Chapter 5 )
Descriptive Statistics for Summarising Data <z

The first broad category of statistics we discuss concerns descriptive statistics. The
purpose of the procedures and fundamental concepts in this category is quite
straightforward: to facilitate the description and summarisation of data. By
‘describe’ we generally mean either the use of some pictorial or graphical represen-
tation of the data or the computation of an index or number designed to summarise a
specific characteristic of a variable or measurement.

We seldom interpret individual data points or observations primarily because it is
too difficult for the human brain to extract or identify the essential nature, patterns, or
trends evident in the data, particularly if the sample is large. Rather we utilise
procedures and measures which provide a general depiction of how the data are
behaving. These statistical procedures are designed to identify or display specific
patterns or trends in the data. What remains after their application is simply for us to
interpret and tell the story.

Reflect on the QCI research scenario and the associated data set discussed in
Chap. 4. Consider the following questions that Maree might wish to address
with respect to decision accuracy and speed scores:

* What was the typical level of accuracy and decision speed for inspectors in
the sample? [see Procedure 5.4 — Assessing central tendency.]

* What was the most common accuracy and speed score amongst the inspec-
tors? [see Procedure 5.4 — Assessing central tendency.]

* What was the range of accuracy and speed scores; the lowest and the
highest scores? [see Procedure 5.5 — Assessing variability.]

* How frequently were different levels of inspection accuracy and speed
observed? What was the shape of the distribution of inspection accuracy
and speed scores? [see Procedure 5.1 — Frequency tabulation, distributions
& crosstabulation. ]

(continued)
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* What percentage of inspectors would have ‘failed’ to ‘make the cut’
assuming the industry standard for acceptable inspection accuracy and
speed combined was set at 95%? [see Procedure 5.7 — Standard (z) scores.]

* How variable were the inspectors in their accuracy and speed scores? Were
all the accuracy and speed levels relatively close to each other in magnitude
or were the scores widely spread out over the range of possible test out-
comes? [see Procedure 5.5 — Assessing variability.]

* What patterns might be visually detected when looking at various QCI
variables singly and together as a set? [see Procedure 5.2 — Graphical
methods for dispaying data, Procedure 5.3 — Multivariate graphs & dis-
plays, and Procedure 5.6 — Exploratory data analysis.]

This chapter includes discussions and illustrations of a number of procedures
available for answering questions about data like those posed above. In addition, you
will find discussions of two fundamental concepts, namely probability and the
normal distribution; concepts that provide building blocks for Chaps. 6 and 7.

Procedure 5.1: Frequency Tabulation, Distributions &
Crosstabulation

Classification Univariate (crosstabulations are bivariate); descriptive.
Purpose To produce an efficient counting summary of a sample of
data points for ease of interpretation.

Measurement level Any level of measurement can be used for a variable
summarised in frequency tabulations and crosstabulations.

Frequency Tabulation and Distributions

Frequency tabulation serves to provide a convenient counting summary for a set of
data that facilitates interpretation of various aspects of those data. Basically, fre-
quency tabulation occurs in two stages:

e First, the scores in a set of data are rank ordered from the lowest value to the
highest value.

¢ Second, the number of times each specific score occurs in the sample is counted.
This count records the frequency of occurrence for that specific data value.
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Consider the overall job satisfaction variable, jobsat, from the QCI data
scenario. Performing frequency tabulation across the 112 Quality Control
Inspectors on this variable using the SPSS Frequencies procedure (Allen
et al. 2019, ch. 3; George and Mallery 2019, ch. 6) produces the frequency
tabulation shown in Table 5.1. Note that three of the inspectors in the sample
did not provide a rating for jobsat thereby producing three missing values
(= 2.7% of the sample of 112) and leaving 109 inspectors with valid data for
the analysis.

Table 5.1 Frequency tabulation of overall job satisfaction scores

jobsat
Cumulative
Frequency  Percent  Valid Percent Percent

Valid 1 Very Low 4 36 37 37
2 8 ¥ % | 7.3 11.0
3 8 74 7.3 18.3
4 Neutral 18 16.1 16.5 349
5 19 17.0 17.4 52.3
6 34 30.4 3.2 835
7 Very High 18 16.1 16.5 100.0
Total 108 97.3 100.0

Missing System 3 2.7

Total 112 100.0

The display of frequency tabulation is often referred to as the frequency distri-
bution for the sample of scores. For each value of a variable, the frequency of its
occurrence in the sample of data is reported. It is possible to compute various
percentages and percentile values from a frequency distribution.

Table 5.1 shows the ‘Percent’ or relative frequency of each score (the percent-
age of the 112 inspectors obtaining each score, including those inspectors who
were missing scores, which SPSS labels as ‘System’ missing). Table 5.1 also
shows the “Valid Percent’ which is computed only for those inspectors in the
sample who gave a valid or non-missing response.

Finally, it is possible to add up the “Valid Percent’ values, starting at the low score
end of the distribution, to form the cumulative distribution or ‘Cumulative Percent’.
A cumulative distribution is useful for finding percentiles which reflect what per-
centage of the sample scored at a specific value or below.
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We can see in Table 5.1 that 4 of the 109 valid inspectors (a ‘Valid Percent’ of
3.7%) indicated the lowest possible level of job satisfaction—a value of
1 (Very Low) — whereas 18 of the 109 valid inspectors (a “Valid Percent’ of
16.5%) indicated the highest possible level of job satisfaction—a value of
7 (Very High). The ‘Cumulative Percent’ number of 18.3 in the row for the job
satisfaction score of 3 can be interpreted as “roughly 18% of the sample of
inspectors reported a job satisfaction score of 3 or less”; that is, nearly a fifth of
the sample expressed some degree of negative satisfaction with their job as a
quality control inspector in their particular company.

If you have a large data set having many different scores for a particular variable,
it may be more useful to tabulate frequencies on the basis of intervals of scores.

For the accuracy scores in the QCI database, you could count scores occurring
in intervals such as ‘less than 75% accuracy’, ‘between 75% but less than 85%
accuracy’, ‘between 85% but less than 95% accuracy’, and ‘95% accuracy or
greater’, rather than counting the individual scores themselves. This would
yield what is termed a ‘grouped’ frequency distribution since the data have
been grouped into intervals or score classes. Producing such an analysis using
SPSS would involve extra steps to create the new category or ‘grouping’
system for scores prior to conducting the frequency tabulation.

Crosstabulation

In a frequency crosstabulation, we count frequencies on the basis of two variables
simultaneously rather than one; thus we have a bivariate situation.

For example, Maree might be interested in the number of male and female
inspectors in the sample of 112 who obtained each jobsat score. Here there are
two variables to consider: inspector’s gender and inspector’s jobsat score.
Table 5.2 shows such a crosstabulation as compiled by the SPSS Crosstabs
procedure (George and Mallery 2019, ch. 8). Note that inspectors who did not
report a score for jobsat and/or gender have been omitted as missing values,
leaving 106 valid inspectors for the analysis.

(continued)
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Table 5.2 Frequency crosstabulation of jobsat scores by gender category for the

QCI data
jobsat * gender Crosstabulation
gender
1 Male 2 Female Total

jobsat 1 VeryLow Count 2 1 3
% within jobsat 66.7% 33.3% 100.0%

% within gender 3.5% 2.0% 2.8%

2 Count 3 5 8

% within jobsat 37.5% 62.5% 100.0%

% within gender 53% 10.2% 7.5%

3 Count 2 6 8

% within jobsat 25.0% 75.0% 100.0%

% within gender 3.5% 12.2% 7.5%

4 Neutral Count 11 7 18

% within jobsat 61.1% 38.9% 100.0%

% within gender 19.3% 14.3% 17.0%

5 Count 14 5 19

% within jobsat 73.7% 26.3% 100.0%

% within gender 246% 10.2% 17.9%

6 Count 17 15 32

% within jobsat 531% 46.9% 100.0%

% within gender 29.8% 30.6% 30.2%

7 VeryHigh  Count 8 10 18

% within jobsat 44.4% 55.6% 100.0%

% within gender 14.0% 20.4% 17.0%

Total Count 57 49 106
% within jobsat 53.8% 46.2% 100.0%

% within gender 100.0% 100.0% 100.0%

The crosstabulation shown in Table 5.2 gives a composite picture of the
distribution of satisfaction levels for male inspectors and for female inspectors.
If frequencies or ‘Counts’ are added across the gender categories, we obtain
the numbers in the ‘“Total’ column (the percentages or relative frequencies are
also shown immediately below each count) for each discrete value of jobsat
(note this column of statistics differs from that in Table 5.1 because the gender
variable was missing for certain inspectors). By adding down each gender
column, we obtain, in the bottom row labelled ‘Total’, the number of males
and the number of females that comprised the sample of 106 valid inspectors.

The totals, either across the rows or down the columns of the
crosstabulation, are termed the marginal distributions of the table. These

(continued)
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marginal distributions are equivalent to frequency tabulations for each of the
variables jobsat and gender. As with frequency tabulation, various percentage
measures can be computed in a crosstabulation, including the percentage of the
sample associated with a specific count within either a row (‘% within jobsat’)
or a column (‘% within gender’). You can see in Table 5.2 that 18 inspectors
indicated a job satisfaction level of 7 (Very High); of these 18 inspectors
reported in the ‘Total’ column, 8 (44.4%) were male and 10 (55.6%) were
female. The marginal distribution for gender in the “Total’ row shows that
57 inspectors (53.8% of the 106 valid inspectors) were male and 49 inspectors
(46.2%) were female. Of the 57 male inspectors in the sample, 8 (14.0%)
indicated a job satisfaction level of 7 (Very High). Furthermore, we could
generate some additional interpretive information of value by adding the ‘%
within gender’ values for job satisfaction levels of 5, 6 and 7 (i.e. differing
degrees of positive job satisfaction). Here we would find that 68.4% (=
24.6% + 29.8% + 14.0%) of male inspectors indicated some degree of positive
job satisfaction compared to 61.2% (= 10.2% + 30.6% + 20.4%) of female
inspectors.

This helps to build a picture of the possible relationship between an
inspector’s gender and their level of job satisfaction (a relationship that, as
we will see later, can be quantified and tested using Procedure 6.2 and
Procedure 7.1).

It should be noted that a crosstabulation table such as that shown in Table 5.2 is
often referred to as a contingency table about which more will be said later (see
Procedure 7.1 and Procedure 7.18).

Advantages

Frequency tabulation is useful for providing convenient data summaries which can
aid in interpreting trends in a sample, particularly where the number of discrete
values for a variable is relatively small. A cumulative percent distribution provides
additional interpretive information about the relative positioning of specific scores
within the overall distribution for the sample.

Crosstabulation permits the simultaneous examination of the distributions of
values for two variables obtained from the same sample of observations. This
examination can yield some useful information about the possible relationship
between the two variables. More complex crosstabulations can be also done where
the values of three or more variables are tracked in a single systematic summary. The
use of frequency tabulation or cross-tabulation in conjunction with various other
statistical measures, such as measures of central tendency (see Procedure 5.4) and
measures of variability (see Procedure 5.5), can provide a relatively complete
descriptive summary of any data set.
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Disadvantages

Frequency tabulations can get messy if interval or ratio-level measures are tabulated
simply because of the large number of possible data values. Grouped frequency
distributions really should be used in such cases. However, certain choices, such as
the size of the score interval (group size), must be made, often arbitrarily, and such
choices can affect the nature of the final frequency distribution.

Additionally, percentage measures have certain problems associated with them,
most notably, the potential for their misinterpretation in small samples. One should
be sure to know the sample size on which percentage measures are based in order to
obtain an interpretive reference point for the actual percentage values.

For example In a sample of 10 individuals, 20% represents only two individuals
whereas in a sample of 300 individuals, 20% represents 60 individuals. If all that is
reported is the 20%, then the mental inference drawn by readers is likely to be that a
sizeable number of individuals had a score or scores of a particular value—but what
is ‘sizeable’ depends upon the total number of observations on which the percentage
is based.

Where Is This Procedure Useful?

Frequency tabulation and crosstabulation are very commonly applied procedures
used to summarise information from questionnaires, both in terms of tabulating
various demographic characteristics (e.g. gender, age, education level, occupation)
and in terms of actual responses to questions (e.g. numbers responding ‘yes’ or ‘no’
to a particular question). They can be particularly useful in helping to build up the
data screening and demographic stories discussed in Chap. 4. Categorical data from
observational studies can also be analysed with this technique (e.g. the number of
times Suzy talks to Frank, to Billy, and to John in a study of children’s social
interactions).

Certain types of experimental research designs may also be amenable to analysis
by crosstabulation with a view to drawing inferences about distribution differences
across the sets of categories for the two variables being tracked.

You could employ crosstabulation in conjunction with the tests described in
Procedure 7.1 to see if two different styles of advertising campaign differen-
tially affect the product purchasing patterns of male and female consumers.

In the QCI database, Maree could employ crosstabulation to help her
answer the question “do different types of electronic manufacturing firms
(company) differ in terms of their tendency to employ male versus female
quality control inspectors (gender)?”
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Software Procedures

Application Procedures

SPSS Analyze — Descriptive Statistics — Frequencies... or Crosstabs... and select
the variable(s) you wish to analyse; for the Crosstabs procedure, hitting the
‘Cells’ button will allow you to choose various types of statistics and
percentages to show in each cell of the table.

NCSS Analysis — Descriptive Statistics — Frequency Tables or Cross Tabulation
and select the variable(s) you wish to analyse.

SYSTAT Analyze — One-Way Frequency Tables... or Tables — Two-Way... and
select the variable(s) you wish to analyse and choose the optional statistics
you wish to see.

STATGRAPHICS | Describe — Categorical Data — Tabulation or — Crosstabulation and

select the variable(s) you wish to analyse; hit ‘OK’ and when the ‘Tables and
Graphs’ window opens, choose the Tables and Graphs you wish to see.

R Commander

Statistics — Summaries — Frequency Tables... or Crosstabulation —
Two-way table... and select the variable(s) you wish to analyse and choose
the optional statistics you wish to see.

Procedure 5.2: Graphical Methods for Displaying Data

Classification
Purpose

Univariate (scatterplots are bivariate); descriptive.
To visually summarise characteristics of a data sample for
ease of interpretation.

Measurement level Any level of measurement can be accommodated by these

graphical methods. Scatterplots are generally used for
interval or ratio-level data.

Graphical methods for displaying data include bar and pie charts, histograms and
frequency polygons, line graphs and scatterplots. It is important to note that what is
presented here is a small but representative sampling of the types of simple graphs one can
produce to summarise and display trends in data. Generally speaking, SPSS offers the
easiest facility for producing and editing graphs, but with a rather limited range of styles
and types. SYSTAT, STATGRAPHICS and NCSS offer a much wider range of graphs
(including graphs unique to each package), but with the drawback that it takes somewhat
more effort to get the graphs in exactly the form you want.
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Bar and Pie Charts

These two types of graphs are useful for summarising the frequency of occurrence of
various values (or ranges of values) where the data are categorical (nominal or
ordinal level of measurement).

* A bar chart uses vertical and horizontal axes to summarise the data. The vertical
axis is used to represent frequency (number) of occurrence or the relative
frequency (percentage) of occurrence; the horizontal axis is used to indicate the
data categories of interest.

e A pie chart gives a simpler visual representation of category frequencies by
cutting a circular plot into wedges or slices whose sizes are proportional to the
relative frequency (percentage) of occurrence of specific data categories. Some
pie charts can have a one or more slices emphasised by ‘exploding’ them out from
the rest of the pie.

Consider the company variable from the QCI database. This variable depicts
the types of manufacturing firms that the quality control inspectors worked for.
Figure 5.1 illustrates a bar chart summarising the percentage of female inspec-
tors in the sample coming from each type of firm. Figure 5.2 shows a pie chart
representation of the same data, with an ‘exploded slice’ highlighting the
percentage of female inspectors in the sample who worked for large business
computer manufacturers — the lowest percentage of the five types of compa-
nies. Both graphs were produced using SPSS.

Inspector’s company
30
25

20

Percent

PC Manufacturer Large Electrical ~Small Electrical Large Business Automobile
Appliance Appliance Computer Manufacturer
Manufacturer Manufacturer Manufacturer

Inspector’s company

Fig. 5.1 Bar chart: Percentage of female inspectors

(continued)
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Fig. 5.2 Pie chart: Inspector’s company
Percentage of female Tims=
inspectors

B PC Manufacturer

@ Large Electrical Appliance
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Manufacturer
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The pie chart was modified with an option to show the actual percentage along
with the label for each category. The bar chart shows that computer manufactur-
ing firms have relatively fewer female inspectors compared to the automotive and
electrical appliance (large and small) firms. This trend is less clear from the pie
chart which suggests that pie charts may be less visually interpretable when the
data categories occur with rather similar frequencies. However, the ‘exploded
slice’ option can help interpretation in some circumstances.

Certain software programs, such as SPSS, STATGRAPHICS, NCSS and
Microsoft Excel, offer the option of generating 3-dimensional bar charts and pie
charts and incorporating other ‘bells and whistles’ that can potentially add visual
richness to the graphic representation of the data. However, you should generally be
careful with these fancier options as they can produce distortions and create ambi-
guities in interpretation (e.g. see discussions in Jacoby 1997; Smithson 2000;
Wilkinson 2009). Such distortions and ambiguities could ultimately end up provid-
ing misinformation to researchers as well as to those who read their research.

Histograms and Frequency Polygons

These two types of graphs are useful for summarising the frequency of occurrence of
various values (or ranges of values) where the data are essentially continuous
(interval or ratio level of measurement) in nature. Both histograms and frequency
polygons use vertical and horizontal axes to summarise the data. The vertical axis is
used to represent the frequency (number) of occurrence or the relative frequency
(percentage) of occurrences; the horizontal axis is used for the data values or ranges
of values of interest. The histogram uses bars of varying heights to depict frequency;
the frequency polygon uses lines and points.

There is a visual difference between a histogram and a bar chart: the bar chart uses
bars that do not physically touch, signifying the discrete and categorical nature of the
data, whereas the bars in a histogram physically touch to signal the potentially
continuous nature of the data.
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Suppose Maree wanted to graphically summarise the distribution of speed
scores for the 112 inspectors in the QCI database. Figure 5.3 (produced using
NCSS) illustrates a histogram representation of this variable. Figure 5.3 also
illustrates another representational device called the ‘density plot’ (the solid
tracing line overlaying the histogram) which gives a smoothed impression of
the overall shape of the distribution of speed scores. Figure 5.4 (produced
using STATGRAPHICS) illustrates the frequency polygon representation for
the same data.
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Fig. 5.3 Histogram of the speed variable (with density plot overlaid)

These graphs employ a grouped format where speed scores which fall
within specific intervals are counted as being essentially the same score. The
shape of the data distribution is reflected in these plots. Each graph tells us that
the inspection speed scores are positively skewed with only a few inspectors
taking very long times to make their inspection judgments and the majority of
inspectors taking rather shorter amounts of time to make their decisions.

(continued)
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Both representations tell a similar story; the choice between them is largely a
matter of personal preference. However, if the number of bars to be plotted in a
histogram is potentially very large (and this is usually directly controllable in most
statistical software packages), then a frequency polygon would be the preferred
representation simply because the amount of visual clutter in the graph will be
much reduced.

It is somewhat of an art to choose an appropriate definition for the width of the
score grouping intervals (or ‘bins’ as they are often termed) to be used in the plot:
choose too many and the plot may look too lumpy and the overall distributional trend
may not be obvious; choose too few and the plot will be too coarse to give a useful
depiction. Programs like SPSS, SYSTAT, STATGRAPHICS and NCSS are
designed to choose an ‘appropriate’ number of bins to be used, but the analyst’s
eye is often a better judge than any statistical rule that a software package would use.

There are several interesting variations of the histogram which can highlight key
data features or facilitate interpretation of certain trends in the data. One such
variation is a graph is called a dual histogram (available in SYSTAT; a variation
called a ‘comparative histogram’ can be created in NCSS) — a graph that facilitates
visual comparison of the frequency distributions for a specific variable for partici-
pants from two distinct groups.

Suppose Maree wanted to graphically compare the distributions of speed
scores for inspectors in the two categories of education level (educlev) in
the QCI database. Figure 5.5 shows a dual histogram (produced using
SYSTAT) that accomplishes this goal. This graph still employs the grouped

(continued)
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format where speed scores falling within particular intervals are counted as
being essentially the same score. The shape of the data distribution within each
group is also clearly reflected in this plot. However, the story conveyed by the
dual histogram is that, while the inspection speed scores are positively skewed
for inspectors in both categories of educlev, the comparison suggests that
inspectors with a high school level of education (= 1) tend to take slightly
longer to make their inspection decisions than do their colleagues who have a
tertiary qualification (= 2).

Proportion per Bar Proportion per Bar

03 02 01 00 01 02 0.3
20— T T T T 20
15} {15
©
[0
210 110
n
EDUCLEV - Inspector's
51 15 education level
[J 1.000) High School Only
W 2.000) Tertiary Qualified
0 1 1 1 1 1 1 0
40 30 20 10 O 10 20 30 40

Count Count

Fig. 5.5 Dual histogram of speed for the two categories of educlev

Line Graphs

The line graph is similar in style to the frequency polygon but is much more general
in its potential for summarising data. In a line graph, we seldom deal with percentage
or frequency data. Instead we can summarise other types of information about data
such as averages or means (see Procedure 5.4 for a discussion of this measure), often
for different groups of participants. Thus, one important use of the line graph is to
break down scores on a specific variable according to membership in the categories
of a second variable.

In the context of the QCI database, Maree might wish to summarise the
average inspection accuracy scores for the inspectors from different types of
manufacturing companies. Figure 5.6 was produced using SPSS and shows
such a line graph.

(continued)
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Fig. 5.6 Line graph comparison of companies in terms of average inspection accuracy

Note how the trend in performance across the different companies becomes
clearer with such a visual representation. It appears that the inspectors from the
Large Business Computer and PC manufacturing companies have better
average inspection accuracy compared to the inspectors from the remaining
three industries.

With many software packages, it is possible to further elaborate a line graph by
including error or confidence intervals bars (see Procedure 8.3). These give some
indication of the precision with which the average level for each category in the
population has been estimated (narrow bars signal a more precise estimate; wide bars
signal a less precise estimate).

Figure 5.7 shows such an elaborated line graph, using 95% confidence interval
bars, which can be used to help make more defensible judgments (compared to
Fig. 5.6) about whether the companies are substantively different from each
other in average inspection performance. Companies whose confidence inter-
val bars do not overlap each other can be inferred to be substantively different
in performance characteristics.

The accuracy confidence interval bars for participants from the Large
Business Computer manufacturing firms do not overlap those from the
Large or Small Electrical Appliance manufacturers or the Automobile manu-
facturers.

(continued)
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Fig. 5.7 Line graph using confidence interval bars to compare accuracy across companies

We might conclude that quality control inspection accuracy is substantially
better in the Large Business Computer manufacturing companies than in these
other industries but is not substantially better than the PC manufacturing
companies. We might also conclude that inspection accuracy in PC
manufacturing companies is not substantially different from Small Electrical
Appliance manufacturers.

Scatterplots

Scatterplots are useful in displaying the relationship between two interval- or ratio-
scaled variables or measures of interest obtained on the same individuals, particu-
larly in correlational research (see Fundamental Concept IIl and Procedure 6.1).

In a scatterplot, one variable is chosen to be represented on the horizontal axis; the
second variable is represented on the vertical axis. In this type of plot, all data point pairs in
the sample are graphed. The shape and tilt of the cloud of points in a scatterplot provide
visual information about the strength and direction of the relationship between the two
variables. A very compact elliptical cloud of points signals a strong relationship; a very
loose or nearly circular cloud signals a weak or non-existent relationship. A cloud of
points generally tilted upward toward the right side of the graph signals a positive
relationship (higher scores on one variable associated with higher scores on the other
and vice-versa). A cloud of points generally tilted downward toward the right side of the
graph signals a negative relationship (higher scores on one variable associated with lower
scores on the other and vice-versa).


https://doi.org/10.1007/978-981-15-2537-7_6
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Maree might be interested in displaying the relationship between inspection
accuracy and inspection speed in the QCI database. Figure 5.8, produced
using SPSS, shows what such a scatterplot might look like. Several character-
istics of the data for these two variables can be noted in Fig. 5.8. The shape of
the distribution of data points is evident. The plot has a fan-shaped character-
istic to it which indicates that accuracy scores are highly variable (exhibit a
very wide range of possible scores) at very fast inspection speeds but get much
less variable and tend to be somewhat higher as inspection speed increases
(where inspectors take longer to make their quality control decisions). Thus,
there does appear to be some relationship between inspection accuracy and
inspection speed (a weak positive relationship since the cloud of points tends
to be very loose but tilted generally upward toward the right side of the graph —
slower speeds tend to be slightly associated with higher accuracy.
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Fig. 5.8 Scatterplot relating inspection accuracy to inspection speed

However, it is not the case that the inspection decisions which take longest
to make are necessarily the most accurate (see the labelled points for inspectors
7 and 62 in Fig. 5.8). Thus, Fig. 5.8 does not show a simple relationship that
can be unambiguously summarised by a statement like “the longer an inspec-
tor takes to make a quality control decision, the more accurate that decision is
likely to be”. The story is more complicated.

Some software packages, such as SPSS, STATGRAPHICS and SYSTAT, offer
the option of using different plotting symbols or markers to represent the members of
different groups so that the relationship between the two focal variables (the ones
anchoring the X and Y axes) can be clarified with reference to a third categorical
measure.
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Maree might want to see if the relationship depicted in Fig. 5.8 changes
depending upon whether the inspector was tertiary-qualified or not (this
information is represented in the educlev variable of the QCI database).

Figure 5.9 shows what such a modified scatterplot might look like; the
legend in the upper corner of the figure defines the marker symbols for each
category of the educlev variable. Note that for both High School only-
educated inspectors and Tertiary-qualified inspectors, the general fan-shaped
relationship between accuracy and speed is the same. However, it appears
that the distribution of points for the High School only-educated inspectors is
shifted somewhat upward and toward the right of the plot suggesting that these
inspectors tend to be somewhat more accurate as well as slower in their
decision processes.
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Fig. 5.9 Scatterplot displaying accuracy vs speed conditional on educlev group
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There are many other styles of graphs available, often dependent upon the specific

statistical package you are using. Interestingly, NCSS and, particularly, SYSTAT
and STATGRAPHICS, appear to offer the most variety in terms of types of graphs
available for visually representing data. A reading of the user’s manuals for these
programs (see the Useful additional readings) would expose you to the great
diversity of plotting techniques available to researchers. Many of these techniques
go by rather interesting names such as: Chernoff’s faces, radar plots, sunflower plots,

violin plots, star plots, Fourier blobs, and dot plots.
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Advantages

These graphical methods provide summary techniques for visually presenting cer-
tain characteristics of a set of data. Visual representations are generally easier to
understand than a tabular representation and when these plots are combined with
available numerical statistics, they can give a very complete picture of a sample of
data. Newer methods have become available which permit more complex represen-
tations to be depicted, opening possibilities for creatively visually representing more
aspects and features of the data (leading to a style of visual data storytelling called
infographics; see, for example, McCandless 2014; Toseland and Toseland 2012).
Many of these newer methods can display data patterns from multiple variables in
the same graph (several of these newer graphical methods are illustrated and
discussed in Procedure 5.3).

Disadvantages

Graphs tend to be cumbersome and space consuming if a great many variables need
to be summarised. In such cases, using numerical summary statistics (such as means
or correlations) in tabular form alone will provide a more economical and efficient
summary. Also, it can be very easy to give a misleading picture of data trends using
graphical methods by simply choosing the ‘correct’ scaling for maximum effect or
choosing a display option (such as a 3-D effect) that ‘looks’ presentable but which
actually obscures a clear interpretation (see Smithson 2000; Wilkinson 2009).
Thus, you must be careful in creating and interpreting visual representations so
that the influence of aesthetic choices for sake of appearance do not become more
important than obtaining a faithful and valid representation of the data—a very real
danger with many of today’s statistical packages where ‘default’ drawing options
have been pre-programmed in. No single plot can completely summarise all possible
characteristics of a sample of data. Thus, choosing a specific method of graphical
display may, of necessity, force a behavioural researcher to represent certain data
characteristics (such as frequency) at the expense of others (such as averages).

Where Is This Procedure Useful?

Virtually any research design which produces quantitative data and statistics (even to
the extent of just counting the number of occurrences of several events) provides
opportunities for graphical data display which may help to clarify or illustrate
important data characteristics or relationships. Remember, graphical displays are
communication tools just like numbers—which tool to choose depends upon the
message to be conveyed. Visual representations of data are generally more useful in
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communicating to lay persons who are unfamiliar with statistics. Care must be taken
though as these same lay people are precisely the people most likely to misinterpret a
graph if it has been incorrectly drawn or scaled.

Software Procedures

Application

Procedures

SPSS

Graphs — Chart Builder. . . and choose from a range of gallery chart types:
Bar, Pie/Polar, Histogram, Line, Scatter/Dot; drag the chart type into the
working area and customise the chart with desired variables, labels, etc.
many elements of a chart, including error bars, can be controlled.

NCSS

Graphics — Bar Charts — Bar Charts or Graphics — Pie Charts or
Graphics — Histograms — Histograms or Histograms — Comparative or
Graphics — Error Bar Charts — Error Bar Charts or Graphics — Scatter
Plots — Scatter Plots; whichever type of chart you choose, you can control
many features of the chart from the dialog box that pops open upon
selection.

STATGRAPHICS

Plot — Business Charts — Barchart... or Piechart... or Plot — Exploratory
Plots — Frequency Histogram... or Plot — Scatterplots — X — Y Plot...;
whichever type of chart you choose, you can control a number of features of
the chart from the series of dialog boxes that pops open upon selection.

SYSTAT

Graph — Bar. .. or Pie. .. or Histogram. .. or Line. . . or Scatterplot. . . or
Graph Gallery... (which offers a range of other more novel graphical
displays, including the dual histogram). For each choice, a dialog box opens
which allows you to control almost every characteristic of the graph

you want.

R Commander

Graphs — Bar graph or Pie chart or Histogram or Scatterplot or Plot of
Means; for some graphs (Scatterplot being the exception), there is minimal
control offered by R Commander over the appearance of the graph (you
need to use full R commands to control more aspects; e.g. see Chang 2019).

Procedure 5.3: Multivariate Graphs & Displays

Classification
Purpose

Multivariate; descriptive.

To simultaneously and visually summarise characteristics of
many variables obtained on the same entities for ease of
interpretation.

Measurement level Multivariate graphs and displays are generally produced

using interval or ratio-level data. However, such graphs
may be grouped according to a nominal or ordinal
categorical variable for comparison purposes.
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Graphical methods for displaying multivariate data (i.e. many variables at once)
include scatterplot matrices, radar (or spider) plots, multiplots, parallel coordinate
displays, and icon plots. Multivariate graphs are useful for visualising broad trends
and patterns across many variables (Cleveland 1995; Jacoby 1998). Such graphs
typically sacrifice precision in representation in favour of a snapshot pictorial
summary that can help you form general impressions of data patterns.

It is important to note that what is presented here is a small but reasonably
representative sampling of the types of graphs one can produce to summarise and
display trends in multivariate data. Generally speaking, SYSTAT offers the best
facilities for producing multivariate graphs, followed by STATGRAPHICS, but with
the drawback that it is somewhat tricky to get the graphs in exactly the form you
want. SYSTAT also has excellent facilities for creating new forms and combinations
of graphs — essentially allowing graphs to be tailor-made for a specific communica-
tion purpose. Both SPSS and NCSS offer a more limited range of multivariate
graphs, generally restricted to scatterplot matrices and variations of multiplots.
Microsoft Excel or STATGRAPHICS are the packages to use if radar or spider
plots are desired.

Scatterplot Matrices

A scatterplot matrix is a useful multivariate graph designed to show relationships
between pairs of many variables in the same display.

Figure 5.10 illustrates a scatterplot matrix, produced using SYSTAT, for the
mentabil, accuracy, speed, jobsat and workcond variables in the QCI
database. It is easy to see that all the scatterplot matrix does is stack all pairs
of scatterplots into a format where it is easy to pick out the graph for any ‘row’
variable that intersects a column ‘variable’.

In those plots where a ‘row’ variable intersects itself in a column of the
matrix (along the so-called ‘diagonal’), SYSTAT permits a range of univariate
displays to be shown. Figure 5.10 shows univariate histograms for each
variable (recall Procedure 5.2). One obvious drawback of the scatterplot
matrix is that, if many variables are to be displayed (say ten or more); the
graph gets very crowded and becomes very hard to visually appreciate.

Looking at the first column of graphs in Fig. 5.10, we can see the scatterplot
relationships between mentabil and each of the other variables. We can get a

(continued)
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visual impression that mentabil seems to be slightly negatively related to
accuracy (the cloud of scatter points tends to angle downward to the right,
suggesting, very slightly, that higher mentabil scores are associated with
lower levels of accuracy).
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Fig. 5.10 Scatterplot matrix relating mentabil, accuracy, speed, jobsat & workcond

Conversely, the visual impression of the relationship between mentabil
and speed is that the relationship is slightly positive (higher mentabil scores
tend to be associated with higher speed scores = longer inspection times).
Similar types of visual impressions can be formed for other parts of Fig. 5.10.
Notice that the histogram plots along the diagonal give a clear impression of
the shape of the distribution for each variable.
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Radar Plots

The radar plot (also known as a spider graph for obvious reasons) is a simple and
effective device for displaying scores on many variables. Microsoft Excel offers a
range of options and capabilities for producing radar plots, such as the plot shown in
Fig. 5.11. Radar plots are generally easy to interpret and provide a good visual basis
for comparing plots from different individuals or groups, even if a fairly large
number of variables (say, up to about 25) are being displayed. Like a clock face,
variables are evenly spaced around the centre of the plot in clockwise order starting
at the 12 o’clock position. Visual interpretation of a radar plot primarily relies on
shape comparisons, i.e. the rise and fall of peaks and valleys along the spokes around
the plot. Valleys near the centre display low scores on specific variables, peaks near
the outside of the plot display high scores on specific variables. [Note that, techni-
cally, radar plots employ polar coordinates.] SYSTAT can draw graphs using polar
coordinates but not as easily as Excel can, from the user’s perspective. Radar plots
work best if all the variables represented are measured on the same scale (e.g. a 1 to
7 Likert-type scale or 0% to 100% scale). Individuals who are missing any scores on
the variables being plotted are typically omitted.

The radar plot in Fig. 5.11, produced using Excel, compares two specific
inspectors, 66 and 104, on the nine attitude rating scales. Inspector 66 gave
the highest rating (= 7) on the cultqual variable and inspector 104 gave the
lowest rating (= 1). The plot shows that inspector 104 tended to provide very
low ratings on all nine attitude variables, whereas inspector 66 tended to give
very high ratings on all variables except acctrain and trainapp, where the
scores were similar to those for inspector 104. Thus, in general, inspector
66 tended to show much more positive attitudes toward their workplace
compared to inspector 104.

While Fig. 5.11 was generated to compare the scores for two individuals in
the QCI database, it would be just as easy to produce a radar plot that
compared the five types of companies in terms of their average ratings on
the nine variables, as shown in Fig. 5.12.

Here we can form the visual impression that the five types of companies
differ most in their average ratings of mgmtcomm and least in the average
ratings of polsatis. Overall, the average ratings from inspectors from PC
manufacturers (black diamonds with solid lines) seem to be generally the
most positive as their scores lie on or near the outer ring of scores and those

(continued)
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from Automobile manufacturers tend to be least positive on many variables
(except the training-related variables).

Extrapolating from Fig. 5.12, you may rightly conclude that including too
many groups and/or too many variables in a radar plot comparison can lead to
so much clutter that any visual comparison would be severely degraded. You
may have to experiment with using colour-coded lines to represent different
groups versus line and marker shape variations (as used in Fig. 5.12), because
choice of coding method for groups can influence the interpretability of a radar
plot.

cultqual

acctrain

trainqua

|—o— Inspector 66- ® = Inspector 104|

Fig. 5.11 Radar plot comparing attitude ratings for inspectors 66 and 104

(continued)
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Fig. 5.12 Radar plot comparing average attitude ratings for five types of company

Multiplots

A multiplot is simply a hybrid style of graph that can display group comparisons
across a number of variables. There are a wide variety of possible multiplots one
could potentially design (SYSTAT offers great capabilities with respect to
multiplots). Figure 5.13 shows a multiplot comprising a side-by-side series of
profile-based line graphs — one graph for each type of company in the QCI database.

The multiplot in Fig. 5.13, produced using SYSTAT, graphs the profile of
average attitude ratings for all inspectors within a specific type of company.
This multiplot shows the same story as the radar plot in Fig. 5.12, but in a
different graphical format. It is still fairly clear that the average ratings from
inspectors from PC manufacturers tend to be higher than for the other types of
companies and the profile for inspectors from automobile manufacturers tends
to be lower than for the other types of companies.

(continued)
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The profile for inspectors from large electrical appliance manufacturers is
the flattest, meaning that their average attitude ratings were less variable than
for other types of companies. Comparing the ease with which you can glean
the visual impressions from Figs. 5.12 and 5.13 may lead you to prefer one
style of graph over another. If you have such preferences, chances are others
will also, which may mean you need to carefully consider your options when
deciding how best to display data for effect.

Frequently, choice of graph is less a matter of which style is right or wrong,
but more a matter of which style will suit specific purposes or convey a specific
story, i.e. the choice is often strategic.

Parallel Coordinate Displays

A parallel coordinate display is useful for displaying individual scores on a range of
variables, all measured using the same scale. Furthermore, such graphs can be
combined side-by-side to facilitate very broad visual comparisons among groups,
while retaining individual profile variability in scores. Each line in a parallel
coordinate display represents one individual, e.g. an inspector.

The interpretation of a parallel coordinate display, such as the two shown in
Fig. 5.14, depends on visual impressions of the peaks and valleys (highs and lows) in
the profiles as well as on the density of similar profile lines. The graph is called
‘parallel coordinate’ simply because it assumes that all variables are measured on the
same scale and that scores for each variable can therefore be located along vertical
axes that are parallel to each other (imagine vertical lines on Fig. 5.14 running from
bottom to top for each variable on the X-axis). The main drawback of this method of
data display is that only those individuals in the sample who provided legitimate
scores on all of the variables being plotted (i.e. who have no missing scores) can be
displayed.

The parallel coordinate display in Fig. 5.14, produced using SYSTAT, graphs
the profile of average attitude ratings for all inspectors within two specific
types of company: the left graph for inspectors from PC manufacturers and the
right graph for automobile manufacturers.

There are fewer lines in each display than the number of inspectors from
each type of company simply because several inspectors from each type of
company were missing a rating on at least one of the nine attitude variables.
The graphs show great variability in scores amongst inspectors within a
company type, but there are some overall patterns evident.

(continued)
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Fig. 5.14 Parallel coordinate displays comparing profiles of average attitude ratings for five
company types

For example, inspectors from automobile companies clearly and fairly
uniformly rated mgmtcomm toward the low end of the scale, whereas the
reverse was generally true for that variable for inspectors from PC manufac-
turers. Conversely, inspectors from automobile companies tend to rate
acctrain and trainapp more toward the middle to high end of the scale,
whereas the reverse is generally true for those variables for inspectors from
PC manufacturers.

Icon Plots

Perhaps the most creative types of multivariate displays are the so-called icon plots.
SYSTAT and STATGRAPHICS offer an impressive array of different types of icon
plots, including, amongst others, Chernoff’s faces, profile plots, histogram plots, star
glyphs and sunray plots (Jacoby 1998 provides a detailed discussion of icon plots).

Icon plots generally use a specific visual construction to represent variables scores
obtained by each individual within a sample or group. All icon plots are thus
methods for displaying the response patterns for individual members of a sample,
as long as those individuals are not missing any scores on the variables to be
displayed (note that this is the same limitation as for radar plots and parallel
coordinate displays). To illustrate icon plots, without generating too many icons to
focus on, Figs. 5.15, 5.16, 5.17 and 5.18 present four different icon plots for QCI
inspectors classified, using a new variable called BEST_WORST, as either the
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worst performers (= 1 where their accuracy scores were less than 70%) or the best
performers (= 2 where their accuracy scores were 90% or greater).

The Chernoff’s faces plot gets its name from the visual icon used to represent
variable scores — a cartoon-type face. This icon tries to capitalise on our natural
human ability to recognise and differentiate faces. Each feature of the face is
controlled by the scores on a single variable. In SYSTAT, up to 20 facial features
are controllable; the first five being curvature of mouth, angle of brow, width of nose,
length of nose and length of mouth (SYSTAT Software Inc., 2009, p. 259). The
theory behind Chernoff’s faces is that similar patterns of variable scores will produce
similar looking faces, thereby making similarities and differences between individ-
uals more apparent.

The profile plot and histogram plot are actually two variants of the same type of
icon plot. A profile plot represents individuals’ scores for a set of variables using
simplified line graphs, one per individual. The profile is scaled so that the vertical
height of the peaks and valleys correspond to actual values for variables where the
variables anchor the X-axis in a fashion similar to the parallel coordinate display. So,
as you examine a profile from left to right across the X-axis of each graph, you are
looking across the set of variables. A histogram plot represents the same information
in the same way as for the profile plot but using histogram bars instead.

Figure 5.15, produced using SYSTAT, shows a Chernoff’s faces plot for the
best and worst performing inspectors using their ratings of job satisfaction,
working conditions and the nine general attitude statements.

Each face is labelled with the inspector number it represents. The gaps
indicate where an inspector had missing data on at least one of the variables,
meaning a face could not be generated for them. The worst performers are
drawn using red lines; the best using blue lines. The first variable is jobsat and
this variable controls mouth curvature; the second variable is workcond and
this controls angle of brow, and so on. It seems clear that there are differences
in the faces between the best and worst performers with, for example, best
performers tending to be more satisfied (smiling) and with higher ratings for
working conditions (brow angle).

Beyond a broad visual impression, there is little in terms of precise infer-
ences you can draw from a Chernoff’s faces plot. It really provides a visual
sketch, nothing more. The fact that there is no obvious link between facial
features, variables and score levels means that the Chernoff’s faces icon plot is
difficult to interpret at the level of individual variables — a holistic impression
of similarity and difference is what this type of plot facilitates.

Figure 5.16 produced using SYSTAT, shows a profile plot for the best and
worst performing inspectors using their ratings of job satisfaction, working
conditions and the nine attitude variables.

(continued)
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Fig. 5.15 Chernoff’s faces icon plot comparing individual attitude ratings for best and
worst performing inspectors

Like the Chernoff’s faces plot (Fig. 5.15), as you read across the rows of the
plot from left to right, each plot corresponds respectively to a inspector in the
sample who was either in the worst performer (red) or best performer (blue)
category. The first attitude variable is jobsat and anchors the left end of each
line graph; the last variable is polsatis and anchors the right end of the line
graph. The remaining variables are represented in order from left to right
across the X-axis of each graph. Figure 5.16 shows that these inspectors are
rather different in their attitude profiles, with best performers tending to show
taller profiles on the first two variables, for example.

Figure 5.17 produced using SYSTAT, shows a histogram plot for the best
and worst performing inspectors based on their ratings of job satisfaction,
working conditions and the nine attitude variables. This plot tells the same
story as the profile plot, only using histogram bars. Some people would prefer
the histogram icon plot to the profile plot because each histogram bar corre-
sponds to one variable, making the visual linking of a specific bar to a specific
variable much easier than visually linking a specific position along the profile
line to a specific variable.

(continued)
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The sunray plot is actually a simplified adaptation of the radar plot (called a “star
glyph”) used to represent scores on a set of variables for each individual within a
sample or group. Remember that a radar plot basically arranges the variables around
a central point like a clock face; the first variable is represented at the 12 o’clock
position and the remaining variables follow around the plot in a clockwise direction.

Unlike a radar plot, while the spokes (the actual ‘star’ of the glyph’s name) of the
plot are visible, no interpretive scale is evident. A variable’s score is visually
represented by its distance from the central point. Thus, the star glyphs in a sunray
plot are designed, like Chernoff’s faces, to provide a general visual impression,
based on icon shape. A wide diameter well-rounded plot indicates an individual with
high scores on all variables and a small diameter well-rounded plot vice-versa.
Jagged plots represent individuals with highly variable scores across the variables.
‘Stars’ of similar size, shape and orientation represent similar individuals.

Figure 5.18, produced using STATGRAPHICS, shows a sunray plot for the
best and worst performing inspectors. An interpretation glyph is also shown in
the lower right corner of Fig. 5.18, where variables are aligned with the spokes
of a star (e.g. jobsat is at the 12 o’clock position). This sunray plot could lead
you to form the visual impression that the worst performing inspectors (group
1) have rather less rounded rating profiles than do the best performing inspec-
tors (group 2) and that the jobsat and workcond spokes are generally lower
for the worst performing inspectors.

BEST_WORST
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Fig. 5.18 Sunray plot comparing individual attitude ratings for best and worst performing
inspectors

Comparatively speaking, the sunray plot makes identifying similar individ-
uals a bit easier (perhaps even easier than Chernoff’s faces) and, when ordered
as STATGRAPHICS showed in Fig. 5.18, permits easier visual comparisons
between groups of individuals, but at the expense of precise knowledge about
variable scores. Remember, a holistic impression is the goal pursued using a
sunray plot.
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Advantages

Multivariate graphical methods provide summary techniques for visually presenting
certain characteristics of a complex array of data on variables. Such visual representations
are generally better at helping us to form holistic impressions of multivariate data rather
than any sort of tabular representation or numerical index. They also allow us to compress
many numerical measures into a finite representation that is generally easy to understand.
Multivariate graphical displays can add interest to an otherwise dry statistical reporting of
numerical data. They are designed to appeal to our pattern recognition skills, focusing our
attention on features of the data such as shape, level, variability and orientation. Some
multivariate graphs (e.g. radar plots, sunray plots and multiplots) are useful not only for
representing score patterns for individuals but also providing summaries of score patterns
across groups of individuals.

Disadvantages

Multivariate graphs tend to get very busy-looking and are hard to interpret if a great
many variables or a large number of individuals need to be displayed (imagine any of
the icon plots, for a sample of 200 questionnaire participants, displayed on a A4
page — each icon would be so small that its features could not be easily distinguished,
thereby defeating the purpose of the display). In such cases, using numerical
summary statistics (such as averages or correlations) in tabular form alone will
provide a more economical and efficient summary. Also, some multivariate displays
will work better for conveying certain types of information than others.

For example Information about variable relationships may be better displayed
using a scatterplot matrix. Information about individual similarities and difference
on a set of variables may be better conveyed using a histogram or sunray plot.
Multiplots may be better suited to displaying information about group differences
across a set of variables. Information about the overall similarity of individual
entities in a sample might best be displayed using Chernoff’s faces.

Because people differ greatly in their visual capacities and preferences, certain types of
multivariate displays will work for some people and not others. Sometimes, people will
not see what you see in the plots. Some plots, such as Chernoff’s faces, may not strike a
reader as a serious statistical procedure and this could adversely influence how convinced
they will be by the story the plot conveys. None of the multivariate displays described here
provide sufficiently precise information for solid inferences or interpretations; all are
designed to simply facilitate the formation of holistic visual impressions. In fact, you
may have noticed that some displays (scatterplot matrices and the icon plots, for example)
provide no numerical scaling information that would help make precise interpretations. If
precision in summary information is desired, the types of multivariate displays discussed
here would not be the best strategic choices.
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Where Is This Procedure Useful?

Virtually any research design which produces quantitative data/statistics for multiple
variables provides opportunities for multivariate graphical data display which may
help to clarify or illustrate important data characteristics or relationships. Thus, for
survey research involving many identically-scaled attitudinal questions, a multivar-
iate display may be just the device needed to communicate something about patterns
in the data. Multivariate graphical displays are simply specialised communication
tools designed to compress a lot of information into a meaningful and efficient
format for interpretation—which tool to choose depends upon the message to be
conveyed.

Generally speaking, visual representations of multivariate data could prove more
useful in communicating to lay persons who are unfamiliar with statistics or who
prefer visual as opposed to numerical information. However, these displays would
probably require some interpretive discussion so that the reader clearly understands
their intent.

Software Procedures

Application Procedures

SPSS Graphs — Chart Builder. . . and choose Scatter/Dot from the gallery; drag
the Scatterplot Matrix chart type into the working area and customise the
chart with desired variables, labels, etc. Only a few elements of each chart
can be configured and altered.

NCSS Graphics — Scatter Plots — Scatter Plot Matrix. Only a few elements of
this plot are customisable in NCSS.
SYSTAT Graph — Scatterplot Matrix (SPLOM) . .. (and you can select what type of

plot you want to appear in the diagonal boxes) or Graph — Line Chart . ..
(Multiplots can be selected by choosing a Grouping variable. e.g. company)
or Graph — Multivariate Display — Parallel Coordinate Display . .. or
Icon Plot . .. (for icon plots, you can choose from a range of icons including
Chernoff’s faces, histogram, star, sun or profile amongst others). A large
number of elements of each type of plot are easily customisable, although it
may take some trial and error to get exactly the look you want.
STATGRAPHICS | Plot — Multivariate Visualization — Scatterplot Matrix... or Parallel
Coordinates Plot... or Chernoff’s Faces or Star Glyphs and Sunray Plots...
Several elements of each type of plot are easily customisable, although it
may take some trial and error to get exactly the look you want.

R commander Graphs — Scatterplot Matrix... You can select what type of plot you want to
appear in the diagonal boxes, and you can control some other features of the
plot. Other multivariate data displays are available via various R packages
(e.g. the lattice or car package), but not through R commander.
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Procedure 5.4: Assessing Central Tendency

Classification Univariate; descriptive.

Purpose To provide numerical summary measures that give an
indication of the central, average or typical score in a
distribution of scores for a variable.

Measurement level Mean — variables should be measured at the interval or ratio-
level.

Median — variables should be measured at least at the
ordinal-level.

Mode — variables can be measured at any of the four
levels.

The three most commonly reported measures of central tendency are the mean,
median and mode. Each measure reflects a specific way of defining central tendency
in a distribution of scores on a variable and each has its own advantages and
disadvantages.

Mean

The mean is the most widely used measure of central tendency (also called the arithmetic
average). Very simply, a mean is the sum of all the scores for a specific variable in a
sample divided by the number of scores used in obtaining the sum. The resulting number
reflects the average score for the sample of individuals on which the scores were obtained.
If one were asked to predict the score that any single individual in the sample would
obtain, the best prediction, in the absence of any other relevant information, would be the
sample mean. Many parametric statistical methods (such as Procedures 7.2, 7.4, 7.6 and
7.10) deal with sample means in one way or another. For any sample of data, there is one
and only one possible value for the mean in a specific distribution. For most purposes, the
mean is the preferred measure of central tendency because it utilises all the available
information in a sample.

In the context of the QCI database, Maree could quite reasonably ask what
inspectors scored on the average in terms of mental ability (mentabil), inspec-
tion accuracy (accuracy), inspection speed (speed), overall job satisfaction
(jobsat), and perceived quality of their working conditions (workcond).
Table 5.3 shows the mean scores for the sample of 112 quality control
inspectors on each of these variables. The statistics shown in Table 5.3 were
computed using the SPSS Frequencies... procedure. Notice that the table
indicates how many of the 112 inspectors had a valid score for each variable

(continued)
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and how many were missing a score (e.g. 109 inspectors provided a valid
rating for jobsat; 3 inspectors did not).

Each mean needs to be interpreted in terms of the original units of mea-
surement for each variable. Thus, the inspectors in the sample showed an
average mental ability score of 109.84 (higher than the general population
mean of 100 for the test), an average inspection accuracy of 82.14%, and an
average speed for making quality control decisions of 4.48 s. Furthermore, in
terms of their work context, inspectors reported an average overall job satis-
faction of 4.96 (on the 7-point scale, or a level of satisfaction nearly one full
scale point above the Neutral point of 4—indicating a generally positive but
not strong level of job satisfaction, and an average perceived quality of work
conditions of 4.21 (on the 7-point scale which is just about at the level of
Stressful but Tolerable.

Table 5.3 Measures of central tendency for specific QCI variables

Statistics

mentabil __accuracy speed jobsat workcond

N Valid 111 111 111 109 106
Missing 1 1 1 3 6

Mean 109.84 82.14 4.4801 4.96 421
Median 111.00 83.00 3.8900 5.00 4.00
Mode 111 82 3.14 6 4
Percentiles 25 104.00 77.00 2.1900 4.00 3.00
50 111.00 83.00 3.8900 5.00 4.00

75 116.00 89.00 5.7100 6.00 6.00

The mean is sensitive to the presence of extreme values, which can distort its
value, giving a biased indication of central tendency. As we will see below, the
median is an alternative statistic to use in such circumstances. However, it is also
possible to compute what is called a trimmed mean where the mean is calculated
after a certain percentage (say, 5% or 10%) of the lowest and highest scores in a
distribution have been ignored (a process called ‘trimming’; see, for example, the
discussion in Field 2018, pp. 262-264). This yields a statistic less influenced by
extreme scores. The drawbacks are that the decision as to what percentage to trim
can be somewhat subjective and trimming necessarily sacrifices information (i.e. the
extreme scores) in order to achieve a less biased measure. Some software packages,
such as SPSS, SYSTAT or NCSS, can report a specific percentage trimmed mean, if
that option is selected for descriptive statistics or exploratory data analysis (see
Procedure 5.6) procedures. Comparing the original mean with a trimmed mean can
provide an indication of the degree to which the original mean has been biased by
extreme values.
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Median

Very simply, the median is the centre or middle score of a set of scores. By ‘centre’ or
‘middle’ is meant that 50% of the data values are smaller than or equal to the median and
50% of the data values are larger when the entire distribution of scores is rank ordered
from the lowest to highest value. Thus, we can say that the median is that score in the
sample which occurs at the 50th percentile. [Note that a ‘percentile’ is attached to a
specific score that a specific percentage of the sample scored at or below. Thus, a score at
the 25th percentile means that 25% of the sample achieved this score or a lower score.]
Table 5.3 shows the 25th, 50th and 75th percentile scores for each variable — note how the
50th percentile score is exactly equal to the median in each case.

The median is reported somewhat less frequently than the mean but does have
some advantages over the mean in certain circumstances. One such circumstance is
when the sample of data has a few extreme values in one direction (either very large
or very small relative to all other scores). In this case, the mean would be influenced
(biased) to a much greater degree than would the median since all of the data are used
to calculate the mean (including the extreme scores) whereas only the single centre
score is needed for the median. For this reason, many nonparametric statistical
procedures (such as Procedures 7.3, 7.5 and 7.9) focus on the median as the
comparison statistic rather than on the mean.

A discrepancy between the values for the mean and median of a variable provides
some insight to the degree to which the mean is being influenced by the presence of
extreme data values. In a distribution where there are no extreme values on either side of
the distribution (or where extreme values balance each other out on either side of the
distribution, as happens in a normal distribution — see Fundamental Concept II), the mean
and the median will coincide at the same value and the mean will not be biased.

For highly skewed distributions, however, the value of the mean will be pulled
toward the long tail of the distribution because that is where the extreme values lie.
However, in such skewed distributions, the median will be insensitive (statisticians
call this property ‘robustness’) to extreme values in the long tail. For this reason, the
direction of the discrepancy between the mean and median can give a very rough
indication of the direction of skew in a distribution (‘mean larger than median’
signals possible positive skewness; ‘mean smaller than median’ signals possible
negative skewness). Like the mean, there is one and only one possible value for the
median in a specific distribution.

In Fig. 5.19, the left graph shows the distribution of speed scores and the right-hand
graph shows the distribution of accuracy scores. The speed distribution clearly
shows the mean being pulled toward the right tail of the distribution whereas the
accuracy distribution shows the mean being just slightly pulled toward the left tail.
The effect on the mean is stronger in the speed distribution indicating a greater
biasing effect due to some very long inspection decision times.

(continued)
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If we refer to Table 5.3, we can see that the median score for each of the five
variables has also been computed. Like the mean, the median must be interpreted in
the original units of measurement for the variable. We can see that for mentabil,
accuracy, and workcond, the value of the median is very close to the value of the
mean, suggesting that these distributions are not strongly influenced by extreme
data values in either the high or low direction. However, note that the median speed
was 3.89 s compared to the mean of 4.48 s, suggesting that the distribution of speed
scores is positively skewed (the mean is larger than the median—refer to Fig. 5.19).
Conversely, the median jobsat score was 5.00 whereas the mean score was 4.96
suggesting very little substantive skewness in the distribution (mean and median are
nearly equal).
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Fig. 5.19 Effects of skewness in a distribution on the values for the mean and median

Mode

The mode is the simplest measure of central tendency. It is defined as the most
frequently occurring score in a distribution. Put another way, it is the score that more
individuals in the sample obtain than any other score. An interesting problem
associated with the mode is that there may be more than one in a specific distribution.
In the case where multiple modes exist, the issue becomes which value do you
report? The answer is that you must report all of them. In a ‘normal’ bell-shaped
distribution, there is only one mode and it is indeed at the centre of the distribution,
coinciding with both the mean and the median.
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Table 5.3 also shows the mode for each of the five variables. For example,
more inspectors achieved a mentabil score of 111 more often than any other
score and inspectors reported a jobsat rating of 6 more often than any other
rating. SPSS only ever reports one mode even if several are present, so one
must be careful and look at a histogram plot for each variable to make a final
determination of the mode(s) for that variable.

Advantages

All three measures of central tendency yield information about what is going on in
the centre of a distribution of scores. The mean and median provide a single number
which can summarise the central tendency in the entire distribution. The mode can
yield one or multiple indices. With many measurements on individuals in a sample,
it is advantageous to have single number indices which can describe the distributions
in summary fashion. In a normal or near-normal distribution of sample data, the
mean, the median, and the mode will all generally coincide at the one point. In this
instance, all three statistics will provide approximately the same indication of central
tendency. Note however that it is seldom the case that all three statistics would yield
exactly the same number for any particular distribution. The mean is the most useful
statistic, unless the data distribution is skewed by extreme scores, in which case the
median should be reported.

Disadvantages

While measures of central tendency are useful descriptors of distributions,
summarising data using a single numerical index necessarily reduces the amount
of information available about the sample. Not only do we need to know what is
going on in the centre of a distribution, we also need to know what is going on
around the centre of the distribution. For this reason, most social and behavioural
researchers report not only measures of central tendency, but also measures of
variability (see Procedure 5.5). The mode is the least informative of the three
statistics because of its potential for producing multiple values.
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Where Is This Procedure Useful?

Measures of central tendency are useful in almost any type of experimental design,
survey or interview study, and in any observational studies where quantitative data
are available and must be summarised. The decision as to whether the mean or
median should be reported depends upon the nature of the data which should ideally
be ascertained by visual inspection of the data distribution. Some researchers opt to
report both measures routinely. Computation of means is a prelude to many para-
metric statistical methods (see, for example, Procedure 7.2, 7.4, 7.6, 7.8, 7.10, 7.11
and 7.16); comparison of medians is associated with many nonparametric statistical
methods (see, for example, Procedure 7.3, 7.5, 7.9 and 7.12).

Software Procedures

Application Procedures

SPSS Analyze — Descriptive Statistics — Frequencies . .. then press the ‘Statis-
tics’ button and choose mean, median and mode. To see trimmed means,
you must use the Analyze — Descriptive Statistics — Explore . .. Explor-
atory Data Analysis procedure; see Procedure 5.6.

NCSS Analysis — Descriptive Statistics — Descriptive Statistics then select the
reports and plots that you want to see; make sure you indicate that you want
to see the ‘Means Section’ of the Report. If you want to see trimmed means,
tick the “Trimmed Section’ of the Report.

SYSTAT Analyze — Basic Statistics . . . then select the mean, median and mode

(as well as any other statistics you might wish to see). If you want to see
trimmed means, tick the “Trimmed mean’ section of the dialog box and set
the percentage to trim in the box labelled “Two-sided’.

STATGRAPHICS | Describe — Numerical Data — One-Variable Analysis... or Multiple-Var-
iable Analysis... then choose the variable(s) you want to describe and select
Summary Statistics (you don’t get any options for statistics to report —
measures of central tendency and variability are automatically produced).
STATGRAPHICS will not report modes and you will need to use One-
Variable Analysis... and request ‘Percentiles’ in order to see the 50%ile
score which will be the median; however, it won’t be labelled as the median.

R Commander Statistics — Summaries — Numerical summaries... then select the central
tendency statistics you want to see. R Commander will not produce modes
and to see the median, make sure that the ‘Quantiles’ box is ticked — the .5
quantile score (= 50%ile) score is the median; however, it won’t be labelled
as the median.
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Procedure 5.5: Assessing Variability

Classification Univariate; descriptive.

Purpose To give an indication of the degree of spread in a sample of
scores; that is, how different the scores tend to be from each
other with respect to a specific measure of central tendency.

Measurement level For the variance and standard deviation, interval or ratio-
level measures are needed if these measures of variability are
to have any interpretable meaning. At least an ordinal-level
of measurement is required for the range and interquartile
range to be meaningful.

There are a variety of measures of variability to choose from including the range,
interquartile range, variance and standard deviation. Each measure reflects a specific
way of defining variability in a distribution of scores on a variable and each has its
own advantages and disadvantages. Most measures of variability are associated with
a specific measure of central tendency so that researchers are now commonly
expected to report both a measure of central tendency and its associated measure
of variability whenever they display numerical descriptive statistics on continuous or
ranked-ordered variables.

Range

This is the simplest measure of variability for a sample of data scores. The range is
merely the largest score in the sample minus the smallest score in the sample. The
range is the one measure of variability not explicitly associated with any measure of
central tendency. It gives a very rough indication as to the extent of spread in the
scores. However, since the range uses only two of the total available scores in the
sample, the rest of the scores are ignored, which means that a lot of potentially useful
information is being sacrificed. There are also problems if either the highest or
lowest (or both) scores are atypical or too extreme in their value (as in highly skewed
distributions). When this happens, the range gives a very inflated picture of the
typical variability in the scores. Thus, the range tends not be a frequently reported
measure of variability.

Table 5.4 shows a set of descriptive statistics, produced by the SPSS Frequen-
cies procedure, for the mentabil, accuracy, speed, jobsat and workcond
measures in the QCI database. In the table, you will find three rows labelled
‘Range’, ‘Minimum’ and ‘Maximum’.

(continued)
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Table 5.4 Measures of central tendency and variability for specific QCI variables

Statistics

mentahil  accuracy speed Jjobsat workcond

N Valid 111 111 111 108 106
Missing 1 1 1 3 6

Mean 109.84 82.14 4.4801 4.96 421
Median 111.00 83.00 3.8900 5.00 4.00
Mode 111 82 3.14 6 4
Std. Deviation 8.764 9172 288751 1.644 1.717
Variance 76.810 84.118 8.338 2.702 2.947
Range 50 43 16.05 6 6
Minimum 85 57 1.06 1 1
Maximum 135 100 17.10 7 7
Percentiles 25 104.00 77.00 2.1900 4.00 3.00
50 111.00 83.00 3.8900 5.00 4.00

75 116.00 89.00 57100 6.00 6.00

Using the data from these three rows, we can draw the following descriptive
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picture. Mentabil scores spanned a range of 50 (from a minimum score of

85 to a maximum score of 135). Speed scores had a range of 16.05 s (from
1.05 s — the fastest quality decision to 17.10 — the slowest quality decision).
Accuracy scores had a range of 43 (from 57% — the least accurate inspector to
100% — the most accurate inspector). Both work context measures (jobsat and
workcond) exhibited a range of 6 — the largest possible range given the 1 to

7 scale of measurement for these two variables.

Interquartile Range

The Interquartile Range (IQR) is a measure of variability that is specifically
designed to be used in conjunction with the median. The IQR also takes care of
the extreme data problem which typically plagues the range measure. The IQR is
defined as the range that is covered by the middle 50% of scores in a distribution
once the scores have been ranked in order from lowest value to highest value. It is
found by locating the value in the distribution at or below which 25% of the sample
scored and subtracting this number from the value in the distribution at or below
which 75% of the sample scored. The IQR can also be thought of as the range one
would compute after the bottom 25% of scores and the top 25% of scores in the
distribution have been ‘chopped off” (or ‘trimmed’ as statisticians call it).
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The IQR gives a much more stable picture of the variability of scores and, like the
median, is relatively insensitive to the biasing effects of extreme data values. Some
behavioural researchers prefer to divide the IQR in half which gives a measure called
the Semi-Interquartile Range (S-IQR). The S-IQR can be interpreted as the distance one
must travel away from the median, in either direction, to reach the value which separates
the top (or bottom) 25% of scores in the distribution from the remaining 75%.

The IQR or S-IQR is typically not produced by descriptive statistics procedures
by default in many computer software packages; however, it can usually be
requested as an optional statistic to report or it can easily be computed by hand
using percentile scores. Both the median and the IQR figure prominently in Explor-
atory Data Analysis, particularly in the production of boxplots (see Procedure 5.6).

Figure 5.20 illustrates the conceptual nature of the IQR and S-IQR compared
to that of the range. Assume that 100% of data values are covered by the
distribution curve in the figure. It is clear that these three measures would
provide very different values for a measure of variability. Your choice would
depend on your purpose. If you simply want to signal the overall span of
scores between the minimum and maximum, the range is the measure of
choice. But if you want to signal the variability around the median, the IQR
or S-IQR would be the measure of choice.
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Fig. 5.20 How the range, IQR and S-IQR measures of variability conceptually differ

Note: Some behavioural researchers refer to the IQR as the hinge-spread
(or H-spread) because of its use in the production of boxplots:



Procedure 5.5: Assessing Variability 103

 the 25th percentile data value is referred to as the ‘lower hinge’;
* the 75th percentile data value is referred to as the ‘upper hinge’; and
* their difference gives the H-spread.

Midspread is another term you may see used as a synonym for interquartile
range.

Referring back to Table 5.4, we can find statistics reported for the median and
for the ‘quartiles’ (25th, 50th and 75th percentile scores) for each of the five
variables of interest. The ‘quartile’ values are useful for finding the IQR or
S-IQR because SPSS does not report these measures directly. The median
clearly equals the 50th percentile data value in the table.

If we focus, for example, on the speed variable, we could find its IQR by
subtracting the 25th percentile score of 2.19 s from the 75th percentile score of
5.71 s to give a value for the IQR of 3.52 s (the S-IQR would simply be 3.52
divided by 2 or 1.76 s). Thus, we could report that the median decision speed
for inspectors was 3.89 s and that the middle 50% of inspectors showed scores
spanning a range of 3.52 s. Alternatively, we could report that the median
decision speed for inspectors was 3.89 s and that the middle 50% of inspectors
showed scores which ranged 1.76 s either side of the median value.

Note: We could compare the ‘Minimum’ or ‘Maximum’ scores to the 25th
percentile score and 75th percentile score respectively to get a feeling for
whether the minimum or maximum might be considered extreme or unchar-
acteristic data values.

Variance

The variance uses information from every individual in the sample to assess the
variability of scores relative to the sample mean. Variance assesses the average
squared deviation of each score from the mean of the sample. Deviation refers to the
difference between an observed score value and the mean of the sample—they are
squared simply because adding them up in their naturally occurring unsquared form
(where some differences are positive and others are negative) always gives a total of
zero, which is useless for an index purporting to measure something.

If many scores are quite different from the mean, we would expect the variance to
be large. If all the scores lie fairly close to the sample mean, we would expect a small
variance. If all scores exactly equal the mean (i.e. all the scores in the sample have
the same value), then we would expect the variance to be zero.
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Figure 5.21 illustrates some possibilities regarding variance of a distribution of
scores having a mean of 100. The very tall curve illustrates a distribution with
small variance. The distribution of medium height illustrates a distribution
with medium variance and the flattest distribution ia a distribution with large
variance.

If we had a distribution with no variance, the curve would simply be a
vertical line at a score of 100 (meaning that all scores were equal to the mean).
You can see that as variance increases, the tails of the distribution extend
further outward and the concentration of scores around the mean decreases.
You may have noticed that variance and range (as well as the IQR) will be
related, since the range focuses on the difference between the ends of the two
tails in the distribution and larger variances extend the tails. So, a larger
variance will generally be associated with a larger range and IQR compared
to a smaller variance.
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It is generally difficult to descriptively interpret the variance measure in a
meaningful fashion since it involves squared deviations around the sample mean.
[Note: If you look back at Table 5.4, you will see the variance listed for each of the
variables (e.g. the variance of accuracy scores is 84.118), but the numbers them-
selves make little sense and do not relate to the original measurement scale for the
variables (which, for the accuracy variable, went from 0% to 100% accuracy).]
Instead, we use the variance as a steppingstone for obtaining a measure of variability
that we can clearly interpret, namely the standard deviation. However, you should
know that variance is an important concept in its own right simply because it
provides the statistical foundation for many of the correlational procedures and
statistical inference procedures described in Chaps. 6, 7 and §.

For example When considering either correlations or tests of statistical hypothe-
ses, we frequently speak of one variable explaining or sharing variance with another
(see Procedure 6.4 and 7.7). In doing so, we are invoking the concept of variance as
set out here—what we are saying is that variability in the behaviour of scores on one
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particular variable may be associated with or predictive of variability in scores on
another variable of interest (e.g. it could explain why those scores have a non-zero
variance).

Standard Deviation

The standard deviation (often abbreviated as SD, sd or Std. Dev.) is the most
commonly reported measure of variability because it has a meaningful interpretation
and is used in conjunction with reports of sample means. Variance and standard
deviation are closely related measures in that the standard deviation is found by
taking the square root of the variance. The standard deviation, very simply, is a
summary number that reflects the ‘average distance of each score from the mean of
the sample’. In many parametric statistical methods, both the sample mean and
sample standard deviation are employed in some form. Thus, the standard deviation
is a very important measure, not only for data description, but also for hypothesis
testing and the establishment of relationships as well.

Referring again back to Table 5.4, we’ll focus on the results for the speed
variable for discussion purposes. Table 5.4 shows that the mean inspection
speed for the QCI sample was 4.48 s. We can also see that the standard
deviation (in the row labelled ‘Std Deviation’) for speed was 2.89 s.

This standard deviation has a straightforward interpretation: we would say
that ‘on the average, an inspector’s quality inspection decision speed differed
from the mean of the sample by about 2.89 s in either direction’. In a normal
distribution of scores (see Fundamental Concept II), we would expect to see
about 68% of all inspectors having decision speeds between 1.59 s (the mean
minus one amount of the standard deviation) and 7.37 s (the mean plus one
amount of the standard deviation).

We noted earlier that the range of the speed scores was 16.05 s. However,
the fact that the maximum speed score was 17.1 s compared to the 75th
percentile score of just 5.71 s seems to suggest that this maximum speed
might be rather atypically large compared to the bulk of speed scores. This
means that the range is likely to be giving us a false impression of the overall
variability of the inspectors’ decision speeds.

Furthermore, given that the mean speed score was higher than the median
speed score, suggesting that speed scores were positively skewed (this was
confirmed by the histogram for speed shown in Fig. 5.19 in Procedure 5.4),
we might consider emphasising the median and its associated IQR or S-IQR
rather than the mean and standard deviation. Of course, similar diagnostic and
interpretive work could be done for each of the other four variables in
Table 5.4.
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Advantages

Measures of variability (particularly the standard deviation) provide a summary
measure that gives an indication of how variable (spread out) a particular sample
of scores is. When used in conjunction with a relevant measure of central tendency
(particularly the mean), a reasonable yet economical description of a set of data
emerges. When there are extreme data values or severe skewness is present in the
data, the IQR (or S-IQR) becomes the preferred measure of variability to be reported
in conjunction with the sample median (or 50th percentile value). These latter
measures are much more resistant (‘robust’) to influence by data anomalies than
are the mean and standard deviation.

Disadvantages

As mentioned above, the range is a very cursory index of variability, thus, it is not as
useful as variance or standard deviation. Variance has little meaningful interpretation
as a descriptive index; hence, standard deviation is most often reported. However,
the standard deviation (or IQR) has little meaning if the sample mean (or median) is
not reported along with it.

For example Knowing that the standard deviation for accuracy is 9.17 tells you
little unless you know the mean accuracy (82.14) that it is the standard deviation
from.

Like the sample mean, the standard deviation can be strongly biased by the
presence of extreme data values or severe skewness in a distribution in which case
the median and IQR (or S-IQR) become the preferred measures. The biasing effect
will be most noticeable in samples which are small in size (say, less than 30 individ-
uals) and far less noticeable in large samples (say, in excess of 200 or 300 individ-
uals). [Note that, in a manner similar to a trimmed mean, it is possible to compute a
trimmed standard deviation to reduce the biasing effect of extreme data values, see
Field 2018, p. 263.]

It is important to realise that the resistance of the median and IQR (or S-IQR) to
extreme values is only gained by deliberately sacrificing a good deal of the infor-
mation available in the sample (nothing is obtained without a cost in statistics). What
is sacrificed is information from all other members of the sample other than those
members who scored at the median and 25th and 75th percentile points on a variable
of interest; information from all members of the sample would automatically be
incorporated in mean and standard deviation for that variable.
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Where Is This Procedure Useful?

Any investigation where you might report on or read about measures of central
tendency on certain variables should also report measures of variability. This is
particularly true for data from experiments, quasi-experiments, observational studies
and questionnaires. It is important to consider measures of central tendency and
measures of variability to be inextricably linked—one should never report one
without the other if an adequate descriptive summary of a variable is to be
communicated.

Other descriptive measures, such as those for skewness and kurtosis' may also be
of interest if a more complete description of any variable is desired. Most good
statistical packages can be instructed to report these additional descriptive measures
as well.

Of all the statistics you are likely to encounter in the business, behavioural and
social science research literature, means and standard deviations will dominate as
measures for describing data. Additionally, these statistics will usually be reported
when any parametric tests of statistical hypotheses are presented as the mean and
standard deviation provide an appropriate basis for summarising and evaluating
group differences.

Software Procedures

Application Procedures

SPSS Analyze — Descriptive Statistics — Frequencies . .. then press the ‘Statis-
tics’ button and choose Std. Deviation, Variance, Range, Minimum and/or
Maximum as appropriate. SPSS does not produce or have an option to
produce either the IQR or S-IQR, however, if your request ‘Quantiles’ you
will see the 25th and 75th %ile scores, which can then be used to quickly
compute either variability measure. Remember to select appropriate central
tendency measures as well.

NCSS Analysis — Descriptive Statistics — Descriptive Statistics then select the
reports and plots that you want to see; make sure you indicate that you want
to see the Variance Section of the Report. Remember to select appropriate
central tendency measures as well (by opting to see the Means Section of the
Report).

SYSTAT Analyze — Basic Statistics . . . then select SD, Variance, Range, Interquartile
range, Minimum and/or Maximum as appropriate. Remember to select
appropriate central tendency measures as well.

(continued)

"For more information, see Chap. 1 — The language of statistics.
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Application

Procedures

STATGRAPHICS

Describe — Numerical Data — One-Variable Analysis... or Multiple-Var-
iable Analysis... then choose the variable(s) you want to describe and select
Summary Statistics (you don’t get any options for statistics to report —
measures of central tendency and variability are automatically produced).
STATGRAPHICS does not produce either the IQR or S-IQR, however, if
you use One-Variable Analysis... Percentiles’ can be requested in order to
see the 25th and 75th %ile scores, which can then be used to quickly
compute either variability measure.

R Commander

Statistics — Summaries — Numerical summaries... then select either the
Standard Deviation or Interquartile Range as appropriate. R Commander
will not produce the range statistic or report minimum or maximum scores.
Remember to select appropriate central tendency measures as well.

Fundamental Concept I: Basic Concepts in Probability

The Concept of Simple Probability

In Procedures 5.1 and 5.2, you encountered the idea of the frequency of occurrence
of specific events such as particular scores within a sample distribution. Further-
more, it is a simple operation to convert the frequency of occurrence of a specific
event into a number representing the relative frequency of that event. The relative
frequency of an observed event is merely the number of times the event is observed
divided by the total number of times one makes an observation. The resulting
number ranges between 0 and 1 but we typically re-express this number as a
percentage by multiplying it by 100%.

In the QCI database, Maree Lakota observed data from 112 quality control
inspectors of which 58 were male and 51 were female (gender indications were
missing for three inspectors). The statistics 58 and 51 are thus the frequencies
of occurrence for two specific types of research participant, a male inspector or
a female inspector.

If she divided each frequency by the total number of observations (i.e. 112),
whe would obtain .52 for males and .46 for females (leaving .02 of observa-
tions with unknown gender). These statistics are relative frequencies which
indicate the proportion of times that Maree obtained data from a male or
female inspector. Multiplying each relative frequency by 100% would yield
52% and 46% which she could interpret as indicating that 52% of her sample
was male and 46% was female (leaving 2% of the sample with unknown
gender).
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It does not take much of a leap in logic to move from the concept of ‘relative
frequency’ to the concept of ‘probability’. In our discussion above, we focused on
relative frequency as indicating the proportion or percentage of times a specific
category of participant was obtained in a sample. The emphasis here is on data from
a sample.

Imagine now that Maree had infinite resources and research time and was able
to obtain ever larger samples of quality control inspectors for her study. She
could still compute the relative frequencies for obtaining data from males and
females in her sample but as her sample size grew larger and larger, she would
notice these relative frequencies converging toward some fixed values.

If, by some miracle, Maree could observe all of the quality control inspec-
tors on the planet today, she would have measured the entire population and
her computations of relative frequency for males and females would yield two
precise numbers, each indicating the proportion of the population of inspectors
that was male and the proportion that was female.

If Maree were then to list all of these inspectors and randomly choose one
from the list, the chances that she would choose a male inspector would be
equal to the proportion of the population of inspectors that was male and this
logic extends to choosing a female inspector. The number used to quantify this
notion of ‘chances’ is called a probability. Maree would therefore have
established the probability of randomly observing a male or a female inspector
in the population on any specific occasion.

Probability is expressed on a 0.0 (the observation or event will certainly not be
seen) to 1.0 (the observation or event will certainly be seen) scale where values close
to 0.0 indicate observations that are less certain to be seen and values close to 1.0
indicate observations that are more certain to be seen (a value of .5 indicates an even
chance that an observation or event will or will not be seen — a state of maximum
uncertainty). Statisticians often interpret a probability as the likelihood of observing
an event or type of individual in the population.

In the QCI database, we noted that the relative frequency of observing males
was .52 and for females was .46. If we take these relative frequencies as
estimates of the proportions of each gender in the population of inspectors,
then .52 and .46 represent the probability of observing a male or female
inspector, respectively.

Statisticians would state this as “the probability of observing a male quality
control inspector is .52” or in a more commonly used shorthand code, the
likelihood of observing a male quality control inspector is p = .52 (p for
probability). For some, probabilities make more sense if they are converted to
percentages (by multiplying by 100%). Thus, p = .52 can also understood as a
52% chance of observing a male quality control inspector.
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We have seen that relative frequency is a sample statistic that can be used to
estimate the population probability. Our estimate will get more precise as we use
larger and larger samples (technically, as the size of our samples more closely
approximates the size of our population). In most behavioural research, we never
have access to entire populations so we must always estimate our probabilities.

In some very special populations, having a known number of fixed possible
outcomes, such as results of coin tosses or rolls of a die, we can analytically establish
event probabilities without doing an infinite number of observations; all we must do
is assume that we have a fair coin or die. Thus, with a fair coin, the probability of
observing a H or a T on any single coin toss is %2 or .5 or 50%; the probability of
observing a 6 on any single throw of a die is 1/6 or .16667 or 16.667%. With
behavioural data, though, we can never measure all possible behavioural outcomes,
which thereby forces researchers to depend on samples of observations in order to
make estimates of population values.

The concept of probability is central to much of what is done in the statistical
analysis of behavioural data. Whenever a behavioural scientist wishes to establish
whether a particular relationship exists between variables or whether two groups,
treated differently, actually show different behaviours, he/she is playing a probabil-
ity game. Given a sample of observations, the behavioural scientist must decide
whether what he/she has observed is providing sufficient information to conclude
something about the population from which the sample was drawn.

This decision always has a non-zero probability of being in error simply because
in samples that are much smaller than the population, there is always the chance or
probability that we are observing something rare and atypical instead of something
which is indicative of a consistent population trend. Thus, the concept of probability
forms the cornerstone for statistical inference about which we will have more to say
later (see Fundamental Concept VI). Probability also plays an important role in
helping us to understand theoretical statistical distributions (e.g. the normal distri-
bution) and what they can tell us about our observations. We will explore this idea
further in Fundamental Concept II.

The Concept of Conditional Probability

It is important to understand that the concept of probability as described above
focuses upon the likelihood or chances of observing a specific event or type of
observation for a specific variable relative to a population or sample of observations.
However, many important behavioural research issues may focus on the question of
the probability of observing a specific event given that the researcher has knowledge
that some other event has occurred or been observed (this latter event is usually
measured by a second variable). Here, the focus is on the potential relationship or
link between two variables or two events.


https://doi.org/10.1007/978-981-15-2537-7_7

Fundamental Concept I: Basic Concepts in Probability 111

With respect to the QCI database, Maree could ask the quite reasonable
question “what is the probability (estimated in the QCI sample by a relative
frequency) of observing an inspector being female given that she knows that an
inspector works for a Large Business Computer manufacturer.

To address this question, all she needs to know is:

* how many inspectors from Large Business Computer manufacturers are in
the sample (22); and

* how many of those inspectors were female (7) (inspectors who were
missing a score for either company or gender have been ignored here).

If she divides 7 by 22, she would obtain the probability that an inspector is
female given that they work for a Large Business Computer manufacturer —
that is, p = .32.

This type of question points to the important concept of conditional probability
(‘conditional’ because we are asking “what is the probability of observing one event
conditional upon our knowledge of some other event”).

Continuing with the previous example, Maree would say that the conditional
probability of observing a female inspector working for a Large Business
Computer manufacturer is .32 or, equivalently, a 32% chance. Compare this
conditional probability of p = .32 to the overall probability of observing a
female inspector in the entire sample (p = .46 as shown above).

This means that there is evidence for a connection or relationship between
gender and the type of company an inspector works for. That is, the chances
are lower for observing a female inspector from a Large Business Computer
manufacturer than they are for simply observing a female inspector at all.

Maree therefore has evidence suggesting that females may be relatively under-
represented in Large Business Computer manufacturing companies compared to
the overall population. Knowing something about the company an inspector
works for therefore can help us make a better prediction about their likely gender.

Suppose, however, that Maree’s conditional probability had been exactly
equal to p = .46. This would mean that there was exactly the same chance of
observing a female inspector working for a Large Business Computer manu-
facturer as there was of observing a female inspector in the general population.
Here, knowing something about the company an inspector works doesn’t help
Maree make any better prediction about their likely gender. This would mean
that the two variables are statistically independent of each other.

A classic case of events that are statistically independent is two successive throws of a
fair die: rolling a six on the first throw gives us no information for predicting how likely it
will be that we would roll a six on the second throw. The conditional probability of
observing a six on the second throw given that [ have observed a six on the first throw is
0.16667 (= 1 divided by 6) which is the same as the simple probability of observing a six
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on any specific throw. This statistical independence also means that if we wanted to know
what the probability of throwing two sixes on two successive throws of a fair die, we
would just multiply the probabilities for each independent event (i.e., throw) together; that
is, .16667 x .16667 = .02789 (this is known as the multiplication rule of probability, see,
for example, Smithson 2000, p. 114).

Finally, you should know that conditional probabilities are often asymmetric.
This means that for many types of behavioural variables, reversing the conditional
arrangement will change the story about the relationship. Bayesian statistics (see
Fundamental Concept IX) relies heavily upon this asymmetric relationship between
conditional probabilities.

Maree has already learned that the conditional probability that an inspector is
female given that they worked for a Large Business Computer manufacturer is
p =.32. She could easily turn the conditional relationship around and ask what
is the conditional probability that an inspector works for a Large Business
Computer manufacturer given that the inspector is female?

From the QCI database, she can find that 51 inspectors in her total sample
were female and of those 51, 7 worked for a Large Business Computer
manufacturer. If she divided 7 by 51, she would get p = .14 (did you notice
that all that changed was the number she divided by?). Thus, there is only a
14% chance of observing an inspector working for a Large Business Computer
manufacturer given that the inspector is female — a rather different probability
from p = .32, which tells a different story.

As you will see in Procedures 6.2 and 7.1, conditional relationships between
categorical variables are precisely what crosstabulation contingency tables are
designed to reveal.

Procedure 5.6: Exploratory Data Analysis

Classification Univariate; descriptive.

Purpose To visually summarise data, displaying some key
characteristics of their distribution, while maintaining as
much of their original integrity as possible.

Measurement level Exploratory Data Analysis (EDA) procedures are most
usefully employed to explore data measured at the ordinal,
interval or ratio-level.

There are a variety of visual display methods for EDA, including stem & leaf
displays, boxplots and violin plots. Each method reflects a specific way of displaying
features of a distribution of scores or measurements and, of course, each has its own
advantages and disadvantages. In addition, EDA displays are surprisingly flexible
and can combine features in various ways to enhance the story conveyed by the plot.
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Stem & Leaf Displays

The stem & leaf display is a simple data summary technique which not only rank
orders the data points in a sample but presents them visually so that the shape of the
data distribution is reflected. Stem & leaf displays are formed from data scores by
splitting each score into two parts: the first part of each score serving as the ‘stem’,
the second part as the ‘leaf” (e.g. for 2-digit data values, the ‘stem’ is the number in
the tens position; the ‘leaf” is the number in the ones position). Each stem is then
listed vertically, in ascending order, followed horizontally by all the leaves in
ascending order associated with it. The resulting display thus shows all of the scores
in the sample, but reorganised so that a rough idea of the shape of the distribution
emerges. As well, extreme scores can be easily identified in a stem & leaf display.

Consider the accuracy and speed scores for the 112 quality control inspectors
in the QCI sample. Figure 5.22 (produced by the R Commander Stem-and-leaf
display . . . procedure) shows the stem & leaf displays for inspection accuracy
(left display) and speed (right display) data.

[The first six lines reflect information from R Commander about each
display: lines 1 and 2 show the actual R command used to produce the plot
(the variable name has been highlighted in bold); line 3 gives a warning
indicating that inspectors with missing values (= NA in R) on the variable
have been omitted from the display; line 4 shows how the stems and leaves
have been defined; line 5 indicates what a leaf unit represents in value; and line
6 indicates the total number (n) of inspectors included in the display).] In
Fig. 5.22, for the accuracy display on the left-hand side, the ‘stems’ have been
split into ‘half-stems’—one (which is starred) associated with the ‘leaves’
0 through 4 and the other associated with the ‘leaves’ 5 through 9—a strategy
that gives the display better balance and visual appeal.

2ed R$accuracy, trim.outliers=FALSE, tem.leaf (statbook_2ed R$speed, trim.outliers=FALSE,
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Fig. 5.22 Stem & leaf displays produced by R Commander

(continued)
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Fig. 5.23 Stem & leaf Stem and Leaf Plot of Variable: ACCURACY, N = 111
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Notice how the left stem & leaf display conveys a fairly clear (yet side-
ways) picture of the shape of the distribution of accuracy scores. It has a rather
symmetrical bell-shape to it with only a slight suggestion of negative skewness
(toward the extreme score at the top). The right stem & leaf display clearly
depicts the highly positively skewed nature of the distribution of speed scores.
Importantly, we could reconstruct the entire sample of scores for each variable
using its display, which means that unlike most other graphical procedures, we
didn’t have to sacrifice any information to produce the visual summary.

Some programs, such as SYSTAT, embellish their stem & leaf displays by
indicating in which stem or half-stem the ‘median’ (50th percentile), the
‘upper hinge score’ (75th percentile), and ‘lower hinge score’ (25th percentile)
occur in the distribution (recall the discussion of interquartile range in Pro-
cedure 5.5). This is shown in Fig. 5.23, produced by SYSTAT, where M and H
indicate the stem locations for the median and hinge points, respectively. This
stem & leaf display labels a single extreme accuracy score as an ‘outside
value’ and clearly shows that this actual score was 57.

Boxplots

Another important EDA technique is the boxplot or, as it is sometimes known, the
box-and-whisker plot. This plot provides a symbolic representation that preserves
less of the original nature of the data (compared to a stem & leaf display) but
typically gives a better picture of the distributional characteristics. The basic boxplot,
shown in Fig. 5.24, utilises information about the median (50th percentile score) and
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the upper (75th percentile score) and lower (25th percentile score) hinge points in the
construction of the ‘box’ portion of the graph (the ‘median’ defines the centre line in
the box; the ‘upper’ and ‘lower hinge values’ define the end boundaries of the box—
thus the box encompasses the middle 50% of data values).

Additionally, the boxplot utilises the IQR (recall Procedure 5.5) as a way of
defining what are called ‘fences’ which are used to indicate score boundaries beyond
which we would consider a score in a distribution to be an ‘outlier’ (or an extreme or
unusual value). In SPSS, the inner fence is typically defined as 1.5 times the IQR in
each direction and a ‘far’ outlier or extreme case is typically defined as 3 times the
IQR in either direction (Field 2018, p. 193). The ‘whiskers’ in a boxplot extend out
to the data values which are closest to the upper and lower inner fences (in most
cases, the vast majority of data values will be contained within the fences). Outliers
beyond these ‘whiskers’ are then individually listed. ‘Near’ outliers are those lying
just beyond the inner fences and ‘far’ outliers lie well beyond the inner fences.

Figure 5.24 shows two simple boxplots (produced using SPSS), one for the
accuracy QCI variable and one for the speed QCI variable. The accuracy plot
shows a median value of about 83, roughly 50% of the data fall between about
77 and 89 and there is one outlier, inspector 83, in the lower ‘tail’ of the
distribution. The accuracy boxplot illustrates data that are relatively symmet-
rically distributed without substantial skewness. Such data will tend to have
their median in the middle of the box, whiskers of roughly equal length
extending out from the box and few or no outliers.
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Fig. 5.24 Boxplots for the accuracy and speed QCI variables

The speed plot shows a median value of about 4 s, roughly 50% of the data
fall between 2 s and 6 s and there are four outliers, inspectors 7, 62, 65 and
75 (although inspectors 65 and 75 fall at the same place and are rather difficult

(continued)
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to read), all falling in the slow speed ‘tail’ of the distribution. Inspectors 65, 75
and 7 are shown as ‘near’ outliers (open circles) whereas inspector 62 is shown
as a ‘far’ outlier (asterisk). The speed boxplot illustrates data which are
asymmetrically distributed because of skewness in one direction. Such data
may have their median offset from the middle of the box and/or whiskers of
unequal length extending out from the box and outliers in the direction of the
longer whisker. In the speed boxplot, the data are clearly positively skewed
(the longer whisker and extreme values are in the slow speed ‘tail’).

Boxplots are very versatile representations in that side-by-side displays for
sub-groups of data within a sample can permit easy visual comparisons of groups
with respect to central tendency and variability. Boxplots can also be modified to
incorporate information about error bands associated with the median producing
what is called a ‘notched boxplot’. This helps in the visual detection of meaningful
subgroup differences, where boxplot ‘notches’ don’t overlap.

Figure 5.25 (produced using NCSS), compares the distributions of accuracy
and speed scores for QCI inspectors from the five types of companies, plotted
side-by-side

Box Plot of ACCURACY Box Plot of SPEED

LI L

CCURACY
I
SPEED

PC Large Elec Small Elec Bus Comp Automotile L= Large Ele Small Elec Bus Comp Automobile

COMPANY COMPANY

Fig. 5.25 Comparisons of the accuracy (regular boxplots) and speed (notched boxplots)
QCI variables for different types of companies

Focus first on the left graph in Fig. 5.25 which plots the distribution of
accuracy scores broken down by company using regular boxplots. This plot
clearly shows the differing degree of skewness in each type of company
(indicated by one or more outliers in one ‘tail’, whiskers which are not the
same length and/or the median line being offset from the centre of a box), the
differing variability of scores within each type of company (indicated by the

(continued)
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overall length of each plot—box and whiskers), and the differing central
tendency in each type of company (the median lines do not all fall at the
same level of accuracy score). From the left graph in Fig. 5.25, we could
conclude that: inspection accuracy scores are most variable in PC and Large
Electrical Appliance manufacturing companies and least variable in the Large
Business Computer manufacturing companies; Large Business Computer and
PC manufacturing companies have the highest median level of inspection
accuracy; and inspection accuracy scores tend to be negatively skewed
(many inspectors toward higher levels, relatively fewer who are poorer in
inspection performance) in the Automotive manufacturing companies. One
inspector, working for an Automotive manufacturing company, shows
extremely poor inspection accuracy performance.

The right display compares types of companies in terms of their inspection
speed scores, using’ notched’ boxplots. The notches define upper and lower
error limits around each median. Aside from the very obvious positive skew-
ness for speed scores (with a number of slow speed outliers) in every type of
company (least so for Large Electrical Appliance manufacturing companies),
the story conveyed by this comparison is that inspectors from Large Electrical
Appliance and Automotive manufacturing companies have substantially faster
median decision speeds compared to inspectors from Large Business Com-
puter and PC manufacturing companies (i.e. their ‘notches’ do not overlap, in
terms of speed scores, on the display).

Boxplots can also add interpretive value to other graphical display methods through the
creation of hybrid displays. Such displays might combine a standard histogram with a
boxplot along the X-axis to provide an enhanced picture of the data distribution as
illustrated for the mentabil variable in Fig. 5.26 (produced using NCSS). This hybrid

Fig. 5.26 A hybrid
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plot also employs a data ‘smoothing’ method called a density trace to outline an
approximate overall shape for the data distribution. Any one graphical method would
tell some of the story, but combined in the hybrid display, the story of a relatively
symmetrical set of mentabil scores becomes quite visually compelling.

Violin Plots

Violin plots are a more recent and interesting EDA innovation, implemented in the
NCSS software package (Hintze 2012). The violin plot gets its name from the rough
shape that the plots tend to take on. Violin plots are another type of hybrid plot, this
time combining density traces (mirror-imaged right and left so that the plots have a
sense of symmetry and visual balance) with boxplot-type information (median, IQR
and upper and lower inner ‘fences’, but not outliers). The goal of the violin plot is to
provide a quick visual impression of the shape, central tendency and variability of a
distribution (the length of the violin conveys a sense of the overall variability
whereas the width of the violin conveys a sense of the frequency of scores occurring
in a specific region).

Figure 5.27 (produced using NCSS), compares the distributions of speed
scores for QCI inspectors across the five types of companies, plotted side-
by-side. The violin plot conveys a similar story to the boxplot comparison for
speed in the right graph of Fig. 5.25. However, notice that with the violin plot,
unlike with a boxplot, you also get a sense of distributions that have ‘clumps’
of scores in specific areas. Some violin plots, like that for Automobile
manufacturing companies in Fig. 5.27, have a shape suggesting a multi-
modal distribution (recall Procedure 5.4 and the discussion of the fact that a
distribution may have multiple modes). The violin plot in Fig. 5.27 has also
been produced to show where the median (solid line) and mean (dashed line)
would fall within each violin. This facilitates two interpretations: (1) a relative
comparison of central tendency across the five companies and (2) relative
degree of skewness in the distribution for each company (indicated by the
separation of the two lines within a violin; skewness is particularly bad for the
Large Business Computer manufacturing companies).

(continued)
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Advantages

EDA methods (of which we have illustrated only a small subset; we have not
reviewed dot density diagrams, for example) provide summary techniques for
visually displaying certain characteristics of a set of data. The advantage of the
EDA methods over more traditional graphing techniques such as those described in
Procedure 5.2 is that as much of the original integrity of the data is maintained as
possible while maximising the amount of summary information available about
distributional characteristics.

Stem & leaf displays maintain the data in as close to their original form as
possible whereas boxplots and violin plots provide more symbolic and flexible
representations. EDA methods are best thought of as communication devices
designed to facilitate quick visual impressions and they can add interest to any
statistical story being conveyed about a sample of data. NCSS, SYSTAT,
STATGRAPHICS and R Commander generally offer more options and flexibility
in the generation of EDA displays than SPSS.

Disadvantages

EDA methods tend to get cumbersome if a great many variables or groups need to be
summarised. In such cases, using numerical summary statistics (such as means and
standard deviations) will provide a more economical and efficient summary.
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Boxplots or violin plots are generally more space efficient summary techniques than
stem & leaf displays.

Often, EDA techniques are used as data screening devices, which are typically
not reported in actual write-ups of research (we will discuss data screening in more
detail in Procedure 8.2). This is a perfectly legitimate use for the methods although
there is an argument for researchers to put these techniques to greater use in
published literature.

Software packages may use different rules for constructing EDA plots which
means that you might get rather different looking plots and different information
from different programs (you saw some evidence of this in Figs. 5.22 and 5.23). It is
important to understand what the programs are using as decision rules for locating
fences and outliers so that you are clear on how best to interpret the resulting plot—
such information is generally contained in the user’s guides or manuals for NCSS
(Hintze 2012), SYSTAT (SYSTAT Inc. 2009a, b), STATGRAPHICS (StatPoint
Technologies Inc. 2010) and SPSS (Norusis 2012).

Where Is This Procedure Useful?

Virtually any research design which produces numerical measures (even to the extent of
just counting the number of occurrences of several events) provides opportunities for
employing EDA displays which may help to clarify data characteristics or relationships.
One extremely important use of EDA methods is as data screening devices for detecting
outliers and other data anomalies, such as non-normality and skewness, before proceeding
to parametric statistical analyses. In some cases, EDA methods can help the researcher to
decide whether parametric or nonparametric statistical tests would be best to apply to his
or her data because critical data characteristics such as distributional shape and spread are
directly reflected.

Software Procedures

Application Procedures

SPSS Analyze — Descriptive Statistics — Explore . . . produces stem-and-leaf
displays and boxplots by default; variables may be explored on a whole-of-
sample basis or broken down by the categories of a specific variable (called a
‘factor’ in the procedure). Cases can also be labelled with a variable (like
inspector in the QCI database), so that outlier points in the boxplot are

identifiable.
Graphs — Chart Builder. . . can also be used to custom build different types
of boxplots.

NCSS Analysis — Descriptive Statistics — Descriptive Statistics produces a stem-

and-leaf display by default.

Graphics — Box Plots — Box Plots can be used to produce box plots with
different features (such as ‘notches’ and connecting lines).

Graphics — Density Plots — Density Plots can be configured to produce
violin plots (by selecting the plot shape as ‘density with reflection’).

(continued)
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Application

Procedures

SYSTAT

Analyze — Stem-and-Leaf. . . can be used to produce stem-and-leaf displays
for variables; however, you cannot really control any features of these
displays.

Graph — Box Plot. . . can be used to produce boxplots of many types, with a
number of features being controllable.

STATGRAPHICS

Describe — Numerical Data — One-Variable Analysis... allows you to do a
complete exploration of a single variable, including stem-and-leaf display
(you need to select this option) and boxplot (produced by default). Some
features of the boxplot can be controlled, but not features of the stem-and-
leaf diagram.

Plot — Exploratory Plots — Box-and-Whisker Plots... and select either One
Sample... or Multiple Samples... which can produce not only descriptive
statistics but also boxplots with some controllable features.

R Commander

Graphs — Stem-and-leaf display... or Boxplots... the dialog box for each
procedure offers some features of the display or plot that can be controlled;
whole-of-sample boxplots or boxplots by groups are possible.

Procedure 5.7: Standard (z) Scores

Classification
Purpose

Univariate; descriptive.

To transform raw scores from a sample of data to a
standardised form which permits comparisons with other
scores within the same sample or with scores from other
samples of data.

Measurement level Generally, standard scores are computed from interval or

ratio-level data.

In certain practical situations in behavioural research, it may be desirable to know
where a specific individual’s score lies relative to all other scores in a distribution. A
convenient measure is to observe how many standard deviations (see Procedure 5.5)
above or below the sample mean a specific score lies. This measure is called a
standard score or z-score. Very simply, any raw score can be converted to a z-score
by subtracting the sample mean from the raw score and dividing that result by the
sample’s standard deviation. z-scores can be positive or negative and their sign
simply indicates whether the score lies above (+) or below (—) the mean in value.
A z-score has a very simple interpretation: it measures the number of standard
deviations above or below the sample mean a specific raw score lies.
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In the QCI database, we have a sample mean for speed scores of 4.48 s, a
standard deviation for speed scores of 2.89 s (recall Table 5.4 in Procedure
5.5). If we are interested in the z-score for Inspector 65°s raw speed score of
11.94 s, we would obtain a z-score of +2.58 using the method described above
(subtract 4.48 from 11.94 and divide the result by 2.89). The interpretation of
this number is that a raw decision speed score of 11.94 s lies about 2.9
standard deviations above the mean decision speed for the sample.

z-scores have some interesting properties. First, if one converts (statisticians
would say ‘transforms’) every available raw score in a sample to z-scores, the
mean of these z-scores will always be zero and the standard deviation of these z-
scores will always be 1.0. These two facts about z-scores (mean = 0; standard
deviation = 1) will be true no matter what sample you are dealing with and no
matter what the original units of measurement are (e.g. seconds, percentages,
number of widgets assembled, amount of preference for a product, attitude rating,
amount of money spent). This is because transforming raw scores to z-scores
automatically changes the measurement units from whatever they originally were
to a new system of measurements expressed in standard deviation units.

Suppose Maree was interested in the performance statistics for the top 25%
most accurate quality control inspectors in the sample. Given a sample size of
112, this would mean finding the top 28 inspectors in terms of their accuracy
scores. Since Maree is interested in performance statistics, speed scores would
also be of interest. Table 5.5 (generated using the SPSS Descriptives . ..
procedure, listed using the Case Summaries . .. procedure and formatted for
presentation using Excel) shows accuracy and speed scores for the top
28 inspectors in descending order of accuracy scores. The z-score transfor-
mation for each of these scores is also shown (last two columns) as are the type
of company, education level and gender for each inspector.

There are three inspectors (8, 9 and 14) who scored maximum accuracy of
100%. Such accuracy converts to a z-score of +1.95. Thus 100% accuracy is
1.95 standard deviations above the sample’s mean accuracy level. Interest-
ingly, all three inspectors worked for PC manufacturers and all three had only
high school-level education. The least accurate inspector in the top 25% had a
z-score for accuracy that was .75 standard deviations above the sample mean.

Interestingly, the top three inspectors in terms of accuracy had decision
speeds that fell below the sample’s mean speed; inspector 8 was the fastest
inspector of the three with a speed just over 1 standard deviation (z = —1.03)
below the sample mean. The slowest inspector in the top 25% was inspector
75 (case #28 in the list) with a speed z-score of +2.62; i.e., he was over two and
a half standard deviations slower in making inspection decisions relative to the
sample’s mean speed.

(continued)
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The fact that z-scores always have a common measurement scale having a
mean of 0 and a standard deviation of 1.0 leads to an interesting application of
standard scores. Suppose we focus on inspector number 65 (case #8 in the list)
in Table 5.5. It might be of interest to compare this inspector’s quality control
performance in terms of both his decision accuracy and decision speed. Such a
comparison is impossible using raw scores since the inspector’s accuracy
score and speed scores are different measures which have differing means and
standard deviations expressed in fundamentally different units of measurement
(percentages and seconds). However, if we are willing to assume that the score
distributions for both variables are approximately the same shape and that both
accuracy and speed are measured with about the same level of reliability or
consistency (see Procedure 8.1), we can compare the inspector’s two scores
by first converting them to z-scores within their own respective distributions as
shown in Table 5.5.

Inspector 65 looks rather anomalous in that he demonstrated a relatively
high level of accuracy (raw score = 94%; z = +1.29) but took a very long time
to make those accurate decisions (raw score = 11.94 s; z = +2.58). Contrast
this with inspector 106 (case #17 in the list) who demonstrated a similar level
of accuracy (raw score = 92%; z = +1.08) but took a much shorter time to
make those accurate decisions (raw score = 1.70 s; z = —.96). In terms of
evaluating performance, from a company perspective, we might conclude that
inspector 106 is performing at an overall higher level than inspector 65 because
he can achieve a very high level of accuracy but much more quickly; accurate
and fast is more cost effective and efficient than accurate and slow.

Note: We should be cautious here since we know from our previous
explorations of the speed variable in Procedure 5.6, that accuracy scores
look fairly symmetrical and speed scores are positively skewed, so assuming
that the two variables have the same distribution shape, so that z-score
comparisons are permitted, would be problematic.

You might have noticed that as you scanned down the two columns of z-scores in
Table 5.5, there was a suggestion of a pattern between the signs attached to the
respective z-scores for each person. There seems to be a very slight preponderance of
pairs of z-scores where the signs are reversed (12 out of 22 pairs). This observation
provides some very preliminary evidence to suggest that there may be a relationship
between inspection accuracy and decision speed, namely that a more accurate
decision tends to be associated with a faster decision speed. Of course, this pattern
would be better verified using the entire sample rather than the top 25% of inspec-
tors. However, you may find it interesting to learn that it is precisely this sort of
suggestive evidence (about agreement or disagreement between z-score signs for
pairs of variable scores throughout a sample) that is captured and summarised by a
single statistical indicator called a ‘correlation coefficient’ (see Fundamental Con-
cept III and Procedure 6.1).
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z-scores are not the only type of standard score that is commonly used. Three
other types of standard scores are: stanines (standard nines), IQ scores and T-scores
(not to be confused with the #-test described in Procedure 7.2). These other types of
scores have the advantage of producing only positive integer scores rather than
positive and negative decimal scores. This makes interpretation somewhat easier for
certain applications. However, you should know that almost all other types of
standard scores come from a specific transformation of z-scores. This is because
once you have converted raw scores into z-scores, they can then be quite readily
transformed into any other system of measurement by simply multiplying a person’s
z-score by the new desired standard deviation for the measure and adding to that
product the new desired mean for the measure.

For example T-scores are simply z-scores transformed to have a mean of 50.0 and
a standard deviation of 10.0; IQ scores are simply z-scores transformed to have a
mean of 100 and a standard deviation of 15 (or 16 in some systems). For more
information, see Fundamental Concept II.

Advantages

Standard scores are useful for representing the position of each raw score within a
sample distribution relative to the mean of that distribution. The unit of measurement
becomes the number of standard deviations a specific score is away from the sample
mean. As such, z-scores can permit cautious comparisons across samples or across
different variables having vastly differing means and standard deviations within the
constraints of the comparison samples having similarly shaped distributions and
roughly equivalent levels of measurement reliability. z-scores also form the basis for
establishing the degree of correlation between two variables. Transforming raw
scores into z-scores does not change the shape of a distribution or rank ordering of
individuals within that distribution. For this reason, a z-score is referred to as a linear
transformation of a raw score. Interestingly, z-scores provide an important founda-
tional element for more complex analytical procedures such as factor analysis
(Procedure 6.5), cluster analysis (Procedure 6.6) and multiple regression analysis
(see, for example, Procedure 6.4 and 7.13).

Disadvantages

While standard scores are useful indices, they are subject to restrictions if used to
compare scores across samples or across different variables. The samples must have
similar distribution shapes for the comparisons to be meaningful and the measures
must have similar levels of reliability in each sample. The groups used to generate
the z-scores should also be similar in composition (with respect to age, gender


https://doi.org/10.1007/978-981-15-2537-7_7
https://doi.org/10.1007/978-981-15-2537-7_6
https://doi.org/10.1007/978-981-15-2537-7_6
https://doi.org/10.1007/978-981-15-2537-7_6
https://doi.org/10.1007/978-981-15-2537-7_7

Procedure 5.7: Standard (z) Scores 127

distribution, and so on). Because z-scores are not an intuitively meaningful way of
presenting scores to lay-persons, many other types of standard score schemes have
been devised to improve interpretability. However, most of these schemes produce
scores that run a greater risk of facilitating lay-person misinterpretations simply
because their connection with z-scores is hidden or because the resulting numbers
‘look’ like a more familiar type of score which people do intuitively understand.

For example It is extremely rare for a T-score to exceed 100 or go below 0 because
this would mean that the raw score was in excess of 5 standard deviations away from
the sample mean. This unfortunately means that T-scores are often misinterpreted as
percentages because they typically range between 0 and 100 and therefore ‘look’
like percentages. However, T-scores are definitely not percentages.

Finally, a common misunderstanding of z-scores is that transforming raw scores
into z-scores makes them follow a normal distribution (see Fundamental Concept
D). This is not the case. The distribution of z-scores will have exactly the same shape
as that for the raw scores; if the raw scores are positively skewed, then the
corresponding z-scores will also be positively skewed.

Where Is This Procedure Useful?

z-scores are particularly useful in evaluative studies where relative performance
indices are of interest. Whenever you compute a correlation coefficient (Procedure
6.1), you are implicitly transforming the two variables involved into z-scores (which
equates the variables in terms of mean and standard deviation), so that only the
patterning in the relationship between the variables is represented. z-scores are also
useful as a preliminary step to more advanced parametric statistical methods when
variables differing in scale, range and/or measurement units must be equated for
means and standard deviations prior to analysis.

Software Procedures

Application Procedures

SPSS Analyze — Descriptive Statistics — Descriptives... and tick the box labelled
‘Save standardized values as variables’. z-scores are saved as new variables
(labelled as Z followed by the original variable name as shown in Table 5.5)
which can then be listed or analysed further.

NCSS Data — Transformations — Transformation and select a new variable to
hold the z-scores, then select the ‘SSTANDARDIZE’ transformation from the
list of available functions. z-scores are saved as new variables which can
then be listed or analysed further.

(continued)
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Application Procedures

SYSTAT Data — Standardize ... where z-scores are saved as new variables which

can then be listed or analysed further.

STATGRAPHICS | Open the Databook window, and select an empty column in the database,

then Edit — Generate Data... and choose the ‘STANDARDIZE’ transfor-

mation, choose the variable you want to transform and give the new variable
a name.

R Commander Data — Manage variables in active data set — Standardize variables... and
select the variables you want to standardize; R Commander automatically
saves the transformed variable to the data base, appending Z. to the front of
each variable’s name.

Fundamental Concept II: The Normal Distribution

Arguably the most fundamental distribution used in the statistical analysis of
quantitative data in the behavioural and social sciences is the normal distribution
(also known as the Gaussian or bell-shaped distribution). Many behavioural phe-
nomena, if measured on a large enough sample of people, tend to produce ‘normally
distributed’ variable scores. This includes most measures of ability, performance and
productivity, personality characteristics and attitudes. The normal distribution is
important because it is the one form of distribution that you must assume describes
the scores of a variable in the population when parametric tests of statistical
inference are undertaken. The standard normal distribution is defined as having a
population mean of 0.0 and a population standard deviation of 1.0. The normal
distribution is also important as a means of interpreting various types of scoring
systems.

Figure 5.28 displays the standard normal distribution (mean = 0; standard
deviation = 1.0) and shows that there is a clear link between z-scores and the
normal distribution. Statisticians have analytically calculated the probability
(also expressed as percentages or percentiles) that observations will fall above
or below any specific z-score in the theoretical standard normal distribution.
Thus, a z-score of +1.0 in the standard normal distribution will have 84.13%
(equals a probability of .8413) of observations in the population falling at or
below one standard deviation above the mean and 15.87% falling above that
point. A z-score of —2.0 will have 2.28% of observations falling at that point
or below and 97.72% of observations falling above that point. It is clear then
that, in a standard normal distribution, z-scores have a direct relationship with
percentiles.

(continued)
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Figure 5.28 also shows how T-scores relate to the standard normal distri-
bution and to z-scores. The mean T-score falls at 50 and each increment or
decrement of 10 T-score units means a movement of another standard devia-
tion away from this mean of 50. Thus, a T-score of 80 corresponds to a z-score
of +3.0—a score 3 standard deviations higher than the mean of 50.

Of special interest to behavioural researchers are the values for z-scores in a
standard normal distribution that encompass 90% of observations (z = £1.645—
isolating 5% of the distribution in each tail), 95% of observations (z = £1.96—
isolating 2.5% of the distribution in each tail), and 99% of observations

(z = £2.58—isolating 0.5% of the distribution in each tail).

Depending upon the degree of certainty required by the researcher, these bands
describe regions outside of which one might define an observation as being atypical
or as perhaps not belonging to a distribution being centred at a mean of 0.0. Most
often, what is taken as atypical or rare in the standard normal distribution is a score at
least two standard deviations away from the mean, in either direction. Why choose
two standard deviations? Since in the standard normal distribution, only about 5% of
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observations will fall outside a band defined by z-scores of +1.96 (rounded to 2 for
simplicity), this equates to data values that are 2 standard deviations away from their
mean. This can give us a defensible way to identify outliers or extreme values in a
distribution.

Thinking ahead to what you will encounter in Chap. 7, this ‘banding’ logic can be
extended into the world of statistics (like means and percentages) as opposed to just
the world of observations. You will frequently hear researchers speak of some
statistic estimating a specific value (a parameter) in a population, plus or minus
some other value.

For example A survey organisation might report political polling results in terms
of a percentage and an error band, e.g. 59% of Australians indicated that they
would vote Labour at the next federal election, plus or minus 2%.

Most commonly, this error band (£2%) is defined by possible values for the
population parameter that are about two standard deviations (or two standard
errors—a concept discussed further in Fundamental Concept VIII) away from the
reported or estimated statistical value. In effect, the researcher is saying that on 95%
of the occasions he/she would theoretically conduct his/her study, the population
value estimated by the statistic being reported would fall between the limits imposed
by the endpoints of the error band (the official name for this error band is a
confidence interval; see Procedure 8.3). The well-understood mathematical proper-
ties of the standard normal distribution are what make such precise statements about
levels of error in statistical estimates possible.

Checking for Normality

It is important to understand that transforming the raw scores for a variable to z-
scores (recall Procedure 5.7) does not produce z-scores which follow a normal
distribution; rather they will have the same distributional shape as the original
scores. However, if you are willing to assume that the normal distribution is the
correct reference distribution in the population, then you are justified is interpreting
z-scores in light of the known characteristics of the normal distribution.

In order to justify this assumption, not only to enhance the interpretability of z-
scores but more generally to enhance the integrity of parametric statistical analyses,
it is helpful to actually look at the sample frequency distributions for variables (using
a histogram (illustrated in Procedure 5.2) or a boxplot (illustrated in Procedure 5.6),
for example), since non-normality can often be visually detected. It is important to
note that in the social and behavioural sciences as well as in economics and finance,
certain variables tend to be non-normal by their very nature. This includes variables
that measure time taken to complete a task, achieve a goal or make decisions and
variables that measure, for example, income, occurrence of rare or extreme events or
organisational size. Such variables tend to be positively skewed in the population, a
pattern that can often be confirmed by graphing the distribution.
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If you cannot justify an assumption of ‘normality’, you may be able to force the data
to be normally distributed by using what is called a ‘normalising transformation’. Such
transformations will usually involve a nonlinear mathematical conversion (such as
computing the logarithm, square root or reciprocal) of the raw scores. Such transforma-
tions will force the data to take on a more normal appearance so that the assumption of
‘normality’ can be reasonably justified, but at the cost of creating a new variable whose
units of measurement and interpretation are more complicated. [For some non-normal
variables, such as the occurrence of rare, extreme or catastrophic events (e.g. a 100-year
flood or forest fire, coronavirus pandemic, the Global Financial Crisis or other type of
financial crisis, man-made or natural disaster), the distributions cannot be ‘normalised’.
In such cases, the researcher needs to model the distribution as it stands. For such events,
extreme value theory (e.g. see Diebold et al. 2000) has proven very useful in recent years.
This theory uses a variation of the Pareto or Weibull distribution as a reference, rather
than the normal distribution, when making predictions. ]

Figure 5.29 displays before and after pictures of the effects of a logarithmic
transformation on the positively skewed speed variable from the QCI data-
base. Each graph, produced using NCSS, is of the hybrid histogram-density
trace-boxplot type first illustrated in Procedure 5.6. The left graph clearly
shows the strong positive skew in the speed scores and the right graph shows
the result of taking the log; of each raw score.
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Fig. 5.29 Combined histogram-density trace-boxplot graphs displaying the before and after
effects of a ‘normalising’ log;( transformation of the speed variable

Notice how the long tail toward slow speed scores is pulled in toward the
mean and the very short tail toward fast speed scores is extended away from
the mean. The result is a more ‘normal’ appearing distribution. The assump-
tion would then be that we could assume normality of speed scores, but only in
a log;( format (i.e. it is the log of speed scores that we assume is normally
distributed in the population). In general, taking the logarithm of raw scores
provides a satisfactory remedy for positively skewed distributions (but not for
negatively skewed ones). Furthermore, anything we do with the transformed
speed scores now has to be interpreted in units of log;o (seconds) which is a
more complex interpretation to make.
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Another visual method for detecting non-normality is to graph what is called a
normal Q-Q plot (the Q-Q stands for Quantile-Quantile). This plots the percentiles
for the observed data against the percentiles for the standard normal distribution (see
Cleveland 1995 for more detailed discussion; also see Lane 2007, http:/
onlinestatbook.com/2/advanced_graphs/ q-q_plots.html). If the pattern for the
observed data follows a normal distribution, then all the points on the graph will
fall approximately along a diagonal line.

Figure 5.30 shows the normal Q-Q plots for the original speed variable and the
transformed log-speed variable, produced using the SPSS Explore... proce-
dure. The diagnostic diagonal line is shown on each graph. In the left-hand
plot, for speed, the plot points clearly deviate from the diagonal in a way that
signals positive skewness. The right-hand plot, for log_speed, shows the plot
points generally falling along the diagonal line thereby conforming much more
closely to what is expected in a normal distribution.
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Fig. 5.30 Normal Q-Q plots for the original speed variable and the new log_speed variable

In addition to visual ways of detecting non-normality, there are also numerical
ways. As highlighted in Chap. 1, there are two additional characteristics of any
distribution, namely skewness (asymmetric distribution tails) and kurtosis (peaked-
ness of the distribution). Both have an associated statistic that provides a measure of
that characteristic, similar to the mean and standard deviation statistics. In a normal
distribution, the values for the skewness and kurtosis statistics are both zero (skew-
ness = (0 means a symmetric distribution; kurtosis = 0 means a mesokurtic distri-
bution). The further away each statistic is from zero, the more the distribution
deviates from a normal shape. Both the skewness statistic and the kurtosis statistic
have standard errors (see Fundamental Concept VIII) associated with them (which
work very much like the standard deviation, only for a statistic rather than for
observations); these can be routinely computed by almost any statistical package
when you request a descriptive analysis. Without going into the logic right now (this
will come in Fundamental Concept V), a rough rule of thumb you can use to check
for normality using the skewness and kurtosis statistics is to do the following:
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* Prepare: Take the standard error for the statistic and multiply it by 2 (or 3 if you
want to be more conservative).

* Interval: Add the result from the Prepare step to the value of the statistic and
subtract the result from the value of the statistic. You will end up with two
numbers, one low - one high, that define the ends of an interval (what you have
just created approximates what is called a ‘confidence interval’, see Procedure 8.
3).

* Check: If zero falls inside of this interval (i.e. between the low and high endpoints
from the Interval step), then there is likely to be no significant issue with that
characteristic of the distribution. If zero falls outside of the interval (i.e. lower
than the low value endpoint or higher than the high value endpoint), then you
likely have an issue with non-normality with respect to that characteristic.

Visually, we saw in the left graph in Fig. 5.29 that the speed variable was
highly positively skewed. What if Maree wanted to check some numbers to
support this judgment? She could ask SPSS to produce the skewness and
kurtosis statistics for both the original speed variable and the new log_speed
variable using the Frequencies... or the Explore... procedure. Table 5.6 shows
what SPSS would produce if the Frequencies... procedure were used.

Table 5.6 Skewness and kurtosis statistics and their standard errors for both the original
speed variable and the new log_speed variable

Statistics

speed log_speed

N Valid 111 111
Missing 1 1

Mean 4.4801 5676
Std. Deviation 2.88751 27491
Skewness 1.487 -.050
Std. Error of Skewness 229 .229
Kurtosis 3.071 -.672
Std. Error of Kurtosis 455 455

Using the 3-step check rule described above, Maree could roughly evaluate
the normality of the two variables as follows:

For speed:

* skewness: [Prepare] 2 x .229 = 458 — [Interval] 1.487 — .458 = 1.029
and 1.487 + 458 = 1.945 — [Check] zero does not fall inside the
interval bounded by 1.029 and 1.945, so there appears to be a significant
problem with skewness. Since the value for the skewness statistic
(1.487) is positive, this means the problem is positive skewness,
confirming what the left graph in Fig. 5.29 showed.

(continued)
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* kurtosis: [Prepare] 2 x .455 = .91 — [Interval] 3.071 — .91 =2.161 and
3.071 + .91 =3.981 — [Check] zero does not fall in interval bounded by
2.161 and 3.981, so there appears to be a significant problem with
kurtosis. Since the value for the kurtosis statistic (1.487) is positive,
this means the problem is leptokurtosis—the peakedness of the distri-
bution is too tall relative to what is expected in a normal distribution.

For log_speed:

* skewness: [Prepare] 2 x .229 = .458 — [Interval] —.050 — .458 = —.508
and —.050 + .458 = .408 — [Check] zero falls within interval bounded
by —.508 and .408, so there appears to be no problem with skewness.
The log transform appears to have corrected the problem, confirming
what the right graph in Fig. 5.29 showed.

* kurtosis: [Prepare] 2 x .455 = .91 — [Interval] —.672 — 91 = —1.582
and —.672 + .91 = .238 — [Check] zero falls within interval bounded by
—1.582 and .238, so there appears to be no problem with kurtosis. The
log transform appears to have corrected this problem as well, rendering
the distribution more approximately mesokurtic (i.e. normal) in shape.

There are also more formal tests of significance (see Fundamental Concept V)
that one can use to numerically evaluate normality, such as the Kolmogorov-Smirnov
test and the Shapiro-Wilk’s test. Each of these tests, for example, can be produced by
SPSS on request, via the Explore... procedure.
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