Skip to main content

Emission of Gravitational Radiation in Scalar-Tensor and f(R)-Theories

  • Living reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

The recent detections of gravitational waves by the advanced LIGO and Virgo detectors open a formidable way to set constraints on alternative metric theories of gravity in the strong field regime. Such tests rely sensitively on the phase evolution of the gravitational waves, which is controlled by the energy momentum carried by such waves out of the system. The weak-field limit of alternative metric theories shows new aspects of gravitation which are not present in general relativity and exhibits new gravitational field modes which can easily be interpreted as massive gravitons. The study of the generation, propagation, and detection of gravitational waves in the weak-field limit of a given relativistic theory of gravity is an important part of astrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Abbott BP et al (2016) GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys Rev Lett 116(24):241103

    Article  ADS  Google Scholar 

  2. Abbott BP et al (2016) Binary black hole mergers in the first advanced LIGO observing run. Phys Rev X 6(4):041015. [Erratum: Phys.Rev.X 8, 039903 (2018)]

    Google Scholar 

  3. Abbott BP et al (2016) Properties of the binary black hole merger GW150914. Phys Rev Lett 116(24):241102

    Article  ADS  MathSciNet  Google Scholar 

  4. Abbott BP et al (2016) Tests of general relativity with GW150914. Phys Rev Lett 116(22):221101. [Erratum: Phys.Rev.Lett. 121, 129902 (2018)]

    Google Scholar 

  5. Amendola L and Euclid Theory Working Group (2013) Cosmology and fundamental physics with the Euclid satellite. Living Rev Relativ 16(6)

    Google Scholar 

  6. Amendola L, Tsujikawa S (2008) Phantom crossing, equation-of-state singularities, and local gravity constraints in f(r) models. Phys Lett B 660(3):125–132

    Article  ADS  Google Scholar 

  7. Antoniadis J, Freire PCC, Wex N, Tauris TM, Lynch RS, van Kerkwijk MH, Kramer M, Bassa C, Dhillon VS, Driebe T et al (2013) A massive pulsar in a compact relativistic binary. Science 340(6131):1233232–1233232

    Article  Google Scholar 

  8. Arun KG, Iyer BR, Qusailah MSS, Sathyaprakash BS (2006) Probing the non-linear structure of general relativity with black hole binaries. Phys Rev D 74:024006

    Article  ADS  Google Scholar 

  9. Barrow JD, Ottewill AC (1983) The stability of general relativistic cosmological theory. J Phys A Math Gen 16(12):2757–2776

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bekenstein JD (1973) Gravitational-radiation recoil and runaway black holes. Astrophys J 183:657–664

    Article  ADS  Google Scholar 

  11. Bertone G, Hooper D (2018) History of dark matter. Rev Mod Phys 90(4):045002

    Article  ADS  Google Scholar 

  12. Bertone G, Hooper D, Silk J (2005) Particle dark matter: evidence, candidates and constraints. Phys Rep 405(5–6):279–390

    Article  ADS  Google Scholar 

  13. Blanchet L, Damour T, Iyer BR Gravitational waves from inspiralling compact binaries: energy loss and wave form to second postNewtonian order. Phys Rev D 51:5360 (1995) [Erratum: Phys.Rev.D 54, 1860 (1996)]

    Google Scholar 

  14. Blanchet L, Sathyaprakash BS (1994) Signal analysis of gravitational wave tails. Class Quantum Grav 11(11):2807–2831

    Article  ADS  Google Scholar 

  15. Bogdanos C, Capozziello S, De Laurentis M, Nesseris S (2010) Massive, massless and ghost modes of gravitational waves from higher-order gravity. Astropart Phys 34(4):236–244

    Article  ADS  Google Scholar 

  16. Brans C, Dicke RH (1961) Mach’s principle and a relativistic theory of gravitation. Phys Rev 124:925–935

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Buonanno A, Iyer B, Ochsner E, Pan Y, Sathyaprakash BS (2009) Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors. Phys Rev D 80:084043

    Article  ADS  Google Scholar 

  18. Capozziello S, Cardone VF, Troisi A (2007) Low surface brightness galaxy rotation curves in the low energy limit of rn gravity: no need for dark matter? Mon Not R Astron Soc 375(4):1423–1440

    Article  ADS  Google Scholar 

  19. Capozziello S, De Laurentis M (2011) Extended theories of gravity. Phys Rep 509(4–5):167–321

    Article  ADS  MathSciNet  Google Scholar 

  20. Capozziello S, De Laurentis M (2012) The dark matter problem from f(R) gravity viewpoint. Ann Phys 524(9–10):545–578

    Article  MATH  Google Scholar 

  21. Capozziello S, De Laurentis M, Nojiri S, Odintsov SD (2009) f(r) gravity constrained by ppn parameters and stochastic background of gravitational waves. Gen Relativ Gravit 41(10):2313–2344

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Capozziello S, Troisi A (2005) PPN-limit of fourth order gravity inspired by scalar-tensor gravity. Phys Rev D 72:044022

    Article  ADS  MathSciNet  Google Scholar 

  23. Capozziello S, Vignolo S (2009) The cauchy problem for metric-affine f(r)-gravity in the presence of perfect-fluid matter. Class Quantum Grav 26(17):175013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Capozziello S, Corda C, De Laurentis M (2007) Stochastic background of relic scalar gravitational waves from scalar-tensor gravity. Mod Phys Lett A 22:2647–2655

    Article  ADS  MATH  Google Scholar 

  25. Chandrasekhar S (1985) The mathematical theory of black holes. Springer

    Book  MATH  Google Scholar 

  26. Coleman Miller M (2016) Implications of the gravitational wave event GW150914. Gen Rel Grav 48(7):95

    Article  ADS  Google Scholar 

  27. Damour T, Esposito-Farèse G (1998) Gravitational-wave versus binary-pulsar tests of strong-field gravity. Phys Rev D 58(4):042001

    Article  ADS  Google Scholar 

  28. de Felice A, Tsujikawa S (2010) f(R) theories. Living Rev Relativ 13:3

    Google Scholar 

  29. De Laurentis M, Capozziello S (2011) Quadrupolar gravitational radiation as a test-bed for f(r)-gravity. Astropart Phys 35(5):257–265

    Article  ADS  Google Scholar 

  30. De Laurentis M, De Martino I (2013) Testing f (R) theories using the first time derivative of the orbital period of the binary pulsars. Mon Not R Astron Soc 431(1):741–748

    Article  ADS  Google Scholar 

  31. de Laurentis M, de Martino I (2015) Probing the physical and mathematical structure of f(R)-gravity by PSR J0348 + 0432. Int J Geom Meth Mod Phys 12(4):1550040

    Article  MathSciNet  MATH  Google Scholar 

  32. De Laurentis M, De Martino I, Lazkoz R (2018) Analysis of the Yukawa gravitational potential in f (R ) gravity. II. Relativistic periastron advance. Phys Rev D 97(10):104068

    Google Scholar 

  33. De Laurentis M, De Martino I, Lazkoz R Modified gravity revealed along geodesic tracks. Eur Phys J C 78(11):916 (2018)

    Article  ADS  Google Scholar 

  34. De Laurentis M, Capozziello S (2009) Stochastic background of relic scalar gravitational waves tuned by extended gravity. Nucl Phys B Proc Suppl 194:212–217 New Horizons for Modern Cosmology

    Google Scholar 

  35. De Laurentis M, Porth O, Bovard L, Ahmedov B, Abdujabbarov A (2016) Constraining alternative theories of gravity using GW150914 and GW151226. Phys Rev D 94(12):124038

    Article  ADS  Google Scholar 

  36. Dvali G, Gabadadze G, Porrati M (2000) 4d gravity on a brane in 5d Minkowski space. Phys Lett B 485(1–3):208–214

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Eardley DM, Lee DL, Lightman AP (1973) Gravitational-wave observations as a tool for testing relativistic gravity. Phys Rev D 8:3308–3321

    Article  ADS  Google Scholar 

  38. Eardley DM, Lee DL, Lightman AP, Wagoner RV, Will CM (1973) Gravitational-wave observations as a tool for testing relativistic gravity. Phys Rev Lett 30:884–886

    Article  ADS  Google Scholar 

  39. Eddington AS (1924) The mathematical theory of relativity. Cambridge University Press, London

    MATH  Google Scholar 

  40. Faraoni V (2005) Phantom cosmology with general potentials. Class Quantum Grav 22(16):3235–3246

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Feng JL (2010) Dark matter candidates from particle physics and methods of detection. Annu Rev Astron Astrophys 48:495–545

    Article  ADS  Google Scholar 

  42. Fierz M (1956) On the physical interpretation of P.Jordan’s extended theory of gravitation. Helv Phys Acta 29:128–134

    MathSciNet  Google Scholar 

  43. Finn LS, Sutton PJ (1993) Observing binary inspiral in gravitational radiation: one interferometer. Phys Rev D 47:2198–2219

    Article  ADS  Google Scholar 

  44. Hinterbichler K, Khoury J (2010) Screening long-range forces through local symmetry restoration. Phys Rev Lett 104:231301

    Article  ADS  Google Scholar 

  45. Hu W, Sawicki I (2007) Models of f(r) cosmic acceleration that evade solar system tests. Phys Rev D 76:064004

    Article  ADS  Google Scholar 

  46. Hulse RA, Taylor JH (1975) Discovery of a pulsar in a binary system. Astrophys J Lett 195:L51–L53

    Article  ADS  Google Scholar 

  47. Husa S, Khan S, Hannam M, Pürrer M, Ohme F, Jiménez Forteza X, Bohé A (2016) Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal. Phys Rev D 93(4):044006

    Google Scholar 

  48. Isaacson RA (1968) Gravitational radiation in the limit of high frequency. I. The linear approximation and geometrical optics. Phys Rev 166:1263–1271

    Article  ADS  Google Scholar 

  49. Isaacson RA (1968) Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor. Phys Rev 166:1272–1279

    Article  ADS  Google Scholar 

  50. Jacobson T (2007) Einstein-aether gravity: a Status report. PoS QG-PH:020

    Google Scholar 

  51. Jacobson T, Mattingly D (2001) Gravity with a dynamical preferred frame. Phys Rev D 64:024028

    Article  ADS  MathSciNet  Google Scholar 

  52. Jordan P (1955) Schwerkraft und Weltall. Friedrich Vieweg and Sohn, Braunschweig

    MATH  Google Scholar 

  53. Kahya EO, Desai S (2016) Constraints on frequency-dependent violations of Shapiro delay from GW150914. Phys Lett B 756:265–267

    Article  ADS  Google Scholar 

  54. Kahya EO, Desai S (2016) Constraints on frequency-dependent violations of Shapiro delay from GW150914. Phys Lett B 756:265–267

    Article  ADS  Google Scholar 

  55. Khoury J, Weltman A (2004) Chameleon fields: awaiting surprises for tests of gravity in space. Phys Rev Lett 93:171104

    Article  ADS  Google Scholar 

  56. Khoury J, Wyman M (2009) N-body simulations of dgp and degravitation theories. Phys Rev D 80(6):64023

    Article  ADS  Google Scholar 

  57. Kopeikin SM (1996) Proper motion of binary pulsars as a source of secular variations of orbital parameters. Astrophys J Lett 467:L93

    Article  ADS  Google Scholar 

  58. Landau LD, Lifshitz EM (1962) The classical theory of fields. Addison-Wesley Publication Co., Inc., Reading

    MATH  Google Scholar 

  59. Li B, Barrow JD (2007) Cosmology of f(r) gravity in the metric variational approach. Phys Rev D 75:084010

    Article  ADS  MathSciNet  Google Scholar 

  60. Li TGF, Del Pozzo W, Vitale S, Van Den Broeck C, Agathos M, Veitch J, Grover K, Sidery T, Sturani R, Vecchio A (2012) Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence. Phys Rev D 85:082003

    Article  ADS  Google Scholar 

  61. Maggiore M (2007) Gravitational waves: theory and experiments. Oxford University Press

    Book  Google Scholar 

  62. Miranda V, Jorás SE, Waga I, Quartin M (2009) Viable singularity-free f(r) gravity without a cosmological constant. Phys Rev Lett 102:221101

    Article  ADS  Google Scholar 

  63. Mirshekari S, Will CM (2013) Compact binary systems in scalar-tensor gravity: equations of motion to 2.5 post-Newtonian order. Phys Rev D 87(8):084070

    Google Scholar 

  64. Mishra CK, Arun KG, Iyer BR, Sathyaprakash BS (2010) Parametrized tests of post-Newtonian theory using advanced LIGO and Einstein telescope. Phys Rev D 82:064010

    Article  ADS  Google Scholar 

  65. Nicolis A, Rattazzi R, Trincherini E (2009) Galileon as a local modification of gravity. Phys Rev D 79:064036

    Article  ADS  MathSciNet  Google Scholar 

  66. Noether E (1971) Invariant variation problems. Transp Theory Stat Phys 1(3):186–207

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Nojiri S, Odintsov SD, Tsujikawa S (2005) Properties of singularities in the (phantom) dark energy universe. Phys Rev D 71(6):063004

    Article  ADS  Google Scholar 

  68. Weyl H, Pauli W (1919) Zur Theorie der Gravitation und der Elektrizität. Phys Z 20:457–467

    MATH  Google Scholar 

  69. Poisson E, Will CM (2014) Gravity: Newtonian, Post-Newtonian, relativistic. Cambridge University Press

    Book  MATH  Google Scholar 

  70. Primack JR (2012) Triumphs and tribulations of ΛCDM, the double dark theory. Ann Phys 524(9–10):535–544

    Article  Google Scholar 

  71. Rubano C, Scudellaro P (2005) Variable G and Λ: scalar-tensor versus RG-improved cosmology. Gen Relativ Gravit 37(3):521–539

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Saffer A, Yunes N, Yagi K (2018) The gravitational wave stress–energy (pseudo)-tensor in modified gravity. Class Quant Grav 35(5):055011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Shklovskii IS (1970) Possible causes of the secular increase in pulsar periods. Sov Astron 13:562

    ADS  Google Scholar 

  74. Sotiriou TP (2006) f(R) gravity and scalar-tensor theory. Class Quant Grav 23:5117–5128

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Sotiriou TP, Faraoni V (2010) f(R) theories of gravity. Rev Mod Phys 82:451–497

    Article  ADS  MATH  Google Scholar 

  76. Stairs IH (2004) Pulsars in binary systems: probing binary stellar evolution and general relativity. Science 304(5670):547–552

    Article  ADS  Google Scholar 

  77. Stairs IH (2003) Testing general relativity with pulsar timing. Living Rev Relativ 6(1):1–49

    Article  ADS  MATH  Google Scholar 

  78. Starobinsky AA (1980) A new type of isotropic cosmological models without singularity. Phys Lett B 91:99

    Article  ADS  MATH  Google Scholar 

  79. Starobinsky AA (2007) Disappearing cosmological constant in f(r) gravity. JETP Lett 86:157

    Article  ADS  Google Scholar 

  80. Uzan J-P (2003) The fundamental constants and their variation: observational and theoretical status. Rev Mod Phys 75:403–455

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. van Dam H, Veltman MJG (1970) Massive and massless Yang-Mills and gravitational fields. Nucl Phys B 22:397–411

    Article  ADS  Google Scholar 

  82. Wagoner RV (1970) Scalar tensor theory and gravitational waves. Phys Rev D 1:3209–3216

    Article  ADS  Google Scholar 

  83. Wei J-J, Gao H, Wu X-F, Mészáros P (2015) Testing Einstein’s equivalence principle with fast radio bursts. Phys Rev Lett 115(26):261101

    Article  ADS  Google Scholar 

  84. Weinberg S (1972) Gravitation and cosmology. Wiley, New York

    Google Scholar 

  85. Weisberg JM, Huang Y (2016) Relativistic measurements from timing the binary pulsar PSR B1913+16. Astrophys J 829(1):55

    Article  ADS  Google Scholar 

  86. Weisberg JM, Nice DJ, Taylor JH (2010) Timing measurements of the relativistic binary pulsar psr b1913+16. Astrophys J 722(2):1030–1034

    Article  ADS  Google Scholar 

  87. Weisberg JM, Taylor JH (2002) Radio pulsars. M. Bailes

    Google Scholar 

  88. Weyl H (1918) Math Zeit 2:384, https://doi.org/10.1007/BF01199420

    Article  Google Scholar 

  89. Will CM (2018) Theory and experiment in gravitational physics, 2 edn. Cambridge University Press

    Book  MATH  Google Scholar 

  90. Wu X-F, Gao H, Wei J-J, Mészáros P, Zhang B, Dai Z-G, Zhang S-N, Zhu Z-H (2016) Testing Einstein’s weak equivalence principle with gravitational waves. Phys Rev D 94:024061

    Article  ADS  Google Scholar 

  91. Yunes N, Pretorius F (2009) Fundamental theoretical bias in gravitational wave astrophysics and the parameterized post-Einsteinian framework. Phys Rev D 80:122003

    Article  ADS  Google Scholar 

Download references

Acknowledgements

IDM acknowledges support from MICINN (Spain) under de project IJCI2018-036198-I. IDM is also supported by Junta de Castilla y Len (SA096P20), and Spanish Ministerio de Ciencia, Innovacin y Universidades and FEDER (PGC2018-096038-B-I00). MDL acknowledges INFN Sez. di Napoli (Iniziative Specifica TEONGRAV and QGSKY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariafelicia De Laurentis .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Laurentis, M.D., Martino, I.D. (2021). Emission of Gravitational Radiation in Scalar-Tensor and f(R)-Theories. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-15-4702-7_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4702-7_40-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4702-7

  • Online ISBN: 978-981-15-4702-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics