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Abstract We propose a technique to conceal data on a physical layer by disturbing
them with some random noises, and moreover, a technique to restore the concealed
data to the original ones by using the stochastic process estimation. Our concealing-
restoring system manages the data on the physical layer from the data link layer. In
addition to these proposals, we show the simulation result and some applications of
our concealing-restoring technique.
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1 Introduction

Micro-device technology in the near future realizes the remote control of micropro-
cessor chips in several things such as household electric appliances, information-
processing equipment, and even brain–computer/brain–machine interfaces from the
outside through wireless communications or the so-called IoT (i.e., Internet of
Things). Moreover, it enables the automatic operation of such things with the re-
mote control. They are going to infiltrate society and play several important roles in
every area of society. We then have to establish the data security for them (Youm
2017; Román-Castro et al. 2018; Lin et al. 2018; Clausen et al. 2017). In particular,
we have to stem the hacking of the remote control and the wiretapping of the data of
communication. We are interested in a data concealing technique with disturbance
on a physical layer and a restoring technique for those concealed data. Here, the
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physical layer is the lowest layer of the open systems interconnection (OSI) (Kain
and Agrawala 1992) (see Fig. 1). OSI is a reference model to grasp and analyze how
data are sent and received over a computation or communication network. Some
methods using disturbance have been presented to conceal data for storage and com-
munication. For instance, chaotic cryptology (Cuomo and Oppenheim 1993; Grassi
andMascolo 1999; Lenug and Lam 1997;Wu andChua 1993) uses chaos tomake the
disturbance. The method using cryptographic hash functions for the disturbance has
lately been gaining a practical position (Merkle 1979, 1989;Damgård 1989; Schneier
2015). There have been some endeavors for the concealing technique on physical lay-
ers: the chaos multiple-input multiple-output (Okamoto and Iwanami 2006; Zheng
2009; Okamoto 2011; Okamoto and Inaba 2015; Ito et al. 2019). Meanwhile, it is
noteworthy that the secured telecommunication using noises has been actively stud-
ied (Wyner 1975; Hero 2003; Goel and Negi 2008; Swindlehurst 2009; Mukherjee
and Swindlehurst 2011). In that technique, we send some noises from interference
antennas to the signal on a carrier wave sent from an antenna; we have the signal
interfering with the noises and make it an interference wave. There, however, may
be a way to remove the noises from the interference wave and to wiretap the original
signal (Ohno et al. 2012).

We take interest in how to conceal data on a physical layer using some random
noise disturbances and how to restore those concealed data applying a stochastic
filtering theory to maintain the safety of data over a proper period of time, which is
different from the interference wave method. Thus, our concealing-restoring system
should be installed on a data link layer above the physical layer (see Fig. 1). Although
we employ the disturbance by randomnoises instead of the chaotic one,we can design
our concealing-restoring system so that it includes the chaotic disturbance (Fujii
and Hirokawa 2020). The idea of the concealing-restoring system was primarily
originated in keeping security for the data processed on the physical layer of our
developing quantum-sensing equipment over a necessary period. This equipment
detects and handles some ultimate personal information. Since we must remove
several noises on the physical layer in any case, we make our concealing-restoring
system coexist with the denoising system of the equipment. We then consider the
information concealingmethod for qubits (i.e., quantumbits) using the randomnoises
in classical physics. The qubits |0〉 and |1〉 are represented by spin states |↑〉 and
|↓〉, namely, |0〉 = |↑〉 = (1, 0) and |1〉 = |↓〉 = (0, 1). A general qubit |q〉 can
be described with the superposition of the qubits |0〉 and |1〉: |q〉 = α|0〉 + β|1〉 for
some complex numbers α and β with |α|2 + |β|2 = 1. Thus, the qubit can have
the representation, |q〉 = (�α,�α,�β,�β), and an information sequence of qubits,
|q1〉, |q2〉, . . . , |qν〉, is expressed with a finite sequence,

�α1 �α1 �β1 �β1 �α2 �α2 �β2 �β2 . . . �αν �αν �βν �βν.

We transform it into an electrical signal Xt , 0 ≤ t ≤ 4ν, using linear interpolation.
We process the electrical signal in a microprocessor, made by some semiconductors,
of our quantum-sensing equipment. Since the microprocessor is for the conventional
computation (i.e., not quantum computation), we need to transport the electrical
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Fig. 1 The left picture shows that the OSI consists of 7 layers. The encryption and decryption are
usually done on one out of layers between Layer 3 and Layer 7, typically on the presentation layer.
The right picture shows what we aim our concealing-restoring system at

signal to memory or register according to a microarchitecture. To keep the security
for the electric signal Xt while processing, storing, and saving it, we employ a
mathematical idea to conceal it using thenoise disturbance. In this paper,we introduce
that mathematical idea for more general signals on the physical layer and more broad
applications.

As someapplications derive therefrom,wefirst establish amathematical technique
for concealing data by the disturbance with randomness of the noises, and moreover,
a mathematical technique for restoring the concealed data by the stochastic process
estimation. In addition to these establishments, we show the simulation result and
some applications for the two techniques. The idea of our method to conceal data
comes from an image of the scene when we conceal a treasure map, and it is so
simple as follows:

(c1) we plaster over the treasure map at random and make it messy;
(c2) we repeat c1 and plaster it over repeatedly.

In this paper, we mathematically realize c1 and c2, and make their implementation
on conventional computers. In addition to c1 and c2, we can consider that

(c3) we tear the muddled map by c1 and c2, and split it into several pieces, though
we do not make its implementation in this paper.

We are planning that we use the concealed data for saving them in memory or for
sending them for telecommunication. We expect to use our methods in the situation
where the physical layer is under restrictions in the implementation space due to a
small consumed electric power, a small arithmetic capacity, a small line capacity, and
a bad access environment. Concretely, we hope to apply the implementation of our
techniques to the remote control of drones and devices on them, and to the security
of some data sent from those devices. Moreover, we suppose the situation where it
is too harsh to make a remote maintenance of the physical layer, for example, in
outerspace development or seafloor development.
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2 Mathematical Setups

We first explain the outline of how to make our concealing-restoring system for data
Xt , t ∈ R. The concealing-restoring system is given by a simultaneous equation
system (SES). This SES consists of some stochastic differential equations (SDEs),
linear equations, and a nonlinear equation (NLE). The data Xt is input as the initial
data of the SES. We prepare N functionals Fi , i = 1, 2, . . . , N , making the SDEs.
We suppose that each form of the individual functional Fi is known only by those
who conceal the original data Xt and restore the concealed data. We use the forms of
the functionals as well as the composition of the SES for secret keys or common keys.
We prepare 2N random noises W j,i

t , j = 1, 2; i = 1, 2, . . . , N , for the SDEs, and
a nonlinear bijection f for the NLE. The SDEs for processes Xi

t , i = 1, 2, . . . , N ,
and the NLE for the process XN+1

t are used to introduce the noise disturbance in
our concealing-restoring system.We also use the means, variances, and distributions
of the random noises as well as the nonlinear bijection as secret keys. As shown
below, we obtain N + 1 concealed data, Ui

t , i = 1, 2, . . . , N , N + 1, using the
SDEs and the NLE. We use them as the data for saving in a digital memory such as
a semiconductor memory or an analog memory such as a magnetic tape. We may
also put the concealed data on a carrier wave and send them. This is the outline of
the data concealing. Meanwhile, the data restoration is done in the following. Using
the stochastic filtering theory and the inverse function f −1, we remove the random
noises from every concealed dataUi

t , and we estimate the process Xi
t . We denote the

estimate by ̂Xi
t , and call it estimated data for the process X

i
t . We regard the estimate

̂X1
t as the restoration of the original data Xt . We denote it by ̂Xt .
We here explain how to make the data Xt from binary data. We use the low/high-

signal for the binary data in this paper though there are many other ways. Thus,
we represent ‘low’ by 0 and ‘high’ by 1. For n + 1 bits, a0, a1, . . . , an ∈ {0, 1},
we concatenate them and make a word a0a1 . . . an . We employ the following linear
interpolation as a simple digital–analog (D/A) transformation. We first define Xi by

Xi =
{

+1 if ai = 1,

−1 if ai = 0,
i = 0, 1, . . . , n.

We connect Xi and Xi+1 with a straight line for each i = 0, 1, . . . , n−1, andwe have
a polygonal line Xt , 0 ≤ t ≤ n. When the data Xt are made from the binary word
a0a1 . . . an , we call Xt a binary pulse for the word a0a1 . . . an . As for the restoration
of the word, we use the simple analog–digital (A/D) transformation to seek the
character âi ∈ {0, 1} for each i = 0, 1, . . . , n, and make a word â0â1 . . . ân for
the original word a0a1 . . . an in the following. We determine a threshold in advance
between those who conceal the binary pulse and restore its concealed data to it. The
threshold is basically determined taking into account the mean and variance of the
random noises when used for concealing data. For each i = 0, 1, . . . , n, we define
the character âi by
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âi =
{

1 if ̂Xi > threshold,

0 if ̂Xi ≤ threshold.

We call the word â0â1 . . . ân restored word from ̂Xt . We note that the mean and
the variance play important roles to define a threshold between ‘low’ and ‘high’
of signals, in particular, when we use ν-adic numbers such as octal numbers and
hexadecimal numbers instead of binary numbers.

From now on, we explain mathematical details for our data concealing technique
and restoring technique. We give our secret SES by

Fi (X
i
t , Ẋ

i
t ,U

i
t ,W

1,i
t ) = 0, i = 1, 2, . . . , N , (1)

Xi+1
t = ci Xi

t + W 2,i
t , i = 1, 2, . . . , N , (2)

UN+1
t = f

(

XN+1
t

)

. (3)

In the above system, Ẋ i
t stands for the time derivative dXi

t /dt of the process Xi
t ,

and ci is a constant. The initial data X1
t is given by X1

t = Xt . The concealed data
Ui

t , i = 1, 2, . . . , N , N + 1, are directly defined by Eqs. (1) and (3), not Eq. (2).
That is, we can hide the linear part of our system because we do not have to make
an interference wave. This is the point of our method that is different from that
of telecommunication using noises (Wyner 1975; Hero 2003; Goel and Negi 2008;
Swindlehurst 2009;Mukherjee and Swindlehurst 2011). Introducing functionals,Gi ,
i = 1, 2, . . . , N , and using them for Eq. (2), we can introduce the chaotic disturbance
in our concealing-restoring system (Fujii and Hirokawa 2020).

Equations (1) and (3) are the mathematical realization of c1. The repetition of
Eq. (1) from i = 1 to i = N with the help of Eq. (2) is for the realization of c2. We
can mathematically realize c3 as follows: Take numbers r�, � = 1, 2, . . . , M , with
∑M

�=1 r� = 0, and define

U �
t = 1

M

(

Ui
t + r�U

j
t

)

, � = 1, 2, . . . , M,

where i 	= j . Then, we can split the data Ui
t into the data U �

t , � = 1, 2, . . . , M . In
the case M = 2, for instance, we generate a random number r with r 	= 0, and set
r1 and r2 as r1 = r and r2 = −r . From the split data, U �

t , � = 1, 2, . . . , M , we can
restore the data U �

t to the data Ui
t and U

j
t by

Ui
t =

M
∑

�=1

U �
t and U j

t = r−1
�

(

MU �
t −Ui

t

)

for an � satisfying r� 	= 0. We can also use the sequence, r1, r2, . . . , rM , as a secret
or common key.

We note that the last stochastic process appearing in Eq. (3) has the form,

XN+1
t = c1 · · · cN Xt +

N−1
∑

i=1

⎛

⎝

N
∏

j=i+1

c j

⎞

⎠W 2,i
t + W 2,N

t . (4)
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2.1 How to Conceal Data

We take the original data Xt as initial data,

X1
t = Xt .

Inputting it into Eq. (1) with the noise W 1,1
t , we conceal it by the SDE,

F1(X
1
t , Ẋ

1
t ,U

1
t ,W 1,1

t ) = 0.

We seek U 1
t in the above and obtain a concealed data U 1

t . By Eq. (2),

X2
t = c1X1

t + W 2,1
t ,

we have data X2
t for the next step. These data X2

t consist of the superposition (i.e.,
linear combination) of X1

t andW
2,1
t , and thus, there is a possibility that a wiretapper

removes the noise W 2,1
t and wiretap X1

t . Thus, to improve the security with another
noise-disturbance, we have the same procedure again. We input the data X2

t into
Eq. (1) with the noise W 1,2

t ,

F2(X
2
t , Ẋ

2
t ,U

2
t ,W 1,2

t ) = 0.

We then obtain the concealed data U 2
t . Repeating the same procedures, we obtain

the concealed data, U 1
t ,U 2

t , . . . ,UN
t , and hide the data, X1

t , X
2
t , . . . , X

N
t .

At last, input the concealed data XN
t into Eq. (2) and get the data XN+1

t . We input
this into Eq. (3) and hide it. We then obtain the last concealed dataUN+1

t . In this way,
the sequence of the concealed data, U 1

t ,U 2
t , . . . ,UN

t ,UN+1
t , is created.

In the case where the original data are digital, and they give the binary pulse
Xt , the concealed data, Ui

t , i = 1, 2, . . . , N , N + 1, merely become analog data.
So, a wiretapper has to know A/D transformation to obtain the original digital data
as getting the concealed data. Therefore, the D/A and A/D transformations play an
important role for the concealing-restoring system for some digital data. We can also
use them as secret or common keys.

2.2 How to Restore Data

Since the nonlinear function f is bijective, we can restore the concealed data UN+1
t

to the data XN+1
t by

XN+1
t = f −1

(

UN+1
t

)

.

In the light of the stochastic filtering theory, Eqs. (1) and (2) are the state equation
and the observation equation, respectively, and they make the system of the noise-
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filtering. Inputting the above XN+1
t into Eq. (2), and the concealed data UN

t into
Eq. (1), we have simultaneous equations to seek the data XN

t ,

FN (XN
t , Ẋ N

t ,UN
t ,W 1,N

t ) = 0,

XN+1
t = cN XN

t + W 2,N
t .

Since we cannot completely restore the noises to the original ones, W 1,N
t and W 2,N

t ,
we cannot completely seek the stochastic process XN

t . Thus, we estimate it with the
help of a proper stochastic filtering theory to remove the random noises. We then
obtain the estimated data ̂XN

t .
Inputting the estimated data ̂XN

t into the slot of XN
t of Eq. (2), and the concealed

data UN−1
t into Eq. (1), we reach simultaneous equations to seek the data XN−1

t ,

FN−1(X
N−1
t , Ẋ N−1

t ,UN−1
t ,W 1,N−1

t ) = 0,
̂XN
t = cN−1XN−1

t + W 2,N−1
t .

In the same way as in the above, the stochastic filtering theory gives us the next
estimated data ̂XN−1

t . We repeat this procedure, and obtain the estimated data,
̂XN
t , ̂XN−1

t , . . . , ̂X2
t ,

̂X1
t , by turns, and we pick up the last estimate ̂X1

t . This is the
restoration ̂Xt of the original data Xt .

3 Example of Functionals and Simulation

As for how to determine each functional, Fi , i = 1, 2, . . . , N , any definition of it
is fine so long as a noise-filtering theory is established for the system with Fi . To
restore the concealed data, U 1

t ,U 2
t , . . . ,UN

t ,UN+1
t , generally speaking, we have to

know the concrete forms of the functionals, and the noise-filtering theory. Therefore,
we must hide both for securing the original data. In this paper, however, we disclose
one of examples of the concrete definition of the functionals and one of examples
of the noise-filterings, which should actually be supposed to be in secret. We point
out that the example of concealing-restoring system introduced in this section is not
valid for other functionals. In particular, it is not tolerant of nonlinearity. See Sect. 5.

3.1 An Example of the Set of Functionals

We release an example of functionals in this section. We determine functions
Ai (t), vi (t), and non-zero constants biu, b

i in secret. Here vi (t) can be a random
noise. For instance, we often make vi (t) by the linear interpolation based on normal
random numbers. Namely, we first assign a normal random number with N (0, σ 2

v ) to
vi (k) for each i and k, and then, connect them by linear interpolation. Here, N (0, σ 2

v )
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means the normal distribution whose mean and standard deviation are, respectively,
0 and σv. We give each functional Fi such that it makes a SDE,

dXi
t = (

Ai (t) − 1
)

Xi
t dt + biuU

i
t dt + bivi (t)dt − biudB

i
t , (5)

for i = 1, 2, . . . , N . That is,

Ẋ i
t = (

Ai (t) − 1
)

Xi
t + biuU

i
t + bi vi (t) − biuW

1,i
t . (6)

Here, W 1,i
t and W 2,i

t are Gaussian white noises whose mean m j,i and variance V j,i

are, respectively, 0 and (σ i
j )
2. Bi

t is the Brownian motion given by W 1,i
t = dBi

t /dt ,

i = 1, 2, . . . , N . We assume that the noises W 1,i
t and W 2,i

t are independent for each
i = 1, 2, . . . , N , but the noises W 2,i

t , i = 1, 2, . . . , N , are not always independent.
Thus, in the case where they are not independent, the linear combination of white
noises appearing in Eq. (4) is not always white noise.

We regard the functions Ai (t), the constants biu, b
i , and themeanm j,i and variance

V j,i = (σ i
j )
2 of the white noises as secret keys which are known only by the admin-

istrator of our concealing-restoring system. We use functions vi (t) as common keys.
Since Eqs. (5) and (2), respectively, play the individual roles of the state equation and
observation equation in the stochastic filtering theory, we employ the linear Kalman
filtering theory (Kalman 1960; Kallianpur 1980; Bain and Crisan 2009; Grewal and
Andrews 2015) to obtain the restoration ̂Xt .

Using Eq. (6) we give the concealed data Ui
t , i = 1, 2, . . . , N , by

Ui
t = 1

biu

{

dXi
t + (

1 − Ai (t)
)

Xi
t − bivi (t)

} + dBi
t . (7)

In addition to these concealed data, we give the last concealed dataUN+1
t by Eq. (3).

Conversely, since we obtain the data XN+1
t by XN+1

t = f −1(UN+1
t ), we can estimate

the data, XN
t , X

N−1
t , . . ., X1

t , from the concealed data,UN
t ,UN−1

t , . . .,U 1
t , using the

linear Kalman filtering theory.

3.2 Simulation of Concealing and Restoring Data on
Physical Layer

In our simulation of concealing and restoring data on the physical layer, we employ
the message digest (Rivest 1991, 1992a, b; Suhaili and Watanabe 2017; MessageDi-
gest 2020) to check the coincidence of the original word a0a1 . . . an and its restored
word â0â1 . . . ân though the message digest works on upper layers. Moreover, we
can use the message digest to detect any falsification of the concealed data. We take
the original word a0a1 . . . an as a message, and then, produce its digest. We also
produce the digest for the restored word â0â1 . . . ân . Comparing hash values of the
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two digests, we can make the check of the coincidence and the detection of the fal-
sification at the same time. The check and detection should be performed on a layer
out of layers between Layer 3 and Layer 7. In our simulation, we employ SHA-256
to make the hash values (Secure Hash Standard 2015).

To make the estimation in the simulation, we employ the linear Kalman filtering
theory under the following conditions.Wemake Eqs. (1)–(3) for N = 2with Ai (t) =
0.1 (constant function), bi = 1, biu = 1, and ci = 1 for each i = 1, 2. We define
the common key vi (t) by the linear interpolation based on a normal random number
with N (0, 12). We assume that the means of white noises are all 0. The standard
deviation of the white noise W j,1

t is σ 1
j = 0.1, and that of the white noise W j,2

t is
σ 2
j = 1. The length of the word a0a1 . . . an is 100, and therefore, n = 99.
Our original word a1a2 . . . a99 is given by Eq. (8). We here note that we remove

the character a0 because we cannot estimate the first bit in our concealing-restoring
system.

00001100100111001000100000101110111111111001000110

1010011110111101100101010100010110111100110111001. (8)

Then, we get its binary pulse Xt as in Fig. 2. The hash value of the digest made from
the original word (8) is

979bca61579e002c9097c78088740e9fdaf21535d6a5c5876bd8623a86185292.

(9)

We make the concealed data, U 1
t and U 2

t , by Eq. (7) with the help of the linear
equation given in Eq. (2). We finally make the concealed dataU 3

t using the nonlinear
equation given in Eq. (3) with f (ξ) = ξ 3. Their graphs are in Figs. 3 and 4. Following
theKalmanfiltering theory,we remove thewhite noises, and estimate the binary pulse
Xt . Then, we obtain the restoration ̂Xt as in Fig. 5. The concrete algorithm to seek
the restoration ̂Xt comes out in Ref. Fujii and Hirokawa (2020). Let us take 0 as the

Fig. 2 The binary pulse Xt
transformed from the
original word (8)
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Fig. 3 The concealed data, U1
t (left) and U2

t (right), for the binary pulse Xt in Fig. 2

Fig. 4 The concealed data
U3
t for the binary pulse Xt in

Fig. 2

Fig. 5 The restoration ̂Xt
for the binary pulse Xt in
Fig. 2

threshold. Then, we obtain the restored word â1â2 . . . â99 and the hash value of its
digest made from the restoration ̂Xt . We can achieve positive results that they are the
same as Eqs. (8) and (9), respectively.

We note that the graphs in Figs. 3 and 4 say that the concealed data, U 1
t , U

2
t ,

and U 3
t , are merely analog data. If a wiretapper becomes aware that the concealed

data are for digital ones and knows our A/D transformation in some way, then the
wiretapper gets a binary word from the concealed data as follows:
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Fig. 6 Xt (Fig. 2) and ̂Xt (Fig. 5) from the above of the left 2 graphs. U1
t (Fig. 3), U2

t (Fig. 3), and
U3
t (Fig. 4) from the above of the right 3 graphs. Here t ∈ [0, 99]

00111011000111011000111000001001101011111001101100

11011111101001111000010111100101101011000111100110

for U 1
t ,

00011011000111011010110000100100111001111011001010

01011001001001111010010111110101000010001110110110

for U 2
t , and

10000000000010110101110000010001001100111100100100

00000101100111110101100010100010000001000111011001

forU 3
t . Here, since the wiretapper does not know that we removed the first bit, every

concealed data Ui
t makes the word consisting of 100 characters.

In Fig. 6 we show the comparison of the original binary pulse Xt , its restoration
̂Xt , and the concealed data Ui

t , i = 1, 2, 3.

4 Application to Data on Physical Layer and Presentation
Layer

4.1 Binary Data of Pictorial Image

We now apply the technology of our mathematical method to the binary data of a
pictorial image. We use digital data of a pictorial image in the ORL Database of
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Fig. 7 The original pictorial image (left) with the digital data, and its binary pulse Xt (right) only
for t ∈ [0, 200]

Fig. 8 The concealed data, U1
t (left) and U2

t (right), for the binary pulse Xt in Fig. 7. Here t ∈
[0, 200] only

Faces, an archive of AT&T Laboratories Cambridge (The ORL Database of Faces
2020). The data have the grayscale value of 256 gradations (8bit/pixel). We set our
parameters as A = Ai = 0.1, b = bi = 1, bu = biu = 1, c = ci = 1, σ1 = σ i

1 = 0.1,
and σ2 = σ i

2 = 1.We determine the common key vi (t) in the sameway as in Sect. 3.2
with σv = 2. The original pictorial image and its binary pulse Xt are obtained as in
Fig. 7. Here, the upper bound of t is 92 × 112 = 10304 and t runs over [0, 10304].
We obtain the concealed data, U 1

t and U 2
t , by Eq. (7) as in Fig. 8, and the concealed

data U 3
t by Eq. (3) as in Fig. 9. The restoration ̂Xt and the restored pictorial image

from it are in Fig. 10.
If a wiretapper tries to get the original pictorial image from the concealed data

Ui
t , i = 1, 2, 3, since the concealed data are analog as in Figs. 8 and 9, the wiretapper

has to know our A/D transformation, and our transformation from the digital data
to a pictorial image as well as some keys used in SES. The latter transformation
should be done on upper layers. We now assume that the wiretapper can know the
transformations. Then, each pictorial image of the concealed data, Ui

t , i = 1, 2, 3,
is in Fig. 11. The format of the pictorial image of Fig. 7 is PGM (i.e., portable gray
map). In fact, we cannot restore the PGM header from the concealed data, that is,
the header of the PGM is completely broken. Thus, the wiretapper has to realize that
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Fig. 9 The concealed data U3
t for the binary pulse Xt in Fig. 7. Here t ∈ [0, 200] only

Fig. 10 The restoration ̂Xt for the binary pulse Xt in Fig. 7 only for t ∈ [0, 200] (right) and the
restored pictorial image (left) of ̂Xt

Fig. 11 From the left, pictorial images of the concealed data, U1
t ,U2

t in Fig. 8, and U3
t in Fig. 9,

for the binary pulse Xt in Fig. 7. Here (σv)
2 = 4

the concealed data are for PGM in some way, and he/she has to write the header by
himself/herself to restore the pictorial image.

As for the role of the common key vi (t), comparing Fig. 12 with Fig. 11, we can
realize the effect of the variance of the common key vi (t) and the nonlinear function
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Fig. 12 From the left, pictorial images of the concealed data, U1
t ,U2

t in Fig. 8, and U3
t in Fig. 9,

for the binary pulse Xt in Fig. 7. Here (σv)
2 = 1

Fig. 13 Xt (Fig. 7) and ̂Xt (Fig. 10) from the above of the left 2 graphs. U1
t (Fig. 8), U2

t (Fig. 8),
and U3

t (Fig. 9) from the above of the right 3 graphs. Here t ∈ [0, 200] only

f (ξ). The variance of the common key vi (t) is smaller in Fig. 12 than it is in Fig. 11,
that is, (σv)

2 = 4 for Fig. 11 and (σv)
2 = 1 for Fig. 12, though other parameters for

Fig. 12 are the same as for Fig. 11. The contour of the face in the pictorial image of
U 1

t in Fig. 12 stands out more clearly than in Fig. 11. Meanwhile, the nonlinearity
conceals the contour as in the pictorial image of U 3

t in Fig. 12.
In Fig. 13 we show the comparison of the original binary pulse Xt , its restoration

̂Xt , and the concealed data Ui
t , i = 1, 2, 3.

4.2 Analog Data of Pictorial Image

We use analog data of a pictorial image in the Olivetti faces database (The Olivetti
Faces Database 2020), where the data of pictorial images are transformed to analog
data from the original ones in the ORL Database of Faces, an archive of AT&T
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Fig. 14 The original pictorial image (left) with the analog data, and the analog data Xt only for
t ∈ [0, 200] (right)

Fig. 15 The concealed data, U1
t (left) and U2

t (right), for the analog data Xt in Fig. 14. Here,
t ∈ [0, 200] only

Laboratories Cambridge (The ORL Database of Faces 2020). The data have the
grayscale value of 256 gradations (8bit/pixel). Our parameters are A = Ai = 0.1,
b = bi = 1, bu = biu = 1, c = ci = 1, σ1 = σ i

1 = 0.1, and σ2 = σ i
2 = 1 again.

We also use the common key vi (t) in the same way as in Sect. 3.2 with σv = 2. The
original analog data Xt and their pictorial image are in Fig. 14. Here, the upper bound
of t is 64 × 64 = 4096 and t runs over [0, 4096]. The concealed data, U 1

t and U 2
t ,

defined by Eq. (7) are in Fig. 15, and the concealed data U 3
t defined by Eq. (3) are in

Fig. 16. We can restore the pictorial image with the restoration ̂Xt as in Fig. 17. If a
wiretapper becomes aware of our method tomake a pictorial image from analog data,
then the wiretapper gets pictorial images from the concealed data Ui

t , i = 1, 2, 3, as
in Fig. 18.

In Fig. 19 we show the comparison of the original binary pulse Xt , its restoration
̂Xt , and the concealed data Ui

t , i = 1, 2, 3.
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Fig. 16 The concealed data U3
t for the analog data Xt , t ∈ [0, 200] ⊂ [0, 4096], in Fig. 14

Fig. 17 The restoration ̂Xt (right) for the analog data Xt in Fig. 14 only for t ∈ [0, 200], and the
pictorial image (left) of ̂Xt

Fig. 18 From the left, pictorial images of the concealed data, U1
t (Fig. 15), U2

t (Fig. 15), and U3
t

(Fig. 16)
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Fig. 19 Xt (Fig. 14) and ̂Xt (Fig. 17) from the above of the left 2 graphs.U1
t (Fig. 15),U2

t (Fig. 15),
and U3

t (Fig. 16) from the above of the right 3 graphs. Here t ∈ [0, 200] only

5 Conclusion and Future Work

We have proposed a mathematical technique for concealing data on the physical
layer of the OSI reference model by using random noise disturbance, and moreover,
a mathematical technique for restoring the concealed data by using the stochastic
process estimation. In this concealing-restoring system, the functionals determining
SDEs play a role of secret or common keys. Then, the proper noise-filtering the-
ory forms a nucleus to restore the concealed data. In addition, we have showed the
simulation result for the data on physical layer and some applications of the two
techniques to the pictorial images. We have opened one of examples of the function-
als. Then, we have showed how to conceal the data by using the noise-disturbance,
and have demonstrated how to restore the data by removing the noises. Here, the
significant point to be emphasized is that any composition of the SES and any form
of the individual functional will do so long as a proper noise-filtering method is
established for them. We make briefly some comments about it at the tail end of this
section.

We have used the scalar-valued processes, and thus, prepared just one common
key for one SDE. We can prepare some common keys for one SDE by using the
vector-valued processes.

Although we have employed the message digest to make the check of the coinci-
dence of the binary word and the detection of the falsification at the same time, we
are now developing a method with low complexity so that we can make them for
data on the physical layer.
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Fig. 20 From the left, the original pictorial image, the individual pictorial images of the concealed
dataU1

t andU2
t , and the pictorial image of the restored data. The original pictorial image is a bitmap

image, and the parameter t of the original data Xt runs over [0, 90123byte]

Fig. 21 Comparison between the pictorial images ofU2
t with nonlinearity (left) and X

2
t = f −1(U2

t )

without nonlinearity (right)

According to our several experiments including the concrete examples in Sect. 4,
we think that the nonlinearity enhances the noise-disturbance. For instance, the pic-
torial images in Fig. 20 are the case N = 1. Comparing the pictorial images of U 2

t
and X2

t = f −1(U 2
t ) in Fig. 21, we can say that the enhancement of noise-disturbance

appears with the black color. We will study the roles of several parameters including
the nonlinearity. We here introduce the effect coming from the nonlinearity before-
hand. The state space determined by Eq. (5) is constructed by the linear Gaussian
model, and thus, we used the linear Kalman filtering theory in Sects. 3 and 4. We can
make it more general: nonlinear, non-Gaussian state space. Then, we should employ
another noise-filtering theory such as the particle filtering theory (Bain and Crisan
2009). In fact, putting a concrete nonlinearity NA or another nonlinearity NB in the
functional Fi of Eq. (1), we have concealed data U A,i

t or UB,i
t , i = 1, 2, 3, different

from those in this paper. Then, the linear Kalman filtering theory is not useful any
longer. For instance, we respectively conceal the data in Figs. 7 and 14 using such
functionals with the nonlinearity NA or NB . Then, we cannot estimate the data from
the concealed ones by the linear Kalman filter to our satisfaction. See Figs. 22, 23,
24, and 25. The difference between the restorations in Figs. 22 and 23 or between
those in Figs. 24 and 25 depends on the degree of nonlinearity. We show the restoring
system using the particle filter in Ref. Fujii and Hirokawa (2020).
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Fig. 22 The left graph is restoration ̂Xt , 0 ≤ t ≤ 200, from the concealed data, U A,i
t , i = 1, 2, 3,

with the nonlinearity NA using the Kalman filtering. The right picture is the pictorial image restored
from such a restoration ̂Xt

Fig. 23 The left graph is restoration ̂Xt , 0 ≤ t ≤ 200, from the concealed data, UB,i
t , i = 1, 2, 3,

with the nonlinearity NB using the linear Kalman filtering. The right picture is the pictorial image
restored from such a restoration ̂Xt

Fig. 24 The left graph is restoration ̂Xt , 0 ≤ t ≤ 200, from the concealed data, U A,i
t , i = 1, 2, 3,

with the nonlinearity NA using the linear Kalman filtering. The right picture is the pictorial image
restored from such a restoration ̂Xt
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Fig. 25 The left graph is restoration ̂Xt , 0 ≤ t ≤ 200, from the concealed data, UB,i
t , i = 1, 2, 3,

with the nonlinearity NB using the Kalman filtering. The right picture is the pictorial image restored
from such a restoration ̂Xt
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credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
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Commons license, unless indicated otherwise in a credit line to the material. If material is not
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statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	 A Data Concealing Technique with Random Noise Disturbance and a Restoring Technique for the Concealed Data by Stochastic Process Estimation
	1 Introduction
	2 Mathematical Setups
	2.1 How to Conceal Data
	2.2 How to Restore Data

	3 Example of Functionals and Simulation
	3.1 An Example of the Set of Functionals
	3.2 Simulation of Concealing and Restoring Data on Physical Layer

	4 Application to Data on Physical Layer and Presentation Layer
	4.1 Binary Data of Pictorial Image
	4.2 Analog Data of Pictorial Image

	5 Conclusion and Future Work
	References




