Skip to main content

Immune Recognition of Pathogen-Derived Glycolipids Through Mincle

  • Chapter
  • First Online:
Lectin in Host Defense Against Microbial Infections

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1204))

Abstract

Mincle (macrophage inducible C-type lectin, Clec4e, Clecsf9) was originally identified as a member of the C-type lectin receptor family in 1999. Then, the function of Mincle to control antifungal immunity by binding to Candida albicans was reported in 2008. Around the same time, it was reported that Mincle recognized damaged cells and induced sterile inflammation by coupling with the ITAM-adaptor molecule FcRγ. In the following year, a breakthrough discovery reported that Mincle was an essential receptor for mycobacterial cord factor (trehalose-6,6′-dimycolate, TDM). Mincle gained increasing attention immediately after this critical finding. Although our understanding of the recognition of Mycobacteria has been advanced significantly, it was also revealed that Mincle interacts with pathogens other than Mycobacteria. In addition, endogenous ligands of Mincle were identified recently. Therefore, Mincle is now considered a danger receptor both for self and non-self ligands, so-called damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). This chapter will give an overview of the accumulated knowledge of the multi-task danger receptor Mincle from its discovery to the latest findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agger EM et al (2008) Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements. PLoS ONE 3:e3116

    Google Scholar 

  • Andersen CS et al (2009) A simple mycobacterial monomycolated glycerol lipid has potent immunostimulatory activity. J Immunol 182:424–432

    Article  CAS  PubMed  Google Scholar 

  • Arce I et al (2004) The human C-type lectin CLECSF8 is a novel monocyte/macrophage endocytic receptor. Eur J Immunol 34:210–220

    Article  CAS  PubMed  Google Scholar 

  • Arumugam TV et al (2017) An atypical role for the myeloid receptor Mincle in central nervous system injury. J Cereb Blood Flow Metab 37:2098–2111

    Article  CAS  PubMed  Google Scholar 

  • Balch SG et al (1998) Cloning of a novel c-type lectin expressed by murine macrophages. J Biol Chem 273:18656–18664

    Article  CAS  PubMed  Google Scholar 

  • Behler F et al (2012) Role of Mincle in alveolar macrophage-dependent innate immunity against mycobacterial infections in mice. J Immunol 189:3121–3129

    Article  CAS  PubMed  Google Scholar 

  • Behler F et al (2015) Macrophage-inducible C-type lectin Mincle-expressing dendritic cells contribute to control of splenic Mycobacterium bovis BCG infection in mice. Infect Immun 83:184–196

    Article  CAS  PubMed  Google Scholar 

  • Behler-Janbeck F et al (2016) C-type lectin Mincle recognizes glucosyl-diacylglycerol of Streptococcus pneumoniae and plays a protective role in pneumococcal pneumonia. PLoS Pathog 12:e1006038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billeskov R et al (2016) Testing the H56 vaccine delivered in 4 different adjuvants as a BCG-booster in a non-human primate model of tuberculosis. PLoS ONE 11:e0161217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird JH et al (2018) Synthesis of branched trehalose glycolipids and their Mincle agonist activity. J Org Chem 83:7593–7605

    Article  CAS  PubMed  Google Scholar 

  • Blank U et al (2009) Inhibitory ITAMs as novel regulators of immunity. Immunol Rev 232:59–71

    Article  CAS  PubMed  Google Scholar 

  • Bowker N et al (2016) Polymorphisms in the pattern recognition receptor Mincle gene (CLEC4E) and association with tuberculosis. Lung 194:763–767

    Article  CAS  PubMed  Google Scholar 

  • Braganza CD et al (1940) Identification and biological activity of synthetic macrophage inducible C-type lectin ligands. Front Immunol 2018:8

    Google Scholar 

  • Brown BR et al (2017) Fungal-derived cues promote ocular autoimmunity through a Dectin-2/Card9-mediated mechanism. Clin Exp Immunol 190:293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugarcic A et al (2008) Human and mouse macrophage-inducible C-type lectin (Mincle) bind Candida albicans. Glycobiology 18:679–685

    Article  CAS  PubMed  Google Scholar 

  • Chinthamani S et al (2017) Macrophage inducible C-type lectin (Mincle) recognizes glycosylated surface (S)-layer of the periodontal pathogen Tannerella forsythia. PLoS ONE 12:e0173394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen D et al (1928) Seasonal influenza split vaccines confer partial cross-protection against heterologous influenza virus in ferrets when combined with the CAF01 adjuvant. Front Immunol 2018:8

    Google Scholar 

  • Christensen D et al (2009) Liposome-based cationic adjuvant formulations (CAF): past, present, and future. J Liposome Res 19:2–11

    Article  CAS  PubMed  Google Scholar 

  • Davidsen J et al (2005) Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6’-dibehenate)-a novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophys Acta 1718:22–31

    Google Scholar 

  • de Rivero Vaccari JC et al (2015) Mincle signaling in the innate immune response after traumatic brain injury. J Neurotrauma 32:228–236

    Article  PubMed  Google Scholar 

  • Decout A et al (2017) Rational design of adjuvants targeting the C-type lectin Mincle. Proc Natl Acad Sci U S A 114:2675–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desel C et al (2013) The Mincle-activating adjuvant TDB induces MyD88-dependent Th1 and Th17 responses through IL-1R signaling. PLoS ONE 8:e53531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi S et al (2015) Induction of Mincle by Helicobacter pylori and consequent anti-inflammatory signaling denote a bacterial survival strategy. Sci Rep 5:15049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietrich J et al (2014) Inducing dose sparing with inactivated polio virus formulated in adjuvant CAF01. PLoS ONE 9:e100879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg H et al (2013) Mechanism for recognition of an unusual mycobacterial glycolipid by the macrophage receptor Mincle. J Biol Chem 288:28457–28465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg H et al (2016) Binding sites for acylated trehalose analogs of glycolipid ligands on an extended carbohydrate recognition domain of the macrophage receptor Mincle. J Biol Chem 291:21222–21233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flornes LM et al (2004) Identification of lectin-like receptors expressed by antigen presenting cells and neutrophils and their mapping to a novel gene complex. Immunogenetics 56:506–517

    Article  CAS  PubMed  Google Scholar 

  • Flytzani S et al (2013) Anti-MOG antibodies are under polygenic regulation with the most significant control coming from the C-type lectin-like gene locus. Genes Immun 14(7):409–419

    Article  CAS  PubMed  Google Scholar 

  • Fomsgaard A et al (2011) Development and preclinical safety evaluation of a new therapeutic HIV-1 vaccine based on 18 T-cell minimal epitope peptides applying a novel cationic adjuvant CAF01. Vaccine 29:7067–7074

    Article  CAS  PubMed  Google Scholar 

  • Foster AJ et al (2018) Lipidated brartemicin analogues are potent Th1-stimulating vaccine adjuvants. J Med Chem 61:1045–1060

    Article  CAS  PubMed  Google Scholar 

  • Furukawa A et al (2013) Structural analysis for glycolipid recognition by the C-type lectins Mincle and MCL. Proc Natl Acad Sci U S A 110:17438–17443

    Article  PubMed  PubMed Central  Google Scholar 

  • Gram GJ et al (2009) A novel liposome-based adjuvant CAF01 for induction of CD8(+) cytotoxic T-lymphocytes (CTL) to HIV-1 minimal CTL peptides in HLA-A*0201 transgenic mice. PLoS ONE 4:e6950

    Google Scholar 

  • Greco SH et al (2016a) Mincle suppresses Toll-like receptor 4 activation. J Leukoc Biol 100:185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greco SH et al (2016b) Mincle signaling promotes con A Hepatitis. J Immunol 197:2816–2827

    Article  CAS  PubMed  Google Scholar 

  • Guo JP et al (2008) Profound and paradoxical impact on arthritis and autoimmunity of the rat antigen-presenting lectin-like receptor complex. Arthritis Rheum 58(5):1343–1353

    Article  CAS  PubMed  Google Scholar 

  • Guo JP et al (2009) The rat antigen-presenting lectin-like receptor complex influences innate immunity and development of infectious diseases. Genes Immun 10:227–236

    Article  CAS  PubMed  Google Scholar 

  • Hansen J et al (2012) CAF05: cationic liposomes that incorporate synthetic cord factor and poly(I:C) induce CTL immunity and reduce tumor burden in mice. Cancer Immunol Immunother 61:893–903

    Article  CAS  PubMed  Google Scholar 

  • Hattori Y et al (2011) Glycerol monomycolate, a latent tuberculosis-associated mycobacterial lipid, induces eosinophilic hypersensitivity responses in guinea pigs. Biochem Biophys Res Commun 409:304–307

    Google Scholar 

  • Hattori Y et al (2014) Glycerol monomycolate is a novel ligand for the human, but not mouse macrophage inducible C-type lectin, Mincle. J Biol Chem 289:15405–15412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y et al (2015) Macrophage-inducible C-type lectin/spleen tyrosine kinase signaling pathway contributes to neuroinflammation after subarachnoid hemorrhage in rats. Stroke 46:2277–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heitmann L et al (2013) Mincle is not essential for controlling Mycobacterium tuberculosis infection. Immunobiology 218:506–516

    Article  CAS  PubMed  Google Scholar 

  • Hitzler I et al (2011) Dendritic cells prevent rather than promote immunity conferred by a helicobacter vaccine using a mycobacterial adjuvant. Gastroenterology 141:186–196

    Article  CAS  PubMed  Google Scholar 

  • Holten-Andersen L et al (2004) Combination of the cationic surfactant dimethyl dioctadecyl ammonium bromide and synthetic mycobacterial cord factor as an efficient adjuvant for tuberculosis subunit vaccines. Infect Immun 72:1608–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honjoh C et al (2017) Association of C-type lectin Mincle with FcεRIβγ subunits leads to functional activation of RBL-2H3 cells through Syk. Sci Rep 7:46064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber A et al (2016) Trehalose diester glycolipids are superior to the monoesters in binding to Mincle, activation of macrophages in vitro and adjuvant activity in vivo. Innate Immun 22:405–418

    Article  CAS  PubMed  Google Scholar 

  • Hupfer T et al (2016) Stat6-dependent inhibition of Mincle expression in mouse and human antigen-presenting cells by the Th2 cytokine IL-4. Front Immunol 7:423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iborra S et al (2016) Leishmania uses Mincle to target an inhibitory ITAM signaling pathway in dendritic cells that dampens adaptive immunity to infection. Immunity 45:788–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichioka M et al (2011) Increased expression of macrophage-inducible C-type lectin in adipose tissue of obese mice and humans. Diabetes 60:819–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igarashi Y et al (2009) Brartemicin, an inhibitor of tumor cell invasion from the actinomycete Nonomuraea sp. J Nat Prod 72:980–982

    Article  CAS  PubMed  Google Scholar 

  • Indrigo J et al (2003) Cord factor trehalose 6,6’-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology 149:2049–2059

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa E et al (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206:2879–2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa T et al (2013) Identification of distinct ligands for the C-type lectin receptors Mincle and Dectin-2 in the pathogenic fungus Malassezia. Cell Host Microbe 13:477–488

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen KM et al (2015) The natural product brartemicin is a high affinity ligand for the carbohydrate-recognition domain of the macrophage receptor mincle. Medchemcomm 6:647–652

    Article  CAS  PubMed  Google Scholar 

  • Jensen C et al (2017) Optimisation of a murine splenocyte mycobacterial growth inhibition assay using virulent Mycobacterium tuberculosis. Sci Rep 7:2830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallerup RS et al (2015) Influence of trehalose 6,6’-diester (TDX) chain length on the physicochemical and immunopotentiating properties of DDA/TDX liposomes. Eur J Pharm Biopharm 90:80–89

    Article  CAS  PubMed  Google Scholar 

  • Kamath AT et al (2012) Synchronization of dendritic cell activation and antigen exposure is required for the induction of Th1/Th17 responses. J Immunol 188:4828–4837

    Article  CAS  PubMed  Google Scholar 

  • Karlsson I et al (2013) Adjuvanted HLA-supertype restricted subdominant peptides induce new T-cell immunity during untreated HIV-1-infection. Clin Immunol 146:120–130

    Article  CAS  PubMed  Google Scholar 

  • Kaur R et al (2012) Pegylation of DDA: TDB liposomal adjuvants reduces the vaccine depot effect and alters the Th1/Th2 immune responses. J Control Release 158:72–77

    Article  CAS  PubMed  Google Scholar 

  • Kawata K et al (2012) Mincle and human B cell function. J Autoimmun 39:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerscher B et al (2013) The Dectin-2 family of C-type lectin-like receptors: an update. Int Immunol 25:271–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerscher B et al (2016a) Signalling through MyD88 drives surface expression of the mycobacterial receptors MCL (Clecsf8, Clec4d) and Mincle (Clec4e) following microbial stimulation. Microbes Infec 18:505–509

    Article  CAS  Google Scholar 

  • Kerscher B et al (2016b) Mycobacterial receptor, Clec4d (CLECSF8, MCL), is coregulated with Mincle and upregulated on mouse myeloid cells following microbial challenge. Eur J Immunol 46:381–389

    Article  CAS  PubMed  Google Scholar 

  • Khan AA et al (2011) Long-chain lipids are required for the innate immune recognition of trehalose diesters by macrophages. ChemBioChem 12:2572–2576

    Article  CAS  PubMed  Google Scholar 

  • Kim SH et al (2017) Expression of C-type lectin receptor mRNA in chronic otitis media with cholesteatoma. Acta Otolaryngol 137:581–587

    Article  CAS  PubMed  Google Scholar 

  • Kim JW et al (2018) Spliceosome-associated protein 130 exacerbates alcohol-induced liver injury by inducing NLRP3 inflammasome-mediated IL-1β in mice. Am J Pathol 188:967–980

    Article  CAS  PubMed  Google Scholar 

  • Kiyotake R et al (2015) Human Mincle binds to cholesterol crystals and triggers innate immune responses. J Biol Chem 290:25322–25332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodar K et al (2015) The uptake of trehalose glycolipids by macrophages is independent of Mincle. ChemBioChem 16:683–693

    Article  CAS  PubMed  Google Scholar 

  • Kodar K et al (2017) The Mincle ligand trehalose dibehenate differentially modulates M1-like and M2-like macrophage phenotype and function via Syk signaling. Immun Inflamm Dis 5:503–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korsholm KS et al (2014) Induction of CD8+ T-cell responses against subunit antigens by the novel cationic liposomal CAF09 adjuvant. Vaccine 32:3927–3935

    Article  CAS  PubMed  Google Scholar 

  • Kostarnoy AV et al (2017) Receptor Mincle promotes skin allergies and is capable of recognizing cholesterol sulfate. Proc Natl Acad Sci U S A 114:E2758–E2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kottom TJ et al (2017) The interaction of pneumocystis with the C-type lectin receptor Mincle exerts a significant role in host defense against infection. J Immunol 198:3515–3525

    Article  CAS  PubMed  Google Scholar 

  • Leal JM et al (2015) Intranasal vaccination with killed Leishmania amazonensis promastigotes antigen (LaAg) associated with CAF01 adjuvant induces partial protection in BALB/c mice challenged with Leishmania (infantum) chagasi. Parasitology 142:1640–1646

    Article  CAS  PubMed  Google Scholar 

  • Lee WB et al (2012) Neutrophils promote mycobacterial trehalose dimycolate-induced lung inflammation via the Mincle pathway. PLoS Pathog 8:e1002614

    Google Scholar 

  • Lee WB et al (2016) Mincle-mediated translational regulation is required for strong nitric oxide production and inflammation resolution. Nat Commun 7:11322

    Google Scholar 

  • Lee WB et al (2017) Mincle activation enhances neutrophil migration and resistance to polymicrobial septic peritonitis. Sci Rep 7:41106

    Google Scholar 

  • Lee EJ et al (2016) Mincle activation and the Syk/Card9 signaling axis are central to the development of autoimmune disease of the eye. J Immunol 196:3148–3158

    Article  CAS  PubMed  Google Scholar 

  • Li H et al (1998) Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology 139:4991–4997

    Google Scholar 

  • Lin J et al (2017) Mincle inhibits neutrophils and macrophages apoptosis in A. fumigatus keratitis. Int Immunopharmacol 52:101–109

    Google Scholar 

  • Lindenstrøm T et al (2009) Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells. J Immunol 182:8047–8055

    Article  CAS  PubMed  Google Scholar 

  • Lindenstrøm T et al (2012) Vaccine-induced th17 cells are maintained long-term postvaccination as a distinct and phenotypically stable memory subset. Infect Immun 80:3533–3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D et al (2018) Sophora flavescens protects against mycobacterial trehalose dimycolate-induced lung granuloma by inhibiting inflammation and infiltration of macrophages. Sci Rep 8:3903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorentzen JC et al (2007) Association of arthritis with a gene complex encoding C-type lectin-like receptors. Arthritis Rheum 56(8):2620–2632

    Article  CAS  PubMed  Google Scholar 

  • Lv LL et al (2017) The pattern recognition receptor, Mincle, is essential for maintaining the M1 macrophage phenotype in acute renal inflammation. Kidney Int 91:587–602

    Article  CAS  PubMed  Google Scholar 

  • Ma D et al (2011) Purification and characterization of two new allergens from the salivary glands of the horsefly, Tabanus yao. Allergy 66:101–109

    Article  CAS  PubMed  Google Scholar 

  • Martel CJ et al (2011) CAF01 potentiates immune responses and efficacy of an inactivated influenza vaccine in ferrets. PLoS ONE 6:e22891

    Google Scholar 

  • Matsumoto M et al (1999) A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J Immunol 163:5039–5048

    CAS  PubMed  Google Scholar 

  • Matsunaga I et al (2008) Mycolyltransferase-mediated glycolipid exchange in mycobacteria. J Biol Chem 283:28835–28841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake Y et al (2013) C-type lectin MCL is an FcRγ-coupled receptor that mediates the adjuvanticity of mycobacterial cord factor. Immunity 1050–1062

    Google Scholar 

  • Miyake Y et al (2015) C-type lectin receptor MCL facilitates Mincle expression and signaling through complex formation. J Immunol 194:5366–5374

    Article  CAS  PubMed  Google Scholar 

  • Mortensen R et al (2017) Local Th17/IgA immunity correlate with protection against intranasal infection with Streptococcus pyogenes. PLoS ONE 12:e0175707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagata M et al (2017) Intracellular metabolite β-glucosylceramide is an endogenous Mincle ligand possessing immunostimulatory activity. Proc Natl Acad Sci U S A 114:E3285–E3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura N et al (2006) Isolation and expression profiling of genes upregulated in bone marrow-derived mononuclear cells of rheumatoid arthritis patients. DNA Res 13(4):169–183

    Article  CAS  PubMed  Google Scholar 

  • Nordly P et al (2011a) Incorporation of the TLR4 agonist monophosphoryl lipid A into the bilayer of DDA/TDB liposomes: physico-chemical characterization and induction of CD8+ T-cell responses in vivo. Pharm Res 28:553–562

    Article  CAS  PubMed  Google Scholar 

  • Nordly P et al (2011b) Immunity by formulation design: induction of high CD8+ T-cell responses by poly(I:C) incorporated into the CAF01 adjuvant via a double emulsion method. J Control Release 150:307–317

    Article  CAS  PubMed  Google Scholar 

  • Olsen AW et al (2010) Protection against Chlamydia promoted by a subunit vaccine (CTH1) compared with a primary intranasal infection in a mouse genital challenge model. PLoS ONE 5:e10768

    Google Scholar 

  • Olsen AW et al (2017) Protective effect of vaccine promoted neutralizing antibodies against the intracellular pathogen Chlamydia trachomatis. Front Immunol 8:1652

    Google Scholar 

  • Ostrop J et al (2015) Contribution of MINCLE-SYK signaling to activation of primary human APCs by mycobacterial cord factor and the novel adjuvant TDB. J Immunol 195:2417–2428

    Article  CAS  PubMed  Google Scholar 

  • Patin EC et al (2017) Trehalose dimycolate interferes with FcγR-mediated phagosome maturation through Mincle, SHP-1 and FcγRIIB signalling. PLoS ONE 12:e0174973

    Google Scholar 

  • Patin EC et al (2016) Mincle-mediated anti-inflammatory IL-10 response counter-regulates IL-12 in vitro. Innate Immun 22:181–185

    Article  CAS  PubMed  Google Scholar 

  • Pimm MV et al (1979) Immunotherapy of an ascitic rat hepatoma with cord factor (trehalose-6, 6′-dimycolate) and synthetic analogues. Int J Cancer 24:780–785

    Article  CAS  PubMed  Google Scholar 

  • Pinto VV et al (2012) The effect of adjuvants on the immune response induced by a DBL4ɛ-ID4 VAR2CSA based Plasmodium falciparum vaccine against placental malaria. Vaccine 30:572–579

    Article  CAS  PubMed  Google Scholar 

  • Rabes A et al (2015) The C-type lectin receptor Mincle binds to Streptococcus pneumoniae but plays a limited role in the anti-pneumococcal innate immune response. PLoS ONE 10:e0117022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rambaruth ND et al (2015) Mouse Mincle: characterization as a model for human Mincle and evolutionary implications. Molecules 20:6670–6682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro-Gomes FL et al (2012) Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-leishmania response. PLoS Pathog 8:e1002536

    Google Scholar 

  • Richardson MB et al (2015) Mycobacterium tuberculosis β-gentiobiosyl diacylglycerides signal through the pattern recognition receptor Mincle: total synthesis and structure activity relationships. Chem Commun (Camb) 51:15027–15030

    Article  CAS  Google Scholar 

  • Román VR et al (2013) Therapeutic vaccination using cationic liposome-adjuvanted HIV type 1 peptides representing HLA-supertype-restricted subdominant T cell epitopes: safety, immunogenicity, and feasibility in Guinea-Bissau. AIDS Res Hum Retroviruses 29:1504–1512

    Article  CAS  PubMed  Google Scholar 

  • Roperto S et al (2015) Mincle, an innate immune receptor, is expressed in urothelial cancer cells of papillomavirus-associated urothelial tumors of cattle. PLoS ONE 10:e0141624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenkrands I et al (2011) Enhanced humoral and cell-mediated immune responses after immunization with trivalent influenza vaccine adjuvanted with cationic liposomes. Vaccine 29:6283–6291

    Article  CAS  PubMed  Google Scholar 

  • Ryll R et al (2001) Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids—a review. Microbiol Immunol 45:801–811

    Article  CAS  PubMed  Google Scholar 

  • Schick J et al (2017) Toll-like receptor 2 and Mincle cooperatively sense corynebacterial cell wall glycolipids. Infect Immun 85:e00075–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenen H et al (2010) Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol 184:2756–2760

    Article  CAS  PubMed  Google Scholar 

  • Schoenen H et al (2014) Differential control of Mincle-dependent cord factor recognition and macrophage responses by the transcription factors C/EBPβ and HIF1α. J Immunol 193:3664–3675

    Article  CAS  PubMed  Google Scholar 

  • Schweneker K et al (2013) The mycobacterial cord factor adjuvant analogue trehalose-6,6’-dibehenate (TDB) activates the Nlrp3 inflammasome. Immunobiology 218:664–673

    Article  CAS  PubMed  Google Scholar 

  • Seifert L et al (2016) The necrosome promotes pancreatic oncogenesis via CXCL1 and MINCLE-induced immune suppression. Nature 532:245–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah S et al (2016) Total synthesis of a cyclopropane-fatty acid α-glucosyl diglyceride from Lactobacillus plantarum and identification of its ability to signal through Mincle. Chem Commun (Camb) 52:10902–10905

    Article  CAS  Google Scholar 

  • Sharma A et al (2014) Protective role of Mincle in bacterial pneumonia by regulation of neutrophil mediated phagocytosis and extracellular trap formation. J Infect Dis 209:1837–1846

    Article  CAS  PubMed  Google Scholar 

  • Sharma A et al (2017) Mincle-mediated neutrophil extracellular trap formation by regulation of autophagy. J Infect Dis 215:1040–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Söldner CA et al (2018) Interaction of glycolipids with the macrophage surface receptor Mincle—a systematic molecular dynamics study. Sci Rep 8:5374

    Google Scholar 

  • Sousa Mda G et al (2011) Restoration of pattern recognition receptor costimulation to treat chromoblastomycosis, a chronic fungal infection of the skin. Cell Host Microbe 9:436–443

    Article  CAS  Google Scholar 

  • Stamm CE et al (2015) Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus. Immunol Rev 264:204–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Stocker BL et al (2014) On one leg: trehalose monoesters activate macrophages in a Mincle-dependant manner. ChemBioChem 15:382–388

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y et al (2013) Involvement of Mincle and Syk in the changes to innate immunity after ischemic stroke. Sci Rep 3:3177

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka M et al (2014) Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis. Nat Commun 5:4982

    Article  CAS  PubMed  Google Scholar 

  • Thakur A et al (2013) Cell-mediated and humoral immune responses after immunization of calves with a recombinant multiantigenic Mycobacterium avium subsp. paratuberculosis subunit vaccine at different ages. Clin Vaccine Immunol 20:551–558

    Google Scholar 

  • Tima HG et al (2017) Inflammatory properties and adjuvant potential of synthetic glycolipids homologous to mycolate esters of the cell wall of Mycobacterium tuberculosis. J Innate Immun 9:162–180

    Article  CAS  PubMed  Google Scholar 

  • Toyonaga K et al (2014) Characterization of the receptors for mycobacterial cord factor in Guinea pig. PLoS ONE 9:e88747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyonaga K et al (2016) C-type Lectin receptor DCAR recognizes mycobacterial phosphatidyl-inositol mannosides to promote a Th1 response during infection. Immunity 45:1245–1257

    Article  CAS  PubMed  Google Scholar 

  • Troegeler A et al (2017) C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells. Proc Natl Acad Sci U S A 114:E540–E549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Peet PL et al (2015) Corynomycolic acid-containing glycolipids signal through the pattern recognition receptor Mincle. Chem Commun (Camb) 51:5100–5103

    Article  CAS  Google Scholar 

  • van Dissel JT et al (2014) A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine 32:7098–7107

    Article  CAS  PubMed  Google Scholar 

  • Van Haren SD et al (2016) Age-specific adjuvant synergy: Dual TLR7/8 and Mincle activation of human newborn dendritic cells enables Th1 polarization. J Immunol 197:4413–4424

    Article  CAS  PubMed  Google Scholar 

  • Vijayan D et al (2012) Mincle polarizes human monocyte and neutrophil responses to Candida albicans. Immunol Cell Biol 90:889–895

    Article  CAS  PubMed  Google Scholar 

  • Vono M et al (2018) Overcoming the neonatal limitations of inducing germinal centers through liposome-based adjuvants including C-type lectin agonists trehalose dibehenate or curdlan. Front Immunol 9:381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe Y et al (2016) Isoliquiritigenin attenuates adipose tissue inflammation in vitro and adipose tissue fibrosis through inhibition of innate immune responses in mice. Sci Rep 6:23097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weis WI et al (1998) The C-type lectin superfamily in the immune system. Immunol Rev 163:19–34

    Article  CAS  PubMed  Google Scholar 

  • Wells CA et al (2008) The macrophage-inducible C-type lectin, Mincle, is an essential component of the innate immune response to Candida albicans. J Immunol 180:7404–7413

    Article  CAS  PubMed  Google Scholar 

  • Wevers BA et al (2014) Fungal engagement of the C-type lectin Mincle suppresses Dectin-1-induced antifungal immunity. Cell Host Microbe 15:494–505

    Article  CAS  PubMed  Google Scholar 

  • Williams SJ (2017) Sensing lipids with Mincle: structure and function. Front Immunol 8:1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson GJ et al (2015) The C-type lectin receptor CLECSF8/CLEC4D is a key component of anti-mycobacterial immunity. Cell Host Microbe 17:252–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu XY et al (2012) Macrophage-inducible C-type lectin is associated with anti-cyclic citrullinated peptide antibodies-positive rheumatoid arthritis in men. Chin Med J (Engl) 125:3115–3119

    CAS  Google Scholar 

  • Xie Y et al (2017) Human albumin attenuates excessive innate immunity via inhibition of microglial Mincle/Syk signaling in subarachnoid hemorrhage. Brain Behav Immun 60:346–360

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki S (2013) Signaling while eating: MCL is coupled with Mincle. Eur J Immunol 43:3167–3174

    Article  CAS  Google Scholar 

  • Yamasaki S et al (2008) Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 9:1179–1188

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki S et al (2009) C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc Natl Acad Sci U S A 106:1897–1902

    Article  PubMed  PubMed Central  Google Scholar 

  • Yonekawa A et al (2014) Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity 41:402–413

    Article  CAS  PubMed  Google Scholar 

  • Yu H et al (2010) Chlamydia muridarum T-cell antigens formulated with the adjuvant DDA/TDB induce immunity against infection that correlates with a high frequency of gamma interferon (IFN-gamma)/tumor necrosis factor alpha and IFN-gamma/interleukin-17 double-positive CD4+ T cells. Infect Immun 78:2272–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu GR et al (2018) Mincle in the innate immune response of mice fungal keratitis. Int J Ophthalmol 11:539–547

    PubMed  PubMed Central  Google Scholar 

  • Zhang XQ et al (2014) C-type lectin receptor Dectin-3 mediates trehalose 6,6′-Dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation. J Biol Chem 289:30052–30062

    Article  CAS  Google Scholar 

  • Zhang Q et al (2018) Integrin CD11b negatively regulates Mincle-induced signaling via the Lyn-SIRPα-SHP1 complex. Exp Mol Med 50:e439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng RB et al (2017) Insights into Interactions of mycobacteria with the host innate immune system from a novel array of synthetic mycobacterial glycans. ACS Chem Biol 12:2990–3002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H et al (2016) IRAKM-Mincle axis links cell death to inflammation: pathophysiological implications for chronic alcoholic liver disease. Hepatology 64:1978–1993

    Article  CAS  PubMed  Google Scholar 

  • Zoccola E et al (2017) Immune transcriptome reveals the Mincle C-type lectin receptor acts as a partial replacement for TLR4 in lipopolysaccharide-mediated inflammatory response in barramundi (Lates calcarifer). Mol Immunol 83:33–45

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunobu Miyake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miyake, Y., Yamasaki, S. (2020). Immune Recognition of Pathogen-Derived Glycolipids Through Mincle. In: Hsieh, SL. (eds) Lectin in Host Defense Against Microbial Infections. Advances in Experimental Medicine and Biology, vol 1204. Springer, Singapore. https://doi.org/10.1007/978-981-15-1580-4_2

Download citation

Publish with us

Policies and ethics