), φB(QA)).AnSI-

DDH problem instance is given as (�AB, Jβ), where

J0 := j (EAB), J1 ←R Jp2 , (5)

β ←R {0, 1}, andJp2 is defined inEq. (3). If | Pr[A(�AB, J0) = 1] − Pr[A(�AB, J1)
= 1] | < negl(λ) holds for any polynomial-time quantum algorithm A , we say that
the SI-DDH assumption holds.

Theorem 1 (Feo et al. 2014) The SIDH key exchange is post-quantumly secure
under the SI-DDH assumption.

2.2.3 CSIDH Key Exchange and CSI-DDH Assumption
(Castryck et al. 2018)

The detailed description of CSIDH key exchange, i.e., � := CSIDH, is given in
Appendix 3.2. Here, we summarize necessary facts on CSIDH. Public parameters
are given as params := (p, E). All the messages during a execution are also given
as transcript �AB := (paramsCSIDH, [a]E, [b]E). Alice’s and Bob’s shared keys,
i.e., KA := m([a][b]E) and KB := m([b][a]E), are equal, and the value is denoted
by K .

Definition 3 (Commutative Supersingular IsogenyDecisionalDiffie–Hellman (CSI-
DDH) assumption) Let (�AB,m([a][b]E)) ←R ExecCSIDH(λ) where �AB :=(
paramsCSIDH, [a]E, [b]E)

. A CSI-DDH problem instance is given as (�AB, Mβ),
where

M0 := m([a][b]E), M1 ←R Mp,

β ←R {0, 1}, and Mp is defined in Eq. (4). If | Pr[A(�AB, M0) = 1] − Pr[A(�AB,

M1) = 1] | < negl(λ) holds for any polynomial-time quantum algorithm A , we say
that the CSI-DDH assumption holds.

Theorem 2 (Castryck et al. 2018) The CSIDH key exchange is post-quantumly
secure under the CSI-DDH assumption.

3 New Assumptions on Supersingular Invariants

3.1 New Assumptions on Supersingular j-Invariants

Definition 4 (Decisional Supersingular j-Invariants Product (d-DSJP)Assumption)

Let
(
�

(μ)

AB , j
(
E (μ)

AB

))

μ∈[d]
be transcripts of d-time executions of SIDHwith the same

paramsSIDH, where �
(μ)

AB :=
(
paramsSIDH,

(
E (μ)

A , φ
(μ)

A (PB), φ
(μ)

A (QB), E (μ)

B ,
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φ
(μ)

B (PA), φ
(μ)

B (QA)
))

and �AB :=
(
�

(μ)

AB

)

μ∈[d]
. A d-DSJP problem instance is

given as (�AB, Jβ), where

J0 := ∏d
μ=1 j

(
E (μ)

AB

)
, J1 ←R Fp2 (6)

andβ ←R {0, 1}. For any adversaryB, the advantageofB is defined asAdvd-DSJPB (λ)

:= | Pr[B(�AB, J0) = 1] − Pr[B(�AB, J1) = 1] |, and thed-DSJPassumptionholds
if Advd-DSJPB (λ) is negligible in λ for any polynomial-time quantum adversary B.2

3.1.1 Progressive Weakness Among d-DSJP Assumptions

The next lemma shows that the (d + 1)-DSJP assumption is weaker than the d-DSJP
one. In otherwords, a security proof from the (d + 1)-DSJP assumption is considered
better than that from the d-DSJP one.

Lemma 1 The d-DSJP assumption is reduced to the (d + 1)-DSJP assumption.
For any adversary A , there is a probabilistic machine B, whose running time

is essentially the same as that of A , such that for any security parameter λ,
Adv(d+1)-DSJP

A (λ) ≤ Advd-DSJPB (λ).

Proof B receives a d-DSJP tuple (�AB, Jβ), where�AB is defined as in Definition4.

Jβ is
∏d

μ=1 j
(
E (μ)

AB

)
when β = 0 or a random element in Fp2 when β = 1. B gener-

ates a newSIDHpublic key pair
(
E (d+1)

A , φ
(d+1)
A (PB), φ

(d+1)
A (QB)

)
,
(
E (d+1)

B , φ
(d+1)
B

(PA), φ
(d+1)
B (QA)

)
and SIDH shared key j

(
E (d+1)

AB

)
, then constructs a new tuple

� ′
AB :=

(
params,

((
E (μ)
A , φ

(μ)
A (PB), φ

(μ)
A (QB)

)
,
(
E (μ)
B , φ

(μ)
B (PA), φ

(μ)
B (QA)

))

μ∈[d+1]

)
,

and J ′
β := Jβ · j

(
E (d+1)

AB

)
.B gives a (d + 1)-DSJP tuple (� ′

AB, J ′
β) toA , and outputs

β ′ when A outputs β ′. �

In fact, we show the 1-DSJP problem is efficiently solved (Lemma2 in Sect. 3.1.2)
and the 2-DSJP problem has a specific approach for solving it via modular polyno-
mials (Sect. 3.1.3).

3.1.2 Case d = 1: Relation Between SI-DDH and 1-DSJP Assumptions

While the value of J0 for SI-DDH in Eq. (5) is the same as that of the 1-DSJP
assumption in Eq. (6), the other J1’s in the two assumptions are distributed in different

2Its “sum” version (instead of “product”), Decisional Supersingular j-invariants Sum (d-DSJS)
assumption, seems to be reasonable for d ≥ 2, and can be used in security proofs for the “sum”
version SI-SBD GKE scheme of SI-PBD GKE in Sect. 4.3. This footnote comment is also applied
to the d-DSMP assumption and CSI-PBD GKE in Sect. 4.4 in a similar manner.
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manners. Namely, the first (resp. the second) is the uniform distribution over Jp2(�

Fp2) (resp.Fp2 ). As is shown below, the difference is important.

Lemma 2 The 1-DSJP problem can be solved in (deterministic) polynomial time
except with a negligible error probability.

Proof In the 1-DSJP problem, J0 (resp. J1) is uniformly distributed in Jp2 (resp.Fp2 ).
Therefore, by applying supersingular identifying algorithm, e.g., Sutherland (2012),
we can solve the problem. �

From the above fact, the direct assumption, decisional (1, 1)-SI-PBD assumption
in Definition6 picks up the target key κ1 (β = 1 instance) from a uniform distribution
in Jp2 instead of Fp2 .

3.1.3 Case d = 2: An Approach for 2-DSJP via Modular Polynomials

Lemma1 shows the 2-DSJP assumption is the strongest among the d-DSJP assump-
tions for d ≥ 2. In fact, we have some possible approaches for solving the problem
as indicated below. But, the attack is not yet effective at present.

Here, we introducemodular polynomials�N (X,Y ) := ∑
cik XiY k , which satisfy

that �N ( j, j ′) = 0 for two j-invariants j and j ′ such that there exists an N -isogeny
between the associated elliptic curves E( j) and E( j ′). From the above defining
property, it holds that�N (X,Y ) are symmetric polynomials w.r.t. X and Y . Hence, if
we set S := X + Y and T := XY ,�N (X,Y ) are given as�N (X,Y ) = �N (S, T ) :=∑

γik Si T k for a two-variable polynomial �N .
The output J0 of the 2-DSJP problem is given by the product of two supersingular

j-invariants, i.e., τ := j
(
E (1)

)
j
(
E (2)

)
. We substitute T := τ into�N (S, T ), which

we obtain a one-variable polynomial equation�N (S, τ ) = 0. If E (1) and E (2) are N -
isogenous, then σ := j

(
E (1)

) + j
(
E (2)

)
satisfies the equation, i.e., �N (σ, τ ) = 0.

Based on this fact, we obtain a possible cryptanalysis for the 2-DSJP problem
given as below. The input of the algorithm is a 2-DSJP instance (�AB, Jβ).

1. Set a set of (small) integers I := {N1, . . . , Nt }.
2. For each N ∈ I, solve a one-variable polynomial equation ξN (S) := �N (S, Jβ) =

0, and the set of zero points of ξN in Fp2 is denoted by Z ⊂ Fp2 .
For each z ∈ Z , solve the quadratic equation W 2 − zW + Jβ = 0.

a. If the roots w1 /∈ Fp2 or w2 /∈ Fp2 , quit this loop.
b. Check whether both of w1 and w2 are supersingular j-invariants or not. If

yes, output β ′ := 0.

3. Output β ′ := 1.

The degree of isogenous curves E (1) and E (2) above is usually large, therefore, if
the security parameter λ is set large, the attack is ineffective. But, the above scenario
shows some possible approach to this problem using a specific property on modular
polynomials when d = 2.
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3.2 New Assumptions on Supersingular Montgomery
Coefficients

Definition 5 (Decisional Supersingular Montgomery Coefficients Product

(d-DSMP) Assumption) Let
(
�

(μ)

AB ,m
(
E (μ)

AB

))

μ∈[d]
be transcripts of d-time exe-

cutions of CSIDH with the same paramsCSIDH, where �
(μ)

AB := (
paramsCSIDH,(

E (μ)

A , E (μ)

B

))
and �AB :=

(
�

(μ)

AB

)

μ∈[d]
, where E (μ)

A := [
a(μ)

]
E, E (μ)

B := [
b(μ)

]
E

and E (μ)

AB := [
a(μ)

] [
b(μ)

]
E . A d-DSMP problem instance is given as (�AB, Mβ),

where

M0 := ∏d
μ=1 m

(
E (μ)

AB

)
, M1 ←R Fp,

and β ←R {0, 1}. For any adversary B, the advantage of B is defined as Advd-DSMP
B

(λ) := | Pr[B(�AB, M0) = 1] − Pr[B(�AB, M1) = 1] |, and the d-DSMP assump-
tion holds if Advd-DSMP

B (λ) is negligible in λ for any polynomial-time quantum
adversary B.

For the DSMP assumptions, we have similar results for the DSJP. In particular,
we have the following lemmas.

Lemma 3 The d-DSMP assumption is reduced to the (d + 1)-DSMP assumption.

Lemma 4 The 1-DSMP problem can be solved in (deterministic) polynomial time
except with a negligible error probability.

4 Proposed Post-Quantum Group Key Exchange (GKE)

4.1 A Generic JV-Type Compiler for GKE from Two-Party
KE (Just and Vaudenay 1996)

We describe a generic BD-type GKE compiler from a two-party KE protocol �, and
the obtained GKE protocol is denoted as �BD. Such a generic compiler was first
proposed by Just and Vaudenay (1996), Boyd and Mathuria (2003), but, no formal
proof was attached yet. By describing the security proof carefully, we also give a
security proof for our proposal in Sects. 4.3 and 4.4, and we found a condition for the
compiler to work correctly. The number of group members is assumed to be n ≥ 3.
Assume that we have two-party key exchange � with shared keyspace K. We need a
map ϕ : K → G (called G-embedding map), where G is a cyclic group of order q in
the BD-type Encoding (BDEnc) as indicated below. We assume that gcd(n, q) = 1
for the number of group members n and the cyclic group order q. (Note that we do
not assume the intractability of discrete log in G.)

Exec-�. Each user i runs the protocol � with users i − 1 and i + 1, respectively,
and obtains keys κi−1,i and κi,i+1.
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BDEnc. User i sets Ji−1,i := ϕ(κi−1,i ) and Ji,i+1 := ϕ(κi,i+1), and broadcasts
ui := Ji,i+1 · J−1

i−1,i ∈ G.
KeyComp. User i calculates Ki := J n

i−1,i · un−1
i · un−2

i+1 · · · ui−2. Then, K := Ki =
J1,2 · J2,3 · · · Jn,1 is the shared key among the n users.

The correctness is shown as the same as the original BD key exchange. The security
depends on the map ϕ. Below, we show that it is proven secure assuming that ϕ is
a secure KDF (see Appendix 2 for its definition) and the underlying protocol � is
secure.

Theorem 3 The GKE protocol �BD is (post-quantumly) secure if � is (post-
quantumly) secure, ϕ is a (post-quantumly) secure KDF and gcd(n, q) = 1 where q
is the order of G.

For any (quantum) adversary A , there exist (quantum) machines Bl and Cl ,
whose running times are essentially the same as that of A , such that Adv�BD

A (λ) ≤
∑

l∈[2n]
(
Adv�

Bl
(λ) + AdvKDFCl

(λ)
)

+ ε(λ), where ε(λ) is a negligible function in λ.

Proof The view of A consists of (u1, . . . , un, K ). To prove Theorem3, we consider
the following 2n + 2 games. An underlined part indicates a variable that is changed
in a game from the previous one.

Game 0: Original game, which is the same as the first case in Definition1. The
values of Ji−1,i , ui , K are given as Ji−1,i := ϕ(κi−1,i ),

ui := Ji,i+1 · J−1
i−1,i for i ∈ [n], K := J1,2 · J2,3 · · · Jn−1,n · Jn,1, (7)

where κi−1,i is a shared key by running � between users i − 1 and i .

Game l (l ∈ [n]): The lth output of ϕ is Jl−1,l ←R G (for both of users l − 1 and
l), all the other Ji−1,i ’s for i 	= l are generated as in Game l − 1, and the view of A ,
i.e., (u1, . . . , un, K ), are generated as in Eq. (7) from all the Ji−1,i ’s for i ∈ [n].
Game n + 1: Same as Game n except that the shared key is K ←R G, and all the
other variables are generated as in Game n. Note that K is independent of all the
other variables.

Game n + 1 + l (l ∈ [n]): The lth output of ϕ is Jl−1,l := ϕ(κl−1,l) (for both of
users l − 1 and l), all the other Ji−1,i ’s for i 	= l are generated as in Game n + l, and
(u1, . . . , un) are generated as in Eq. (7) from all the Ji−1,i ’s for i ∈ [n] and K ←R G.
Here, note that Game 2n + 1 is the same as the second case in Definition1.

Let Adv(l)
A (λ) be the advantage of A in Game l, respectively.

We will show three lemmas (Lemmas5–7) that evaluate the gaps between pairs of
the advantages in Game 0, . . ., Game 2n + 1. From these lemmas,

weobtainAdv�BD

A (λ) ≤ ∑
l∈[2n+1]

∣∣∣Adv(l−1)
A (λ) − Adv(l)

A (λ)

∣∣∣ ≤ ∑
l∈[2n]

(
Adv�

Bl
(λ)+

AdvKDFCl
(λ)

)
+ε(λ) where ε(λ) := ∑

l∈[2n] εl(λ) is a negligible function. This com-

pletes the proof of Theorem3. �
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Lemma 5 For any (quantum) adversary A , there exist (quantum) machines Bl and
Cl , whose running times are essentially the sameas that ofA , such that |Adv(l−1)

A (λ) −
Adv(l)

A (λ)| ≤ Adv�
Bl

(λ) + AdvKDFCl
(λ) + εl(λ) for l ∈ [n], where εl(λ) are negligible

functions.

Proof For the proof, we define an intermediate game, i.e., Game l − 1/2, between
Games l − 1 and l. In Game l − 1/2, κl−1,l ←R K and Jl−1,l := ϕ(κl−1,l), and the
rest of variables are all generated in the same manner as in Game l − 1.

By the definition of two-partyKE, the difference of the advantages of Games l − 1
and l − 1/2 is bounded by the advantage against the KE protocol �, i.e., Adv�

Bl
(λ)

(except with negligible probability). Since the keyspace K has enough entropy, by
the definition of KDF, the difference of the advantages of Games l − 1/2 and l is
bounded by the advantage against KDF, i.e., AdvKDFCl

(λ) (except with negligible
probability). This completes the proof of Lemma5. �

Lemma 6 (BDEnc Information-Theoretic Security) For any (quantum) adversary
A , for any security parameter λ, Adv(n+1)

A (λ) = Adv(n)
A (λ).

Proof We can set Ji−1,i := gαi−1 for i ∈ [n], where g ∈ G is a generator and
αi ←R Z/qZ (which are independent fromeach other). Then, ui := Ji,i+1 · J−1

i−1,i =
gαi−αi−1 . First, we see that n elements ( α1, α2 − α1, α3 − α2, . . . , αn − αn−1 )

are uniformly and independently distributed. Since α1 + · · · + αn = nα1 + (n −
1)(α2 − α1) + (n − 2)(α3 − α2) + · · · + (αn − αn−1) and n mod q has an inverse
element (from the assumption gcd(n, q) = 1), n elements ( α1 + · · · + αn, α2 −
α1, α3 − α2, . . . , αn − αn−1 ) are also uniformly and independently distributed.
Since K = gα1+···+αn , K is independent of all the other variables, i.e., hi , ui . This
completes the proof of Lemma6. �

Lemma 7 For any (quantum) adversary A , there exists (quantum) machines Bn+l

and Cn+l , whose running times are essentially the same as that of A , such that for any
security parameter λ, |Adv(n+l)

A (λ) − Adv(n+l+1)
A (λ)| ≤ Adv�

Bn+l
(λ) + AdvKDFCn+l

(λ) +
εn+l(λ) for l ∈ [n], where εn+l(λ) are negligible functions.

Lemma7 is proven in a similar manner to Lemma5.

4.2 Constant-Round GKE from Static Standard Assumptions

We instantiate the above generic GKE by Apon et al.’s ring LWE based GKE (Apon
et al. 2019) by using a two-party KE � and some SHA-2 (or SHA-3) based KDF
ϕ, whose range is G := F

∗ for some finite field F. Therefore, we have the following
corollary.

Corollary 1 There exists a post-quantum constant-round GKE from two-party KE
� in Apon et al. (2019) and some standard KDF function ϕ under the static ring
LWE assumption.
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Apon et al.’s original GKE is based on the “non-static” or “dynamic” R-LWE
assumption. That is, the noise size depends on the number of group members n, then
the scheme itself gets to large sizes.

Corollary 2 There exists a post-quantum constant-round GKE from two-party
KE SIDH (resp.CSIDH) and some standard KDF function ϕ under the SI-DDH
(resp.CSI-DDH) assumption.

4.3 Two-Round Product-BD (PBD) GKE from d-DSJP
Assumption

We modify the SIBD Group Key Exchange proposed in Furukawa et al. (2018) to
a provably secure one, called Supersingular Isogeny Product-BD ((n, d)-SI-PBD)
protocol for n-parties. In other words, our general (n, d)-SI-PBDprotocol is obtained
via our generic compiler (in Sect. 4.1) from two-party (2, d)-SI-PBD protocol, where
a G-embedding map ϕ is given by the identity map ϕ := idG : G → G.

4.3.1 Construction

We consider n-party key exchange. Each user is indexed by 1, 2, . . . , n, where n
is supposed to be even for simplicity. Note that we can easily obtain the protocol
for odd n. The user indices are taken in a cycle: so Rn+1 := R1 and R0 := Rn . We
introduce the map ι(i) := i mod 2 and we will simply write ι instead of writing ι(i).

Setup. Takes a security parameter λ and the number of users n. The algorithm
outputs paramsSIDH := (p(= f 	e00 	

e1
1 ± 1), E, {P0, Q0}, {P1, Q1}) for SIDH.

Round-1. Takes the user index i and params as input. User i randomly chooses
k(μ)

i ∈ Z/	eι
ι Z and computes R(μ)

i := Pι + k(μ)

i Qι. User i then computes the
isogeny φ

(μ)

i and elliptic curve E (μ)

i := E/〈R(μ)

i 〉 such that φ
(μ)

i : E → E (μ)

i ,

where ker(φ(μ)

i )=〈R(μ)

i 〉. The user i then sets pk1i =
(
E (μ)

i , φ
(μ)

i (P1−ι),

φ
(μ)

i (Q1−ι)
)

μ∈[d]
and sk1i :=

(
k(μ)

i

)

μ∈[d]
. Finally, the user i broadcasts pk1i to

the other users.
Round-2. Takes the user index i,paramsSIDH,

(
pk1i−1,pk

1
i+1

)
, and sk1i . User i

executes SIDH key exchange with users i − 1 and i + 1 to obtain elliptic curves
E (μ)

i−1,i and E (μ)

i,i+1, respectively, and then computes

Ji−1,i := ∏d
μ=1 j

(
E (μ)

i−1,i

)
and Ji,i+1 := ∏d

μ=1 j
(
E (μ)

i,i+1

)
.

The user then computes ui := Ji,i+1 · J−1
i−1,i and set pk

2
i := ui . Finally, the user i

broadcasts pk2i to the other users.
KeyComp. User i collects

(
pk2i ′

)
i ′∈[n] and sk

1
i and computes Ki := J n

i−1,i · un−1
i ·

un−2
i+1 · · · · · u2i−3 · ui−2.
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We can easily verify that Ki = J1,2 · J2,3 · · · Jn−1,n · Jn,1 holds for any i .

4.3.2 Warm-Up: Security from a Nonstatic Assumption

We rephrase security of the (n, d)-SI-PBD protocol based on Definition1 as a form
of the following assumption (see Lemma8).

Definition 6 (Decisional SI-PBD ((n,d)-SI-PBD) Assumption) Let (�n,d , K ) ←R

Exec(n,d)-SI-PBD(λ), where Ji−1,i := ∏d
μ=1 j

(
E (μ)

i−1,i

)
, Ji,i+1 := ∏d

μ=1 j
(
E (μ)

i,i+1

)
,

ui := Ji,i+1 · J−1
i−1,i ,�n,d :=

(
paramsSIDH,

((
E (μ)
i , φ

(μ)
i (P1−ι) , φ

(μ)
i (Q1−ι)

)
, ui

)

i∈[n],μ∈[d]

)
,

and K:=∏n
i=1 Ji,i+1. An (n, d)-SI-PBD problem instance is given as (�n,d , κβ),

where

κ0 := K , κ1 ←R Fp2 ,

and β ←R {0, 1}. For any quantum algorithm B, the advantage of B is defined as
Adv(n,d)-SI-PBD

B (λ) := | Pr[B(�n,d , κ0) = 1] − Pr[B(�n,d , κ1) = 1] |, and the (n, d)-
SI-PBD assumption holds if Adv(n,d)-SI-PBD

B (λ)is negligible in λ for any polynomial-
time quantum adversary B.

Remark 1 We have better security proofs when d ≥ 2 for the (n, d)-SI-PBD GKE
(Theorem4). However, the above gives only security proofs for the d = 1 case, which
is based on nonstatic assumptions. Note that since n ≥ 3 and the key K is a n-time
product of j-invariants, then we have no efficient distinguishing algorithm between
κ0 and κ1.

Lemma 8 The (n, d)-SI-PBD key exchange among n-parties is post-quantumly
secure under the (n, d)-SI-PBD assumption.

Proof Lemma8 is trivially obtained from Definitions1 and 6. �
If the (n, d)-SI-PBD problem is quantum resistantly hard, the SI-PBD key

exchange among n-parties is also quantum resistant. Therefore, we should investigate
the post-quantum security of the (n, d)-SI-PBD assumption in the next section.

Moreover, as is shown in Lemma1 for the d-DSJP assumptions, the family of
(n, d)-SI-PBD assumptions also has natural sequential reductions among them.

Lemma 9 The (n, d)-SI-PBD assumption is reduced to the (n, d + 1)-SI-PBD
assumption.

For any adversary A , there is a (quantum) machine B, whose running time
is essentially the same as that of A , such that for any security parameter λ,
Adv(n,d+1)-SI-PBD

A (λ) ≤ Adv(n,d)-SI-PBD
B (λ).

Proof The proof of Lemma9 is similarly given to that of Lemma1. �
Lemma9 shows that (n, d + 1)-SI-PBD group key exchange is more secure than

(n, d)-SI-PBD one while the former is less efficient than the latter in terms of data
sizes and execution times.
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4.3.3 Security from d-DSJP Assumption for d ≥ 2

Theorem 4 The (n, d)-SI-PBD key exchange among n-parties is post-quantumly
secure under the d-DSJP assumption when d ≥ 2 and gcd(n, p2 − 1) = 1. (Note
that p2 − 1 is the order of cyclic group G := F

∗
p2 .)

For any quantum adversary A , there exist quantum machines Bl , whose run-
ning times are essentially the same as that of A , such that Adv(n,d)-SI-PBD

A (λ) ≤∑
l∈[2n] Adv

d-DSJP
Bl

(λ) when d ≥ 2.

Proof The view of A consists of (u1, . . . , un, K ). To prove Theorem4, we consider
the following 2n + 2 games. An underlined part indicates a variable that is changed
in a game from the previous one.

Game 0: Original game. That is, the values of Ji−1,i , ui , K are given as Ji−1,i :=
∏d

μ=1 j
(
E (μ)

i−1,i

)
,

ui := Ji,i+1 · J−1
i−1,i for i ∈ [n], K := J1,2 · J2,3 · · · Jn−1,n · Jn,1. (8)

Game l (l ∈ [n]): The lth output of ϕ is: Jl−1,l ←R Fp2 (for both of users l − 1 and
l), all the other Ji−1,i ’s for i 	= l are generated as in Game l − 1, and the view of A ,
i.e., (u1, . . . , un, K ), are generated as in Eq. (8) from all the Ji−1,i ’s for i ∈ [n].
Game n + 1: Same as Game n except that the shared key is K ←R Fp2 , and all
the other variables are generated as in Game n. Note that K is independent of all the
other variables.

Game n + 1 + l (l ∈ [n]): The lth output ofϕ is: Jl−1,l := ∏d
μ=1 j

(
E (μ)

l−1,l

)
(for both

of users l − 1 and l), all the other Ji−1,i ’s for i 	= l are generated as in Game n + l,
(u1, . . . , un), are generated as in Eq. (8) from all the Ji−1,i ’s for i ∈ [n] and K ←R

Fp2 . Here, note that Game 2n + 1 is the same as the β = 1 case in Definition6.

Let Adv(l)
A (λ) be the advantage of A in Game i , respectively.

We will show three lemmas (Lemmas10–12) that evaluate the gaps between pairs
of the advantages in Game 0, . . ., Game 2n + 1. From these lemmas, we obtain

Adv(n,d)-SI-PBD
A (λ) ≤ ∑

l∈[2n+1]
∣∣∣Adv(l−1)

A (λ) − Adv(l)
A (λ)

∣∣∣ ≤ ∑
l∈[2n] Adv

d-DSJP
Bl

(λ).

This completes the proof of Theorem4. �

Lemma 10 For any quantumadversaryA , there exists a quantummachineBl , whose
running time is essentially the same as that ofA , such that for any security parameter
λ, |Adv(l−1)

A (λ) − Adv(l)
A (λ)| ≤ Advd-DSJPBl

(λ) for l ∈ [n].
Proof B is given a d-DSJP instance (�AB, Jβ), where

�AB :=
(
params,

((
E (μ)
A , φ

(μ)
A (PB), φ

(μ)
A (QB)

)
,
(
E (μ)
B , φ

(μ)
B (PA), φ

(μ)
B (QA)

))

μ∈[d]

)
.
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B (implicitly) sets user l − 1 A and user l B, and their public keys
(
E (μ)

l−1,

φ
(μ)

l−1(Pι), φ
(μ)

l−1(Qι)
)

μ∈[d]
:=

(
E (μ)

A , φ
(μ)

A (PB), φ
(μ)

A (QB)
)

μ∈[d]
and

(
E (μ)
l , φ

(μ)
l (Pι−1),

φ
(μ)

l (Qι−1)
)

μ∈[d]
:=

(
E (μ)

B , φ
(μ)

B (PA), φ
(μ)

B (QA)
)

μ∈[d]
, respectively.

B generates randomly Ji−1,i ←R Fp2 for i < l, and sets (l − 1)th j-invariants
product as Jl−1,l := Jβ . B generates secret keys k(μ)

i ←R Z/	eτ
τ Z for all i ∈ [n] \

{l − 1, l}where τ := i mod n, and then his/her ownpublic keys
(
E (μ)

i , φ
(μ)

i (Pτ−1),

φ
(μ)
t (Qτ−1)

)

μ∈[d]
. SinceB has all secret keys except for users l − 1, l, he can compute

all correct j-invariant products Ji−1,i for i > l.
Using Ji−1,i for i ∈ [n] as defined above, B computes ui := Ji,i+1 · J−1

i−1,i and
K := ∏

i∈[n] Ji−1,i , and then sends A the public keys, (ui )i∈[n], and the challenge
value K .

IfA outputsβ ′, thenB also outputsβ ′.We easily see that the distribution generated
by B is that in Game l − 1 when β = 0 and that in Game i when β = 1.

This completes the proof of Lemma10. �

Lemma 11 For any (quantum) adversary A , for any security parameter λ,
Adv(n+1)

A (λ) = Adv(n)
A (λ).

Proof The proof of Lemma11 is the same as that of Lemma6 (BDEnc Information
Theoretic Security Lemma). �

Lemma 12 For any quantum adversary A , there exists a quantum machine B :=
Bn+l , whose running time is essentially the same as that of A , such that for any
security parameter λ, |Adv(n+l)

A (λ) − Adv(n+l+1)
A (λ)| ≤ Advd-DSJPBn+l

(λ) for l ∈ [n].
Lemma12 is proven in a similar manner to Lemma10.

4.4 Two-Round PBD GKE from d-DSMP Assumption

Setup. Takes a security parameter λ and the number of users n. The algorithm
outputs paramsCSIDH := (p(= 4 · 	1 · · · 	s − 1), E).

Round-1. Takes the user index i and paramsCSIDH as input. User i randomly

chooses e(μ)

i :=
(
e(μ)

i,1 , . . . , e(μ)

i,s

)
and defines

[
a

(μ)

i

]
:=

[
l
e(μ)

i,1

1 · · · le
(μ)

i,s
s

]
. User i

then computes elliptic curve E (μ)

i :=
[
a

(μ)

i

]
E and sets pk1i :=

(
E (μ)

i

)

μ∈[d]
:=

([
a(μ)

]
E

)
μ∈[d] and sk1i := (

e(μ)
)
μ∈[d]. Finally, the user i broadcast pk1i to the

other users.
Round-2. Takes the user index i,paramsCSIDH,

(
pk1i−1,pk

1
i+1

)
, and sk1i . User i

executes CSIDH key exchange with users i − 1 and i + 1 to obtain elliptic curves
E (μ)

i−1,i and E (μ)

i,i+1, respectively, and then computes

Mi−1,i := ∏d
μ=1 m

(
E (μ)

i−1,i

)
and Mi,i+1 := ∏d

μ=1 m
(
E (μ)

i,i+1

)
.
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The user then computes ui := Mi,i+1 · M−1
i−1,i and set pk

2
i := ui . Finally, the user

i broadcasts pk2i to the other users.
KeyComp. User i collects

(
pk2i ′

)
i ′∈[n] and sk

1
i and computes Ki := Mn

i−1,i · un−1
i ·

un−2
i+1 · · · · · u2i−3 · ui−2.

We can easily verify that Ki = M1,2 · M2,3 · · · Mn−1,n · Mn,1 holds for any i . We
have the following lemma and theorem as in the case of the SI-PBD key exchange.
The (n, d)-CSI-PBD assumption is defined in Definition7 in Appendix 4.

Lemma 13 The (n, d)-CSI-PBD key exchange among n-parties is secure under the
(n, d)-CSI-PBD assumption.

Theorem 5 The (n, d)-CSI-PBD key exchange among n-parties is post-quantumly
secure under the d-DSMP assumption when d ≥ 2 and gcd(n, p − 1) = 1. (Note
that p − 1 is the order of cyclic group G := F

∗
p.)

For any quantum adversary A , there exist quantum machines Bi , whose running
times are essentially the same as that of A , such that for any security parameter λ,
Adv(n,d)-CSI-PBD

A (λ) ≤ ∑
i∈[2n] Adv

d-DSMP
Bi

(λ).
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Appendix 1: BD Group Key Exchange (Burmester and
Desmedt 1994)

We describe the BD Key Exchange among n users on a cyclic group G of a prime
order q and a generator g.

Round-1. Each user i generates ai ←R Z/qZ, hi := gai and broadcasts hi .
Round-2. Each user i calculates Ji−1,i := (hi−1)

ai , Ji,i+1 := (hi+1)
ai and ui :=

Ji,i+1 · J−1
i−1,i . User i broadcasts ui .

KeyComp. User i calculates Ki := J n
i−1,i · un−1

i · un−2
i+1 · · · ui−2. Then, Ki = J1,2 ·

J2,3 · · · Jn,1 is the shared key among the n users.

Theorem 6 (Burmester and Desmedt 1994; Katz and Yung 2007) The BD group key
exchange is tightly secure under the DDH assumption. For any adversary A , there
is a probabilistic machine B, whose running time is essentially the same as that of
A , such that for any security parameter λ, AdvBDA (λ) ≤ AdvDDHB (λ).

Proof DDH solver B uses an attacker A against the BD protocol. Below, we prove
the case n is even for simplicity. B receives a DDH tuple (g, ga, gb, T ) where T
is gab or gc with random c, and should simulate public information (hi , ui )i∈[n]
and the shared key K . B implicitly sets a1 := a and a2 := b, and generates random
ã2, ã3, . . . , ãn−1 ← Z/qZ. B also implicitly sets relations
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ã2 = a2 − an, ã3 = a3 − a1, . . . , ãn−2 = an−2 − an−4, ãn−1 = an−1 − an−3, (9)

which determines a3, . . . , an−1 as linear combinations of a(= a1), b(= a2), ã3, . . . ,
ãn−1, that is, a3 := a1 + ã3, . . . , an−2 := an−4 + ãn−2 = b + ã4 + · · · + ãn−2,

an−1 := an−3 + ãn−1 = a + ã3 + · · · + ãn−1, an := a2 − ã2.
Therefore, B simulates hi as follows: h1 := ga, h2 := gb, h3 := ga1+ã3 = ga ·

gã3 , h4 := ga2+ã4 = gb · gã4 , . . . , hn−2 := gb+ã4+···+ãn−2 = gb · gã4+···+ãn−2 , hn−1 :=
ga+ã3+···+ãn−1 = ga · gã3+···+ãn−1 , hn := ga2−ã2 = gb · g−ã2 , andB also simulatesui as

followsusing relations (9),ui := hãi+1
i for i = 1, . . . , n − 2,un−1 := h

−∑
i=1,3,...,n−3 ãi+1

n−1 ,

un := h
−∑

i=2,4,...,n−2 ãi+1
n , where an − an−2 = (a2 − ã2) − (a2 + ã4 + · · · + ãn−2) =

−∑
i=1,3,...,n−3 ãi+1 and a1 − an−1 = −∑

i=2,4,...,n−2 ãi+1 hold. Here, B’s simula-
tions of hi and ui are perfect.

Since the correct K = K2 is K2 = J n
1,2 · un−1

2 · un−2
3 · · · un with J1,2 = gab, B

simulates shared key K as K := T n · un−1
2 · un−2

3 · · · un where T is given in the DDH
instance and ui are calculated as above, and then B give it to A . When A answers to
the question whether K is correct or random, B answers to his problem as the same
way as A .

If T = gab, then the simulation is the same as the real game, and if T = gc, then
K is uniformly random and independently distributed from other variables. �

Appendix 2: Key Derivation Function (KDF)

Let two-party key exchange denote�with shared key spaceK. Amap ϕ : K → G is
called key derivation function (with a rangeG) if two distributions {ϕ(κ) | κ ←R K }
and { J ←R G } are indistinguishable. Such a KDF function can be obtained from a
standard hash function, e.g., SHA-2 or SHA-3. For the details, see Abe et al. (2005),
for example.

Appendix 3: SIDH and CSIDH Key Exchange

Appendix 3.1: SIDH Key Exchange (Feo et al. 2014)

A supersingular elliptic curve E and generators of smooth order rank-2 torsion sub-
groups are taken as pubic parameters. Alice and Bob set random cyclic subgroups as
secret keys, respectively, and calculate isogenies whose kernels are the secret keys
by using Vélu’s formulas. They publish their public keys, range curves of the iso-
genies, and images of the generators, respectively. Finally, they calculate isogenies
from public keys. The range curves of the isogenies are isomorphic; therefore their
j-invariants become the same. The detailed protocol is given as follows.
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Setup. Let eA, eB ∈ Z, and 	A, 	B be small primes (e.g., 2, 3), where 	
eA
A and 	

eB
B

are close. Let p be a primewhich satisfies that p = 	
eA
A 	

eB
B f ± 1where f is a small

positive integer. Let E : δy2 = x3 + αx2 + x be a supersingular elliptic curve
defined over Fp2 , where the cardinality of E(Fp2) is (	

eA
A 	

eB
B f )2. Let PA, QA be

generators of E[	eAA ], and PB, QB are generators of E[	eBB ]. Let public parameters
be paramsSIDH := (p, E, PA, QA, PB, QB).

Round-1. Alice chooses random numbers kA ∈ (Z/	
eA
A Z)×, and calculates RA =

PA + kAQA. Here, an order of RA is 	
eA
A . Alice calculates an 	

eA
A -isogenyφA : E →

EA : = E/〈RA〉 and φA(PB), φA(QB) by using Vélu formulas.
Similarly, Bob chooses random numbers kB ∈ (Z/	

eB
B Z)×, and calculates RB =

PB + kBQB . Here, an order of RB is 	
eB
B . Bob calculates an 	

eB
B -isogeny φB : E →

EB : = E/〈RB〉 and φB(PA), φB(QA) by using Vélu formulas.
Alice sends EA, φA(PB), φA(QB) to Bob, and Bob sends EB , φB(PA), φB(QA)

to Alice.
KeyComp. Alice calculates R′

A = φB(PA) + kAφB(QA). Here, an order of R′
A is

	
eA
A . Alice calculates an 	

eA
A -isogeny φ′

A : EB → EAB : = EB/〈R′
A〉 and KA =

j (EAB) by using Vélu formulas.
Bob calculates R′

B = φA(PB) + kBφA(QB). Here, an order of R′
B is 	

eB
B . Bob

calculates an 	
eB
B -isogeny φ′

B : EA → EBA : = EA/〈R′
B〉 and KB = j (EBA) by

using Vélu formulas.

It holds that ker (φ′
A ◦ φB) = φB

−1(〈R′
A〉) = 〈RA〉 ⊕ 〈RB〉 and ker (φ′

B ◦ φA) =
φA

−1(〈R′
B〉) = 〈RB〉 ⊕ 〈RA〉. Hence, KA = KB holds; therefore, SIDH is correct.

The SI-DDH assumption is defined in Definition2.

Theorem 1 (Feo et al. 2014) The SIDH key exchange is post-quantumly secure
under the SI-DDH assumption.

Appendix 3.2: CSIDH Key Exchange (Castryck et al. 2018)

CSIDH (Commutative Supersingular IsogenyDiffie–Hellman)was proposed byCas-
tryck et al. in 2018 (Castryck et al. 2018).

Let a prime p := 4 · 	1 · · · 	s − 1, where 	1, . . . , 	s are small distinct odd primes.
Let O be an order in an imaginary quadratic field, π ∈ O, πp the pth power
Frobenius endomorphism and E		p(O, π) the set of Fp-isomorphism classes of Fp-
rational supersingular elliptic curves whose Fp-endomorphism ring is equal to O
and the Frobenius πp is given by π ∈ O. For CSIDH, we only consider the case
that O ∼= Z[πp]. CSIDH is based on the action of the ideal class group cl(O) on
E		p(O, π). Alice and Bob generate random elements in cl(O) for their secret keys,
and calculate the actions on E/Fp : y2 = x3 + x . They publish the obtained elliptic
curves as public keys. Finally, they calculate their secret key actions on the pub-
lic keys, respectively. The obtained elliptic curves are isomorphic over Fp, and the
Montgomery coefficients are the same. The detailed protocol is given as follows.
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Setup. Let p be a prime as p = 4 · 	1 · · · 	s − 1, where the 	1, . . . , 	s are small
distinct odd primes. Let E be the supersingular elliptic curve y2 = x3 + x and
public parameters paramsCSIDH := (p, E).

Round-1. One randomly chooses an integer vector (e1, . . . , es) from {−η, . . . , η}s .
Define [a] = [

le11 · · · less
] ∈ cl(O), where li = (	i , πp − 1), l−1

i = (	i , πp + 1),
and η is the smallest integer which satisfies that 2η + 1 ≥ s

√
#cl(O). One cal-

culates the action of [a] on E and the Montgomery coefficient m ∈ Fp of
[a]E : y2 = x3 + mx2 + x . Let the integer vector (e1, . . . , es) (or [a]) be the secret
key, and m ∈ Fp be the public key.

KeyComp. Alice (resp.Bob) has her (resp. his) secret key, [a] (resp. [b]). Alice
calculates the action [a]EB = [a][b]E , where EB : y2 = x3 + mBx2 + x . Bob
calculates the action [b]EA = [b][a]E , where EA : y2 = x3 + mAx2 + x . Define
shared keys KA := m([a][b]E), and KB := m([b][a]E).

By commutativity of cl(O) and the uniqueness of the Montgomery coefficient, it
holds that KA = KB ; therefore, CSIDH is correct.

The CSI-DDH assumption is defined in Definition3.

Theorem 2 (Castryck et al. 2018)TheCSIDHkey exchange is post-quantumly secure
under the CSI-DDH assumption.

Appendix 4: Decisional CSI-PBD ((n, d)-CSI-PBD)
Assumption

Definition 7 (Decisional CSI-PBD ((n, d)-CSI-PBD) Assumption)

Let (�n,d , K ) ←R Exec(n,d)-CSI-PBD(λ), where Mi−1,i := ∏d
μ=1 m

(
E (μ)

i−1,i

)
,

Mi,i+1 := ∏d
μ=1 m

(
E (μ)

i,i+1

)
, ui := Mi,i+1 · M−1

i−1,i , �n,d := (
paramsCSIDH,

(
E (μ)

i , ui
)

i∈[n],μ∈[d]

)
, and K := ∏n

i=1 Mi,i+1. An (n, d)-CSI-PBDproblem instance

is given as (�n,d , κβ) where κ0 := K , κ1 ←R Fp, and β ←R {0, 1}. For any
quantum algorithm B, the advantage of B is defined as Adv(n,d)-CSI-PBD

B (λ) :=
| Pr[B(�n,d , κ0) = 1] − Pr[B(�n,d , κ1) = 1] |, and the (n, d)-CSI-PBD assumption
holds if Adv(n,d)-CSI-PBD

B (λ) is negligible in λ for any polynomial-time quantum
adversary B.
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credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
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the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	 Post-Quantum Constant-Round Group Key Exchange from Static Assumptions
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Key Techniques
	1.4 Organization

	2 Preliminaries
	2.1 Group Key Exchange
	2.2 SIDH and CSIDH Key Exchange

	3 New Assumptions on Supersingular Invariants
	3.1 New Assumptions on Supersingular j-Invariants
	3.2 New Assumptions on Supersingular Montgomery Coefficients

	4 Proposed Post-Quantum Group Key Exchange (GKE)
	4.1 A Generic JV-Type Compiler for GKE from Two-Party KE (ch18JusVau96)
	4.2 Constant-Round GKE from Static Standard Assumptions
	4.3 Two-Round Product-BD (PBD) GKE from d-DSJP Assumption
	4.4 Two-Round PBD GKE from d-DSMP Assumption

	References




