Skip to main content

Oxidative Stress in Cancer

Selenium as the Magic Bullet

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

The disease cancer involves multiple cellular and molecular changes, which converts a normal cell into a malignant one. Reactive oxygen species acts as the physiological redox signaling messenger in the living system. ROS is formed continuously which is being removed by the host’s defense system and there is a balance between the two. When the balance is lost, the system enters in a state called oxidative stress. ROS/oxidative stress is involved intimately in cancer during its initiation and progress. Selenium is an essential trace element required for normal physiological process in mammalian system including human to maintain redox homeostasis. It is a part of very essential selenoenzymes. Apart from its antioxidative properties, selenium is involved in cancer prevention. It is a very promising agent for cancer therapy also as selenium has the unique property to have pro oxidative power also. Selenium compounds can serve as an effective adjuvant with standard chemotherapeutic drug as well with radiation therapy to reduce the therapeutic toxicity. But the main limitation of using selenium compounds is the narrow therapeutic window between the beneficial dose and the toxic dose. Nano formulation of selenium has come out as an alternative use due to its reduced toxicity and specificity.

In this book chapter the beneficial effect of selenium compounds in its inorganic, organic form as well as its nano formulation in reducing oxidative stress in cancer will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ali W, Álvarez-Pérez M, Marć MA et al (2018) The anticancer and chemopreventive activity of selenocyanate-containing compounds. Curr Pharmacol Rep 4:468–481

    Article  CAS  Google Scholar 

  • Álvarez-Pérez M, Ali W, Marc MA (2018) Selenides and diselenides: a review of their anticancer and chemopreventive activity. Molecules 23:628–646

    Article  PubMed Central  CAS  Google Scholar 

  • Arnér ESJ (2010) Selenoproteins—what unique properties can arise with selenocysteine in place of cysteine? Exp Cell Res 316:1296–1303

    Article  PubMed  CAS  Google Scholar 

  • Assi M (2017) The differential role of reactive oxygen species in early and late stages of cancer. Am J Phys Regul Integr Comp Phys 313(6):R646–R653

    Google Scholar 

  • Avery JC, Hoffmann Peter R (2018) Selenium, selenoproteins, and immunity. Nutrients 10(9):1203–1222

    Article  PubMed Central  CAS  Google Scholar 

  • Bhabak KP, Mugesh G (2007) Synthesis, characterization, and antioxidant activity of some Ebselen analogues. Chem Eur J 13:4594–4601

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee A, Basu A, Ghosh P, Biswas J, Bhattacharya S (2014) Protective effect of selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice. J Biomater Appl 29(2):303–317

    Article  CAS  PubMed  Google Scholar 

  • Cao S, Durrani FA, Rustum YM (2004) Selective modulation of the therapeutic efficacy of anticancer drugs by selenium containing compounds against human tumor xenografts. Clin Cancer Res 10:2561–2569

    Article  CAS  PubMed  Google Scholar 

  • Carlisle AE, Lee N, Matthew-Onabanjo AN et al (2020) Nat Metab 2:603–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty P, Roy SS, Sk UH, Bhattacharya S (2011) Amelioration of cisplatin-induced nephrotoxicity in mice by oral administration of diphenylmethyl selenocyanate. Free Radic Res 45:177–187

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty P, Roy SS, Bhattacharya S (2015) Molecular mechanism behind the synergistic activity of Diphenylmethyl Selenocyanate and cisplatin against murine tumor model. Anti Cancer Agents Med Chem 15:501–510

    Article  CAS  Google Scholar 

  • Chen J, Geissler C, Parpia B, Li J, Campbell TC (1992) Antioxidant status and cancer mortality in China. Int J Epidemiol 21:625–635

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Wong YS, Zheng W, Bai Y, Huang L (2008) Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf B Biointerfaces 67:26–31

    Article  CAS  PubMed  Google Scholar 

  • Cierpiał T, Łuczak J, Kwiatkowska M, Kiełbasiński P, Mielczarek L, Wiktorska K, Chilmonczyk Z, Milczarek M, Karwowska K (2016) Organofluorine Isoselenocyanate analogues of Sulforaphane: synthesis and anticancer activity. Chem Med Chem 11:1–13

    Article  CAS  Google Scholar 

  • Conaway CC, Krzeminski J, Amin S, Chung FL (2001) Decomposition rates of Isothiocyanate conjugates determine their activity as inhibitors of cytochrome p 450 enzymes. Chem Res Toxicol 14:1170–1176

    Article  CAS  PubMed  Google Scholar 

  • Crampsie MA, Jones N, Das A, Aliaga C, Desai D, Lazarus P, Amin S, Sharma AK (2011) Phenylbutyl isoselenocyanate modulates phase I and II enzymes and inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced DNA adducts in mice. Cancer Prev Res 4:1884–1894

    Article  CAS  Google Scholar 

  • Crampsie MA, Pandey MK, Desai D, Spallholz J, Amin S, Sharma AK (2012) Phenylalkyl Isoselenocyanates vs Phenylalkyl Isothiocyanates: thiol reactivity and its implications. Chem Biol Interact 200:28–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cupp-Sutton KA, Ashby MT (2016) Biological chemistry of hydrogen selenide. Antioxidants 5:42–59

    Article  PubMed Central  CAS  Google Scholar 

  • Das RK, Hossain SK, Bhattacharya S (2005) Diphenylmethyl selenocyanate inhibits DMBA-croton oil induced two-stage mouse skin carcinogenesis by inducing apoptosis and inhibiting cutaneous cell proliferation. Cancer Lett 230:90–101

    Article  CAS  PubMed  Google Scholar 

  • Emmert SW, Desai D, Amin S, Richie J Jr (2010) Enhanced Nrf2-dependent induction of glutathione in mouse embryonic fibroblasts by isoselenocyanate analog of sulforaphane. Bioorg Med Chem Lett 20:2675–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estevez H, Garcia-Lidon JC, Luque-Garcia JL, Camara C (2014) Effects of chitosan-stabilized selenium nanoparticles on cell proliferation, apoptosis and cell cycle pattern in HepG2 cells: comparison with other selenospecies. Colloids Surf B Biointerfaces 122:184–193

    Article  CAS  PubMed  Google Scholar 

  • Eyries M, Collins T, Khachigian LM (2004) Modulation of growth factor gene expression in vascular cells by oxidative stress. Endothelium 11:133–139

    Article  CAS  PubMed  Google Scholar 

  • Fairweather-Tait SJ, Bao Y, Broadley MR et al (2011) Selenium in human health and disease. Antioxid Redox Signal 14(7):1337–1383

    Article  CAS  PubMed  Google Scholar 

  • Freitas ASD, Prestes ADS, Wagner C, Sudati JH, Alves D, Porciúncula LO, Kade IJ, Rocha JBT (2010) Reduction of diphenyl diselenide and analogs by mammalian thioredoxin reductase is independent of their gluthathione peroxidase-like activity: a possible novel pathway for their antioxidant activity. Molecules 15:7699–7714

    Article  PubMed Central  CAS  Google Scholar 

  • Frieben EE, Amin S, Sharma AK (2019) Development of isoselenocyanate compounds; syntheses and biological applications. J Med Chem 62:5261–5275

    Article  CAS  PubMed  Google Scholar 

  • Gandin V, Khalkar P, Braude J, Fernandes AP (2018) Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med 127:80–97

    Article  CAS  PubMed  Google Scholar 

  • Ganther HE, Lawrence RJ (1997) Chemical transformations of selenium in living organisms. Improved forms of selenium for cancer prevention. Tetrahedron 53:12299–12310

    Article  CAS  Google Scholar 

  • Gao X, Zhang J, Zhang L (2002) Hollow sphere selenium nanoparticles: their in-vitro anti hydroxyl radical effect. Adv Mater 14:290–293

    Article  CAS  Google Scholar 

  • Geyikoglu F, Türkez H (2006) Protective effect of sodium selenite against the genotoxicity of aflatoxin B1 in human whole blood cultures. Braz Arch Biol Technol 49(3):393–398

    Article  CAS  Google Scholar 

  • Ghadi FE, Ghara AR, Bhattacharyya S, Dhawan DK (2009) Selenium as a chemopreventive agent in experimentally induced colon carcinogenesis. World J Gastrointest Oncol 1(1):74–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh P, Roy SS, Basu A, Bhattacharjee A, Bhattacharya S (2015) Sensitization of cisplatin therapy by a naphthalimide based organoselenium compound through modulation of antioxidant enzymes and p 53 mediated apoptosis. Free Radic Res 49:453–471

    Article  CAS  PubMed  Google Scholar 

  • Hassan W, Rocha JBT (2012) Interaction profile of diphenyl Diselenide with pharmacologically significant thiols. Molecules 17:12287–12296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q, Baron M, Melcova M, Opatrilova R, Zidkova J, Bjørklund G, Sochor J, Kizek R (2018) Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomedicine 13:2107–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Benya RV, Carroll RE, Diamond AM (2005) Allelic loss of the gene for the GPX1 selenium-containing protein is a common event in cancer. J Nutr 135(12 Suppl):3021S–3024S

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, He L, Liu W, Fan C, Zheng W, Wong YS, Chen T (2013) Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials 34:7106–7116

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Huang W, Zhang Z, Lin X, Lin H, Peng L, Chen T (2019) Highly uniform synthesis of selenium nanoparticles with EGFR targeting and tumor microenvironment-responsive ability for simultaneous diagnosis and therapy of nasopharyngeal carcinoma. ACS Appl Mater Interfaces 11:11177–11193

    Article  CAS  PubMed  Google Scholar 

  • Ip C, Ganther HE (1990) Activity of methylated forms of selenium in cancer prevention. Cancer Res 50(4):1206–1211

    CAS  PubMed  Google Scholar 

  • Ip C, Hayes C, Budnick RM, Ganther HE (1991) Chemical form of selenium, critical metabolites, and cancer prevention. Cancer Res 51(2):595–600

    CAS  PubMed  Google Scholar 

  • Ip C, Vadhanavikit S, Ganther H (1995) Cancer chemoprevention by aliphatic selenocyanates: effect of chain length on inhibition of mammary tumors and DMBA adducts. Carcinogenesis 16(1):35–38

    Article  CAS  PubMed  Google Scholar 

  • Jalalian SH, Ramezani M, Abnous K, Taghdisi SY (2018) Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Lett 416:87–93

    Article  CAS  PubMed  Google Scholar 

  • Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8(9–10):1865–1879

    Article  CAS  PubMed  Google Scholar 

  • Kakehashi A, Wei M, Fukushima S, Wanibuchi H (2013) Oxidative stress in the carcinogenicity of chemical carcinogens. Cancer 5:1332–1354

    Article  CAS  Google Scholar 

  • Kalo E, Kogan-Sakin I, Solomon H (2012) Mutant p53R273H attenuates the expression of phase 2 detoxifying enzymes and promotes the survival of cells with high levels of reactive oxygen species. J Cell Sci 125:5578–5586

    CAS  PubMed  Google Scholar 

  • Karelia DN, Sk UH, Singh P, Gowda ASP, Pandey MK, Ramisetti SR, Amin S, Sharma AK (2017) Design, synthesis, and identification of a novel napthalamide-isoselenocyanate compound NISC-6 as a dual topoisomerase-IIα and Akt pathway inhibitor, and evaluation of its anti-melanoma activity. Eur J Med Chem 135:282–295

    Article  CAS  PubMed  Google Scholar 

  • Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9:517–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamori T, El-Bayoumy K, Ji BY, Rodriguez JG, Rao B, Reddy S (1998) Evaluation of benzyl selenocyanate glutathione conjugate for potential chemopreventive properties in colon carcinogenesis. Int J Oncol 13:29–34

    CAS  PubMed  Google Scholar 

  • Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267

    Article  CAS  PubMed  Google Scholar 

  • Klaunig JE, Wang Z (2018) Oxidative stress in carcinogenesis. Curr Opin Toxicol 7:116–121

    Article  Google Scholar 

  • Krug P, Mielczarek M, Wiktorska K et al (2019) Sulforaphane-conjugated selenium nanoparticles: towards a synergistic anticancer effect. Nanotechnology 30(6):065101. https://doi.org/10.1088/1361-6528/aaf150

    Article  CAS  PubMed  Google Scholar 

  • Kumari M, Ray L, Purohit MP, Patnaik S, Pant AB, Shukla Y, Kumar P, Gupta KC (2017) Curcumin loading potentiates the chemotherapeutic efficacy of selenium nanoparticles in HCT116 cells and Ehrlich’s ascites carcinoma bearing mice. Eur J Pharm Biopharm 117:346–362

    Article  CAS  PubMed  Google Scholar 

  • Kuria A, Fang X, Li M, Han H, He J, Aaseth JO, Cao Y (2018) Does dietary intake of selenium protect against cancer? A systematic review and meta-analysis of population-based prospective studies. Crit Rev Food Sci Nutr 20:1–11

    Google Scholar 

  • Lafin JT, Sarsour EH, Kalen AL (2019) Methylseleninic acid induces lipid peroxidation and radiation sensitivity in head and neck cancer cells. Int J Mol Sci 20:225–239

    Article  PubMed Central  CAS  Google Scholar 

  • Li G-x, Lee H-J, Wang Z (2008) Superior in vivo inhibitory efficacy of methylseleninic acid against human prostate cancer over selenomethionine or selenite. Carcinogenesis 29(5):1005–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipinski B (2017) Sodium selenite as an anticancer agent. Anti Cancer Agents Med Chem 17(5):658–661

    Article  CAS  Google Scholar 

  • Liu T, Zeng L, Jiang W, Fu Y, Zheng W, Chen T (2015) Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine 11:947–958

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Xiao Z, Niu S et al (2019) Preparation, characteristics and feeble induced-apoptosis performance of non-dialysis requiring selenium nanoparticles@chitosan. Mater Des 182:108024

    Article  CAS  Google Scholar 

  • Mariano DOC, Souza DD, Meinerz DF, Allebrandt J, Bem AFD, Hassan W, Rodrigues O, Rocha JBTD (2017) The potential toxicological insights about the anti-HIV drug Azidothymidine-derived Monoselenides in human leukocytes: toxicological insights of new selenium-azidothymidine analogs. Hum Exp Toxicol 36:910–918

    Article  CAS  PubMed  Google Scholar 

  • Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21:361–370

    Article  CAS  PubMed  Google Scholar 

  • Menon S, Ks SD, Santhiya R, Rajeshkumar S, Venkat Kumar S (2018) Selenium nanoparticles: a potent chemotherapeutic agent and an elucidation of its mechanism. Colloids Surf B Biointerfaces 170:280–292

    Article  CAS  PubMed  Google Scholar 

  • Mugesh G (2013) Glutathione peroxidase activity of Ebselen and its analogues: some insights into the complex chemical mechanisms underlying the antioxidant activity. Curr Chem Biol 7:47–56

    Article  CAS  Google Scholar 

  • Mukherjee S, Weiner WS, Schroeder CE, Denise S, Simpson DS, Hanson AM, Sweeney NL, Marvin RK, Ndjomou J, Kolli R, Isailovic D, Schoenen FJ, Frick DN (2014) Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication. ACS Chem Biol 9:23932403

    Article  CAS  Google Scholar 

  • Niki E (2016) Oxidative stress and antioxidants: distress or eustress? Arch Biochem Biophys 595:19–24

    Article  CAS  PubMed  Google Scholar 

  • Paegle E, Domracheva I, Turovska B et al (2016) Natural-antioxidant-inspired benzo[b]selenophenes: synthesis, redox properties, and antiproliferative activity. Chem Asian J 11:1929–1938

    Article  CAS  PubMed  Google Scholar 

  • Patra AR, Roy SS, Basu A, Bhuniya A, Bhattacharjee A, Hajra S, Sk UH, Baral R, Bhattacharya S (2018) Design and synthesis of coumarin-based organoselenium as a new hit for myeloprotection and synergistic therapeutic efficacy in adjuvant therapy. Sci Rep 8:2194. https://doi.org/10.1038/s41598-018-19854-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfister C, Dawzcynski H, Schingale F-J (2016) Sodium selenite and cancer related lymphedema: biological and pharmacological effects. J Trace Elem Med Biol 37:111–116

    Article  CAS  PubMed  Google Scholar 

  • Pitot HC, Goldsworthy T, Moran S (1981) The natural history of carcinogenesis: implications of experimental carcinogenesis in the genesis of human cancer. J Supramol Struct Cell Biochem 17(2):133–146

    Article  CAS  PubMed  Google Scholar 

  • Reich HJ, Hondal RJ (2016) Why nature chose selenium. ACS Chem Biol 11:821–841

    Article  CAS  PubMed  Google Scholar 

  • Rocha JBT, Saraiva RA, Garcia SC, Gravina FS, Nogueira CW (2012) Aminolevulinate dehydratase (δ-ALA-D) as marker protein of intoxication with metals and other pro-oxidant situations. Toxicol Res 1:85–102

    Article  CAS  Google Scholar 

  • Roy SS, Ghosh P, Sk UH, Chakraborty P, Biswas J, Mandal S, Bhattacharjee A, Bhattacharya S (2010) Naphthalimide based novel organoselenocyanates: finding less toxic forms of selenium that would retain protective efficacy. Bioorg Med Chem Lett 20:6951–6956

    Article  PubMed  CAS  Google Scholar 

  • Roy SS, Chakraborty P, Biswas J, Bhattacharya S (2014) 2-[5-Selenocyanato-pentyl]-6-amino-benzo[de]isoquinoline-1,3-dione inhibits angiogenesis, induces p53 dependent mitochondrial apoptosis and enhances therapeutic efficacy of cyclophosphamide. Biochimie 105:137–148

    Article  CAS  PubMed  Google Scholar 

  • Sanmartín C, Carmen P, Sharma AK, Palop JA (2012) Selenium compounds, apoptosis and other types of cell death: an overview for Cancer therapy. Int J Mol Sci 13:9649–9672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz K, Foltz CM (1958) Factor 3 activity of selenium compounds. J Biol Chem 233:245–251

    Article  CAS  PubMed  Google Scholar 

  • Shahverdi AR, Shahverdi F, Faghfuri E, Khoshayand MR, Mavandadnejad F, Yazdi MH, Amini M (2018) Characterization of folic acid surface-coated selenium nanoparticles and corresponding in vitro and in vivo effects against breast cancer. Arch Med Res 49(1):10–17

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Sharma A, Desai D, Madhunapantula SRV, Huh SJ, Robertson GP, Amin S (2008) Synthesis and anticancer activity comparison of phenylalkyl isoselenocyanates with corresponding naturally occurring and synthetic isothiocyanates. J Med Chem 51:7820–7826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Sharma AK, Madhunapantula SV, Desai D, Huh SJ, Mosca P, Amin S, Robertson GP (2009) Targeting Akt3 signaling in malignant melanoma using isoselenocyanates. Cancer Res 15:1674–1685

    CAS  Google Scholar 

  • Sies H (1985) Oxidative stress: introductory remarks. In: Sies H (ed) Oxidative stress. Academic Press, London, pp 1–8

    Google Scholar 

  • Sies H (2018) On the history of oxidative stress: concept and some aspects of current development. Curr Opin Toxic 7:122–126

    Article  Google Scholar 

  • Sk HU, Sengupta S, Bhattacharya S (2005) Synthesis and evaluation of antioxidative properties of a series of organo selenium compounds. Bioorg Med Chem 13(20):5750–5758

    Article  CAS  Google Scholar 

  • Sohn OS, Desai DH, Das A, Rodriguez JG, Amin SG, El-Bayoumy K (2005) Comparative excretion and tissue distribution of selenium in mice and rats following treatment with the Chemopreventive agent 1,4-phenylenebis(methylene)selenocyanate. Chem Biol Interact 151:193–202

    Article  CAS  PubMed  Google Scholar 

  • Song D, Cheng Y, Li X, Wang F, Lu Z, Xiao X, Wang Y (2017) Biogenic Nanoselenium particles effectively attenuate oxidative stress-induced intestinal epithelial barrier injury by activating the Nrf2 antioxidant pathway. ACS Appl Mater Interfaces 9:14724–14740

    Article  CAS  PubMed  Google Scholar 

  • Suh Y, Lee S-J (2015) KRAS-driven ROS promote malignant transformation. Mol Cell Oncol 2(1):e968059. https://doi.org/10.4161/23723548.2014.968059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thirunavukkarasu C, Sakthisekaran D (2001) Effect of selenium on N-nitrosodiethylamine-induced multistage Hepatocarcinogenesis with reference to lipid peroxidation and Enzymic antioxidants. Cell Biochem Funct 19(1):27–35

    Article  CAS  PubMed  Google Scholar 

  • Ujiie S, Itoh Y, Kikuchi H (1998) Serum selenium contents and the risk of cancer. Gan To Kagaku Ryoho 25(12):1891–1897

    CAS  PubMed  Google Scholar 

  • Wallenberg M, Misra S, Wasik AM et al (2014) Selenium induces a multi-targeted cell death process in addition to ROS formation. J Cell Mol Med 18(4):671–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Zhang J, Yu H (2007) Elemental selenium at Nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with Selenomethionine in mice. Free Radic Biol Med 42:1524–1533

    Article  CAS  PubMed  Google Scholar 

  • Weekley CM, Harris HH (2013) Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem Soc Rev 42(23):8870–8894

    Article  CAS  PubMed  Google Scholar 

  • Weekley CL, Aitken JB, Musgrave IF, Harris HH (2012) Methylselenocysteine treatment leads to diselenide formation in human cancer cells: evidence from x-ray absorption spectroscopy studies. Biochemistry 51:736–738

    Article  CAS  PubMed  Google Scholar 

  • Xia L, Tan S, Zhou Y, Lin J et al (2018) Role of the NFκB-signaling pathway in cancer. Onco Targets Ther 11:2063–2073

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Zhong J, Zhao M, Tang Y, Han N, Hua L, Xu T, Wang C, Zhu B (2019) Galactose-modified selenium nanoparticles for targeted delivery of doxorubicin to hepatocellular carcinoma. Drug Deliv 26:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Xiao M, Zhao M, Xu T, Guo M, Wang C, Li Y, Zhu B, Liu H (2020) Doxorubicin-loaded functionalized selenium nanoparticles for enhanced antitumor efficacy in cervical carcinoma therapy. Mater Sci Eng C 106:110100. https://doi.org/10.1016/j.msec.2019.110100

  • Xiao J, Zhang G, Xu R, Chen H, Wang H, Tian G, Wang B, Yang C, Bai G, Zhang Z, Yang H, Zhong K, Zou D, Wu Z (2019) A pH-responsive platform combining chemodynamic therapy with limotherapy for simultaneous bioimaging and synergistic cancer therapy. Biomaterials 216:119254. https://doi.org/10.1016/j.biomaterials.2019.119254

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Diamond AM (2013) Selenium-binding protein 1 as a tumor suppressor and a prognostic indicator of clinical outcome. Biomark Res 1:15–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Huang F, Ren Y, Xing L, Wu Y, Li Z, Pan H, Xu C (2009) The anticancer effects of sodium selenite and selenomethionine on human colorectal carcinoma cell lines in nude mice. Oncol Res 18:1–8

    Article  CAS  PubMed  Google Scholar 

  • Yao M, McClements DJ, Xiao H (2015) Improving oral bioavailability of nutraceuticals by engineered nanoparticle-based delivery systems. Curr Opin Food Sci 2:14–19

    Article  Google Scholar 

  • Yuspa SH, Poirier MC (1988) Chemical carcinogenesis: from animal models to molecular models in one decade. Adv Cancer Res 50:25–70

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Rosenstein BS, Wang Y et al (1997) Identification of possible reactive oxygen species involved in ultraviolet radiation-induced oxidative DNA damage. Free Radic Biol Med 23:980–985

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Hiroyuki MH, Holmgren A (2002) Ebselen: a substrate for human thioredoxin reductase strongly stimulating its hydroperoxide reductase activity and a superfast thioredoxin oxidant. PNAS 99(13):8579–8584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Li C, Huang X, Lin X, Lin W, Yang F, Chen T (2019) Thermosensitive hydrogels for sustained-release of Sorafenib and selenium nanoparticles for localized synergistic Chemoradiotherapy. Biomaterials 216:119220. https://doi.org/10.1016/j.biomaterials.2019.05.031

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sk, U.H., Bhattacharya, S. (2021). Oxidative Stress in Cancer. In: Chakraborti, S., Ray, B.K., Roychowdhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-4501-6_126-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4501-6_126-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4501-6

  • Online ISBN: 978-981-15-4501-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics