
Chapter 4
Secure Data Management Technology
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Abstract In this chapter, we introduce data anonymization techniques for several
types of datasets. Data anonymity of anonymized datasets is an index for estimat-
ing the (maximum) reidentification risk from anonymized datasets and is generally
defined as a quantitative index based on adversary models. The adversary mod-
els are implicitly defined according to the attributes in the datasets, use cases, and
anonymization techniques. We first review existing anonymization techniques and
the adversary models behind the data anonymity definitions for anonymization tech-
niques; then, we propose a common anonymity definition and its adversary model,
which is applicable to several types of anonymization techniques. Furthermore, some
extensions of the definition, which is optimized for specific types of datasets, are pre-
sented in the chapter.

4.1 Introduction

Secure data management is a key issue in personal data distribution and analysis.
Anonymization techniques have been used to harmonize the utility of data and their
privacy risks. These techniques transform personal data into anonymized data to
reduce the success probability of reidentification of data principals from the data. If
the data are well anonymized, they cannot be connected to a person; thus, the privacy
of the person is protected by anonymization techniques.

Secure computation is sometimes a realistic solution for commercial services
due to its cost for data of very large size. Some anonymization techniques work
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on commercial services as a “practical” solution, even though the size of the data
is very large. Thus, anonymization techniques have been applied for personal data
distribution and data analysis. For example, k-anonymization was first proposed as a
practical solution to reduce the reidentification risks of public data; since then, it has
been considered to be able to be used for the secure management of personal data.

Quantitative measures for anonymity are required for estimating privacy risks and
assessing the feasibility of privacy requirements. In several studies on anonymization,
privacy notions providing quantitative measures for anonymity have been defined for
each anonymization technique; however, no common notion for all anonymization
techniques has been presented to date, which means that each privacy notion is not
universal but is localized, and heuristic approaches are still used to harmonize the
usability of data and privacy risks through whole processes or services. A common
notion is required for consistent secure data management for the whole process.

In this chapter,1 we discuss a new common privacy notion based on an adver-
sary model, which is applicable to several anonymization techniques, and intro-
duce a novel anonymization technique and implementation of the technique. In
Sect. 4.2, we revisit adversary models on several anonymization techniques and
review anonymization techniques.We propose a common adversarymodel and quan-
titative measures using the adversary model are presented in Sect. 4.3. An extension
is discussed in Sect. 4.4. Our implementation of an anonymization tool is introduced
in Sect. 4.5. We conclude this chapter in Sect. 4.6.

4.2 Anonymization Techniques and Adversary Models,
Revisited

The related work presented below is grouped under k-anonymization and noise addi-
tion as anonymization methods.

4.2.1 k-Anonymization

k-anonymity [4–6] is a well-known privacy model. The property of k-anonymity is
that eachpublished record is such that every combinationof values of quasi-identifiers
can be matched to at least k respondents.

1This chapter is reprinted from [1–3].
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4.2.1.1 Adversary Model

k-anonymized datasets are assumed to be in public domains. An adversary can obtain
all the attribute values in a dataset and execute arbitrary operations on the attribute
values.

There are few formal definitions or models for the adversary that aim to identify
the attributes of a certain individual in a k-anonymized dataset. Kiyomoto andMartin
modeled an adversary [7] for k-anonymized datasets based on two query functions
as follows:

Let d be an index of the dth record, qx be a set of m attribute values in T q∗, and
s be a value for the sensitive attribute. The two query functions are defined as:

• read. For the input of an index value d, the function outputs the dth record. That
is, f (T ∗, query = {read, d}) → {d, qd

x , sd}, where qd
x and sd are values of the

quasi-identifier and the sensitive attribute in the dth record, respectively. If the dth
record does not exist, then the function outputs f ailed.

• search. For input qx and/or s, the function outputs the number u of records
and index values that have a quasi-identifier qx and/or sensitive attribute s. That
is, f (T ∗, query = {search, qx , s}) → u, D, where u and D are the number of
records and a sequence of index values that have the same quasi-identifier and/or
sensitive attribute, respectively. If s or qx do not exist, then the function outputs
f ailed.

4.2.1.2 k-Anonymization Algorithm

This idea is easy to understand, and many types of k-anonymization algorithms
have been proposed. The Incognito algorithm [8] generalizes the attributes using
taxonomy trees, and theMondrian algorithm [9] averages or replaces the original data
with representative values and achieves k-anonymization. In this paper, we use a k-
anonymization algorithm based on clustering and denote Ak(D) as k-anonymization
for dataset D. The algorithm finds close records and creates clusters such that each
partition contains at least k records. For details of the algorithm, see [10].

4.2.2 Noise Addition

Noise addition works by adding or multiplying stochastic or randomized numbers to
confidential data [11]. The idea is simple and is also well known to be an anonymiza-
tion technique.
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4.2.2.1 Adversary Model

One objective of an adversary against noise-added datasets is to remove the noise
or estimate the original values from the noise-added attribute values. One potential
scenario is a probabilistic approach in which an adversary estimates the distribution
of noise and chooses an attribute value with high probability. There is no formal
adversary model on static noise-added datasets, but Differential Privacy settings
assume data include dynamically added noise, and their adversary simulations are
defined as query-based.

4.2.2.2 Anonymization Algorithm by Noise Addition

The first work on noise addition was proposed by Kim [12], and the idea was to
add noise ε with a distribution ε ∼ N (0, σ 2) to the original data. Additive noise is
uncorrelated noise and preserves themean and covariance of the original data, but the
correlation coefficients and variance are not retained. Another variation of additive
noise is correlated additive noise, which keeps the mean and allows the correlation
coefficients in the original data to be retained [13]. Differential privacy is a state-of-
the-art privacy model that is based on the statistical distance between two database
tables differing by atmost one record. The basic idea is that, regardless of background
knowledge, an adversary with access to the dataset draws the same conclusions,
irrespective ofwhether a person’s data are included in the dataset. Differential privacy
ismainly studied in relation to perturbationmethods in an interactive setting, although
it is applicable to certain generalization methods.

In this paper, we use Laplace noise as a noise addition and add noise ε ∼
Lap(0, 2φ2) to each attribute. We denote Aφ(D) as noise addition for dataset D.

4.2.3 K-Anonymization for Combined Datasets

We introduce an adversary model for a combined dataset from datasets produced by
two service providers and anonymization methods [14].

4.2.3.1 Adversary Model

If we consider the existing adversary model and assume that the anonymization
tables produced by the service providers satisfy k-anonymity, the combined table
also satisfies k-anonymity. However, we have to consider another type of adversary
in our new service model. In our service model, the combined table includes many
sensitive attributes; thus, the adversary candistinguish a data owner usingbackground
knowledge of combinations of sensitive attribute values of the data owner. If the
adversary finds a combination of known sensitive attributes on only one record, the
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adversary can obtain information; the record is a data owner that the adversary knows,
and the adversary also knows the remaining sensitive attributes of the data owner.
We model the above type of new adversary as follows:

π -knowledge AdversaryModel.An adversary knows certainπ sensitive attributes
{si1, ..., sij , ..., siπ } of a victim i . Thus, the adversary can distinguish the victim with
an anonymization table in which only one record has any combinations (maximum
π -tuple) of the attributes {si1, ..., sij , ..., siπ }.

4.2.3.2 Modification of Quasi-identifiers

The first strategy is to modify the quasi-identifiers of the combined table. The data
user generates a merged table from two anonymization tables as follows: First, the
data user simply merges the records in the two tables as |qg

C |shAB |siA|s j
B |. Then, the

data user modifies qq
C to satisfy the following condition, where θ is the total number

of sensitive attributes in the merged table.

4.2.3.3 Modification of Sensitive Attributes

The second approach is to modify the sensitive attributes in the combined table for
the condition. If a subtable |shAB |siA|s j

B | that consists of sensitive attributes is required
to satisfy k-anonymity, some sensitive attribute values are removed from the table
and are changed to ∗ to satisfy k-anonymity. Note that we do not accept that all
sensitive attributes are ∗ due to having no information record.

4.2.3.4 Algorithm for Modification

One algorithm that finds a k-anonymized combined dataset is executed as follows:

1. The algorithmgeneralizes quasi-identifiers to satisfy the condition that each group
of the same quasi-identifiers has at least π × k records.

2. The algorithm generates all the tuples of π sensitive attributes in the table.
3. For each tuple, the algorithm finds all the records that have the same sensi-

tive attributes as the tuple or has ∗ for sensitive attributes and makes them a
group. We define the number of sensitive attributes in the group which is θ . The
algorithm generates a partial table that consists of θ − π sensitive attributes and
checks whether the partial table has at least k different combinations of sensitive
attributes.

4. If the partial table does not satisfy the above condition, the algorithm chooses a
record from other groups that have different tuples of π sensitive attributes and
changes the π sensitive attributes to ∗. The algorithm executes this step until the
partial table has up to π different combinations of sensitive attributes.
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5. The algorithm executes step 3 and step 4 for all the tuples of π sensitive attributes
in the table.

4.2.4 Matrix Factorization for Time-Sequence Data

Some studies have used matrices for time-sequence datasets. Zheng et al. [15, 16]
proposed predicting a user’s interests in an unvisited location. They assumed users’
GPS trajectory as a user-location matrix where each value of the matrix indicates the
number of visits of a user to a location. The matrix is very sparse because each user
visits only a handful of locations, so a collaborative filtering model is applied to the
prediction. Zheng et al. [17] built a location-activity matrix, M , which has missing
values. M is decomposed into the two low-rank matrices U and V . The missing
values can be filled by X = UV T � M , and locations can be recommended when
some activities are given. Chawla et al. [18] constructed a graph from the trajectories
of taxis and transformed the graph into matrices. The authors of [19] proposed a
method of identifying traffic flows that cause an anomaly between two regions.

4.2.5 Anonymization Techniques for User History Graphs

In this subsection, we introduce two anonymization techniques for user history
graphs, which are proposed in [1].

4.2.5.1 Adversary Model

Privacy leakage from a merged history graph is the disclosure of the actions of a
particular person from the graph. Attacks against user history graphs are intended
to obtain the private information of a particular user from the graph. We assume
that the merging process is executed on a trusted domain and that only the merged
history graph is published; thus, the adversary can only obtain the merged graph.
Furthermore, we assume that the adversary has the following knowledge about the
user: The history of the user is included in the merged graph and the user performs
an action t . The adversary tries to discover other actions of the user to be able to
guess which edges connecting to node t can be assigned to the user.

We summarize the adversary model as follows:
Adversary against a Merged History Graph. It is assumed that an adversary knows
that a victim A executed an action t . The objective of the adversary is to obtain the
actions that A executed before or after the action t . Thus, the adversary searches the
merged history graph, which includes actions of other people and finds the actions
of A using the knowledge that action t was executed.
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We define privacy notions to use with the above adversary model in a later sub-
section.

4.2.5.2 Notions for the Untraceability of a Graph

We consider two levels of privacy notions: partial k-untraceability and complete k-
untraceability. Partial k-untraceability accepts the leakage of some partial actions of
a user but prevents all the actions of the user from being revealed. The definition
of complete k-untraceability involves meeting the requirement that no action of the
user is leaked. The symbol Act ANx→y

for user A denotes the sequence of all the actions
of user A from action x to action y. For example, the sequence of actions from the
first action to action x and the sequence of actions from action x to the final action
are denoted as Act ANstart→x

and Act ANx→end
, respectively.

Definition 4.1 (Partial k-untraceability) We assume that an adversary knows an
action t of a user A, andwe consider all the possible adversaries defined for any action
t of the user in the merged graph. If at least k sequences of actions are potentially
associated with user A and k − 1, other users exist as candidates for all actions
Act ANstart→t

and Act ANt→end
, the digraph satisfies k-untraceability for A. If the digraph

satisfies the above condition for all users, then the digraph is said to satisfy partial
k-untraceability.

Definition 4.2 (Complete k-untraceability) We assume that an adversary knows an
action t of a user A andwe consider all the possible adversaries defined for any action
t of the user in the merged graph. If at least k actions are potentially associated with
user A and k − 1 other users exist as candidates for each action in Act ANstart→t

and
Act ANt→end

, the digraph satisfies k-untraceability for A. If the digraph satisfies the
above condition for all users, the digraph satisfies complete k-untraceability.

Generally, many trivial actions are performed by many users. It is not important
for privacy purposes where we keep the information about such actions. Thus, we
relax the above definitions to produce an anonymized graph that includes much of
the information needed to analyze a user’s history. Let v be the threshold value for
the number of performing users that establishes that an action is trivial; that is, we
judge the actions x → y to be trivial if the label L(x → y) ≥ v. Both definitions are
modified as follows:

Definition 4.3 (Partial (k, v)-untraceability) We assume that an adversary knows
an action t of a user A, and we consider all the possible adversaries defined for any
t in the merged graph. If at least k sequences of actions are potentially associated
with user A and k − 1 other users exist as candidates for all actions Act ANstart→t

and
Act ANt→end

except trivial actions x → y that have a label L(x → y) ≥ v, then the
digraph satisfies partial (k, v)-untraceability for A. If the digraph satisfies the above
condition for all users, then the digraph satisfies partial (k, v)-untraceability.



72 T. Mimoto et al.

Definition 4.4 (Complete (k, v)-untraceability) We assume that an adversary knows
an action t of a user A, andwe consider all the possible adversaries defined for any t in
themerged graph. If at least k actions are potentially associatedwith user A and k − 1
other users exist as candidates for each action in Act ANstart→t

and Act ANt→end
except trivial

actions x → y that have a label L(x → y) ≥ v, then the digraph satisfies complete
(k, v)-untraceability for A. If the digraph satisfies the above condition for all users,
then the digraph satisfies complete (k, v)-untraceability.

In a complete (k, v)-untraceable graph, each action t except trivial actions has k
outgoing edges and incoming edges; thus, an action of user A that connects to action t
cannot be identified from k candidates. Thus, the graph satisfies untraceability for an
adversarywhoknowsaction t of theuser. It is trivial that a complete (k, v)-untraceable
graph satisfies partial (k, v)-untraceability; all actions except trivial actions are con-
nected to k potential actions in a complete (k, v)-untraceable graph. A graph that
satisfies partial (k, v)-untraceability generally produces much more information than
a complete (k, v)-untraceable graph, where the partial (k, v)-untraceable graph and
the complete (k, v)-untraceable graph are generated from a user history graph. How-
ever, the (k, v)-untraceable graphmay reveal partial actions of users due to the relaxed
definition of the privacy notion; an attack is successful when an adversary obtains all
the actions of a user. To trace all the actions of the user, the adversary has to select a
sequence of actions from k sequences of actions; thus, all the actions of the user are
untraceable, even though some actions are traceable by the adversary. The parameter
k means that an action (or a sequence of actions) is potentially associated with a
user and k − 1 other users in the untraceable graph, and the parameter vmeans that v
users perform the same action in the graph. Generally, we should select the parameter
v = k with regard to the privacy requirement for a merged graph. The actions of a
user are hidden in the actions of a group that consists of k members including the
user. A privacy notion for the graph should be selected from the above two notions
according to a use case of the graph and its privacy requirements.

4.2.5.3 Algorithm Generating a Partial (k, V )-Untraceable History
Graph

The details of the algorithm are denoted as Algorithm 4.1, where oet and iet are
defined as the number of outgoing edges and incoming edges of a node t , respectively.
The algorithm for generating a partial (k, v)-untraceable history graph is as follows:

1. This step consists of a part of the detailed algorithm, from line 1 to line 3. For
the input of a user history graph G, the algorithm adds a virtual incoming edge
(sr → r) to each node r ∈ start until the number of incoming edges is the same
as the number of outgoing edges. Then, the algorithm adds a virtual outgoing edge
(q → uq) to each node q ∈ end until the number of outgoing edges is the same
as the number of incoming edges. A label of a virtual incoming edge L(sx → x)
denotes the number of users who first perform the action, and a label of a virtual
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outgoing edge L(y → uy) denotes the number of users who perform the action
at the end.

2. This step consists of a part of the detailed algorithm, from line 4 to line 12. The
algorithm searches for a node t that has fewer outgoing edges than k and for which
all its lower nodesNt→end\t have fewer outgoing edges than k. Then, the algorithm
removes all the outgoing edges (t → ∗) that satisfy L(t → ∗) < v. Next, the
algorithm searches for a node t ′ that receives incoming edges numbering less
than k and all upper nodes Nstart→t ′\t ′ that receive fewer incoming edges than k.
Then, the algorithm removes all the incoming edges (∗ → t ′) that satisfy L(∗ →
t ′) < v. The algorithm repeats this step until no node that meets the conditions is
found.

3. This step is the same as line 13, line 14 and line 15 in the detailed algorithm.
The algorithm removes virtual incoming and outgoing edges, removes nodes that
have no edges, and outputs the modified graph.

Algorithm 4.1 Generation of a Partial (k, v)-Untraceable History Graph
Input: User History Graph G, parameters k and v
Output: Anonymized Graph Gα(G, k, v)
1: Gα(G, k, v) ← G
2: Add virtual incoming edges to start nodes
3: Add virtual outgoing edges to end nodes.
4: T ← all nodes t , where oeNt→end < k and all of its edges do not have L(ti → ∗) ≥ v
5: T ′ ← all nodes t ′, where ieNstart→t ′ < k and all of its edges do not have L(∗ → t ′j ) ≥ v
6: while T 
= ∅ or T ′ 
= ∅ do
7: Choose ti from T
8: Remove all outgoing edges of ti where L(ti → ∗) < v from Gα(G, k, v)
9: Choose t ′j from T ′
10: Remove all incoming edges of t ′j where L(∗ → t ′j ) < v from Gα(G, k, v)
11: Update T and T ′
12: end while
13: Remove virtual edges
14: Remove all nodes t ′′ where oet ′′ = 0 and iet ′′ = 0 from Gα(G, k, v)
15: return Gα(G, k, v)

4.2.5.4 Algorithm Generating a Complete (k, V )-Untraceable History
Graph

The details of the algorithm are denoted as Algorithm 4.2. The algorithm for gen-
erating a complete (k, v)-untraceable history graph is as follows:

1. The algorithm first executes Algorithm 4.1 except line 13 and line 15.
2. This step consists of a part of the detailed algorithm, from line 3 to line 11. The

algorithm searches for a node t that has fewer outgoing edges than k and removes
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all the outgoing edges (t → ∗) that satisfy L(t → ∗) < v, until no node is found.
Then, the algorithm searches for a node t ′ that receives fewer incoming edges than
k and removes all the edges (∗ → t ′) that satisfy L(∗ → t ′) < v. The algorithm
repeats this step until no node that meets the conditions is found.

3. This step consists of line 12, line 13, and line 14 in the detailed program. The
algorithm removes virtual edges, removes nodes to which no edge is connected,
and outputs the modified graph.

4.2.6 Other Notions

Differential Privacy [20, 21] is a notion of privacy for perturbative methods based on
the statistical distance between two database tables differing by, atmost, one element.
The basic idea is that, regardless of background knowledge, an adversary with access
to the dataset draws the same conclusions whether a person’s data are included in
the dataset. That is, a person’s data have an insignificant effect on the processing of a
query. Differential privacy is mainly studied in relation to perturbation methods [22–
24] in an interactive setting. Attempts to apply differential privacy to search queries
have been discussed in [25]. Li et al. proposed a matrix mechanism [26] applica-
ble to predicate counting queries under a differential privacy setting. Computational
relaxations of differential privacy were discussed in [27–29]. Another approach for
quantifying privacy leakage is an information-theoretic definition proposed byClark-
son and Schneider [30]. They modeled an anonymizer as a program that receives two
inputs: a user’s query and a database response to the query. The program acted as a
noisy communication channel and produced an anonymized response as the output.
Hsu et al. provides a generalized notion [31] in decision theory for making a model
of the value of personal information. An alternative model for the quantification of
personal information is proposed in [32]. In the model, the value of personal infor-
mation is estimated by the expected cost that the user has to pay for obtaining perfect
knowledge from given privacy information. Furthermore, the sensitivity of different
attribute values is taken into account in the average benefit and cost models proposed
by Chiang et al. [33]. Krause and Horvitz presented utility-privacy tradeoffs in online
services [34, 35].

4.2.7 Combination of Anonymization Techniques

A combination of anonymization methods leads to the construction of datasets that
are useful and that preserve privacy. Some countries publish census data, and they
combine several anonymization methods, such as generalization, noise addition, and
sampling [36, 37]. However, some problems remain. One problem is that it is difficult
to evaluate the privacy risks of anonymizeddatasetswhen anonymizationmethods are
combined. Some research is available about the relationships among anonymization
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methods. Chaudhuri et al. proposed (c, ε, δ)-privacy [38] and studied the relationship
among sampling and differential privacy [39]. Li et al. proposed (β, ε, δ)-differential
privacy and studied the relationship among sampling, differential privacy, and k-
anonymity. Soria-Comas et al. proposed a k-anonymized algorithm for differential
privacy using an insensitive algorithm [40].

4.3 ( p, N)-Identifiability

4.3.1 Common Adversary Model

Existing privacy measures are supposed to protect against idealized attackers, and it
is difficult to maintain their utility and assess their reidentification risk. We designed
adversary models to describe more realistic attackers by structuring a real setting
for the attackers. In the case of exchanging anonymized datasets between compa-
nies, for instance, a data-providing company first anonymizes and encrypts datasets
for transmission to a receiver company via a secure channel. The receiver com-
pany locates the dataset in a secure room and allows only authorized employees to
access the anonymized dataset. This process can reduce the reidentification risk in
the anonymized dataset, and it specifies the attacker and limits the ability to access
datasets so that the attacker must know the quasi-identifiers of the neighbors or
acquaintances. For example, it seems to be quite rare for an attacker to know all the
quasi-identifiers of a target because the target is a neighbor of the attacker. Thus, a
more stringent analysis of the reidentification risk can be achieved when we assume
a more realistic situation, such as that the attacker has only limited knowledge of the
victim.

Access rights to an anonymized dataset may be given to attackers, and attackers
may acquire some information about the original dataset or obtain the anonymization
algorithm used to generate the anonymized dataset. Information about the original
dataset is categorized into three parts as follows: information on a specified record
such as a neighbor; the original dataset; and any other information except the target
information that the attacker is seeking. The case ofWilliamWeld, whowas governor
of Massachusetts [41], is a typical example of reidentification, and an attack on the
Netflix Prize dataset was carried out by a strong attacker who gained access to the
Internet Movie Database [42].

We can consider the abilities of an attacker in two areas: knowledge about the
dataset and the ability to simulate anonymization algorithms. Many previous studies
such as [43, 44] assumed that an attacker has all the information required except
knowledge of the target of the attack. In this paper, we consider an attacker who has
knowledge of only the target record and can simulate anonymization algorithms to
obtain anonymized records that may correspond to the target record.
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4.3.1.1 Definitions of Actual Attackers

Generally, when an anonymized dataset is published on the Web, anyone who can
access the dataset is a potential attacker; thus, the adversary model should be ideal
because we cannot assume there is only a limited-knowledge adversary, and we have
to assume all possible adversaries are present. On the other hand, when the dataset
is managed under strict controls, the model adversary is not considered to be an
unlimited-knowledge adversary. We design two realistic adversary models under the
assumption that the dataset is managed in a restricted area (not public) and only a
limited set of attackers can access the dataset; and then, we propose a privacy metric
for privacy risk analysis.

Definition 4.5 (Anonymization Simulator fsim) Let D0 with n0 records, D1 with n1
records, r xi [QI ], and r xi [SI ] be an original dataset, an anonymized dataset generated
from the original dataset, the quasi-identifiers of a record r xi ∈ Dx , and sensitive
information from the record r xi ∈ Dx , respectively. An anonymization simulator fsim
simulates an anonymization algorithm used to generate an anonymized dataset as an
oracle and outputs r1i [QI ] ∈ D1 for the input r0i [QI ] ∈ D0. That is, fsim : r0j [QI ] →{
r1[QI ],⊥}

, where r1[QI ] is a set of r1i [QI ] and no output is produced in the case
of ⊥.

The simulator is a deterministic process for deterministic anonymization, such
as top-coding and bottom-coding, and a probabilistic process for probabilistic
anonymization, such as random sampling. The simulator can provide access to D0

to simulate the anonymization algorithm, even though no adversary can access D0.
Next, we define two adversary models.

Definition 4.6 (Deanonymizer for Anonymized Datasets, DA) When ∃1r0j [QI ] ∈
D0, ∀r1i [QI ||SI ] ∈ D1 and fsim are given, a deanonymizer DA lines up poten-
tial candidates r1i corresponding to r0j by executing the simulator fsim ; then, the
deanonymizerDA outputs a list of candidates r1i [QI ||SI ] for r0j , where the number
of records in the list is nq , the number of sensitive information items in the list is ns
and 0 ≤ ns ≤ nq ≤ n0.

If an attacker knows the actual anonymization function f , the attacker can use f
as fsim , and the evaluation result should be more credible.

Definition 4.7 (Reidentifying Adversary versus Anonymized Datasets) When
∃1r0j [QI ] ∈ D0, ∀r1i [QI ||SI ] ∈ D1 and fsim are given, a reidentifying adversary
executes the deanonymizer DA and can identify r1i , which is a record of the same
person in the record r0j , from the records in a dataset D0, where r0j ∈ D0 is given.
The success probability of the attack is calculated as 1/nq when r1j is included in the
output by DA; otherwise, it is 0.

Assuming an attacker who has ∃1r0j [QI ] ∈ D0 is the same as assuming |D0|
attackers who have r0j ( j = 1, ..., |D0|) ∈ D0.
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Definition 4.8 (Revealing Adversary versus Anonymized Datasets) When
∃1r0j [QI ] ∈ D0, ∀r1i [QI ||SI ] ∈ D1 and fsim are given, a revealing adversary exe-
cutes the deanonymizerDA and finds a r0j [SI ] from r1i [SI ] such that r1i is a record
of the same person as the record r0j . The success probability of the attack is calculated
as 1/ns when r1j is included in the output of DA; otherwise, it is zero.

Arevealing adversary does not try to identify the record but tries to access sensitive
information. In other words, the attacker seeks only to obtain sensitive information
from the record in question. More precisely, the success probability of the revealing
adversary can be calculated as [ns]/nq , where the correct number of sensitive items
in the list is [ns], but the probability itself may be uncertain. Assume that when
the probability is 0.99, some attackers are convinced that the target should be the
majority. Furthermore, in the case that the deanonymizerDA is leaked and the fsim
used in the deanonymizer is a deterministic process, an attacker can infer the sensitive
information of r0j . On the other hand, when the fsim used in the deanonymizer is a
probabilistic process, even ifDA is leaked, outputting the result should not involve
uncertainty.

4.3.1.2 ( p, N)-Identifiability

Here, we assume that anonymized datasets are strictly controlled and that the attacker
has knowledge of a specific record and the anonymization algorithms. We assume
that the attacker is the strongest type of attacker and has knowledge of the most
characteristic record. Nevertheless, it is difficult to quantify this characteristic, so we
assume that each attacker has an original record. In other words, we assume there
are as many attackers as there are original records.

Definition 4.9 ((p, N )-identifiability) Let p be the success probability for an adver-
sary who has ∃1r0[QI ] ∈ D0, ∀r1i [QI ||SI ] ∈ D1 and fsim , and N be the number of
adversaries whose attack success probability is p.

The probability p is the conditional probability that the adversary can select the
correct record from the list produced by the deanonymizer DA when the collected
record is included in the list. The probability that the deanonymizer successfully
produces the list, including the correct record, depends on the anonymization algo-
rithms.

Our model can extend to an adversary who has knowledge of two or more records.
For simplicity, we use an adversary model that knows a single record and consider N
single knowledge adversaries in our risk analysis. The idea of (p, N )-identifiability
is studied in [2].
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4.3.2 Success Probability Analysis Based on the Common
Adversary Model

In this section, we assume the attackers described in the previous section and
explain the calculation to obtain the success probability of attacks on representa-
tive anonymization methods: generalization, noise addition, and sampling. We con-
sider that fsim is constructed as a typical combined algorithm selected from three
anonymization algorithms, fgenerali zation, fsampling and fnoise. We explain the above
three anonymization algorithms and show combined anonymization using an exam-
ple dataset.

4.3.2.1 Generalization

We include deletion of records or cells and top- or bottom-coding as steps in gen-
eralization. One step of fgenerali zation is similar to k-anonymity in checking the
number of identical combinations of quasi-identifiers. When an anonymized dataset
has k-anonymity, p equals 1/k. k-anonymity is an intuitive privacy metric, but the
greater the number of attributes, the more difficult it is for the datasets to achieve
k-anonymity. If an attacker has generalization trees for each attribute, the attacker
adds records which satisfy the requirements of the trees of the list of candidates.
When there is a record whose address attribute is Tokyo, for instance, an attacker
who has the generalization tree adds records whose addresses are in the Kanto region
as well as records whose addresses are in Eastern Japan to the list of candidates. It is
appropriate that an attacker can infer the generalization tree and in our experiment,
fsim can be considered capable of accessing the generalization trees of each attribute.

4.3.2.2 Random Sampling

When an attacker who has one original record is assumed, the privacy risk differs
greatly among the original datasets. Consider an original dataset with many unique
records, and assume that random sampling is implemented. Let M be the number of
unique records and α be the sampling rate. The probability that unique records will
not appear is (1 − α)M . Even when α = 0.1 and M = 44, the probability is less than
0.1%. When a large dataset is anonymized, it is possible that there will be more than
44 unique records, which shows that if sampling is implemented, a characteristic
record may be identified or suspected.

We evaluate sampling as follows: For simplicity, we consider the case where the
anonymization method is only random sampling. When a unique record is sampled,
an attacker who knows the person is certain that the record is for that person. Thus,
the probability p does not change. On the other hand, sampling reduces the number
of unique records, and N decreases accordingly. When unique records are very few
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and do not appear in an anonymized dataset, p decreases. We apply this approach to
the case of combining different anonymization methods.

The approaches to sampling vary, and we can also consider fsampling in various
ways. For instance, the probability of disclosing the identity of any individual is
evaluated by using the posterior probability of population uniqueness [45].

4.3.2.3 Noise Addition

There are two cases of noise addition: One is adding noise to the numerical data itself,
and the other is adding noise to its quantity. In the former case, the data consist of
original numerical data or data anonymized by a process, such as microaggregation,
and in the latter case, the data are original quantity data or anonymized data, such as
11–20 in the age attribute.

In the former case, we can consider fnoise as follows. Noise is added based on
a probability distribution, such as normal, Laplace, and exponential distributions.
In particular, it has been mathematically proven that adding Laplace noise to the
output of some queries achieves differential privacy [39], so this type of noise is
widely used. Therefore, when an anonymized record is included in the 90 or 95%
confidence interval, the record is added to the list of candidates. More simply, when
original data and anonymized data have small differences such as 10 or 20% for each
attribute, the attacker may consider the possibility that they are the same.

In the latter case, we cannot use the same method. When a record has 72 and is
anonymized to 95, for instance, the attacker whose target is a specific person may
not regard the target to be that person. However, the attacker can link them after the
top-coding is executed and change the value to 70-. On the other hand, when a record
is 19, is anonymized to 20 and is generalized to 20–29, the attacker may not link
them. One of the ideas of fnoise is that a group with each attribute can be changed to
next group and such records are output as candidates. As in the generalization step,
an attacker can infer the next group for each group and fnoise can be thought of as
defining the distance of each classification.

The description above shows that when the order of anonymization is changed,
fsim will also be changed.

4.3.2.4 Combination of Anonymization Methods

The principles of each anonymization can be combined by evaluating each
anonymization stepby step. Stateddifferently, an attacker has fgenerali zation, fsampling ,
and fnoise as fsim . We show examples of combined cases by using a sample
dataset (Fig. 4.1). An attacker should change his or her approach when the order
of anonymization is changed if he or she knows this fact. We assume five attacker
models, A1 to A5, in the following example, and the candidates of each attacker
model are represented as C1 to C5. We denote Ci of r j in the following figures as the
candidates of an attacker Ai who has r j as a target. The adversary model for A1 to
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Fig. 4.1 Sample dataset

A4 is the reidentifying adversary defined in Definition 4.3, and the adversary model
in Fig. 4.4 is the revealing adversary defined in Definition 4.4.

Let the conditions of attackers be as follows: A1 and A3 do not consider noise-
adding and generalization but simply compare r1i ∈ D1 with r0j ∈ D0. This is one
approach to fnoise and fgenerali zation . On the other hand, A2, A4, and A5 do consider
the added noise and generalization. We define the noise addition shown in Fig. 4.2
as follows: the classifications of each attribute change to the next classification with
a certain probability. We assume A2 knows the rule of noise addition and that fnoise
of A2 outputs candidates that have a different classification in one attribute from an
original record. On the other hand, let a small amount of noise be added in step (a)
of Figs. 4.3 and 4.4. We assume the attackers A4 and A5 know the rule and that fnoise
of A4 and A5 outputs candidates whose values of AT T R1 are different but within 2
from the original record and whose values of AT T R2 are different but within 4 from
the original record. In the figures, the boldface sections show that the classifications
are not correct but are within the permissible range for fnoise of A2, A4, and A5:
The red boldface sections show that there are substantial distances from the original
values and that attackers who have the record cannot link them.

4.3.2.5 Examples of Analyses

The Case of A1

Fig. 4.2 Sample anonymization and the result of simulation attack 1
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Fig. 4.3 Sample anonymization and the result of simulation attack 2

(a)  Noise Addition (b)  Generalization (c) sampling

Fig. 4.4 Sample anonymization and the result of simulation attack 3

Generalization, noise addition, and sampling are executed as anonymizing
methods in Fig. 4.2. In the generalization step (a), all records are generalized to
be divisible into equal parts. As a result, only r2 is unique, and this dataset has
(1, 1)-identifiability.

In step (b), r1, r4, and r6 are changed by the addition of noise. As a result, r1 and r2
are indistinguishable. r3, r4, and r7 are also indistinguishable, but r5 and r6 become
unique. We define A1 as not considering the addition of noise, so that an attacker
who has r6 cannot link the original record but an attacker who has r5 can. Therefore,
identifiability becomes (1, 1)-identifiability.

After sampling, in step (c), r2, r4, and r5 do not appear. Then, r3 and r7 become the
focus are focused and identifiability becomes (1/2, 2)-identifiability. This attacker
simply checks howmany of the same records there are in the dataset. Even if various
anonymization methods are implemented, some records may not be affected. There-
fore, it is important to assume such attackers. When we can say that a dataset has a
certain level of privacy from such attackers, it means that an attacker cannot link the
target with the original record by accident.

The Case of A2

Weomit the explanation of step (a) because noise is not added. In step (b), the attacker
with r1, for example, chooses r1, r2, r5, and r6 as candidates because one or more of
their attributes match r1 = {-30, 175-}. On the other hand, an attacker with r4 cannot
output candidates because both attributes of r4 are changed. Hence, identifiability is
(1/4, 2)-identifiability. In step (c), r5 does not appear, and identifiability becomes
(1/4, 1)-identifiability.

The Case of A3
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In Fig. 4.3, the dataset is anonymized by the addition of noise, generalization, and
sampling.

In the case of A3, the dataset with added noise is safe enough from attackers
who do not consider the added noise and we omit this case; however, this does
not mean that noise addition is safe, and when another attacker, such as A4, is
considered, the result should be different. In step (b), we focus on the attacker with
r3. This is the strongest attacker, and this attacker suspects that r2 and r3 are the
candidates. More specifically, the scope is r3 = {38, 165} = {31-, -174} and r2, r3
meet the requirement. The attacker with r2 seems to have the same risk but cannot
identify the actual target r2 is a possible candidate because the noise of AT T R2 is
great enough. Hence, the identifiability becomes (1/2, 1)-identifiability. In step (c),
r3 does not appear, and the privacy risk is (1/3, 1)-identifiability.

The Case of A4

Next, we show the case of A4. In step (a), every record but r1 and r7 has enough added
noise, and attackers cannot infer which is the correct record. The attacker with r7
regards the records within {33 ± 2, 173 ± 4} as candidates. Only r7 satisfies the con-
dition, and the privacy risk is (1, 1)-identifiability. In step (b), the effect of noise addi-
tion becomes weak, and the number of attackers who should be considered increases.
The attacker with r6, for instance, regards the records within {29 ± 2, 171 ± 4} = {(-
30, 31-), (-174, 175-)}, namely, all records, as candidates. The privacy risk becomes
(1/2, 1)-identifiability after generalization is finished. In step (c), similar to the pre-
vious steps, the privacy risk becomes (1/3, 1)-identifiability.

The Case of A5

Finally, we show an example of a revealing adversary.
An attacker can claim to succeed when the sensitive information AT T RS of the

target can be correctly identified. Step (a) is similar to that of the case of A4. In
step (b), the attacker with r3 suspects r2 and r3 are the candidates. Their AT T RS are,
however, “Office” and the attacker claims to identify the person. Thus, the privacy risk
is (2/2 = 1, 1)-identifiability, which is similar to l-diversity. In step (c), the attacker
with r1 suspects r1, r4 and r6 are the candidates; the AT T RS of r1 is “Hospital,” and
that of the others is “Shop.” Therefore, the probability of reidentification is 1/2.More
precisely, the probability is 1/3 because there are three candidates and one is correct,
but the probability may be important information for the attacker with r1. The same
can be said of the attacker with r7; therefore, the risk according to our definition is
(1/2, 2)-identifiability.

As described above, when the adversary model is different, the result of the risk
is also different. Assuming attackers who disregard noise, we consider the risk to the
records whose fluctuations are due to anonymization to be small. On the other hand,
assuming attackers who do consider the actual added noise, we consider the risk to
the dataset as a whole. Moreover, strong attackers can be assumed to use the inverse
function of the actual noise or anonymization method. In the case that noise based on
a normal distribution is added, for instance, an optimal distance-based record linkage
can be performed [46].
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It is important to consider the various types of attackers in this way, because the
most important factor of privacy is the inability to definitely link an anonymized
record X ′ and original record X . Our metrics ensure that the attackers considered
can neither identify a record nor make an identification by chance, by considering
many attackers.

4.3.2.6 Implementation of the Analysis Algorithm

Processing time is a problem when our metric is applied to a large dataset. In this
section, we discuss this problem.

First, we have to evaluate the risk from attackers with each record, and when
sampling is implemented, the candidates in each record need to be preserved across
the sampling. However, we do not need to store the candidates for every record or
the records that have certain risks because the metric does not consider attackers
who have knowledge of a record that does not have the highest risk. Moreover,
when anonymization and evaluation are performed repeatedly, it takes a long time to
evaluate the risk because the same number of attackers as the number of records are
assumed. Thus, a threshold risk can be introduced to resolve the problem. When the
risk of an attack does not exceed the threshold, attackers do not need to be evaluated.
It is possible, however, that the risk may increase depending on the situation (see
r5, r6 in Fig. 4.2). Therefore, when a threshold is introduced, the accuracy of the
privacy risk may worsen. We describe the pseudocode of risk analysis as follows:

Algorithm 4.5 (D0, D1, A, fsim): Risk analysis.
Input: Original dataset D0, Anonymized dataset D1, Adversary model A, and attack simulator

fsim
1: while ∀r0i ∈ D0 do
2: pi ← simulation attack(r0i , D1, A, fsim)

3: end while
4: p ← max(pi )
5: N ← count(max(pi ))
6: return p, N

Second, the attackers do not have to compare their records with every record
because the method of evaluation is similar to that of k-anonymity, and the attackers
only need to compare a representative of each group. The attackers need to com-
pare their records with {-30, 175-}, {31-,-174}, and {31-, 175-} in (b) of Fig. 4.3, for
instance. However, when the levels of generalization are different, such methods
cannot be applied, and every record should be checked. To solve the problem, we
first count the number of values of each attribute and then compare each attribute of
r0j with that of each record of D1 in accordance with the large number of varieties.

Finally, when the procedure for anonymization is known in advance, it is possible
to perform the evaluation more quickly by considering the effect of the initial part of
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the anonymization. For instance, in Fig. 4.3a, we only have to consider cells whose
values do not exceed 30 in AT T R1 or fall short of 174 in AT T R2.

4.3.3 Experiment

4.3.3.1 Experimental Environments

We conducted experiments to evaluate the validity of the proposed metrics. We mea-
sured the time to output the risk and confirmed that the privacy metric was appropri-
ate. We used three parameters, k, β, ε, for comparison and verified the relationships
among k-anonymity, sampling, and noise addition.We implemented our risk analysis
method on a PC with an Intel Core i7-4790 3.6-GHz CPU and a 16.0-GB memory.

4.3.3.2 Dataset and Adversary Model

We used a pseudomedical dataset based on an actual medical dataset. The dataset
had 10,000 records and two attributes, total cholesterol (TC) and HbA1c, and the

Fig. 4.5 Distribution of TC
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distribution of each attribute is shown in Figs. 4.5 and 4.6.We first measured the com-
putation time while changing the number of records and then evaluated the validity
of our metrics while changing the parameters of each anonymization method. Noise
addition, generalization, and sampling were used as representative anonymization
methods, and we adopted the Mondrian algorithm [9] for k-anonymization, Laplace
noise for noise addition, and random sampling for sampling. We assumed reiden-
tifying adversary A1 to A4. The conditions of the attacker models are the same as
those of Sect. 4.3.2.4 except for noise addition. We define the fnoise of the A2 and
A4 output records, whose value for each attribute differed by 5% from the original
value, to be candidates.

4.3.4 Results

4.3.4.1 Computational Complexity

Our proposed privacy metrics are intended to be able to applied to large datasets.
We measured the execution time by changing the number of records (Table4.1) and
parameters (Table4.2, 4.3 and 4.4).

It takes little time to evaluate the risk when simple attackers, such as A1 and
A3, are considered. On the other hand, when reflective attackers are assumed, the
number of calculations increases and more time is required for evaluation. However,
some of the processing described above reduces the time. For instance, the number
of combinations of attributes increases with increasing numbers of records, and once
an attacker has checked the risk of a record, that attacker does not have to calculate
the risk of other records that have the same values. Therefore, the analysis algorithm
is appropriate for large datasets.

Table 4.1 Execution time

# of records A1 (ms) A2 (ms) A3 (ms) A4 (ms)

1000 1.8 699.6 131.8 569.0

5000 2.6 17,005.6 751.2 8,920.8

10000 4.7 32,764.2 1,361.6 12,925.5

Table 4.2 The case of ε = 0.5, k = 2

β A1 (ms) A2 (ms) A3 (ms) A4 (ms)

0.05 2.6 17,005.6 751.2 8,920.8

0.10 1.2 18,950.8 512.8 5,084.8

0.30 2.0 26,715.4 139.2 8,285.4
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Table 4.3 The case of β = 0.05, k = 2

ε A1 (ms) A2 (ms) A3 (ms) A4 (ms)

0.5 2.6 17,005.6 751.2 8,920.8

1.0 1.4 17,002.4 628.6 9,256.4

3.0 1.6 16,894.8 945.0 8,968.2

Table 4.4 The case of β = 0.05, ε = 0.5

k A1 (ms) A2 (ms) A3 (ms) A4 (ms)

2 2.6 17,005.6 751.2 8,920.8

3 2.9 16,828.6 744.2 8,788.4

4 2.8 17,211.9 755.8 9,013.1

Table 4.5 Relationship among parameters and our metrics (p, N)

k = 2 β

0.05 0.1 0.3

ε 0.1 (0.0196, 1) (0.0303, 2) (0.0909, 1)

0.5 (0.0204, 1) (0.0250, 1) (0.1000, 1)

1.0 (0.0208, 1) (0.0278, 1) (0.1000, 1)

When the sampling rate is changed, the computation time differs depending on
the attacker. This is because there are two loop processes, one for sampled records
and one for nonsampled records, and the calculation methods of each process differ
depending on the attacker.

The effect of noise addition on computation time is not different in this experiment,
but when a very large amount of noise is added, the distribution of the records is
uniform and the different kinds of records increase; as a result, the computation time
may increase.

The effect of k-anonymity also seems minimal, but when k is large the number
of different types of records decreases and the computation time may decrease.

Validation
We observed p and N by changing the sampling rate β and the noise parameter ε to
verify the validity of our metrics.We evaluated the attacker model A4 while changing
the parameters k, β, and ε. The evaluation result is shown below (Table4.5, 4.6).

The risk to privacy decreases as k increases and as β and ε decrease, and the
risk is a valid privacy metric. Sampling rates are the key factor that reduces the risk
in this experiment. There are some outliers in the datasets, and they are the cause
of the risk. In fact, if such records are not sampled, the privacy risk decreases. We
conducted this experiment multiple times, and the result was different each time.
Table4.7 presents a sample of the evaluation results. Some outliers were included in
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Table 4.6 Relationship among parameters and our metrics (p, N)

k = 4 β

0.05 0.1 0.3

ε 0.1 (0.0154, 1) (0.0270, 2) (0.0667, 2)

0.5 (0.0192, 1) (0.0227, 2) (0.0625, 3)

1.0 (0.0200, 1) (0.0238, 2) (0.0625, 1)

Table 4.7 Case of β = 0.05, ε = 1.0

Times A1 A2 A3 A4

1 (1.0000,3) (0.0035,1) (0.0083,1) (0.0049,1)

2 (1.0000,2) (0.0013,4) (0.0108,1) (0.0035,1)

3 (1.0000,4) (0.0217,1) (0.1667,1) (0.0204,1)

4 (0.5000,5) (0.0030,1) (0.0667,1) (0.0050,1)

5 (1.0000,5) (0.0032,1) (0.0294,1) (0.0051,1)

the third operation, and the risk was higher than that of other operations. Therefore,
the key factor may change when outliers are removed in advance.

4.4 Extension to Time-Sequence Data

4.4.1 Privacy Definition

We define two types of attack models for time-sequence datasets. The first, a reiden-
tification attack, is a general attack model where an attacker has information on the
original dataset M and tries to reidentify it in an anonymized dataset A(M). This
model assumes that an attacker has maximal information about the original dataset.
This model is the same as that of k-anonymization, where even if an attacker has an
original dataset, the probability of the reidentification of a k-anonymized dataset is
1/k.

Definition 4.10 (Reidentification attack) Let an attacker have a matrix Mt1 ∈ R
n×m

and an anonymizedmatrix A(Mt1) ∈ R
n×m . A reidentification attack against a record

ri succeeds if record ri ∈ Mt1 is linked to record r ′
j ∈ A(Mt1), where ri and r ′

j are
the same user.

A linkage attack, which is an attack on a valid user, is one in which an attacker
tries to obtain information from the given datasets A(Mt1) and A(Mt2). A(Mt1) and
A(Mt2) are assumed to include the same users, but the primary keys are different.
An attacker in this model has only anonymized datasets, so a valid user is assumed
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Fig. 4.7 Example of a risk
evaluation

to be an attacker in this model. There are few studies concerning this problem, and
we evaluate the risk using actual datasets in this paper.

Definition 4.11 (Linkage attack) Let an attacker have two anonymized matrices,
A(Mt1) ∈ R

n×m and A(Mt2) ∈ R
n×m . Mt1 and Mt2 include the same users and items,

where each user and item ofMt2 are the same as those ofMt1 . A linkage attack against
a record ri succeeds if record r ′

i ∈ A(Mt1) is linked to record r
′′
j ∈ A(Mt2), where r

′
i

and r ′′
j are the same user.

We next define the privacy metric as follows:

Definition 4.129 (Privacy metric) Let n be the total number of users of a dataset M
and n′ be the number of users that are successfully attacked. The privacy risk of M
is defined as n′

n .

We consider the attacks to be the same as the previous ones to solve an assignment
problem. An assignment problem is to find an appropriate task assignment when
there are n users and tasks, and the Hungarian algorithm [47] solves the assignment
problem in such a way that the entire cost is minimal.

We apply the same algorithm as used for reidentification and linkage attacks and
assume that when an attacker assigns a record to the correct user, the attack succeeds.
When a dataset is k-anonymized, there are at least k − 1 of the same records. Hence,
when a record is assigned to the cluster to which the correct record belongs to,
we regard the record as being assigned correctly even if the assigned record is not
actually correct. Furthermore, we define the privacy metric as the result obtained by
multiplying the probability, and we define 1/k because the probability is the ratio of
correctly assigned clusters (Fig. 4.7).

Figure4.1 shows an example of a risk evaluation. The dataset on the left is the
original dataset and that on the right is the anonymized dataset. The arrows indicate
the assignment result. User 2 of the original dataset, for instance, is assigned to user
3 of the anonymized dataset, so the attack on user 2 fails. When noise addition is
used as the anonymization method, users 2, 3, 4, and 5 are assigned to the wrong
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users and the privacy risk is 3/7. On the other hand, when k-anonymization is used,
in this case, k = 2, users 4 and 5 are assigned to the wrong users (blue arrows) but
are assigned to the clusters that are the same as those of the correct users. Therefore,
we consider the attacks on users 4 and 5 to be successful. The failed attacks are only
for users 2 and 3 (red arrows), and the privacy risk is 5/7 × 1/2 = 5/14.

4.4.2 Utility Definition

We define the utility metric here. In previous research, most utility metrics are based
on either the distance between the original dataset and the anonymized dataset, or the
amount of information loss [48, 49]. However, the utility depends on the situation
(i.e., context and use case), and these metrics do not necessarily match the actual
utility. Therefore, we consider a use case scenario and present a utility definition that
matches the scenario. Specifically, we consider a use case in which an anonymized
dataset is used as training data for a machine learning algorithm. In the case of a
Web access log dataset, for example, a client, who is a developer of an anti-virus
software, may generate a machine learning model from an anonymized dataset and
predict whether their user will access a phishing Web site.

Definition 4.13 (Utility metric) Let F(M, E) be the F-measure of a machine learn-
ing model, where the training data are M and the test data are E . The utility metric
is defined as follows:

Uti(A(M)) = F(A(M), E)

F(M, E)
. (4.1)

Figure4.8 gives an overview of the utility evaluation. We first generate two
machine learning models: One is from an original dataset, and the other is from
its anonymized dataset. An item is randomly chosen as an objective variable, and the
remaining items are explanation variables. Then, we use these models and predict an
attribute of each record of an evaluation dataset that has the same attributes as those
of the original dataset. This operation is performed several times while an objective
variable is changed. The utility is defined as the average of the ratio of the F-measure
of a model of the anonymized dataset to that of a model of the corresponding original
dataset. In this paper, we apply logistic regression as the machine learning algorithm
and predict fifty attributes.

4.4.3 Matrix Factorization

Matrix factorization is a fundamental task in data analysis, and the technique is used
in various scenarios, such as text data mining, acoustic analysis, and product recom-
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Fig. 4.8 Overview of utility
evaluation

mendation by collaborativefiltering.Weusematrix factorization as an anonymization
technique, so we present an overview of matrix factorization in this section.

4.4.3.1 SGD Matrix Factorization

We consider an unknown rank-r matrix M ∈ R
n×m and assume that we know a set

of elements 
 ⊂ [n] × [m]. P
(M) ∈ R
n×m is defined as:

P
(M) =
{
Mi j if(i, j) ∈ 
,

0 otherwise.
(4.2)

The goal of matrix factorization is to find two matrices U ∈ R
r×n and V ∈ R

r×m

which approximate the original matrix Mi j ≈ Xi j s.t. ∀Mi j ∈ 
(M) with lower
dimensionality r << min(n,m). Here, X = UTV .

This problem is defined to solve the following optimization problem:

min
u∗,v∗

∑

(i, j)∈P
(M)

(Mi j − uT
i v j )

2 + λ(||ui ||2 + ||v j ||2), (4.3)

whereui is a vector of user factors and v j is a vector of item factors.Whenui and v j are
variables, this function is not a convex set, so the problem described above cannot be
solved. Some techniques are proposed to solve the problem, andgradient descent [50],
for example, is a fundamental technique to find a local minimum value. However,
gradient descent needs to update vectors iteratively to obtain an optimal solution and
using gradient descent is computationally expensive, so stochastic gradient descent
(SGD) is widely used, for example, in the KDD Cup 2011 [51] and the Netflix
Prize [52].

There has been some research to speed up SGD-based matrix factorization, such
as [53–56], and each algorithm updates the matrices in parallel or in a distributed
manner.
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In this paper, we apply a simple SGD technique to optimize formula (2) and denote
Update(A) as the update of a matrix A using the SGD technique.

4.4.4 Anonymization Using Matrix Factorization

We consider matrix factorization to be an anonymization method, and rank r
contributes to the accuracy of the matrix approximation. Moreover, we propose
combining matrix factorization with another anonymization method ano, such as
k-anonymization or noise addition. We denote p as a parameter of the anonymiza-
tion method, and p is k or φ in this paper. A basis matrix U and weighting matrix
V can be assumed to be the characteristics of the rows and columns, respectively,
and U is a characteristic matrix of users in our dataset. Therefore, we propose to
anonymizeU and maintain V so that the characteristics of the domain are preserved.
In our algorithm, we first divide the dataset M into U and V , and anonymize U .
Then, we optimize V once and recombine it with the anonymized U . The algorithm
is described below.

We indicate that Ar (D) applies matrix factorization to matrix D and that
A(ano,r)(D) combines matrix factorization and the anonymization method ano by:

A(ano,r)(D)=(A(ano)(U ))TV,whereU ∈R
r×n, V ∈R

r×m . (4.4)

Algorithm 4.6 (M, r, I, ano, p): Anonymization using Matrix Factorization
Input: Original dataset M , rank r , and the number of iterations I .
1: t = 0
2: Construct Ut ∈ [0, 1]n×r and Vt ∈ [0, 1]m×r randomly
3: while t < I do
4: Ut+1 = Update(Ut )

5: Vt+1 = Update(Vt )
6: t = t + 1
7: end while
8: U ′

t+1 = A(ano)(Ut+1)

9: return X = U
′T
t+1Vt+1
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Table 4.8 Dataset format

ID (= i) Date URL (= j)

xt1 (= 1) 2016-12-01 16:13:48 www.google.com (= 1)

yt1 (= 2) 2016-12-01 16:15:14 www.mail.google.com (= 2)

xt1 2016-12-01 16:17:13 www.youtube.com (= 3)

zt1 (= 3) 2016-12-01 16:19:01 www.facebook.com (= 4)

xt2 (= 1) 2016-12-01 16:21:15 www.youtube.com

xt2 2016-12-01 16:22:42 www.google.com

zt2 (= 3) 2016-12-01 16:25:01 www.youtube.com

4.4.5 Experiment

4.4.5.1 Dataset

We use an actual Web access log dataset as a time-sequence dataset. The dataset
consists of an ID, a time stamp, and the access domain, as shown in Table4.8. We
convert the dataset into a matrix as follows:

MT =

⎡

⎢⎢⎢
⎣

r11 r12 · · · r1m
r21 r22 · · · r2m
...

...
. . .

...

rn1 rn2 · · · rnm

⎤

⎥⎥⎥
⎦

(4.5)

Here, T is the observation time.
We say ri j = 1 if a user whose ID is i accesses domain j during time T , and

otherwise, ri j = 0. For example, we construct the datasets in Table4.8 as follows:

Mt1 =
⎡

⎣
1 0 1 0
0 1 0 0
0 0 0 1

⎤

⎦ (4.6)

Mt2 =
⎡

⎣
1 0 1 0
0 0 0 0
0 0 1 0

⎤

⎦ (4.7)

Here, t1 is the 10-min span between 2016-12-01 16:10:00 and 2016-12-01
16:19:59, and t2 is the similar 10-min span between 2016-12-01 16:20:00 and 2016-
12-01 16:29:59. The IDs are different between t1 and t2, but xt1 and xt2 , and zt1 and
zt2 represent the same users.

www.google.com
www.mail.google.com
www.youtube.com
www.facebook.com
www.youtube.com
www.google.com
www.youtube.com
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Table 4.9 Linkage attack against a non-anonymized dataset

Observation time (h) Linkage attack probability

2 0.51

4 0.64

8 0.80

In the following experiments, we chose randomly 200 users and 1,000 domains
from an actual Web access log and let the pseudonymous ID be changed at each
designated time T .

4.4.5.2 The Privacy Risk Against a Linkage Attack

First, we evaluate whether a linkage attack is possible. We set the observation time
t1 as 2, 4, and 8 h from 16:00 on a weekday and the observation time t2 as the same
time on another weekday. The probability of a linkage attack between Mt1 and Mt2
is shown in Table4.9.

Thematrix only includes information onwhether a domain has been accessed, and
even if the observation time is 2 h, the linkage attack probability, i.e., risk, is very high
(over 50%). Moreover, the risk increases as the observation time increases because
when the observation time increases, the trend of a user becomes noticeable. The
result shows that the pattern of Web access for people has consistent characteristics.
Hence, we need to consider not only reidentification attacks but also linkage attacks
to avoid privacy leakages.

4.4.5.3 Effects of Matrix Factorization

Observation times t1 and t2 are fixed as 8 h from16:00 h on aweekday in the following
experiments. The inputs ofmatrix factorization are the original datasetM , the number
of iterations I , and the rank r . Furthermore, λ and γ and are the hyperparameters.We
fix I = 100, which is enough to converge, γ = 0.05, and λ = 0.01. The convergence
result is shown inFig. 4.9. The rank r canbe treated as the parameter of anonymization
by matrix factorization because the accuracy of dataset X = UV T depends on the
rank r , so r is the parameter of our algorithm; we set r = 10, 20, 30, 40.We set larger
values in the experiments in [3], but the results of the case r > 40 are saturated. The
probabilities of reidentification and linkage attacks are shown in Table4.10.

The results show that matrix factorization itself does not have much effect on
reidentification attacks. Note that matrix factorization can preserve the relative posi-
tional relationship among the records so that the privacy risk of the reidentification
attack does not decrease much by using a matching algorithm. When the rank is
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Fig. 4.9 Convergence result

Table 4.10 Attacks against matrix factorization

Rank Reidentification attack Linkage attack

10 0.98 0.31

20 1.00 0.45

30 1.00 0.54

40 1.00 0.58

Fig. 4.10 Overview of the
experiment

small enough, r = 10, the positional relationship is broken, and the privacy risk is
lowered.

On the other hand, comparedwith the reidentification attackpresented inTable4.9,
the linkage attack probability between Ar (Mt1) and Ar (Mt2) is better. This is because
the relationship between the records of Mt1 and Mt2 is weaker than that between Mt1
and Ar (Mt1). In our experiment, the dataset of the observation time is 8 h and r = 30
has almost the same privacy level as when the observation time is 2 h (Fig. 4.10).
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Table 4.11 Experiment 1

k Reidentification attack Linkage attack

2 0.500 0.185

4 0.250 0.050

6 0.167 0.038

8 0.125 0.027

10 0.098 0.023

4.4.6 Results

4.4.6.1 Risk Evaluation

Weevaluate our anonymizationmethod,Algorithm4.1, in the following experiments.
We apply the method described in [10] as k-anonymization and Laplace noise as the
noise addition. When noise addition is applied, noise ε ∼ Lap(0, 2φ2) is added to
each element, and the parameter is φ.

1. Evaluate the privacy risk of a reidentification attack between Ak(Mt1) and Mt1
and a linkage attack between Ak(Mt1) and Ak(Mt2).

2. Evaluate the privacy risk of a reidentification attack between Aφ(Mt1) and Mt1
and a linkage attack between Aφ(Mt1) and Aφ(Mt2).

3. Evaluate the privacy risk of reidentification attacks between Ak(Ut1)
TV and Mt1

and linkage attacks between Ak(Ut1)
TV and Ak(Ut2)

TV .
4. Evaluate the privacy risk of reidentification attacks between Aφ(Ut1)

TV and Mt1
and linkage attacks between Aφ(Ut1)

TV and Aφ(Ut2)
TV .

The evaluations of the reidentification attacks in experiments 1 and 2 are almost
the same as those conducted in many previous studies. The difference is the privacy
metric (see 4.4.1), and these results are used for comparison with experiments 3 and
4, which are evaluations of our algorithm. There are few studies on linkage attacks,
and evaluations of this type of attack are one of our contributions.

The evaluation of the reidentification attack in experiment 1 (Table4.11) is simple,
and the result is almost the same as for k-anonymization. However, our privacymetric
is slightly different from that for k-anonymity, so the result is also slightly different
from 1/k. The result of the linkage attack also shows that k-anonymization can
greatly improve the privacy of linkage attacks and that 2-anonymization can reduce
the privacy risk by 77%(0.8 → 0.185).

The evaluations of experiment 2 are shown in Table4.12. The privacy of the
reidentification attack is improved from φ ≥ 0.9, and when φ is large, for example,
φ = 1.5, the score appears to be good. However, almost half of the records are
changed by more than 1 by the added noise, and each original value of M is 0 or 1,
namely, Mi j ∈ {0, 1}, so that the noise is too large to preserve utility. Therefore, we
conclude that simple noise addition is not good, in terms of utility preservation, as an
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Table 4.12 Experiment 2

φ Reidentification attack Linkage attack

0.3 1.00 0.33

0.6 1.00 0.10

0.9 0.95 0.01

1.2 0.81 0.03

1.5 0.62 0.00

Table 4.13 Experiment 3: reidentification attack

k r = 10 r = 20 r = 30 r = 40

2 0.44 0.50 0.50 0.50

4 0.21 0.24 0.25 0.25

6 0.12 0.14 0.15 0.16

8 0.10 0.11 0.11 0.12

10 0.08 0.08 0.08 0.08

Table 4.14 Experiment 3: linkage attack

k r = 10 r = 20 r = 30 r = 40

2 0.11 0.15 0.15 0.15

4 0.05 0.07 0.08 0.07

6 0.04 0.03 0.03 0.04

8 0.03 0.03 0.03 0.03

10 0.02 0.02 0.02 0.02

anonymization method. On the other hand, we obtain an interesting result for linkage
attacks. The privacy for linkage attacks is improved even if the noise is very small
and adding even a small amount of noise is an effective countermeasure against a
linkage attack.

In experiment 3, we evaluate the effect of our proposed algorithm, which is a
combination of matrix factorization and k-anonymization. Table4.13 presents the
result of the reidentification attack. In the experiment, we cannot find the effect of
the matrix factorization very well, but the privacy slightly improves as r increases.
This is because k-anonymization has a large effect on the reidentification risk, and
the effect of the matrix factorization does not appear.

The results of the linkage attack in experiment 3 are shown in Table4.14. In the
experiment, we cannot obtain newknowledge about the effect ofmatrix factorization.
When the datasets, which are observed at different time periods, are sufficiently
anonymized by k-anonymization, there is no relationship among the same users of
each dataset and only outliers can be linked.
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Table 4.15 Experiment 4: reidentification attack

φ r = 10 r = 20 r = 30 r = 40

0.05 0.75 0.95 0.97 1.00

0.10 0.42 0.72 0.85 0.86

0.15 0.25 0.50 0.61 0.70

0.20 0.18 0.28 0.40 0.49

Table 4.16 Experiment 4: linkage attack

φ r = 10 r = 20 r = 30 r = 40

0.05 0.21 0.34 0.34 0.50

0.10 0.12 0.15 0.14 0.20

0.15 0.07 0.11 0.09 0.10

0.20 0.03 0.03 0.03 0.02

Fig. 4.11 Reidentification
risk of the combination of
matrix factorization and
noise addition

In experiment 4, we evaluate the impact of our method, which is a combination of
matrix factorization and noise addition. The evaluation results of the reidentification
attack are presented in Table4.15. Noise is added to U , which is the user’s charac-
teristics, and then,UT is multiplied by V . Therefore, we cannot simply compare the
results with those of experiment 2, but the impact of the matrix factorization is high.
This result shows that using matrix factorization can help to construct anonymized
datasets flexibly from the viewpoint of privacy. For example, the privacy risk of
A(φ=0.15,r=20)(Mt1) and A(φ=0.20,r=40)(Mt1) is almost the same as that of A(k=2)(Mt1)

and A(φ=1.5)(Mt1).
The results of the linkage attack in experiment 4 are presented in Table4.16. The

trend is the same as that of the reidentification attack, and the matrix factorization is
compatible with noise addition. We present the details of the results of the reidenti-
fication attack and the linkage attack in Figs. 4.11 and 4.12.
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Fig. 4.12 Linkage risk of
the combination of matrix
factorization and noise
addition

Table 4.17 Utility evaluation 1

Dataset D Precision Recall F-measure Uti(D)

A(k=2)(Mt1 ) 0.780 0.720 0.749 0.981

A(k=4)(Mt1 ) 0.741 0.688 0.714 0.936

A(k=6)(Mt1 ) 0.755 0.691 0.721 0.946

A(k=8)(Mt1 ) 0.737 0.659 0.696 0.913

A(k=10)(Mt1 ) 0.748 0.677 0.711 0.932

4.4.6.2 Utility Evaluation

We next evaluate the utility of anonymized datasets. We evaluate the utility of
datasets by applying amachine learning algorithm.Logistic regression (https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html)
is applied in the following experiment, and the parameters are those of the default
setting. One of the applications of an access log dataset is to predict a malicious site
and inform the web browser’s users. Therefore, we use a machine learning algorithm
and predict whether each user will access a malicious site. We generate learning
models using the original (non-anonymized) dataset and the anonymized datasets
and input the test dataset to these models. The utility score is defined in Definition
4.13, and the F-measure of the model of the original dataset is 0.763. Each result of
the evaluation is shown in Tables. 4.17, 4.18, 4.19, and 4.20.

1. Evaluate the utility of A(k)(Mt1) for k = 2, 4, 6, 8, and 10.
2. Evaluate the utility of A(φ)(Mt1) for φ = 0.3, 0.6, 0.9, 1.2, and 1.5.
3. Evaluate the utility of A(k=2,r)(Mt1) for r = 10, 20, 30, and 40.
4. Evaluate the utility of A(φ,r)(Mt1) for φ = 0.1 and 0.15 and r = 10, 20, 30, and

40.

In experiment 1, each element is Mi j ∈ {0, 1} and the matrix is sparse, even when
k-anonymization is effective. However, when the dataset is more complex, the utility
of k-anonymizationwill decrease; this iswidely knownas the curse of dimensionality.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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Table 4.18 Utility evaluation 2

Dataset D Precision Recall F-measure Uti(D)

A(φ=0.3)(Mt1 ) 0.780 0.664 0.717 0.941

A(φ=0.6)(Mt1 ) 0.738 0.610 0.668 0.876

A(φ=0.9)(Mt1 ) 0.719 0.541 0.618 0.810

A(φ=1.2)(Mt1 ) 0.652 0.507 0.571 0.748

A(φ=1.5)(Mt1 ) 0.625 0.520 0.567 0.744

Table 4.19 Utility evaluation 3

Dataset D Precision Recall F-measure Uti(D)

A(k=2,r=10)(Mt1 ) 0.686 0.735 0.710 0.930

A(k=2,r=20)(Mt1 ) 0.699 0.767 0.731 0.959

A(k=2,r=30)(Mt1 ) 0.695 0.773 0.732 0.960

A(k=2,r=40)(Mt1 ) 0.712 0.786 0.747 0.980

Table 4.20 Utility evaluation 4

Dataset D Precision Recall F-measure Uti(D)

A(φ=0.10,r=10)(Mt1 ) 0.742 0.650 0.693 0.909

A(φ=0.10,r=20)(Mt1 ) 0.752 0.688 0.719 0.943

A(φ=0.10,r=30)(Mt1 ) 0.736 0.703 0.719 0.943

A(φ=0.10,r=40)(Mt1 ) 0.737 0.735 0.736 0.965

Table 4.21 Utility evaluation 5

Dataset D Precision Recall F-measure Uti(D)

A(φ=0.15,r=10)(Mt1 ) 0.718 0.614 0.662 0.868

A(φ=0.15,r=20)(Mt1 ) 0.748 0.655 0.698 0.915

A(φ=0.15,r=30)(Mt1 ) 0.704 0.680 0.692 0.907

A(φ=0.15,r=40)(Mt1 ) 0.716 0.711 0.713 0.935

The results of experiment 2 show that the utility of the dataset decreases as noise
increases. As stated in the risk evaluation section, each element of the original dataset
is 0 or 1, and the utility drastically worsens when the noise parameter is large, such
as φ = 1.5.

When k-anonymization andmatrix factorization are combined, the effect ofmatrix
factorization is small, as is the case for the privacy risk. In this experiment, the effect
of k-anonymization is large, and the effect of matrix factorization is relatively small.

The evaluation results of the combination of noise addition and matrix factor-
ization show a good performance (Tables4.20 and 4.21). A dataset generated by
combining matrix factorization and noise addition has more utility than a dataset
generated by noise addition when each dataset has the same privacy level.
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Fig. 4.13 Anonymization and privacy risk evaluation tool 1

4.5 Anonymization and Privacy Risk Evaluation Tool

In this section, we introduce an anonymization and privacy risk evaluation tool. So
far, we have shown how to evaluate the privacy and utility of several datasets. We
focus on static datasets and apply the theory we have described in the tool. First,
we explain the outline of the tool. The tool requires a dataset that is the target of
anonymization and privacy risk evaluation. At this time, the data type is defined for
each attribute (see Fig. 4.13). Numerical, qualitative, set, code, and sensitive types
can be defined. Age, height, and weight are defined as numerical types, and a user
can assign a range of values. For instance, a user may want to divide age into groups
of two years or five years depending on the situation. Qualitative-type records have
nonnumerical value, such as gender and occupation. The set type is an extended
numerical or qualitative type, and attributes that include multiple data correspond
to this type. The code type is defined when every value is the same digit, such as a
postcode. The sensitive type corresponds to sensitive information. The privacy risk
is evaluated using quasi-identifiers in our tool, and the attributes that are sensitive
do not effect the privacy risk. However, it is known that sensitive information may
cause privacy leakages, and the tool can cover the risk for sensitive information such
as l-diversity.

After the type of each attribute is decided, a user defines the noise and sampling
parameters. Our tool can evaluate datasets that are anonymized by the combined
method. Then, the user generates a hierarchical tree for each attribute, and the tool
anonymizes the values in accordance with the tree. The user can generate and change
the construction of hierarchical trees by using a UI (see Fig. 4.14.).

After these preparations are finished, the user can define the conditions and gen-
erate a dataset flexibly. A sample operation screen is shown in Fig. 4.15. Let us
introduce a method commonly used as an example. First, a user searches records that
do not achieve k-anonymity. Namely, the user searches records that do not include
more than k copies of the same record, and then the user changes the level of an
attribute of the records. The records that are secure enough are not processed, so the
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Fig. 4.14 Anonymization and privacy risk evaluation tool 2

Fig. 4.15 Anonymization and privacy risk evaluation tool 3
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Fig. 4.16 Anonymization and privacy risk evaluation tool 4

utility of the dataset can be maintained. The conditions can be more complex. For
example, the records that have a value of “age” over 80 and a value of “occupation”
that is not “self-employed” are identified and anonymized. The ranks of the records
are “balanced” according to the hierarchical tree. The privacy risk can be seen in
real time (in Fig. 4.16), and the user can anonymize a dataset by trial and error. The
operation procedure can be output as a setting file, and once the operation is decided,
the procedure can be performed automatically, such as in batch processing.

4.6 Conclusion

In this chapter, we considered the importance of data and privacy. Several anonymiza-
tion techniques, including k-anonymization, are introduced in Sect. 4.2, and the pri-
vacy and adversary model for static data are shown in Sect. 4.3. We focused on static
data and time-sequence data in this project, and we discuss time-sequence data in
Sect. 4.4. Finally, in Sect. 4.5, we introduce an anonymization and privacy risk eval-
uation tool. The tool is partly developed in this project, and we are proactive in using
it commercially.
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