Skip to main content

Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting

  • Chapter
  • First Online:
Bioinspired Biomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1249 ))

  • The original version of this chapter was revised: An earlier version of this chapter was published with an incorrect Acknowledgements text which has been updated now. The correction to this chapter is available at https://doi.org/10.1007/978-981-15-3258-0_15

Abstract

Three-dimensional (3D) bioprinting has been a highly influential technology in the field of tissue engineering to enable speedy and precise spatial patterning of cells, growth factors, and biomaterials. Bioink is one of the main factors in 3D bioprinting, and hydrogels are excellent matrix type by means of bioinks for 3D bioprinting. Recently, stereolithographic bioprinting via digital light processing (DLP) that allows high spatial resolution and rapid printing time of complex structures has attracted many studies. However, a small number of bioinks have been applied to DLP bioprinting in comparison with bioinks for other bioprinters. We developed a novel bioink based on silk fibroin that has been extensively used in biomedical fields due to its positive biological and biochemical properties as biomaterials. In this chapter, we summarized the silk fibroin basics and various applications of silk fibroin as printing material. Also, fabrication and performance of silk-based bioink for DLP bioprinter were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

References

  1. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M (2018) 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioactive Mater 3(2):144–156

    Google Scholar 

  2. Liu F, Liu C, Chen Q, Ao Q, Tian X, Fan J, Tong H, Wang X (2018) Progress in organ 3D bioprinting. Int J Bioprint 4:1–15

    Google Scholar 

  3. Kačarević ŽP, Rider PM, Alkildani S, Retnasingh S, Smeets R, Jung O, Barbeck M (2018) An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials 11(11):2199

    PubMed Central  Google Scholar 

  4. Lu Y, Mapili G, Suhali G, Chen S, Roy K (2006) A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res Part A 77(2):396–405

    Google Scholar 

  5. Ju HW, Lee OJ, Moon BM, Sheikh FA, Lee JM, Kim JH, Park CH (2014) Silk fibroin based hydrogel for regeneration of burn induced wounds. Tissue Eng Regen Med 11(3):203–210

    CAS  Google Scholar 

  6. Melke J, Midha S, Ghosh S, Ito K, Hofmann S (2016) Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 31:1–16

    CAS  PubMed  Google Scholar 

  7. Qi Y, Wang H, Wei K, Yang Y, Zheng RY, Kim IS, Zhang KQ (2017) A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int J Mol Sci 18(3):237

    PubMed Central  Google Scholar 

  8. Das S, Pati F, Choi YJ, Rijal G, Shim JH, Kim SW, Ghosh S (2015) Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 11:233–246

    CAS  PubMed  Google Scholar 

  9. Lee H, Yang GH, Kim M, Lee J, Huh J, Kim G (2018) Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration. Mater Sci Eng C 84:140–147

    CAS  Google Scholar 

  10. Shi W, Sun M, Hu X, Ren B, Cheng J, Li C, Ao Y (2017) Structurally and functionally optimized silk-fibroin–gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo. Adv Mater 29(29):1701089

    Google Scholar 

  11. Miyaguchi Y, Hu J (2005) Physicochemical properties of silk fibroin after solubilization using calcium chloride with or without ethanol. Food Sci Technol Res 11(1):37–42

    CAS  Google Scholar 

  12. Zhang X, Reagan MR, Kaplan DL (2009) Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 61(12):988–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao Z, Chen X, Yao J, Huang L, Shao Z (2007) The preparation of regenerated silk fibroin microspheres. Soft Matter 3(7):910–915

    CAS  PubMed  Google Scholar 

  14. Lee J, Sultan M, Kim S, Kumar V, Yeon Y, Lee O, Park C (2017) Artificial auricular cartilage using silk fibroin and polyvinyl alcohol hydrogel. Int J Mol Sci 18(8):1707

    PubMed Central  Google Scholar 

  15. Lee OJ, Lee JM, Kim JH, Kim J, Kweon H, Jo YY, Park CH (2012) Biodegradation behavior of silk fibroin membranes in repairing tympanic membrane perforations. J Biomed Mater Res A 100(8):2018–2026

    PubMed  Google Scholar 

  16. Yoshimizu H, Asakura T (1990) Preparation and characterization of silk fibroin powder and its application to enzyme immobilization. J Appl Polym Sci 40(1–2):127–134

    CAS  Google Scholar 

  17. Park YR, Ju HW, Lee JM, Kim DK, Lee OJ, Moon BM, Park CH (2016) Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. Int J Biol Macromol 93:1567–1574

    CAS  PubMed  Google Scholar 

  18. Sheikh FA, Ju HW, Lee JM, Moon BM, Park HJ, Lee OJ, Park CH (2015) 3D electrospun silk fibroin nanofibers for fabrication of artificial skin. Nanomedicine 11(3):681–691

    CAS  PubMed  Google Scholar 

  19. Park HJ, Lee OJ, Lee MC, Moon BM, Ju HW, min Lee J, Park CH (2015) Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction. Int J Biol Macromol 78:215–223

    CAS  PubMed  Google Scholar 

  20. Irawan V, Sung TC, Higuchi A, Ikoma T (2018) Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development. Tissue Eng Regen Med 15(6):673–697

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dickerson MB, Dennis PB, Tondiglia VP, Nadeau LJ, Singh KM, Drummy LF, Naik RR (2017) 3D printing of regenerated silk fibroin and antibody-containing microstructures via multiphoton lithography. ACS Biomater Sci Eng 3(9):2064–2075

    CAS  Google Scholar 

  22. Tao H, Kaplan DL, Omenetto FG (2012) Silk materials–a road to sustainable high technology. Adv Mater 24(21):2824–2837

    CAS  PubMed  Google Scholar 

  23. Pereira RF, Silva MM, de Zea Bermudez V (2015) Bombyx mori silk fibers: an outstanding family of materials. Macromol Mater Eng 300(12):1171–1198

    CAS  Google Scholar 

  24. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6(10):1612

    CAS  PubMed  Google Scholar 

  25. Wray LS, Hu X, Gallego J, Georgakoudi I, Omenetto FG, Schmidt D, Kaplan DL (2011) Effect of processing on silk-based biomaterials: reproducibility and biocompatibility. J Biomed Mater Res B Appl Biomater 99(1):89–101

    PubMed  PubMed Central  Google Scholar 

  26. Jung CS, Kim BK, Lee J, Min BH, Park SH (2018) Development of printable natural cartilage matrix bioink for 3D printing of irregular tissue shape. Tissue Eng Regen Med 15(2):155–162

    CAS  PubMed  Google Scholar 

  27. Shera SS, Sahu S, Banik RM (2018) Preparation of drug eluting natural composite scaffold using response surface methodology and artificial neural network approach. Tissue Eng Regen Med 15(2):131–143

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Seok H, Jo YY, Kweon H, Kim SG, Kim MK, Chae WS (2017) Comparison of bio-degradation for ridge preservation using silk fibroin-based grafts and a collagen plug. Tissue Eng Regen Med 14(3):221–231

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kashte S, Jaiswal AK, Kadam S (2017) Artificial bone via bone tissue engineering: current scenario and challenges. Tissue Eng Regen Med 14(1):1–14

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen L, Hu J, Ran J, Shen X, Tong H (2014) Preparation and evaluation of collagen-silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering. Int J Biol Macromol 65:1–7

    PubMed  Google Scholar 

  31. Sanosh KP, Gervaso F, Sannino A, Licciulli A (2014) Preparation and characterization of collagen/hydroxyapatite microsphere composite scaffold for bone regeneration. Key Eng Mater 587:239–244. Trans Tech Publications

    Google Scholar 

  32. Paşcu EI, Stokes J, McGuinness GB (2013) Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. Mater Sci Eng C 33(8):4905–4916

    Google Scholar 

  33. Kim SH, Jeong JY, Park HJ, Moon BM, Park YR, Lee OJ, Park CH (2017) Application of a collagen patch derived from duck feet in acute tympanic membrane perforation. Tissue Eng Regen Med 14(3):233–241

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tavakoli J (2017) Tissue engineering of the intervertebral disc’s annulus fibrosus: a scaffold-based review study. Tissue Eng Regen Med 14(2):81–91

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee JM, Chae T, Sheikh FA, Ju HW, Moon BM, Park HJ, Park CH (2016) Three dimensional poly (ε-caprolactone) and silk fibroin nanocomposite fibrous matrix for artificial dermis. Mater Sci Eng C 68:758–767

    CAS  Google Scholar 

  36. Lee OJ, Kim JH, Moon BM, Chao JR, Yoon J, Ju HW, Park HS (2016) Fabrication and characterization of hydrocolloid dressing with silk fibroin nanoparticles for wound healing. Tissue Eng Regen Med 13(3):218–226

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Moon BM, Choi MJ, Sultan MT, Yang JW, Ju HW, Lee JM, Lee MC (2017) Novel fabrication method of the peritoneal dialysis filter using silk fibroin with urease fixation system. J Biomed Mater Res B Appl Biomater 105(7):2136–2144

    CAS  PubMed  Google Scholar 

  38. Dal Pra I, Freddi G, Minic J, Chiarini A, Armato U (2005) De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials 26(14):1987–1999

    CAS  PubMed  Google Scholar 

  39. Gopinathan J, Noh I (2018) Recent trends in bioinks for 3D printing. Biomater Res 22(1):11

    PubMed  PubMed Central  Google Scholar 

  40. Tao H, Marelli B, Yang M, An B, Onses MS, Rogers JA, Omenetto FG (2015) Inkjet printing of regenerated silk fibroin: from printable forms to printable functions. Adv Mater 27(29):4273–4279

    CAS  PubMed  Google Scholar 

  41. Li X, Zhang Q, Feng Y, Yan S, Qu J, You R (2016) Preparation of Antheraea pernyi silk fibroin microparticles through a facile electrospinning method. Adv Mater Sci Eng 2016:1–7

    Google Scholar 

  42. Kim HH, Kim MK, Lee KH, Park YH, Um IC (2015) Effects of different Bombyx mori silkworm varieties on the structural characteristics and properties of silk. Int J Biol Macromol 79:943–951

    PubMed  Google Scholar 

  43. Ghosh S, Parker ST, Wang X, Kaplan DL, Lewis JA (2008) Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications. Adv Funct Mater 18(13):1883–1889

    CAS  Google Scholar 

  44. Wang X, Kluge JA, Leisk GG, Kaplan DL (2008) Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29(8):1054–1064

    CAS  PubMed  Google Scholar 

  45. Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ, Seo YB, Hong IS (2018) Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun 9(1):1620

    PubMed  PubMed Central  Google Scholar 

  46. Compaan AM, Christensen K, Huang Y (2016) Inkjet bioprinting of 3D silk fibroin cellular constructs using sacrificial alginate. ACS Biomater Sci Eng 3(8):1519–1526

    Google Scholar 

  47. Mandrycky C, Wang Z, Kim K, Kim DH (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434

    CAS  PubMed  Google Scholar 

  48. Zhong N, Dong T, Chen Z, Guo Y, Shao Z, Zhao X (2019) A novel 3D-printed silk fibroin-based scaffold facilitates tracheal epithelium proliferation in vitro. J Biomater Appl 34(1):3–11. 0885328219845092

    CAS  PubMed  Google Scholar 

  49. Rodriguez MJ, Dixon TA, Cohen E, Huang W, Omenetto FG, Kaplan DL (2018) 3D freeform printing of silk fibroin. Acta Biomater 71:379–387

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yeon YK, Park HS, Lee JM, Lee JS, Lee YJ, Sultan MT, Park CH (2018) New concept of 3D printed bone clip (polylactic acid/hydroxyapatite/silk composite) for internal fixation of bone fractures. J Biomater Sci Polym Ed 29(7–9):894–906

    CAS  PubMed  Google Scholar 

  51. Zhou M, Lee BH, Tan LP (2017) A dual crosslinking strategy to tailor rheological properties of gelatin methacryloyl. Int J Bioprint 3(2):130–137

    CAS  Google Scholar 

  52. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26):6020–6041

    CAS  Google Scholar 

  53. Shin S, Kwak H, Hyun J (2018) Melanin nanoparticle-incorporated silk fibroin hydrogels for the enhancement of printing resolution in 3D-projection Stereolithography of poly (ethylene glycol)-Tetraacrylate bio-ink. ACS Appl Mater Interfaces 10(28):23573–23582

    CAS  PubMed  Google Scholar 

  54. Zhao YH, Niu CM, Shi JQ, Wang YY, Yang YM, Wang HB (2018) Novel conductive polypyrrole/silk fibroin scaffold for neural tissue repair. Neural Regen Res 13(8):1455

    PubMed  PubMed Central  Google Scholar 

  55. Na K, Shin S, Lee H, Shin D, Baek J, Kwak H, Hyun J (2018) Effect of solution viscosity on retardation of cell sedimentation in DLP 3D printing of gelatin methacrylate/silk fibroin bioink. J Ind Eng Chem 61:340–347

    CAS  Google Scholar 

  56. Kim DK, Lee JM, Jeong JY, Park HJ, Lee OJ, Chao J, Park CH (2018) New fabrication method of silk fibroin plate and screw based on a centrifugal casting technique. J Tissue Eng Regen Med 12(11):2221–2229

    CAS  PubMed  Google Scholar 

  57. Salamon A, Van Vlierberghe S, Van Nieuwenhove I, Baudisch F, Graulus GJ, Benecke V, Dubruel P (2014) Gelatin-based hydrogels promote chondrogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Materials 7(2):1342–1359

    PubMed  PubMed Central  Google Scholar 

  58. West DC, Hampson IN, Arnold F, Kumar S (1985) Angiogenesis induced by degradation products of hyaluronic acid. Science 228(4705):1324–1326

    CAS  PubMed  Google Scholar 

  59. Chen WJ, Abatangelo G (1999) Functions of hyaluronan in wound repair. Wound Repair Regen 7(2):79–89

    CAS  PubMed  Google Scholar 

  60. Majima T, Irie T, Sawaguchi N, Funakoshi T, Iwasaki N, Harada K, Nishimura SI (2007) Chitosan-based hyaluronan hybrid polymer fibre scaffold for ligament and tendon tissue engineering. Proc Inst Mech Eng H J Eng Med 221(5):537–546

    CAS  Google Scholar 

  61. Kim TH, Yun YP, Shim KS, Kim HJ, Kim SE, Park K, Song HR (2018) In vitro anti-inflammation and Chondrogenic differentiation effects of inclusion Nanocomplexes of hyaluronic acid-Beta Cyclodextrin and simvastatin. Tissue Eng Regen Med 15(3):263–274

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kang SW, Bada LP, Kang CS, Lee JS, Kim CH, Park JH, Kim BS (2008) Articular cartilage regeneration with microfracture and hyaluronic acid. Biotechnol Lett 30(3):435–439

    CAS  PubMed  Google Scholar 

  63. Leach JB, Schmidt CE (2005) Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials 26(2):125–135

    CAS  PubMed  Google Scholar 

  64. Masters KS, Shah DN, Leinwand LA, Anseth KS (2005) Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials 26(15):2517–2525

    CAS  PubMed  Google Scholar 

  65. Perale G, Hilborn J (eds) (2016) Bioresorbable polymers for biomedical applications: from fundamentals to translational medicine. Woodhead Publishing, Sawston

    Google Scholar 

  66. Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H (2000) Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1(1):31–38

    Google Scholar 

  67. Smeds KA, Grinstaff MW (2001) Photocrosslinkable polysaccharides for in situ hydrogel formation. J Biomed Mater Res 54(1):115–121

    CAS  PubMed  Google Scholar 

  68. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35(2):217–239

    CAS  PubMed  Google Scholar 

  69. Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K (2015) A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7(4):045009

    PubMed  Google Scholar 

  70. Shanjani Y, Pan CC, Elomaa L, Yang Y (2015) A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication 7(4):045008

    CAS  PubMed  Google Scholar 

  71. Zhang AP, Qu X, Soman P, Hribar KC, Lee JW, Chen S, He S (2012) Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv Mater 24(31):4266–4270

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Soman P, Chung PH, Zhang AP, Chen S (2013) Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol Bioeng 110(11):3038–3047

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bertlein S, Brown G, Lim KS, Jungst T, Boeck T, Blunk T, Groll J (2017) Thiol–ene clickable gelatin: a platform bioink for multiple 3D biofabrication technologies. Adv Mater 29(44):1703404

    Google Scholar 

  74. Lim KS, Levato R, Costa PF, Castilho MD, Alcala-Orozco CR, van Dorenmalen KM, Woodfield TB (2018) Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Biofabrication 10(3):034101

    PubMed  Google Scholar 

  75. Yu C, Ma X, Zhu W, Wang P, Miller KL, Stupin J, Chen S (2019) Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix. Biomaterials 194:1–13

    CAS  PubMed  Google Scholar 

  76. Anada T, Pan CC, Stahl AM, Mori S, Fukuda J, Suzuki O, Yang Y (2019) Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis. Int J Mol Sci 20(5):1096

    CAS  PubMed Central  Google Scholar 

  77. Miri AK, Nieto D, Iglesias L, Goodarzi Hosseinabadi H, Maharjan S, Ruiz-Esparza GU, Shin SR (2018) Microfluidics-enabled multimaterial Maskless stereolithographic bioprinting. Adv Mater 30(27):1800242

    Google Scholar 

  78. Lam T, Dehne T, Krüger JP, Hondke S, Endres M, Thomas A, Kloke L (2019) Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage. J Biomed Mater Res Part B Appl Biomater 107(8):2649–2657

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (grant No.: 2016R1E1A1A01942120), Republic of Korea and by the Hallym University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Hum Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, S.H., Kim, D.Y., Lim, T.H., Park, C.H. (2020). Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting. In: Chun, H.J., Reis, R.L., Motta, A., Khang, G. (eds) Bioinspired Biomaterials. Advances in Experimental Medicine and Biology, vol 1249 . Springer, Singapore. https://doi.org/10.1007/978-981-15-3258-0_4

Download citation

Publish with us

Policies and ethics