Skip to main content

Importance of Silencing RNAs in Cancer Research

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

Silencing RNA (siRNA) are generally about 20–22 nucleotides long that are known to significantly enhance the delivery of RNA drugs and its therapeutic approach are mostly concentrated on cancer treatment, where the siRNA is doped with anti-cancer drug for delivery to the metastatic site that are known to restrain the oncogenes such as c-Myc, K-Ras, Wnt, and also variations in the nucleotide sequence of tumor suppressor genes such as p53, APC, etc. which regulates the cellular pathways in tumor progression leading to personalized medicine. In-vivo siRNA administration is hindered by low cellular uptake, unstable under physiological conditions, immunogenicity, as well as off target site. Along with the ligand conjugated siRNA, the development of nanotechnology-based siRNA drug delivery system is the most recent approaches to treat cancer. Consequently, the forthcoming criteria of RNA-based drug will need some biochemical alteration that will increase the pharmacokinetic activities and reduce the toxicity level for clinically safe drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Reference

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentateribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  Google Scholar 

  • Cogoni C, Macino G (1999) Gene silencing in Neurosporacrassa requires a protein homologus to RNA-depednet RNA polymerase. Nature 399:166–169

    Article  CAS  Google Scholar 

  • Czauderna F, Fechtner M, Dames S et al (2003) Structural variations and stabilizing modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 31:2705–2716

    Article  CAS  Google Scholar 

  • Davidson BL, McCray PB (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12:329–340

    Article  CAS  Google Scholar 

  • Dogini DB, Pascoal VDAB, Avansini SH, Vieira AS, Pereira TC, Lopes-Cendes I (2014) The new world of RNAs. Genet Mol Biol 37:285–293

    Article  CAS  Google Scholar 

  • Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4:457–467

    Article  CAS  Google Scholar 

  • Elbashir SM et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  Google Scholar 

  • Elouahabi A, Ruysshaert JM (2005) Formulation and intracellular trafficking of lipoplexes and polyplexes. Mol Ther 11:336–347

    Article  CAS  Google Scholar 

  • Hall AHS, Wan J, Shaughnessy EE et al (2004) RNA interference using boranophosphatesiRNAs: structure-activity relationships. Nucleic Acids Res 32:5991–6000

    Article  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  CAS  Google Scholar 

  • Hammond SM (2005) Dicing and slicing. The core machinery of the RNA interference pathway. FEBS Lett 579:5822–5829

    Article  CAS  Google Scholar 

  • Jagannath A, Wood M (2007) RNA interference based gene therapy for neurological disease. Brief Funct Genomics 6(1):40–49

    Article  CAS  Google Scholar 

  • Li L, Shen Y (2009) Overcoming obstacles to develop effective and safe siRNA therapeutics. Expert Opin Biol Ther 9:609–619

    Article  CAS  Google Scholar 

  • Liao H, Wang JH (2005) Biomembrane-permeable and ribonucleaseresistant siRNA with enhanced activity. Oligonucleotides 15:196–205

    Article  CAS  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  CAS  Google Scholar 

  • Mello CC, Conte D Jr (2004) Revealing the world of RNA interference. Nature 431:338–342

    Article  CAS  Google Scholar 

  • Meng P et al (2015) New paradigms on siRNA local application. BMB Rep 48(3):147–152

    Article  Google Scholar 

  • Mizuno T, Chou M-Y, Inouye M (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (miRNA). Proc Natl Acad Sci 81:1966–1970

    Article  CAS  Google Scholar 

  • Parrish S, Fleenor J, Xu S, Mello C, Fire A (2000) Functional anatomy of a dsRNA trigger: differential requirements for the two trigger strands in RNA interference. Mol Cell 6:1077–1087

    Article  CAS  Google Scholar 

  • Samantha MS et al (2015) Technologies for Controlled, local delivery of siRNA. J Control Release 218:94–113

    Article  Google Scholar 

  • Singh A et al (2017) Advances in siRNA delivery in cancer therapy. Artif Cells Nanomed Biotechnol 46(2):274–283

    Article  Google Scholar 

  • Singh A et al (2018) Advances in siRNA delivery in cancer therapy. Artif Cells Nanomed Biotechnol 46(2):274–283

    Article  CAS  Google Scholar 

  • Tatiparti K et al (2017) siRNA delivery strategies: a comprehensive review of recent development. Nano 7:77

    Google Scholar 

  • Wang J et al (2010) Delivery of siRNA therapeutics: barriers and carriers. AAPS J 4:12

    CAS  Google Scholar 

  • Waterhouse PM, Graham MW, Wang M-B (1998) Virusa resistance and gene silencing in plats can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci 95:13959–13964

    Article  CAS  Google Scholar 

  • Young SWS, Stenzel M, Yang JL (2016) Nanoparticle-siRNA: a potential cancer therapy? Crit Rev Oncol Hematol 98:159–169

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant from Department of Science and Technology (DST) – Science and Engineering Research Board (SERB) (EMR/2017/001877).

Author Contribution

Surajit Pathak conceived the idea of the article. Antara Banerjee and Janani Gopi, Surajit Pathak, and Francesco Marotta, Secunda Rupert and Rossy Vanilla had written the manuscript. All the authors read and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Banerjee, A., Gopi, J., Marotta, F., Rupert, S., Vennila, R., Pathak, S. (2021). Importance of Silencing RNAs in Cancer Research. In: Chakraborti, S., Ray, B.K., Roychowdhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-4501-6_100-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4501-6_100-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4501-6

  • Online ISBN: 978-981-15-4501-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics