Skip to main content

Dynamics of Cobalt Oxide Nanoparticles in the Activation of Reactive Oxygen Species Induced Inflammation and Immunomodulation

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

The progress of nanoparticles (NPs) in cancer therapy introduces a better efficacy and lower toxicity for treatment. The cobalt oxide nanoparticles (CoO NPs) were prepared by the calcination method. The nano states of the particles were confirmed by different available physio-chemical estimations. The CoO NPs induce toxicity by leaching of Co2+ ions that strongly trigger the generation of reactive oxygen species (ROS) and activate the caspase cascade followed by necrosis on three different cancer cell lines (jurkat, KG1-A, and K562 cells) as well as the normal counterparts. The toxicity of the CoO NPs was minimized by using different surface modifying agents, such as phosphonomethyl imminodiacetic acid (PMIDA) and chitosan (CS). Surface modifications significantly reduced the Co2+ ion release into the media and reduced the toxicity of surface-modified CoO NPs to normal cells, whereas in the cancer microenvironment, modified NPs liberate Co2+ ions which induced anticancer activity by activating ROS in association with TNF-α and p38 MAPK, followed by activation of caspase cascade in both in vitro and in vivo systems. Among the two, the PMIDA-CoO NPs showed better activity at low concentrations. Independent treatment of PMIDA-CoO NPs could trigger the release of interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), interleukin 12 (IL-12), and decrease the production of interleukin 10 (IL-10) from lymphocytes and macrophage and produced a pro-inflammatory response.

The surface pendant –COOH group of PMIDA-CoO NPs showed an excellent binding affinity with cancer cell lysate (CL), used as an antigen. The protein antigen conjugated PMIDA-CoO NPs stimulated the macrophage and produced a strong anticancer immune response. The antitumor activity of the antigen conjugated nanoparticle (CL-PMIDA-CoO NPs) pulsed macrophages were tested on a human oral carcinoma cell line (KB) in vitro. The modified CL-PMIDA-CoO NPs upregulated IFN-γ, TNF-α, and induced an anticancer immune response by activating macrophages. The use of nuclear factor kappa beta (NF-κβ), TNF-α, and Cyclooxygenase-2 (COX-2) inhibitors confirmed the ability of the CL–PMIDA–CoO nano-complex to induce TNF-α associated immunostimulation. CL–PMIDA–CoO nanoparticles efficiently increased the CD4+ population. In vivo immunization of antigen conjugated PMIDA-CoO NPs induced an antigen-specific Immunoglobulin G (IgG) response and amplified the antibody dependent cellular cytotoxic (ADCC) effect. The cell lysate conjugated PMIDA-CoO NPs successfully activated the antigen presenting cells (APCs) as evinced by the elevated level of IFN-γ and TNF-α in serum. Additionally, the nanoconjugate can re-modulate the immune-suppressive tumor-associated macrophages towards pro-tumor macrophage by activating nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase)-ROS-p38 MAPK pathway. Thus, our findings provide insights into the use of PMIDA-CoO NPs as antigen delivery vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adden N, Gamble LJ, Castner DG, Hoffmann A, Gross G, Menzel H (2006) Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces. Langmuir 22:8197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahamed M, Ali D, Alhadlaq HA, Akhtara J (2013) Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere 93:2514–2522

    Google Scholar 

  • Akhtar MJ, Ahamed M, Fareed M, Alrokayan SA, Kumar S (2012) Protective effect of sulphoraphane against oxidative stress mediated toxicity induced by CuO nanoparticles in mouse embryonic fibroblasts BALB 3T3. J Toxicol Sci 37:139–148

    Google Scholar 

  • Al-Qubaisi MS, Rasedee A, Flaifel MH, Ahmad SH, Hussein-Al-Ali S, Hussein MZ, Eid EE, Zainal Z, Saeed M, Ilowefah M, Fakurazi S, Mohd Isa N, El Zowalaty ME (2013) Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin. Int J Nanomedicine 8:2497–508

    Google Scholar 

  • Azaria LH, Kirkpatrick CJ, Korenstein R, Marche PN, Maimon O, Ponti J, Romano R, Rossi F, Schindler UG, Sommer D, Uboldi C, Unger RE, Villiers C (2011) Predictive toxicology of cobalt nanoparticles and ions: comparative in vitro study of different cellular models using methods of knowledge discovery from data. Toxicol Sciences 122:489–501

    Article  CAS  Google Scholar 

  • Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K (2006) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23

    Article  CAS  PubMed  Google Scholar 

  • Chandel NS, Trzyna WC, McClintock DS, Schumacker PT (2000) Role of oxidants in NF-κB activation and TNF-α gene transcription induced by hypoxia and endotoxin. J Immunol 165:1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Roy S (2019) Antigen conjugated nanoparticles reprogrammed the tumor-conditioned macrophages toward pro-immunogenic type through regulation of NADPH oxidase and p38MAPK. Cytokine 113:162–176

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Dash SK, Ghosh T, Das S, Tripathy S, Mandal D, Das D, Pramanik P, Roy S (2013) Anticancer and immunostimulatory role of encapsulated tumor antigen containing cobalt oxide nanoparticles. J Biol Inorg Chem 18:957–973

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Dash SK, Tripathy S, Pramanik P, Roy S (2015a) Phosphonomethyl iminodiacetic acid-conjugated cobalt oxide nanoparticles liberate Co++ ion-induced stress associated activation of TNF-α/p38 MAPK/caspase 8-caspase 3 signaling in human leukemia cells. J Biol Inorg Chem 20:123–141

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Dash SK, Tripathy S, Das B, Mondal D, Pramanik P, Roy S (2015b) Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chem Biol Interact 226:58–71

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Dash SK, Mandal D, Das D, Tripathy S, Dey A, Pramanik P, Roy S (2016) Metal based nanoparticles as cancer antigen delivery vehicles for macrophage based antitumor vaccine. Vaccine 34:957–967

    Article  CAS  PubMed  Google Scholar 

  • Cho WS, Dart K, Nowakowska DJ, Zheng X, Donaldson K, Howie SE (2012) Adjuvanticity and toxicity of cobalt oxide nanoparticles as an alternative vaccine adjuvant. Nanomedicine 10:1495–1505

    Article  CAS  Google Scholar 

  • Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E (2008) Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis 23:377–382

    Article  CAS  PubMed  Google Scholar 

  • de Freitas ERL, Soares PRO, de Paula Santos R, dos Santos RL, da Silva JR, Porfirio EP, Báo SN, de Oliveira Lima EC, Morais PC, Guillo LA (2008) In vitro biological activities of Anionic γ-Fe2O3 nanoparticles on human melanoma cells. J Nanosci Nanotechnol 8(5):2385–2391(7)

    Google Scholar 

  • Fu L, Liu Z, Liu Y, Han B, Hu P, Cao L, Zhu D (2005) Beaded cobalt oxide nanoparticles along carbon nanotubes: towards more highly integrated electronic devices. Adv Mater 17:217–221

    Article  CAS  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  CAS  PubMed  Google Scholar 

  • Hans ML, Lowman AM (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 6:319–327

    Article  CAS  Google Scholar 

  • Hu Z, Chandran K, Grasso D, Smets BF (2003) Impact of metal sorption and internalization on nitrification inhibition. Environ Sci Technol 37(4):728–734

    Google Scholar 

  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2006) Determination of the minimum temperature required forselective photothermal destruction of cancer cells with theuse of immunotargeted gold nanoparticles. Photochem Photobiol 82(2):412–417

    Google Scholar 

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the nearinfrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

    Google Scholar 

  • Hubert MP, Guerrero G, Vioux A (2005) Hybrid materials from organophosphorus coupling molecules. J Mater Chem 15:3761–3768

    Article  CAS  Google Scholar 

  • Ito A, Honda H, Kobayashi T (2006) Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunol Immunother 55:320–328

    Article  CAS  PubMed  Google Scholar 

  • Johannsen M, Gneveckow U, Eckelt L et al. (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia 21(7):637–647

    Google Scholar 

  • Kim YS, Morgan MJ, Choksi S, Liu ZG (2007) TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell 26:675–687

    Article  CAS  PubMed  Google Scholar 

  • Kittler S, Greulich C, Diendorf J, Koller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554

    Article  CAS  Google Scholar 

  • Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4:627–633

    Article  CAS  PubMed  Google Scholar 

  • Kovacsovics-Bankowski M, Rock KL (1995) A phagosome to cytosol pathway for exogenous antigen presented on MHC class I molecules. Science 267:243–246

    Article  CAS  PubMed  Google Scholar 

  • Krishnamachari Y, Geary SM, Lemke CD, Salem AK (2011) Nanoparticle delivery systems in cancer vaccines. Pharm Res 28:215–236

    Article  CAS  PubMed  Google Scholar 

  • LaConte L, Nitin N, Bao G (2005) Magnetic nanoparticle probes. NanoToday 19:32–38

    Google Scholar 

  • Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Qiu G, Li X (2005) Shape-controlled synthesis and properties of uniform spinel cobalt oxide nanotubes. Nanotechnology 16:3035–3040

    Article  CAS  Google Scholar 

  • Malyala P, O’Hagan DT, Singh M (2009) Enhancing the therapeutic efficacy of CpG oligonucleotides using biodegradable microparticles. Adv Drug Deliv Rev 61:218–225

    Article  CAS  PubMed  Google Scholar 

  • Misra SK, Dybowska AD, Berhanu D, Croteau MN, Luoma SN, Boccaccini AR et al (2012) Isotopically modified nanoparticles for enhanced detection in bioaccumulation studies. Environ Sci Technol 46:1216

    Article  CAS  PubMed  Google Scholar 

  • Mo Y, Zhu X, Hu X, Tollerud DJ, Zhang Q (2008) Cytokine and NO release from peripheral blood neutrophils after exposure to metal nanoparticles: in vitro and ex vivo studies. Nanotoxicology 2:79–87

    Article  CAS  Google Scholar 

  • Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J Control Release 125:193–209

    Article  CAS  PubMed  Google Scholar 

  • Nakoaka R, Tabata Y, Ikada Y (1996) Adjuvant effect of biodegradable poly (dl-lactic acid) granules capable for antigen release following intraperitoneal injection. Vaccine 14:1671–1676

    Article  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • Neouze MA, Schubert U (2008) Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatsh Chem 139:183–195

    Article  CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:167–181

    Article  Google Scholar 

  • Papis E, Rossi F, Raspanti M, Isabella DD, Colombo G, Milzani A, Bernardini G, Gornati R (2009) Engineered cobalt oxide nanoparticles readily enter cells. Toxicol Lett 189:253–259

    Article  CAS  PubMed  Google Scholar 

  • Pardoe H, Chua-anusorn W, Pierre TG, Dobson J (2001) Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol. J Magn Magn Mater 225:41–46

    Article  CAS  Google Scholar 

  • Parkes LM, Hodgson R, Lu LT, Tung LD, Robinson I, Fernig DG, Thanh NT (2008) Cobalt nanoparticles as a novel magnetic resonance contrast agent-relaxivities at 1, 5 and 3 tesla. Contrast Media Mol Imag 3:150–156

    Article  CAS  Google Scholar 

  • Petrarca C, Perrone A, Verna N, Verginelli F, Ponti J, Sabbioni E (2006) Cobalt nano-particles modulate cytokine in vitro release by human mononuclear cells mimicking autoimmune disease. Int J Immunopathol Pharmacol 19:11–14

    CAS  PubMed  Google Scholar 

  • Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9:25970

    Article  Google Scholar 

  • Ponti J, Sabbioni E, Munaro B, Broggi F, Marmorato P, Franchini F (2009) Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts. Mutagenesis 24:439–445

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Cody V, Saucier-Sawyer JK, Saltzman WM, Sasaki CT, Edelson RL, Birchall MA, Hanlon DJ (2011) Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell–based antitumor immunotherapy. Nanomedicine 7:1–10

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Goswami S, Bose A, Chakraborty K, Pal S, Halder A et al (2011) Neem leaf glycoprotein partially rectifies suppressed dendritic cell functions and associated T cell efficacy in patients with stage IIIB cervical cancer. Clin Vaccine Immunol 18:571–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Z, Reznikoff G, Dranoff G, Rock KL (1997) Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J Immunol 28:2723–2730

    Article  Google Scholar 

  • Stout RD, Watkins SK, Suttles J (2009) Functional plasticity of macrophages: in situ reprogramming of tumor associated macrophages. J Leukoc Biol 86:11059

    Article  CAS  Google Scholar 

  • Tamber H, Johansen P, Merkle HP, Gander B (2005) Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv Drug Deliv Rev 57:357–376

    Article  CAS  PubMed  Google Scholar 

  • Tomitaka A, Koshi T, Hatsugai S, Yamada T, Takemura Y (2011) Magnetic characterization of surface-coated magnetic nanoparticles for biomedical application. J Magn Magn Mater 323:1398–1403

    Google Scholar 

  • Villa CH, Dao T, Ahearn I, Fehrenbacher N, Casey E, Rey DA, Korontsvit T, Zakhaleva V, Batt CA, Philips MR, Scheinberg DA (2011) Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano 5:5300–5311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vujanovic L, Butterfield LH (2007) Melanoma cancer vaccines and anti-tumor T cell responses. J Cell Biochem 102:301–310

    Article  CAS  PubMed  Google Scholar 

  • Waeckerlemen Y, Groettrup M (2005) PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Adv Drug Deliv Rev 57:475–482

    Article  CAS  Google Scholar 

  • Wang K, Xu JJ, Chen HY (2005) A novel glucose biosensor basedon the nanoscaled cobalt phthalocyanine-glucose oxidase biocomposite. Biosens Bioelectron 20:1388–1396

    Google Scholar 

  • Wang Y, Zeigler MM, Lam GK (2007) The role of the NADPH oxidase complex, p38 MAPK, and Akt in regulating human monocyte-macrophage survival. Am JRespir Cell Mol Biol 36:68–77

    Article  CAS  Google Scholar 

  • Yang GF, Li XH, Zhao Z, Wang W (2009) Preparation, characterization, in vivo and in vitro studies of arsenic trioxide Mg-Fe ferrite magnetic nanoparticles. Acta Pharmacol Sin 30:1688–1693

    Google Scholar 

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chattopadhyay, S., Roy, S. (2021). Dynamics of Cobalt Oxide Nanoparticles in the Activation of Reactive Oxygen Species Induced Inflammation and Immunomodulation. In: Chakraborti, S., Ray, B.K., Roychowdhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-4501-6_178-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4501-6_178-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4501-6

  • Online ISBN: 978-981-15-4501-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics