Skip to main content

Association of Oxidative Stress and Mitochondrial Dysfunction to Gynecological Malignancies

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

Despite years of concerted research, gynecological malignancies have remained a persistent cause of morbidity and mortality in females across the globe. Nearly asymptomatic initial phases render gynecological cancers difficult to be diagnosed during the early stages, further complicating scopes for therapeutic intervention and disease combat. Based on several studies and advancements, oxidative stress has emerged as a prime regulator of myriad events contributing to cancer progression. The mitochondrion is the major site for intrinsic oxidative stress generation, whereas extrinsic factors include UV irradiation, alcohol, pollutants, etc. The manifestation of oxidative stress-induced cancer progression is through different reactive species of which the reactive oxygen species (ROS) is the most abundant. ROS functions as the key regulator of REDOX imbalance, and the underlying oncogenic events, as per reports, exert dual role by exhibiting both tumor suppressing and tumor promoting functions. Low levels of ROS mainly exert cytotoxic effects on tumor cells, whereas fairly increased ROS levels contribute to cancer progression majorly by remodeling the microenvironment niche, rewiring the cellular bioenergetics, and altering the signaling events. The intricacies of ROS imbalance and the paradigm of its functional relevance in gynecological cancer progression cumulatively emphasize on the need for the understanding of the detailed mechanism therein. This chapter aims at underlining different aspects of mitochondrial dysfunction and oxidative stress that promote oncogenesis, intending to pave ways for newer and effective therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ackerman D, Simon MC (2014) Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol 24:472–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agbor TA, Alex C, Katrina MC, Carsten CS, Ulrike B, Ambrose C, Eoin PC, Gerard C, Cormac TT (2011) Small Ubiquitin-related Modifier (SUMO)-1 Promotes Glycolysis in Hypoxia. J Biol Chem 286(6):4718–4726

    Google Scholar 

  • Aggarwal V, Tuli HS, Varol A et al (2019) Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomol Ther 9:735

    CAS  Google Scholar 

  • Almeida M, Han L, Martin-Millan M et al (2007) Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem 282:27298–27305

    Article  CAS  PubMed  Google Scholar 

  • Arcucci A, Ruocco MR, Granato G et al (2016) Cancer: an oxidative crosstalk between solid tumor cells and cancer associated fibroblasts. Biomed Res Int 2016:4502846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bell EL, Emerling BM, Ricoult SJH et al (2011) SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production. Oncogene 30:2986–2996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burdick AD, Davis JW, Liu KJ et al (2003) Benzo (a) pyrene quinones increase cell proliferation, generate reactive oxygen species, and transactivate the epidermal growth factor receptor in breast epithelial cells. Cancer Res 63:7825–7833

    CAS  PubMed  Google Scholar 

  • Chan DW, Liu VW, Tsao GS et al (2008) Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis 29:1742–1750

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Yang Y, Miller ML et al (2007) Hepatocyte-specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure. Hepatology 45:1118–1128

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Qian Y, Wu S (2015) The Warburg effect: evolving interpretations of an established concept. Free Radic Biol Med 79:253–263

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Yang Y, Lin X et al (2018) Platinum (iv) prodrugs with long lipid chains for drug delivery and overcoming cisplatin resistance. Chem Commun 54:5369–5372

    Article  CAS  Google Scholar 

  • Chen H, Wang J, Feng X et al (2019) Mitochondria-targeting fluorescent molecules for high efficiency cancer growth inhibition and imaging. Chem Sci 10:7946–7951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chetram MA, Danaya AB, Odero-Marah VA, Don-Salu-Hewage AS, Jones KJ, Hinton CV (2013) ROS-mediated activation of AKT induces apoptosis via pVHL in prostate cancer cells. Mol Cell Biochem 376(1–2):63–71

    Google Scholar 

  • Chou WC, Jie C, Kenedy AA et al (2004) Role of NADPH oxidase in arsenicinduced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc Natl Acad Sci 101:4578–4583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury SR, Ray U, Chatterjee BP et al (2017) Targeted apoptosis in ovarian cancer cells through mitochondrial dysfunction in response to Sambucus nigra agglutinin. Cell Death Dis 8:e2762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diebold I, Petry A, Djordjevic T et al (2010) Reciprocal regulation of Rac1 and PAK-1 by HIF-1alpha: a positive-feedback loop promoting pulmonary vascular remodeling. Antioxid Redox Signal 13:399–412

    Article  CAS  PubMed  Google Scholar 

  • Diehn M, Cho RW, Lobo NA et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding N, Zhang H, Su S et al (2018) Emodin enhances the chemosensitivity of endometrial cancer by inhibiting ROS-mediated cisplatin-resistance. Anticancer Agents Med Chem 18:1054–1063

    Article  CAS  PubMed  Google Scholar 

  • Ghoneum A, Afify H, Salih Z et al (2018) Role of tumor microenvironment in ovarian cancer pathobiology. Oncotarget 9:22832

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (Sn-butyl homocysteine sulfoximine). J Biol Chem 254:7558–7560

    Article  CAS  PubMed  Google Scholar 

  • Hojo T, Maishi N, Towfik AM et al (2017) ROS enhance angiogenic properties via regulation of NRF2 in tumor endothelial cells. Oncotarget 8:45484–45495

    Article  PubMed  PubMed Central  Google Scholar 

  • Idelchik MDPS, Begley U, Begley TJ et al (2017) Mitochondrial ROS control of cancer. Semin Cancer Biol 47:57–66

    Article  CAS  PubMed  Google Scholar 

  • Ježek J, Cooper KF, Strich R (2018) Reactive oxygen species and mitochondrial dynamics: the yin and yang of mitochondrial dysfunction and cancer progression. Antioxidants 7:13

    Article  PubMed Central  CAS  Google Scholar 

  • Kashyap D, Sharma A, Garg V et al (2016) Reactive oxygen species (ROS): an activator of apoptosis and autophagy in cancer. J Biol Chem Sci 3:256–264

    Google Scholar 

  • Kim J, Kim J, Bae JS (2016) ROS homeostasis and metabolism: a critical liaison for cancer therapy. Exp Mol Med 48:e269–e269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim EK, Jang M, Song MJ et al (2019) Redox-mediated mechanism of Chemoresistance in Cancer cells. Antioxidants 8:471

    Article  CAS  PubMed Central  Google Scholar 

  • Klimova T, Chandel NS (2008) Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Different 15:660–666

    Article  CAS  Google Scholar 

  • Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I et al (2015) Redox regulation of FoxO transcription factors. Redox Biol 6:51–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudryavtseva AV, Krasnov GS, Dmitriev AA et al (2016) Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 7:44879–44905

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Badana AK, Malla R (2018) Reactive oxygen species: a key constituent in cancer survival. Biomark Insights 13:1177271918755391

    Article  PubMed  PubMed Central  Google Scholar 

  • Lander HM, Hajjar DP, Hempstead BL et al (1997) A molecular redox switch on p21ras structural basis for the nitric oxide-p21ras interaction. J Biol Chem 272:4323–4326

    Article  CAS  PubMed  Google Scholar 

  • Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496

    Article  CAS  PubMed  Google Scholar 

  • Liu LZ, Hu XW, Xia C (2006) Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1α expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med 41:1521–1533

    Article  CAS  PubMed  Google Scholar 

  • Maiti AK (2010) Gene network analysis of oxidative stress-mediated drug sensitivity in resistant ovarian carcinoma cells. Pharmacogenomics J 10:94–104

    Article  CAS  PubMed  Google Scholar 

  • Marullo R, Werner E, Degtyareva N et al (2013) Cisplatin induces a mitochondrial- ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One 8:e81162

    Article  PubMed  PubMed Central  Google Scholar 

  • Maya-Mendoza A, Ostrakova J, Kosar M et al (2015) Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Mol Oncol 9:601–616

    Article  CAS  PubMed  Google Scholar 

  • McCubrey JA, Steelman LS, Chappell et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta Mol Cell Res 1773:1263–1284

    Article  CAS  Google Scholar 

  • Meng Y, Chen CW, Yung MM et al (2018) DUOXA1-mediated ROS production promotes cisplatin resistance by activating ATR-Chk1 pathway in ovarian cancer. Cancer Lett 428:104–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochizuki T, Furuta S, Mitsushita J et al (2006) Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene 25:3699–3707

    Article  CAS  PubMed  Google Scholar 

  • Moulder S, Dhillon N, Ng C, Boytim M et al (2010) A phase I trial of imexon, a pro-oxidant, in combination with docetaxel for the treatment of patients with advanced breast, non-small cell lung and prostate cancer. Invest New Drugs 28:634–640

    Article  CAS  PubMed  Google Scholar 

  • Nelson KK, Melendez JA (2004) Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37:768–784

    Article  CAS  PubMed  Google Scholar 

  • Nguyen H, Syed V (2011) Progesterone inhibits growth and induces apoptosis in cancer cells through modulation of reactive oxygen species. Gynecol Endocrinol 27:830–836

    Article  CAS  PubMed  Google Scholar 

  • Pastò A, Bellio C, Pilotto G et al (2014) Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation. Oncotarget 5:4305–4319

    Article  PubMed  PubMed Central  Google Scholar 

  • Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pešić M, Podolski-Renić A, Stojković S et al (2015) Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity. Chem Biol Interact 232:85–93

    Article  PubMed  CAS  Google Scholar 

  • Piersma SJ (2011) Immunosuppressive tumor microenvironment in cervical cancer patients. Cancer Microenviron 4:361–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray U, Roy SS (2018) Aberrant lipid metabolism in cancer cells–the role of oncolipid-activated signaling. FEBS J 285:432–443

    Article  CAS  PubMed  Google Scholar 

  • Sabharwal SS, Schumacker PT (2014) Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer 14:709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sack M, Alili L, Karaman E et al (2014) Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles – a novel aspect in cancer therapy. Mol Cancer Ther 13:1740–1749

    Article  CAS  PubMed  Google Scholar 

  • Sahoo SS, Zhang XD, Hondermarck H, Tanwar PS (2018) The emerging role of the microenvironment in endometrial cancer. Cancers 10:408

    Article  CAS  PubMed Central  Google Scholar 

  • Schröder K, Zhang M, Benkhoff S et al (2012) Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res 110:1217–1225

    Article  PubMed  CAS  Google Scholar 

  • Silva GÁF, Nunes RAL, Morale MG et al (2018) Oxidative stress: therapeutic approaches for cervical cancer treatment. Clinics 73:e548s

    Article  PubMed  PubMed Central  Google Scholar 

  • Simic MG, Bergtold DS, Karam LR (1989) Generation of oxy radicals in biosystems. Mutat Res/Fund Mol Mech Mutag 214:3–12

    Article  CAS  Google Scholar 

  • Singh PK, Brand RE, Mehla K (2012) MicroRNAs in pancreatic cancer metabolism. Nat Rev Gastroenterol Hepatol 9:334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosa V, Moliné T, Somoza R et al (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12:376–390

    Article  CAS  PubMed  Google Scholar 

  • Tello D, Balsa E, Acosta-Iborra B et al (2011) Induction of the mitochondrial NDUFA4L2 protein by HIF-1α decreases oxygen consumption by inhibiting Complex I activity. Cell Metab 14:768–779

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12:685–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ma J, Shen H et al (2014) Reactive oxygen species promote ovarian cancer progression via the HIF-1α/LOX/E-cadherin pathway. Oncol Rep 32:2150–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Zhao J, Zhang L et al (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8:761–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Branicky R, Noë A, Hekimi S (2018a) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217:1915–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YY, Chen J, Liu XM et al (2018b) Nrf2-mediated metabolic reprogramming in cancer. Oxidative Med Cell Longev 2018:9304091

    Article  Google Scholar 

  • Wang H, Wang J, Liu H et al (2019) TGF-β1 activates NOX4/ROS pathway to promote the invasion and migration of cervical cancer cells. Chin J Cell Mol Immunol 35:121–127

    Google Scholar 

  • Weinberg F, Ramnath N, Nagrath D (2019) Reactive oxygen species in the tumor microenvironment: an overview. Cancers 11:1191

    Article  CAS  PubMed Central  Google Scholar 

  • Wen Y, Clark PM, Mason DE, Keenan MC, Hill C, Goddard III, WA, Peters EC, Driggers EM, Hsieh-Wilson LC (2012) PFK1 glycosylation is a key regulator of cancer cell growth and central metabolic pathways. Science (New York, NY), 337(6097), p.975.

    Google Scholar 

  • White M, Cohen J, Hummel C et al (2014) The role of oxidative stress in ovarian cancer: implications for the treatment of patients. Cancer 5:41–50

    Article  CAS  Google Scholar 

  • Xiao D, Powolny A, Moura MB et al (2010) Phenethyl isothiocyanate inhibits oxidative phosphorylation to trigger reactive oxygen species-mediated death of human prostate cancer cells. J Biol Chem 285:26558–26569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Villani RM, Wang H et al (2018) The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res 37:266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Hu X, Shen Q et al (2019) Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy. Nat Commun 10:1–14

    CAS  Google Scholar 

  • Zhao Y, Tang S, Guo J et al (2017) Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy. Sci Reports 7:1–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sib Sankar Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ghosh, D., Chatterjee, P., Mitra, T., Roy, S.S. (2021). Association of Oxidative Stress and Mitochondrial Dysfunction to Gynecological Malignancies. In: Chakraborti, S., Ray, B.K., Roychowdhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-4501-6_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4501-6_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4501-6

  • Online ISBN: 978-981-15-4501-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics