Skip to main content

Electromagnetic Counterparts of Gravitational Waves in the Hz-kHz Range

  • Living reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

On the 17th of August 2017, the first detection of gravitational waves from the coalescence of a neutron star binary and the observation of its broadband electromagnetic emission first demonstrated the huge scientific potential of multi-messenger astronomy with gravitational waves. Joint gravitational wave and electromagnetic observations are indeed unique tools to unveil the nature of neutron stars and black holes, together with probing the rich physics of energetic transient phenomena in the sky, such as gamma-ray bursts, kilonovae, and supernovae. This chapter aims at giving an overview of the diverse electromagnetic counterparts to gravitational wave sources detectable by current ground-based detectors, providing basic information on their properties and on the physics that governs their emission. In addition, it addresses observational and data analysis strategies to optimize their detection and characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. LIGO Scientific Collaboration, Aasi J (2015) Advanced LIGO. Class Quantum Gravity 32(7):074001

    Article  ADS  Google Scholar 

  2. Virgo Collaboration, Acernese F (2015) Advanced Virgo: a second-generation interferometric gravitational wave detector. Class Quantum Gravity 32(2):024001

    Article  ADS  Google Scholar 

  3. Somiya K (2012) Detector configuration of KAGRA-the Japanese cryogenic gravitational-wave detector. Class Quantum Gravity 29(12):124007

    Article  ADS  Google Scholar 

  4. Aso Y et al (2013) Interferometer design of the KAGRA gravitational wave detector. Phys Rev D 88(4):043007

    Article  ADS  Google Scholar 

  5. Dominik M et al (2012) Double compact objects. I. The significance of the common envelope on merger rates. ApJ 759(1):52

    Google Scholar 

  6. Mapelli M, Giacobbo N (2018) The cosmic merger rate of neutron stars and black holes. MNRAS 479(4):4391–4398

    Article  ADS  Google Scholar 

  7. Rodriguez CL et al (2015) Binary black hole mergers from globular clusters: implications for advanced LIGO. Phys Rev Lett 115(5):051101

    Article  ADS  Google Scholar 

  8. Rodriguez CL et al (2016) Binary black hole mergers from globular clusters: masses, merger rates, and the impact of stellar evolution. Phys Rev D 93(8):084029

    Article  ADS  Google Scholar 

  9. Ziosi BM et al (2014) Dynamics of stellar black holes in young star clusters with different metallicities – II. Black hole-black hole binaries. MNRAS 441(4):3703–3717

    Article  ADS  Google Scholar 

  10. Banerjee S (2021) Stellar-mass black holes in young massive and open stellar clusters – IV. Updated stellar-evolutionary and black hole spin models and comparisons with the LIGO-Virgo O1/O2 merger-event data. MNRAS 500(3):3002–3026

    Article  ADS  Google Scholar 

  11. Antonini F, Rasio FA (2016) Merging black hole binaries in galactic nuclei: implications for advanced-LIGO detections. ApJ 831(2):187

    Article  ADS  Google Scholar 

  12. Farr B et al (2018) Using spin to understand the formation of LIGO and Virgo’s black holes. ApJ 854(1):L9

    Article  ADS  Google Scholar 

  13. Samsing J, Ramirez-Ruiz E (2017) On the assembly rate of highly eccentric binary black hole mergers. ApJ 840(2):L14

    Article  ADS  Google Scholar 

  14. Veitch J et al (2015) Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Phys Rev D 91(4):042003

    Article  ADS  Google Scholar 

  15. Nitz AH et al (2017) Detecting binary compact-object mergers with gravitational waves: understanding and improving the sensitivity of the PyCBC search. ApJ 849(2):118

    Article  ADS  Google Scholar 

  16. LIGO Scientific Collaboration, Virgo Collaboration (2019) GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys Rev X 9(3):031040

    Google Scholar 

  17. Collaboration TLS et al (2020) Gw190412: observation of a binary-black-hole coalescence with asymmetric masses. Phys Rev D 102:043015

    Article  ADS  Google Scholar 

  18. LIGO Scientific Collaboration, Virgo Collaboration (2017) GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett 119(16):161101

    Article  ADS  Google Scholar 

  19. LIGO Scientific Collaboration, Virgo Collaboration (2020) GW190425: observation of a compact binary coalescence with total mass ∼ 3.4 M. ApJ 892(1):L3

    Google Scholar 

  20. LIGO Scientific Collaboration, Virgo Collaboration (2020) GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. ApJ 896(2):L44

    Google Scholar 

  21. Fernández R, Metzger BD (2016) Electromagnetic signatures of neutron star mergers in the advanced LIGO era. Ann Rev Nucl Part Sci 66(1):23–45

    Article  ADS  Google Scholar 

  22. Shibata M, Hotokezaka K (2019) Merger and mass ejection of neutron star binaries. Ann Rev Nucl Part Sci 69:41–64

    Article  ADS  Google Scholar 

  23. Metzger BD (2019) Kilonovae. Living Rev Relativ 23(1):1

    ADS  MathSciNet  Google Scholar 

  24. Nakar E (2020) The electromagnetic counterparts of compact binary mergers. Phys Rep 886:1–84

    Article  ADS  MathSciNet  Google Scholar 

  25. Loeb A (2016) Electromagnetic counterparts to black hole mergers detected by LIGO. Astrophys J Lett 819:L21

    Article  ADS  Google Scholar 

  26. Perna R et al (2016) Short gamma-ray bursts from the merger of two black holes. Astrophys J Lett 821:L18

    Article  ADS  Google Scholar 

  27. Janiuk A et al (2017) On the possible gamma-ray burst-gravitational wave association in GW150914. New Astron 51:7–14

    Article  ADS  Google Scholar 

  28. Seto N, Muto T (2011) Resonant trapping of stars by merging massive black hole binaries. MNRAS 415:3824–3830

    Article  ADS  Google Scholar 

  29. Murase K et al (2016) Ultrafast outflows from black hole mergers with a minidisk. Astrophys J Lett 822:L9

    Article  ADS  Google Scholar 

  30. Bartos I et al (2017) Rapid and bright stellar-mass binary black hole mergers in active galactic nuclei. Astrophys J 835:165

    Article  ADS  Google Scholar 

  31. Connaughton V et al (2016) Fermi GBM observations of LIGO gravitational-wave event GW150914. Astrophys J Lett 826:L6

    Article  ADS  Google Scholar 

  32. Savchenko V et al (2016) INTEGRAL upper limits on gamma-ray emission associated with the gravitational wave event GW150914. Astrophys J Lett 820:L36

    Article  ADS  Google Scholar 

  33. Tavani M et al (2016) AGILE observations of the gravitational-wave event GW150914. Astrophys J Lett 825:L4

    Article  ADS  Google Scholar 

  34. Graham MJ et al (2020) Candidate electromagnetic counterpart to the binary black hole merger gravitational-wave event S190521g. Phys Rev Lett 124(25):251102

    Article  ADS  Google Scholar 

  35. Ott CD (2009) Topical Review: the gravitational-wave signature of core-collapse supernovae. Class Quantum Gravity 26(6):063001

    Article  ADS  MATH  Google Scholar 

  36. Kotake K et al (2006) Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae. Rep Progress Phys 69(4):971–1143

    Article  ADS  Google Scholar 

  37. Gossan SE et al (2016) Observing gravitational waves from core-collapse supernovae in the advanced detector era. Phys Rev D 93(4):042002

    Article  ADS  Google Scholar 

  38. LIGO Scientific Collaboration, Virgo Collaboration (2020) Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Phys Rev D 101(8):084002

    Article  ADS  Google Scholar 

  39. LIGO Scientific Collaboration, Virgo Collaboration (2016) First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Phys Rev D 94(10):102001

    Article  ADS  Google Scholar 

  40. Klein RI, Chevalier RA (1978) X-ray bursts from type II supernovae. ApJ 223:L109–L112

    Article  ADS  Google Scholar 

  41. Andreoni I et al (2016) A time domain experiment with Swift: monitoring of seven nearby galaxies. A&A 587:A147

    Article  ADS  Google Scholar 

  42. Hjorth J et al (2003) A very energetic supernova associated with the γ-ray burst of 29 March 2003. Nature 423(6942):847–850

    Article  ADS  Google Scholar 

  43. Stanek KZ et al (2003) Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. ApJ 591(1):L17–L20

    Article  ADS  Google Scholar 

  44. Lasky PD (2015) Gravitational waves from neutron stars: a review. PASA 32:e034

    Article  ADS  Google Scholar 

  45. Cutler C (2002) Gravitational waves from neutron stars with large toroidal B fields. Phys Rev D 66(8):084025

    Article  ADS  Google Scholar 

  46. Dall’Osso S et al (2009) Early evolution of newly born magnetars with a strong toroidal field. MNRAS 398(4):1869–1885

    Article  ADS  Google Scholar 

  47. Dall’Osso S et al (2018) Neutron star bulk viscosity, ‘spin-flip’ and GW emission of newly born magnetars. MNRAS 480(1):1353–1362

    Article  ADS  Google Scholar 

  48. Mastrano A et al (2013) Neutron star deformation due to multipolar magnetic fields. MNRAS 434(2):1658–1667

    Article  ADS  Google Scholar 

  49. Lander SK, Jones DI (2020) Magnetar birth: rotation rates and gravitational-wave emission. MNRAS 494(4):4838–4847

    Article  ADS  Google Scholar 

  50. Maggiore M et al (2020) Science case for the Einstein telescope. J Cosmol Astropart Phys 2020(3):050

    Article  Google Scholar 

  51. Reitze D et al (2019) Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO. In: Bull Am Astron Soc 51:35

    Google Scholar 

  52. Kasen D, Bildsten L (2010) Supernova light curves powered by young magnetars. ApJ 717(1):245–249

    Article  ADS  Google Scholar 

  53. Greiner J et al (2015) A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst. Nature 523(7559):189–192

    Article  ADS  Google Scholar 

  54. Corsi A, Mészáros P (2009) Gamma-ray burst afterglow plateaus and gravitational waves: multi-messenger signature of a millisecond magnetar? ApJ 702(2):1171–1178

    Article  ADS  Google Scholar 

  55. Beloborodov AM, Thompson C (2007) Corona of magnetars. ApJ 657(2):967–993

    Article  ADS  Google Scholar 

  56. Corsi A, Owen BJ (2011) Maximum gravitational-wave energy emissible in magnetar flares. Phys Rev D 83(10):104014

    Article  ADS  Google Scholar 

  57. Mereghetti S (2008) The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars. A&A Rev 15(4):225–287

    Article  ADS  MathSciNet  Google Scholar 

  58. LIGO Scientific Collaboration, Virgo Collaboration (2014) Gravitational waves from known pulsars: results from the initial detector Era. ApJ 785(2):119

    Article  ADS  Google Scholar 

  59. LIGO Scientific Collaboration, Virgo Collaboration (2019) All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Phys Rev D 100(2):024004

    Article  ADS  Google Scholar 

  60. Piran T (2004) The physics of gamma-ray bursts. Rev Modern Phys 76(4):1143–1210

    Article  ADS  Google Scholar 

  61. Walker KC et al (2000) Gamma-ray bursts have millisecond variability. ApJ 537(1):264–269

    Article  ADS  Google Scholar 

  62. Tavani M (1996) A shock emission model for gamma-ray bursts. II. Spectral properties. ApJ 466:768

    Google Scholar 

  63. Cano Z et al (2017) The observer’s guide to the gamma-ray burst supernova connection. Adv Astron 2017:8929054

    Article  ADS  Google Scholar 

  64. Berger E (2014) Short-duration gamma-ray bursts. ARA&A 52:43–105

    Article  ADS  Google Scholar 

  65. Eichler D et al (1989) Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340(6229):126–128

    Article  ADS  Google Scholar 

  66. LIGO Scientific Collaboration, Virgo Collaboration (2019) Properties of the binary neutron star merger GW170817. Phys Rev X 9(1):011001

    Google Scholar 

  67. The LIGO Scientific Collaboration, The Virgo Collaboration (2020) Model comparison from LIGO–Virgo data on GW170817’s binary components and consequences for the merger remnant. Class Quantum Gravity 37(4):045006

    Article  ADS  Google Scholar 

  68. LIGO Scientific Collaboration et al (2017) Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. ApJ 848(2):L13

    Article  ADS  Google Scholar 

  69. LIGO Scientific Collaboration et al (2017) Multi-messenger observations of a binary neutron star merger. ApJ 848(2):L12

    Article  ADS  Google Scholar 

  70. Kiuchi K et al (2015) Efficient magnetic-field amplification due to the Kelvin-Helmholtz instability in binary neutron star mergers. Phys Rev D 92(12):124034

    Article  ADS  Google Scholar 

  71. Balbus SA, Hawley JF (1991) A powerful local shear instability in weakly magnetized disks. I. Linear analysis. ApJ 376:214

    Google Scholar 

  72. Hawley JF, Balbus SA (1991) A powerful local shear instability in weakly magnetized disks. II. Nonlinear evolution. ApJ 376:223

    Google Scholar 

  73. Liska M et al (2020) Large-scale poloidal magnetic field dynamo leads to powerful jets in GRMHD simulations of black hole accretion with toroidal field. MNRAS 494(3):3656–3662

    Article  ADS  Google Scholar 

  74. Blandford RD, Znajek RL (1977) Electromagnetic extraction of energy from Kerr black holes. MNRAS 179:433–456

    Article  ADS  Google Scholar 

  75. Usov VV (1992) Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts. Nature 357(6378):472–474

    Article  ADS  Google Scholar 

  76. Thompson C (1994) A model of gamma-ray bursts. MNRAS 270:480–498

    Article  ADS  Google Scholar 

  77. Thompson TA et al (2004) Magnetar spin-down, hyperenergetic supernovae, and gamma-ray bursts. ApJ 611(1):380–393

    Article  ADS  Google Scholar 

  78. Metzger BD et al (2008) Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. MNRAS 385(3):1455–1460

    Article  ADS  Google Scholar 

  79. Ciolfi R (2020) Collimated outflows from long-lived binary neutron star merger remnants. MNRAS 495(1):L66–L70

    Article  ADS  Google Scholar 

  80. Mochkovitch R et al (1993) Gamma-ray bursts as collimated jets from neutron star/black hole mergers. Nature 361(6409):236–238

    Article  ADS  Google Scholar 

  81. Popham R et al (1999) Hyperaccreting black holes and gamma-ray bursts. ApJ 518(1):356–374

    Article  ADS  Google Scholar 

  82. Ruffert M et al (1997) Coalescing neutron stars – a step towards physical models. II. Neutrino emission, neutron tori, and gamma-ray bursts. A&A 319:122–153

    ADS  Google Scholar 

  83. Just O et al (2016) Neutron-star merger ejecta as obstacles to neutrino-powered jets of gamma-ray bursts. ApJ 816(2):L30

    Article  ADS  Google Scholar 

  84. Levinson A, Begelman MC (2013) Collimation and confinement of magnetic jets by external media. ApJ 764(2):148

    Article  ADS  Google Scholar 

  85. Bromberg O, Tchekhovskoy A (2016) Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation. MNRAS 456(2):1739–1760

    Article  ADS  Google Scholar 

  86. Nagakura H et al (2014) Jet collimation in the ejecta of double neutron star mergers: a new canonical picture of short gamma-ray bursts. ApJ 784(2):L28

    Article  ADS  Google Scholar 

  87. Gottlieb O et al (2018) The cocoon emission – an electromagnetic counterpart to gravitational waves from neutron star mergers. MNRAS 473(1):576–584

    Article  ADS  Google Scholar 

  88. Blandford RD, Rees MJ (1974) A “twin-exhaust” model for double radio sources. MNRAS 169:395–415

    Article  ADS  Google Scholar 

  89. Marti JMA et al (1995) Morphology and dynamics of highly supersonic relativistic jets. ApJ 448:L105

    Article  ADS  Google Scholar 

  90. Matzner CD (2003) Supernova hosts for gamma-ray burst jets: dynamical constraints. MNRAS 345(2):575–589

    Article  ADS  Google Scholar 

  91. Begelman MC, Cioffi DF (1989) Overpressured cocoons in extragalactic radio sources. ApJ 345:L21

    Article  ADS  Google Scholar 

  92. Bromberg O et al (2011) The propagation of relativistic jets in external media. ApJ 740(2):100

    Article  ADS  Google Scholar 

  93. Salafia OS et al (2020) Gamma-ray burst jet propagation, development of angular structure, and the luminosity function. A&A 636:A105

    Article  ADS  Google Scholar 

  94. Lazzati D, Perna R (2019) Jet-cocoon outflows from neutron star mergers: structure, light curves, and fundamental physics. ApJ 881(2):89

    Article  ADS  Google Scholar 

  95. Duffell PC et al (2018) Jet dynamics in compact object mergers: GW170817 likely had a successful jet. ApJ 866(1):3

    Article  ADS  Google Scholar 

  96. Gottlieb O et al (2020) The structure of hydrodynamic gamma-ray burst jets. MNRAS 500(3):3511–3526

    Article  ADS  Google Scholar 

  97. Gottlieb O et al (2020) The structure of weakly-magnetized gamma-ray burst jets. MNRAS 498(3):3320–3333

    Article  ADS  Google Scholar 

  98. Rossi E et al (2002) Afterglow light curves, viewing angle and the jet structure of γ-ray bursts. MNRAS 332(4):945–950

    Article  ADS  Google Scholar 

  99. Nakar E, Piran T (2018) Implications of the radio and X-ray emission that followed GW170817. MNRAS 478(1):407–415

    Article  ADS  Google Scholar 

  100. Blandford RD, McKee CF (1976) Fluid dynamics of relativistic blast waves. Phys Fluids 19:1130–1138

    Article  ADS  MATH  Google Scholar 

  101. Mooley KP et al (2018) Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature 561(7723):355–359

    Article  ADS  Google Scholar 

  102. Ghirlanda G et al (2019) Compact radio emission indicates a structured jet was produced by a binary neutron star merger. Science 363(6430):968–971

    Article  ADS  Google Scholar 

  103. Ghisellini G et al (2020) Proton-synchrotron as the radiation mechanism of the prompt emission of gamma-ray bursts? A&A 636:A82

    Article  ADS  Google Scholar 

  104. Rees MJ, Meszaros P (1994) Unsteady outflow models for cosmological gamma-ray bursts. ApJ 430:L93

    Article  ADS  Google Scholar 

  105. Spruit HC et al (2001) Large scale magnetic fields and their dissipation in GRB fireballs. A&A 369:694–705

    Article  ADS  Google Scholar 

  106. Zhang B, Yan H (2011) The internal-collision-induced magnetic reconnection and turbulence (ICMART) model of gamma-ray bursts. ApJ 726(2):90

    Article  ADS  Google Scholar 

  107. Salafia OS et al (2015) Structure of gamma-ray burst jets: intrinsic versus apparent properties. MNRAS 450(4):3549–3558

    Article  ADS  Google Scholar 

  108. Barbieri C et al (2019) Light-curve models of black hole – neutron star mergers: steps towards a multi-messenger parameter estimation. A&A 625:A152

    Article  ADS  Google Scholar 

  109. Salafia OS et al (2016) Light curves and spectra from off-axis gamma-ray bursts. MNRAS 461(4):3607–3619

    Article  ADS  Google Scholar 

  110. Kumar P, Panaitescu A (2000) Afterglow emission from Naked gamma-ray bursts. ApJ 541(2):L51–L54

    Article  ADS  Google Scholar 

  111. Oganesyan G et al (2020) Structured jets and X-ray plateaus in gamma-ray burst phenomena. ApJ 893(2):88

    Article  ADS  MathSciNet  Google Scholar 

  112. Ascenzi S et al (2020) High-latitude emission from the structured jet of γ-ray bursts observed off-axis. A&A 641:A61

    Article  ADS  Google Scholar 

  113. Panaitescu A (2020) X-ray afterglows from the gamma-ray burst “large-angle” emission. ApJ 895(1):39

    Article  ADS  Google Scholar 

  114. Kobayashi S et al (1999) Hydrodynamics of a relativistic fireball: the complete evolution. ApJ 513(2):669–678

    Article  ADS  Google Scholar 

  115. Lamb GP, Kobayashi S (2019) Reverse shocks in the relativistic outflows of gravitational wave-detected neutron star binary mergers. MNRAS 489(2):1820–1827

    Article  ADS  Google Scholar 

  116. Granot J, Kumar P (2003) Constraining the structure of gamma-ray burst jets through the afterglow light curves. ApJ 591(2):1086–1096

    Article  ADS  Google Scholar 

  117. Salafia OS et al (2019) On-axis view of GRB 170817A. A&A 628:A18

    Article  ADS  Google Scholar 

  118. Lazzati D et al (2018) Late time afterglow observations reveal a collimated relativistic jet in the ejecta of the binary neutron star merger GW170817. Phys Rev Lett 120(24):241103

    Article  ADS  Google Scholar 

  119. Lattimer JM, Schramm DN (1974) Black-hole-neutron-star collisions. ApJ 192:L145

    Article  ADS  Google Scholar 

  120. Li L-X, Paczyński B (1998) Transient events from neutron star mergers. ApJ 507(1):L59–L62

    Article  ADS  Google Scholar 

  121. Metzger BD et al (2010) Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. MNRAS 406(4):2650–2662

    Article  ADS  Google Scholar 

  122. Kasen D et al (2013) Opacities and spectra of the r-process ejecta from neutron star mergers. ApJ 774(1):25

    Article  ADS  Google Scholar 

  123. Kasen D et al (2015) Kilonova light curves from the disc wind outflows of compact object mergers. MNRAS 450(2):1777–1786

    Article  ADS  Google Scholar 

  124. Freiburghaus C et al (1999) R-process in neutron star mergers. ApJ 525(2):L121–L124

    Article  ADS  Google Scholar 

  125. Korobkin O et al (2012) On the astrophysical robustness of the neutron star merger r-process. MNRAS 426(3):1940–1949

    Article  ADS  Google Scholar 

  126. Pian E et al (2017) Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551:67–70

    Article  ADS  Google Scholar 

  127. Kawaguchi K et al (2016) Models of kilonova/macronova emission from black hole-neutron star mergers. ApJ 825(1):52

    Article  ADS  Google Scholar 

  128. Radice D et al (2018) Binary neutron star mergers: mass ejection, electromagnetic counterparts, and nucleosynthesis. ApJ 869(2):130

    Article  ADS  Google Scholar 

  129. Oechslin R, Janka HT (2006) Torus formation in neutron star mergers and well-localized short gamma-ray bursts. MNRAS 368(4):1489–1499

    Article  ADS  Google Scholar 

  130. Sekiguchi Y et al (2016) Dynamical mass ejection from the merger of asymmetric binary neutron stars: radiation-hydrodynamics study in general relativity. Phys Rev D 93(12):124046

    Article  ADS  Google Scholar 

  131. Hotokezaka K et al (2018) Synchrotron radiation from the fast tail of dynamical ejecta of neutron star mergers. ApJ 867(2):95

    Article  ADS  Google Scholar 

  132. Bernuzzi S et al (2020) Accretion-induced prompt black hole formation in asymmetric neutron star mergers, dynamical ejecta, and kilonova signals. MNRAS 497(2):1488–1507

    Article  ADS  Google Scholar 

  133. Just O et al (2015) Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers. MNRAS 448(1):541–567

    Article  ADS  Google Scholar 

  134. Fernández R et al (2017) Dynamics, nucleosynthesis, and kilonova signature of black hole—neutron star merger ejecta. Class Quantum Gravity 34(15):154001

    Article  ADS  Google Scholar 

  135. Dessart L et al (2009) Neutrino signatures and the neutrino-driven wind in binary neutron star mergers. ApJ 690(2):1681–1705

    Article  ADS  Google Scholar 

  136. Fernández R, Metzger BD (2013) Delayed outflows from black hole accretion tori following neutron star binary coalescence. MNRAS 435(1):502–517

    Article  ADS  Google Scholar 

  137. Rosswog S (2015) The multi-messenger picture of compact binary mergers. Int J Modern Phys D 24(5):1530012–1530052

    Article  ADS  MathSciNet  Google Scholar 

  138. Wollaeger RT et al (2018) Impact of ejecta morphology and composition on the electromagnetic signatures of neutron star mergers. MNRAS 478(3):3298–3334

    Article  ADS  Google Scholar 

  139. Darbha S, Kasen D (2020) Inclination dependence of kilonova light curves from globally aspherical geometries. ApJ 897(2):150

    Article  ADS  Google Scholar 

  140. Siegel DM, Ciolfi R (2016) Electromagnetic emission from long-lived binary neutron star merger remnants. II. Lightcurves and spectra. ApJ 819(1):15

    Google Scholar 

  141. Siegel DM, Ciolfi R (2016) Electromagnetic emission from long-lived binary neutron star merger remnants. I. Formulation of the problem. ApJ 819(1):14

    Google Scholar 

  142. Barnes J et al (2016) Radioactivity and thermalization in the ejecta of compact object mergers and their impact on kilonova light curves. ApJ 829(2):110

    Article  ADS  Google Scholar 

  143. Hotokezaka K, Nakar E (2020) Radioactive heating rate of r-process elements and macronova light curve. ApJ 891(2):152

    Article  ADS  Google Scholar 

  144. Barnes J, Kasen D (2013) Effect of a high opacity on the light curves of radioactively powered transients from compact object mergers. Astrophys J 775(1):18

    Article  ADS  Google Scholar 

  145. Berger E et al (2013) An r-process kilonova associated with the short-hard GRB 130603B. ApJ 774(2):L23

    Article  ADS  Google Scholar 

  146. Tanvir NR et al (2013) A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500(7464):547–549

    Article  ADS  Google Scholar 

  147. Nakar E, Piran T (2011) Detectable radio flares following gravitational waves from mergers of binary neutron stars. Nature 478(7367):82–84

    Article  ADS  Google Scholar 

  148. Margalit B, Piran T (2020) Shock within a shock: revisiting the radio flares of NS merger ejecta and gamma-ray burst-supernovae. MNRAS 495(4):4981–4993

    Article  ADS  Google Scholar 

  149. Abadie J et al Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts. Astron Astrophys 539:A124 (2012)

    Article  Google Scholar 

  150. Abadie J et al (2012) First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astron Astrophys 541:A155

    Article  Google Scholar 

  151. Evans P et al (2012) Swift follow-up observations of candidate gravitational-wave transient events. Astrophys J Suppl 203:28

    Article  ADS  Google Scholar 

  152. Aasi J et al (2014) First searches for optical counterparts to gravitational-wave candidate events. Astrophys J Suppl 211:7

    Article  ADS  Google Scholar 

  153. Metzger BD, Berger E (2012) What is the most promising electromagnetic counterpart of a neutron star binary merger? ApJ 746:48

    Article  ADS  Google Scholar 

  154. Nissanke S et al (2013) Identifying elusive electromagnetic counterparts to gravitational wave mergers: an end-to-end simulation. Astrophys J 767:124

    Article  ADS  Google Scholar 

  155. Abbott BP et al (2016) Localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophys J Lett 826(1):L13

    Article  ADS  Google Scholar 

  156. Abbott BP et al (2017) Multi-messenger observations of a binary neutron star merger. Astrophys J Lett 848(2):L12

    Article  ADS  Google Scholar 

  157. Abbott BP et al (2019) Low-latency gravitational-wave alerts for multimessenger astronomy during the second Advanced LIGO and Virgo observing run. ApJ 875(2):161

    Article  ADS  Google Scholar 

  158. Abbott BP et al (2020) Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev Relativ 23(1):3

    Article  ADS  Google Scholar 

  159. Messick C et al (2017) Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data. Phys Rev D 95(4):042001

    Article  ADS  Google Scholar 

  160. Adams T et al (2016) Low-latency analysis pipeline for compact binary coalescences in the advanced gravitational wave detector era. Class Quantum Gravity 33(17):175012

    Article  ADS  Google Scholar 

  161. Nitz AH et al (2018) Rapid detection of gravitational waves from compact binary mergers with PyCBC Live. Phys Rev D 98(2):024050

    Article  ADS  Google Scholar 

  162. Klimenko S et al (2016) Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors. Phys Rev D 93(4):042004

    Article  ADS  Google Scholar 

  163. Hurley K et al (2000) Rapid, precise gamma-ray burst localizations with the 3rd interplanetary network. In: American astronomical society meeting abstracts #196. American astronomical society meeting abstracts, vol 196, pp 59.05

    Google Scholar 

  164. Kapadia SJ et al (2020) Of harbingers and higher modes: improved gravitational-wave early warning of compact binary mergers. ApJ 898(2):L39

    Article  ADS  Google Scholar 

  165. Fairhurst S (2009) Triangulation of gravitational wave sources with a network of detectors. New J Phys 11:123006 [Erratum: (2011) New J Phys 13:069602]

    Google Scholar 

  166. Fairhurst S (2011) Source localization with an advanced gravitational wave detector network. Class Quantum Gravity 28:105021

    Article  ADS  MATH  Google Scholar 

  167. Singer LP, Price LR (2016) Rapid Bayesian position reconstruction for gravitational-wave transients. Phys Rev D 93(2):024013

    Article  ADS  MathSciNet  Google Scholar 

  168. Klimenko S et al (2011) Localization of gravitational wave sources with networks of advanced detectors. Phys Rev D 83(10):102001

    Article  ADS  Google Scholar 

  169. Lynch R et al (2017) Information-theoretic approach to the gravitational-wave burst detection problem. Phys Rev D 95(10):104046

    Article  ADS  Google Scholar 

  170. Cornish NJ, Littenberg TB (2015) Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches. Class Quantum Gravity 32(13):135012

    Article  ADS  Google Scholar 

  171. Singer LP et al (2016) Going the distance: mapping host galaxies of LIGO and Virgo sources in three dimensions using local cosmography and targeted follow-up. ApJ 829(1):L15

    Article  ADS  Google Scholar 

  172. Salafia OS et al (2017) Where and when: optimal scheduling of the electromagnetic follow-up of gravitational-wave events based on counterpart light-curve models. ApJ 846(1):62

    Article  ADS  Google Scholar 

  173. Kapadia S (2019) Rates of compact binary mergers from LIGO-Virgo’s first and second observing runs. In: APS April Meeting Abstracts, vol 2019, pp B17.002

    Google Scholar 

  174. LIGO and V. S. Collaboration (2020) LIGO/Virgo Public Alerts User Guide. Accessed 9 Oct 2020

    Google Scholar 

  175. Foucart F (2012) Black-hole-neutron-star mergers: disk mass predictions. Phys Rev D 86(12):124007

    Article  ADS  Google Scholar 

  176. Pannarale F, Ohme F (2014) Prospects for joint gravitational-wave and electromagnetic observations of neutron-star-black-hole coalescing binaries. ApJL 791:L7

    Article  ADS  Google Scholar 

  177. Foucart F et al (2018) Remnant baryon mass in neutron star-black hole mergers: predictions for binary neutron star mimickers and rapidly spinning black holes. Phys Rev D 98(8):081501

    Article  ADS  Google Scholar 

  178. Coughlin M, Stubbs C (2016) Maximizing the probability of detecting an electromagnetic counterpart of gravitational-wave events. Exp Astron 42(2):165–178

    Article  ADS  Google Scholar 

  179. Ghosh S et al (2016) Tiling strategies for optical follow-up of gravitational-wave triggers by telescopes with a wide field of view. A&A 592:A82

    Article  ADS  Google Scholar 

  180. Gehrels N et al (2016) Galaxy strategy for LIGO-Virgo gravitational wave counterpart searches. ApJ 820(2):136

    Article  ADS  Google Scholar 

  181. Salmon L et al (2020) Web application for galaxy-targeted follow-up of electromagnetic counterparts to gravitational wave sources. A&A 634:A32

    Article  ADS  Google Scholar 

  182. Artale MC et al (2019) Host galaxies of merging compact objects: mass, star formation rate, metallicity, and colours. MNRAS 487(2):1675–1688

    Article  ADS  MathSciNet  Google Scholar 

  183. Artale MC et al (2020) Mass and star formation rate of the host galaxies of compact binary mergers across cosmic time. MNRAS 491(3):3419–3434

    Article  ADS  Google Scholar 

  184. Artale MC et al (2020) An astrophysically motivated ranking criterion for low-latency electromagnetic follow-up of gravitational wave events. MNRAS 495(2):1841–1852

    Article  ADS  Google Scholar 

  185. Abbott BP et al (2016) Localization and broadband follow-up of the gravitational-wave transient GW150914. ApJ 826(1):L13

    Article  ADS  Google Scholar 

  186. Soares-Santos M et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the dark energy camera. ApJ 848(2):L16

    Google Scholar 

  187. Smartt SJ et al (2016) Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational-wave source GW150914. MNRAS 462(4):4094–4116

    Article  ADS  Google Scholar 

  188. Anand S et al (2021) Optical follow-up of the neutron star-black hole mergers S200105ae and S200115j. Nat Astron 5:46–53

    Article  ADS  Google Scholar 

  189. Brocato E et al (2018) GRAWITA: VLT survey telescope observations of the gravitational wave sources GW150914 and GW151226. MNRAS 474(1):411–426

    ADS  MathSciNet  Google Scholar 

  190. Emerson JP et al (2004) The visible & infrared survey telescope for astronomy. The Messenger 117:27–32

    ADS  Google Scholar 

  191. Ackley K et al (2020) Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv. A&A 643:A113

    Article  ADS  Google Scholar 

  192. Ivezic Z et al (2008) Large synoptic survey telescope: from science drivers to reference design. Serbian Astron J 176:1–13

    Article  ADS  Google Scholar 

  193. Evans PA et al (2016) Optimization of the swift X-ray follow-up of Advanced LIGO and Virgo gravitational wave triggers in 2015-16. MNRAS 455(2):1522–1537

    Google Scholar 

  194. Klingler NJ et al (2019) Swift-XRT follow-up of gravitational-wave triggers in the second Advanced LIGO/Virgo observing run. ApJS 245(1):15

    Article  ADS  Google Scholar 

  195. Amati L et al (2018) The THESEUS space mission concept: science case, design and expected performances. Adv Space Res https://ui.adsabs.harvard.edu/abs/2021arXiv210409534C/abstract 62(1):191–244

  196. Stratta G et al (2018) THESEUS: a key space mission concept for Multi-Messenger Astrophysics. Adv Space Res https://ui.adsabs.harvard.edu/abs/2021ExA...tmp...79R/abstract 62(3):662–682

  197. Page KL et al (2020) Swift-xrt follow-up of gravitational wave triggers during the third aligo/virgo observing run. MNRAS 499(3):3459–3480

    Article  ADS  Google Scholar 

  198. Lamb GP, Kobayashi S (2017) Electromagnetic counterparts to structured jets from gravitational wave detected mergers. MNRAS 472(4):4953–4964

    Article  ADS  Google Scholar 

  199. Kasen D et al (2017) Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551(7678):80–84

    Article  ADS  Google Scholar 

  200. Troja E et al (2017) The X-ray counterpart to the gravitational-wave event GW170817. Nature 551(7678):71–74

    Article  ADS  Google Scholar 

  201. Rosswog S (2013) The dynamic ejecta of compact object mergers and eccentric collisions. Philos Trans R Soc Lond Ser A 371(1992):20120272–20120272

    ADS  Google Scholar 

  202. Bulla M et al (2019) The origin of polarization in kilonovae and the case of the gravitational-wave counterpart AT 2017gfo. Nat Astron 3:99–106

    Article  ADS  Google Scholar 

  203. Hansen BMS, Lyutikov M (2001) Radio and X-ray signatures of merging neutron stars. MNRAS 322(4):695–701

    Article  ADS  Google Scholar 

  204. Maan Y, van Leeuwen J (2017) Real-time searches for fast transients with Apertif and LOFAR. In: 2017 XXXIInd general assembly and scientific symposium of the international union of radio science (URSI GASS), p 2

    Google Scholar 

  205. Takahashi K, Ioka K (2020) Inverse reconstruction of jet structure from off-axis gamma-ray burst afterglows. MNRAS 497(1):1217–1235

    Article  ADS  Google Scholar 

  206. Granot J, Sari R (2002) The shape of spectral breaks in gamma-ray burst afterglows. ApJ 568(2):820–829

    Article  ADS  Google Scholar 

  207. van Haarlem MP et al (2013) LOFAR: the lOw-frequency ARray. A&A 556:A2

    Article  ADS  Google Scholar 

  208. Altenhoff WJ et al (1980) First observations with the Effelsberg radio telescope at 7mm wavelength. I – Telescope properties. AJ 85:9–12

    Google Scholar 

  209. Heeschen DS (1975) The very large array. S&T 49:344

    ADS  Google Scholar 

  210. Hotokezaka K et al (2016) Radioactive decay products in neutron star merger ejecta: heating efficiency and γ-ray emission. MNRAS 459:35–43

    Article  ADS  Google Scholar 

  211. Li L-X (2019) Radioactive gamma-ray emissions from neutron star mergers. ApJ 872(1):19

    Article  ADS  Google Scholar 

  212. de Angelis A et al (2018) Science with e-ASTROGAM. A space mission for MeV-GeV gamma-ray astrophysics. J High Energy Astrophys 19:1–106

    Google Scholar 

  213. Lazzati D et al (2017) Off-axis emission of short γ-ray bursts and the detectability of electromagnetic counterparts of gravitational-wave-detected binary mergers. MNRAS 471:1652–1661

    Article  ADS  Google Scholar 

  214. Smartt SJ et al (2017) A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551(7678):75–79

    Article  ADS  Google Scholar 

  215. Watson D et al (2019) Identification of strontium in the merger of two neutron stars. Nature 574(7779):497–500

    Article  ADS  Google Scholar 

  216. Li X et al (2017) Neutron star-black hole coalescence rate inferred from macronova observations. ApJ 844(2):L22

    Article  ADS  Google Scholar 

  217. Evans PA et al (2017) Swift and NuSTAR observations of GW170817: detection of a blue kilonova. Science 358(6370):1565–1570

    Article  ADS  Google Scholar 

  218. Goldstein A et al (2017) An ordinary short gamma-ray burst with extraordinary implications: fermi-GBM detection of GRB 170817A. ApJ 848(2):L14

    Article  ADS  Google Scholar 

  219. Savchenko V et al (2017) INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. ApJ 848(2):L15

    Article  ADS  Google Scholar 

  220. Haggard D et al (2017) A deep chandra X-ray study of neutron star coalescence GW170817. ApJ, 848(2):L25

    Article  ADS  Google Scholar 

  221. Hallinan G et al (2017) A radio counterpart to a neutron star merger. Science 358(6370):1579–1583

    Article  ADS  Google Scholar 

  222. Mooley KP et al (2018) A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817. Nature 554(7691):207–210

    Article  ADS  Google Scholar 

  223. D’Avanzo P et al (2018) The evolution of the X-ray afterglow emission of GW 170817/GRB 170817A in XMM-Newton observations. A&A 613:L1

    Article  ADS  Google Scholar 

  224. Margutti R et al (2018) The binary neutron star event LIGO/Virgo GW170817 160 days after merger: synchrotron emission across the electromagnetic spectrum. ApJ 856(1):L18

    Article  ADS  Google Scholar 

  225. Lyman JD et al (2018) The optical afterglow of the short gamma-ray burst associated with GW170817. Nat Astron 2:751–754

    Article  ADS  Google Scholar 

  226. Kasliwal MM et al (2017) Illuminating gravitational waves: a concordant picture of photons from a neutron star merger. Science 358(6370):1559–1565

    Article  ADS  Google Scholar 

  227. Salafia OS et al (2018) Interpreting GRB170817A as a giant flare from a jet-less double neutron star merger. A&A 619:A18

    Article  ADS  Google Scholar 

  228. Nathanail A et al (2019) Magnetically inspired explosive outflows from neutron-star mergers. ApJ 870(2):L20

    Article  ADS  Google Scholar 

  229. Mooley KP et al (2018) A strong jet signature in the late-time light curve of GW170817. ApJ 868(1):L11

    Article  ADS  Google Scholar 

  230. Hotokezaka K et al (2019) A Hubble constant measurement from superluminal motion of the jet in GW170817. Nat Astron 3:940–944

    Article  ADS  Google Scholar 

  231. Abbott BP et al (2017) A gravitational-wave standard siren measurement of the Hubble constant. Nature 551(7678):85–88

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marica Branchesi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Branchesi, M., Stamerra, A., Salafia, O.S., Piranomonte, S., Patricelli, B. (2021). Electromagnetic Counterparts of Gravitational Waves in the Hz-kHz Range. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-15-4702-7_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4702-7_22-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4702-7

  • Online ISBN: 978-981-15-4702-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics