Skip to main content

Cerium Oxide Based Nanozymes

  • Chapter
  • First Online:
Nanozymology

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Cerium oxide nanoparticles (nanoceria) are reported to exhibit nanozyme activities, such as biological catalase, oxidase, superoxide dismutase, and peroxidase-mimetic activities. Nanoceria nanozymes own several advantages over natural enzymes, such as controlled synthesis at low cost, tunable catalytic activities, as well as high stability against strict physiological conditions. Exploiting these properties, several biomedical applications, such as bio-sensing, immunoassay, drug delivery, radiation protection, and tissue engineering, have been exercised. This chapter provides a comprehensive summary of reported biological enzyme-mimetic activities of nanoceria, the possible mechanisms of catalysis, as well as their biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Ascorbic acid

adRP:

Autosomal dominant retinitis pigmentosa

AMD:

Age-related macular degeneration

BBB:

Blood–brain barrier

BDNF:

Brain-derived neurotrophic factor

CAT:

Catalase

CML:

Chronic myelogenous leukemia

CMP:

Chemical–mechanical planarization

CNPs:

Ceria nanoparticles

CPC:

Cardiac progenitor cells

DAO:

Diamine oxidase

DM:

Diabetes mellitus

DR:

Diabetic retinopathy

EAE:

Experimental autoimmune encephalomyelitis

ECM:

Extracellular matrix

ERG:

Electroretinogram recordings

FAM:

Carboxyfluorescein

GNPs:

Gold nanoparticles

GS:

Graphene oxide nanosheets

GSH-Px:

Glutathione peroxidase

H2TCPP:

5,10,15,20-tetrakis 4-carboxyl phenyl-porphyrin

HMTA:

Hexamethylenetetraamine

iNOS:

Inducible nitric oxide synthase

LOD:

Limits of detection

LOX:

Lactate oxidase

LPS:

Lipopolysaccharides

MPO:

Myeloperoxidase

MV:

Methyl violet

MWCNTs:

Multi-walled carbon nanotubes

NOS:

Nitric oxide synthase

PAAN:

A polyacrylic acid sodium salt

PANI:

Polyaniline

PEP:

Case phosphoenolpyruvate carboxylase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RT:

Radiation

SIRS:

System inflammatory response syndrome

SOD:

Superoxide dismutase

TMB:

3,3,5,5-tetramethylbiphenyl dihydrochloride

UA:

Uric acid

XPS:

X-ray photoelectron spectroscopy

References

  1. Reinhardt K, Winkler H (2000) Cerium mischmetal, cerium alloys, and cerium compounds. Wiley-VCH Verlag GmbH & Co, KGaA

    Google Scholar 

  2. Wang L, Zhang K, Song Z, Feng S (2007) Ceria concentration effect on chemical mechanical polishing of optical glass. Appl Surf Sci 253(11):4951–4954. https://doi.org/10.1016/j.apsusc.2006.10.074

    Article  CAS  Google Scholar 

  3. Zhang Z, Yu L, Liu W, Song Z (2010) Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate. Appl Surf Sci 256(12):3856–3861. https://doi.org/10.1016/j.apsusc.2010.01.040

    Article  CAS  Google Scholar 

  4. Trovarelli A, Leitenburg CD, Boaro M, Dolcetti G (1999) The utilization of ceria in industrial catalysis. Catal Today 50(2):353–367

    CAS  Google Scholar 

  5. Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev Sci Eng 38(4):439–520. https://doi.org/10.1080/01614949608006464

    Article  CAS  Google Scholar 

  6. Can XU, Xiaogang QU (2014) Recent progress of rare earth cerium oxide nanoparticles applied in biology. Sci Sinica 44(4):506

    Google Scholar 

  7. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239

    CAS  Google Scholar 

  8. Johansson B, Luo W, Li S, Ahuja R (2014) Cerium; crystal structure and position in the periodic table. Sci Rep 4:6398

    CAS  Google Scholar 

  9. Holleman AF, Wiberg E, Eagleson M, Brewer W, Aylett BJ, Wiberg N (2001) Inorganic chemistry. Academic Press

    Google Scholar 

  10. Skorodumova NV, Simak SI, Lundqvist BI, Abrikosov IA, Johansson B (2002) Quantum origin of the oxygen storage capability of ceria. Phys Rev Lett 89(16):166601

    CAS  Google Scholar 

  11. Suzuki T, Kosacki I, Anderson HU, Colomban P (2001) Electrical conductivity and lattice defects in nanocrystalline cerium oxide thin films. J Am Ceram Soc 84(9):2007–2014

    CAS  Google Scholar 

  12. Deshpande S, Patil S, Kuchibhatla SV, Seal S (2005) Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett 87(13):223–278

    Google Scholar 

  13. Ying JY, Tschöpe A (1996) Synthesis and characteristics of non-stoichiometric nanocrystalline cerium oxide-based catalysts. Chem Eng J Biochem Eng J 64(2):225–237

    CAS  Google Scholar 

  14. Hayyan M, Hashim MA, Alnashef IM (2016) Superoxide ion: generation and chemical implications. Chem Rev 116(5):3029

    CAS  Google Scholar 

  15. Mccord JM, Fridovich I (1969) Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049

    CAS  Google Scholar 

  16. Ivanov VK, Shcherbakov AB, Usatenko AV (2010) ChemInform abstract: structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide. Cheminform 41(9):no–no

    Google Scholar 

  17. Korsvik C, Patil S, Seal S, Self WT (2007) Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun 10(10):1056

    Google Scholar 

  18. Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JE, Seal S, Self WT (2010) Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun (Camb) 46(16):2736–2738. https://doi.org/10.1039/b922024k

    Article  CAS  Google Scholar 

  19. Nelson BC, Johnson ME, Walker ML, Riley KR, Sims CM (2016) Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants (Basel) 5(2). https://doi.org/10.3390/antiox5020015

  20. Celardo I, Pedersen JZ, Traversa E, Ghibelli L (2011) Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3(4):1411

    CAS  Google Scholar 

  21. Korsvik C, Patil S, Seal S, Self WT (2007) Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun (Camb) 10:1056–1058. https://doi.org/10.1039/b615134e

    Article  CAS  Google Scholar 

  22. Singh S, Dosani T, Karakoti AS, Kumar A, Seal S, Self WT (2011) A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 32(28):6745–6753. https://doi.org/10.1016/j.biomaterials.2011.05.073

    Article  CAS  Google Scholar 

  23. Alili L, Sack M, Karakoti AS, Teuber S, Puschmann K, Hirst SM, Reilly CM, Zanger K, Stahl W, Das S, Seal S, Brenneisen P (2011) Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor-stroma interactions. Biomaterials 32(11):2918–2929. https://doi.org/10.1016/j.biomaterials.2010.12.056

    Article  CAS  Google Scholar 

  24. Wei X, Li X, Feng Y, Yang S (2018) Morphology- and pH-dependent peroxidase mimetic activity of nanoceria. Rsc Advances 8(21):11764–11770. https://doi.org/10.1039/c8ra00622a

    Article  CAS  Google Scholar 

  25. Fisher TJ, Zhou Y, Wu T-S, Wang M, Soo Y-L, Cheung CL (2019) Structure-activity relationship of nanostructured ceria for the catalytic generation of hydroxyl radicals. Nanoscale 11(10):4552–4561. https://doi.org/10.1039/c8nr09393h

    Article  CAS  Google Scholar 

  26. Zhang B, Yu H, Wang J, Wang W, Zhang Q, Zhang H (2019) Synthesis of CeO2 nanoparticles with different morphologies and their properties as peroxidase mimic. J Am Ceram Soc 102(4):2218–2227. https://doi.org/10.1111/jace.16071

    Article  CAS  Google Scholar 

  27. Heckert EG, Karakoti AS, Seal S, Self WT (2008) The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29(18):2705–2709. https://doi.org/10.1016/j.biomaterials.2008.03.014

    Article  CAS  Google Scholar 

  28. Rzigalinski BA, Meehan K, Davis RM, Xu Y, Miles WC, Cohen CA (2006) Radical nanomedicine. Nanomedicine 1(4):399

    CAS  Google Scholar 

  29. Baldim V, Bedioui F, Mignet N, Margaill I, Berret JF (2018) The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale 10(15):6971–6980. https://doi.org/10.1039/c8nr00325d

    Article  Google Scholar 

  30. Dhall A, Self WT (2018) Cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications. 7(8)

    Google Scholar 

  31. Das S, Dowding JM, Klump KE, Mcginnis JF, Self W, Seal S (2013) Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine 8(9):1483–1508

    CAS  Google Scholar 

  32. Karakoti AS, Munusamy P, Hostetler K, Kodali V, Kuchibhatla S, Orr G, Pounds JG, Teeguarden JG, Thrall BD, Baer DR (2012) Preparation and characterization challenges to understanding environmental and biological impacts of nanoparticles. Surface Interface Anal Sia 44(8):882–889

    CAS  Google Scholar 

  33. Kumar A, Babu S, Karakoti AS, Schulte A, Seal S (2009) Luminescence properties of europium-doped cerium oxide nanoparticles: role of vacancy and oxidation states. Langmuir 25(18):10998–11007

    CAS  Google Scholar 

  34. Patel V, Singh M, Mayes ELH, Martinez A, Shutthanandan V, Bansal V, Singh S, Karakoti AS (2018) Ligand-mediated reversal of the oxidation state dependent ROS scavenging and enzyme mimicking activity of ceria nanoparticles. Chem Commun 54(99):13973–13976. https://doi.org/10.1039/c8cc08355j

    Article  CAS  Google Scholar 

  35. Sun C, Li H, Chen L (2012) ChemInform abstract: nanostructured ceria-based materials: synthesis, properties, and applications. Cheminform 5(9):8475–8505

    CAS  Google Scholar 

  36. Xue Y, Zhai Y, Zhou K, Wang L, Tan H, Luan Q, Yao X (2012) The vital role of buffer anions in the antioxidant activity of CeO2 nanoparticles. Chemistry 18(35):11115–11122

    CAS  Google Scholar 

  37. Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ (2007) Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28(10):1918–1925. https://doi.org/10.1016/j.biomaterials.2006.11.036

    Article  CAS  Google Scholar 

  38. Zhang Y, Zhou K, Zhai Y, Qin F, Pan L, Yao X (2014) Crystal plane effects of nano-CeO2 on its antioxidant activity. Rsc Advances 4(92):50325–50330

    CAS  Google Scholar 

  39. Perez JM, Asati A, Nath S, Kaittanis C (2008) Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small 4(5):552–556. https://doi.org/10.1002/smll.200700824

    Article  CAS  Google Scholar 

  40. Dowding JM, Das S, Kumar A, Dosani T, Mccormack R, Gupta A, Sayle TXT, Sayle DC, Kalm LV, Seal S (2013) Cellular interaction and toxicity depends on physiochemical properties and surface modification of redox active nanomaterials. ACS Nano 7(6):4855–4868

    CAS  Google Scholar 

  41. Dowding JM, Dosani T, Kumar A, Seal S, Self WT (2012) Cerium oxide nanoparticles scavenge nitric oxide radical (˙NO). Chem Commun 48(40):4896–4898

    CAS  Google Scholar 

  42. Dowding JM, Seal S, Self WT (2013) Cerium oxide nanoparticles accelerate the decay of peroxynitrite (ONOO(-)). Drug Deliv Transl Res 3(4):375–379

    CAS  Google Scholar 

  43. Xue Y, Luan Q, Yang D, Yao X, Zhou K (2011) Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J Phys Chem C 115(11):4433–4438

    CAS  Google Scholar 

  44. Faassen EEV, Bahrami S, Feelisch M, Hogg N, Kelm M, Kimshapiro DB, Kozlov AV, Li H, Lundberg JO, Mason R (2009) Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev 29(5):683–741

    Google Scholar 

  45. Yun HY, Dawson VL, Dawson TM (2009) Nitric oxide in health and disease of the nervous system. Antioxid Redox Signal 11(3):541–554

    Google Scholar 

  46. Jiao X, Song H, Zhao H, Bai W, Zhang L, Lv Y (2012) Well-redispersed ceria nanoparticles: promising peroxidase mimetics for H2O2 and glucose detection. Anal Methods 4(10):3261. https://doi.org/10.1039/c2ay25511a

    Article  CAS  Google Scholar 

  47. Xu C, Liu Z, Li W, Ren J, Qu X (2014) Nucleoside triphosphates as promoters to enhance nanoceria enzyme-like activity and for single-nucleotide polymorphism typing. Adv Func Mater 24(11):1624–1630

    CAS  Google Scholar 

  48. Asati A, Kaittanis C, Santra S, Perez JM (2011) pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH. Anal Chem 83(7):2547–2553. https://doi.org/10.1021/ac102826k

    Article  CAS  Google Scholar 

  49. Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed Engl 48(13):2308–2312. https://doi.org/10.1002/anie.200805279

    Article  CAS  Google Scholar 

  50. Peng Y, Chen X, Yi G, Gao Z (2011) Mechanism of the oxidation of organic dyes in the presence of nanoceria. Chem Commun 47(10):2916

    CAS  Google Scholar 

  51. Kuchma MH, Komanski CB, Colon J, Teblum A, Masunov AE, Alvarado B, Babu S, Seal S, Summy J, Baker CH (2010) Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomedicine 6(6):738–744. https://doi.org/10.1016/j.nano.2010.05.004

    Article  CAS  Google Scholar 

  52. Patil AJ, Krishna KR, Barron NJ, Mann S (2012) Cerium oxide nanoparticle-mediated self-assembly of hybrid supramolecular hydrogels. Chem Commun 48(64):7934–7936

    CAS  Google Scholar 

  53. Feng T, Zhang Y, Wang J, Wei J, Cai Y, Qian X (2008) An efficient method for dephosphorylation of phosphopeptides by cerium oxide. J Mass Spectrom JMS 43(5):628–632

    Google Scholar 

  54. Yao T, Tian Z, Zhang Y, Qu Y (2019) Phosphatase-like activity of porous nanorods of CeO2 for the highly stabilized dephosphorylation under interferences. ACS Appl Mater Interfaces 11(1):195–201. https://doi.org/10.1021/acsami.8b17086

    Article  CAS  Google Scholar 

  55. Korschelt K, Schwidetzky R, Pfitzner F, Strugatchi J, Schilling C, von der Au M, Kirchhoff K, Panthoefer M, Lieberwirth I, Tahir MN, Hess C, Meermann B, Tremel W (2018) CeO2-x nanorods with intrinsic urease-like activity. Nanoscale 10(27):13074–13082. https://doi.org/10.1039/c8nr03556c

    Article  CAS  Google Scholar 

  56. Heckert EG, Seal S, Self WT (2008) Fenton-Like reaction catalyzed by the rare earth inner transition metal cerium. Environ Sci Technol 42(13):5014–5019

    CAS  Google Scholar 

  57. Li X, Wilmanns M, Thornton J, Köhn M (2013) Elucidating human phosphatase-substrate networks. Sci Signal 6(275):rs10

    Google Scholar 

  58. Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4(5):127–130

    Google Scholar 

  59. Vinothkumar G, Arunkumar P, Mahesh A, Dhayalan A, Babu KS (2018) Size- and defect-controlled anti-oxidant enzyme mimetic and radical scavenging properties of cerium oxide nanoparticles. New J Chem 42(23):18810–18823. https://doi.org/10.1039/c8nj04435j

    Article  CAS  Google Scholar 

  60. Tarnuzzer RW, Colon J, Patil S, Seal S (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5(12):2573

    CAS  Google Scholar 

  61. Niu J, Azfer A, Rogers LM, Wang X, Kolattukudy PE (2007) Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res 73(3):549–559

    CAS  Google Scholar 

  62. Pagliari F, Mandoli C, Forte G, Magnani E, Pagliari S, Nardone G, Licoccia S, Minieri M, Nardo PD, Traversa E (2012) Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano 6(5):3767

    CAS  Google Scholar 

  63. Bhargava N, Shanmugaiah V, Saxena M, Sharma M, Sethy NK, Singh SK, Balakrishnan K, Bhargava K, Das M (2016) Nanocerium oxide increases the survival of adult rod and cone photoreceptor in culture by abrogating hydrogen peroxide-induced oxidative stress. Biointerphases 11(3):031016. https://doi.org/10.1116/1.4962263

    Article  CAS  Google Scholar 

  64. Kong L, Cai X, Zhou X, Wong LL, Karakoti AS, Seal S, McGinnis JF (2011) Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways. Neurobiol Dis 42(3):514–523. https://doi.org/10.1016/j.nbd.2011.03.004

    Article  CAS  Google Scholar 

  65. Wong LL, Pye QN, Chen L, Seal S, McGinnis JF (2015) Defining the catalytic activity of nanoceria in the P23H-1 rat, a photoreceptor degeneration model. PLoS ONE 10(3):e0121977. https://doi.org/10.1371/journal.pone.0121977

    Article  CAS  Google Scholar 

  66. Cai X, Sezate SA, Seal S, Mcginnis JF (2012) Sustained protection against photoreceptor degeneration in tubby mice by intravitreal injection of nanoceria. Biomaterials 33(34):8771–8781

    CAS  Google Scholar 

  67. Wong LL, Hirst SM, Pye QN, Reilly CM, Seal S, McGinnis JF (2013) Catalytic nanoceria are preferentially retained in the rat retina and are not cytotoxic after intravitreal injection. PLoS ONE 8(3):e58431. https://doi.org/10.1371/journal.pone.0058431

    Article  CAS  Google Scholar 

  68. Chen J, Patil S, Seal S, Mcginnis JF (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1(2):142–150

    CAS  Google Scholar 

  69. Singh S (2018) Investigating the role of catalase mimetic cerium oxide-based nanozyme to impart protection to hepatic cells from acatalasia. Free Radic Biol Med 128:S57–S58. https://doi.org/10.1016/j.freeradbiomed.2018.10.109

    Article  Google Scholar 

  70. Singh R, Singh S (2019) Redox-dependent catalase mimetic cerium oxide-based nanozyme protect human hepatic cells from 3-AT induced acatalasemia. Colloids Surf B-Biointerfaces 175:625–635. https://doi.org/10.1016/j.colsurfb.2018.12.042

    Article  CAS  Google Scholar 

  71. Singh R, Singh S (2019) Catalytically active cerium oxide nanoparticles protect mammalian cells from endogenous reactive oxygen species. Mater Today Proc 10:25–31. https://doi.org/10.1016/j.matpr.2019.02.184

    Article  CAS  Google Scholar 

  72. Colon J, Hsieh N, Ferguson A, Kupelian P, Seal S, Jenkins DW, Baker CH (2010) Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine 6(5):698–705. https://doi.org/10.1016/j.nano.2010.01.010

    Article  CAS  Google Scholar 

  73. Chaudhury K, Babu KN, Singh AK, Das S, Kumar A, Seal S (2013) Mitigation of endometriosis using regenerative cerium oxide nanoparticles. Nanomedicine 9(3):439–448. https://doi.org/10.1016/j.nano.2012.08.001

    Article  CAS  Google Scholar 

  74. Dowding JM, Song W, Bossy K, Karakoti A, Kumar A, Kim A, Bossy B, Seal S, Ellisman MH, Perkins G, Self WT, Bossy-Wetzel E (2014) Cerium oxide nanoparticles protect against Abeta-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ 21(10):1622–1632. https://doi.org/10.1038/cdd.2014.72

    Article  CAS  Google Scholar 

  75. Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342(1):86–91

    CAS  Google Scholar 

  76. Estevez AY, Boateng Y, Lipps J, Stadler B, Erlichman JS (2018) Analysis of the antioxidant enzyme-mimetic activity and neuroprotective effects of cerium oxide nanoparticles stabilized with varying ratios of citric acid and EDTA. Faseb J 32(1)

    Google Scholar 

  77. Zhang Q, Ge K, Duan J, Chen S, Zhang R, Zhang C, Wang S, Zhang J (2014) Cerium oxide nanoparticles protect primary mouse bone marrow stromal cells from apoptosis induced by oxidative stress. J Nanopart Res 16(11). https://doi.org/10.1007/s11051-014-2697-3

  78. Forte G, Carotenuto F, Pagliari F, Pagliari S, Cossa P, Fiaccavento R, Ahluwalia A, Vozzi G, Vinci B, Serafino A (2008) Criticality of the biological and physical stimuli array inducing resident cardiac stem cell determination. Stem Cells 26(8):2093–2103

    CAS  Google Scholar 

  79. Pagliari S, Vilela-Silva AC, Forte G, Pagliari F, Mandoli C, Vozzi G, Pietronave S, Prat M, Licoccia S, Ahluwalia A (2011) Cooperation of biological and mechanical signals in cardiac progenitor cell differentiation. Adv Mater 23(4):514–518

    CAS  Google Scholar 

  80. Lord MS, Jung M, Teoh WY, Gunawan C, Vassie JA, Amal R, Whitelock JM (2012) Cellular uptake and reactive oxygen species modulation of cerium oxide nanoparticles in human monocyte cell line U937. Biomaterials 33(31):7915–7924

    CAS  Google Scholar 

  81. Vassie JA, Whitelock JM, Lord MS (2017) Endocytosis of cerium oxide nanoparticles and modulation of reactive oxygen species in human ovarian and colon cancer cells. Acta Biomater 50:127–141. https://doi.org/10.1016/j.actbio.2016.12.010

    Article  CAS  Google Scholar 

  82. Singh VK, Mehrotra S, Narayan P, Pandey CM, Agarwal SS (2000) Modulation of autoimmune diseases by nitric oxide. Immunol Res 22(1):1–19

    CAS  Google Scholar 

  83. Sabroe I, Parker LC, Calverley PM, Dower SK, Whyte MK (2007) Pathological networking: a new approach to understanding COPD. Thorax 62(8):733–738

    Google Scholar 

  84. Balboa MA, Balsinde J (2006) Oxidative stress and arachidonic acid mobilization. Biochem Biophys Acta 1761(4):385

    CAS  Google Scholar 

  85. Olmedo DG, Tasat DR, Evelson P, Guglielmotti MB, Cabrini RL (2008) Biological response of tissues with macrophagic activity to titanium dioxide. J Biomed Mater Res Part A 84a(4):1087–1093

    Google Scholar 

  86. Ahsan H, Ali A, Ali R (2003) Oxygen free radicals and systemic autoimmunity. Clin Exp Immunol 131(3):398–404

    CAS  Google Scholar 

  87. Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM (2009) Anti-inflammatory properties of cerium oxide nanoparticles. Small 5(24):2848–2856. https://doi.org/10.1002/smll.200901048

    Article  CAS  Google Scholar 

  88. Bärtsch P, Straub PW, Haeberli A (2001) Hypobaric hypoxia. Lancet 357(9260):955–955

    Google Scholar 

  89. Arya A, Sethy NK, Singh SK, Das M, Bhargava K (2013) Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation. Int J Nanomed 8:4507–4520. https://doi.org/10.2147/IJN.S53032

    Article  CAS  Google Scholar 

  90. Rotter N, Ung F, Roy AK, Vacanti M, Eavey RD, Vacanti CA, Bonassar LJ (2005) Role for interleukin 1alpha in the inhibition of chondrogenesis in autologous implants using polyglycolic acid-polylactic acid scaffolds. Tissue Eng Part A 11(1–2):192–200

    CAS  Google Scholar 

  91. Ponnurangam S, O’Connell GD, Chernyshova IV, Wood K, Hung CT, Somasundaran P (2014) Beneficial effects of cerium oxide nanoparticles in development of chondrocyte-seeded hydrogel constructs and cellular response to interleukin insults. Tissue Eng Part A 20(21–22):2908–2919. https://doi.org/10.1089/ten.TEA.2013.0592

    Article  CAS  Google Scholar 

  92. Aukrust P, Gullestad L, Ueland T, Damås JK, Yndestad A (2005) Inflammatory and anti-inflammatory cytokines in chronic heart failure: potential therapeutic implications. Ann Med 37(2):74

    CAS  Google Scholar 

  93. Grieve DJ, Byrne JA, Cave AC, Shah AM (2004) Role of oxidative stress in cardiac remodelling after myocardial infarction. Heart Lung Circ 13(2):132–138

    CAS  Google Scholar 

  94. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8):801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  Google Scholar 

  95. Annane D, Bellissant E, Cavaillon JM (2015) Septic shock. Lancet 365(9453):63–78

    Google Scholar 

  96. Larrosa M, Azorínortuño M, Yañezgascón MJ, Garcíaconesa MT, Tomásbarberán F, Espín JC (2011) Lack of effect of oral administration of resveratrol in LPS-induced systemic inflammation. Eur J Nutr 50(8):673–680

    CAS  Google Scholar 

  97. Madhumitha G, Saral AM (2011) Preliminary phytochemical analysis, antibacterial, antifungal and anticandidal activities of successive extracts of Crossandra infundibuliformis. Asian Pac J Trop Med 4(3):192–195

    CAS  Google Scholar 

  98. Roopan SM, Rohit Madhumitha G, Rahuman AA, Kamaraj C, Bharathi A, Surendra TV (2013) Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crops Prod 43(5):631–635

    CAS  Google Scholar 

  99. Ge L, Hu Q, Chen J, Shi M, Yang H, Zhu G (2017) Inhibition of TNF-alpha sepsis of lipopolysaccharide induction using nano cerium oxide system. Mater Sci Eng C, Mater Biol Appl 77:405–410. https://doi.org/10.1016/j.msec.2017.03.207

    Article  CAS  Google Scholar 

  100. Liao Y (2007) Oxidative stress and diabetic retinopathy, vol 25

    Google Scholar 

  101. Hollyfield J, Bonilha V, Me Yang X, Shadrach K, Lu L, Ufret R, Salomon R, Perez V (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14(2):194–198

    CAS  Google Scholar 

  102. Aslan M, Cort A, Yucel I (2008) Oxidative and nitrative stress markers in glaucoma. Free Radic Biol Med 45(4):367–376

    CAS  Google Scholar 

  103. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658

    CAS  Google Scholar 

  104. Harman D (2003) The free radical theory of aging. Antioxid Redox Signal 5(5):557

    CAS  Google Scholar 

  105. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9(7):505–518

    CAS  Google Scholar 

  106. Estevez AY, Pritchard S, Harper K, Aston JW, Lynch A, Lucky JJ, Ludington JS, Chatani P, Mosenthal WP, Leiter JC (2011) Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radic Biol Med 51(6):1155–1163

    CAS  Google Scholar 

  107. D’Angelo B, Santucci S, Benedetti E, Loreto SD, Phani R, Falone S, Amicarelli F, Ceru M, Cimini A (2009) Cerium oxide nanoparticles trigger neuronal survival in a human Alzheimer disease model by modulating BDNF pathway. Curr Nanosci 5(2)

    Google Scholar 

  108. Cimini A, D’Angelo B, Das S, Gentile R, Benedetti E, Singh V, Monaco AM, Santucci S, Seal S (2012) Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Aβ aggregates modulate neuronal survival pathways. Acta Biomater 8(6):2056–2067

    CAS  Google Scholar 

  109. Heckman KL, DeCoteau W, Estevez A, Reed KJ, Costanzo W, Sanford D, Leiter JC, Clauss J, Knapp K, Gomez C, Mullen P, Rathbun E, Prime K, Marini J, Patchefsky J, Patchefsky AS, Hailstone RK, Erlichman JS (2013) Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano 7(12):10582–10596. https://doi.org/10.1021/nn403743b

    Article  CAS  Google Scholar 

  110. Gliga AR, Edoff K, Caputo F, Kallman T, Blom H, Karlsson HL, Ghibelli L, Traversa E, Ceccatelli S, Fadeel B (2017) Cerium oxide nanoparticles inhibit differentiation of neural stem cells. Sci Rep 7(1):9284. https://doi.org/10.1038/s41598-017-09430-8

    Article  CAS  Google Scholar 

  111. Colon J, Herrera L, Smith J, Patil S, Komanski C, Kupelian P, Seal S, Jenkins DW, Baker CH (2009) Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomed Nanotechnol Biol Med 5(2):225–231

    CAS  Google Scholar 

  112. Giri S, Karakoti A, Graham RP, Maguire JL, Reilly CM, Seal S, Rattan R, Shridhar V (2013) Nanoceria: a rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer. PLoS ONE 8(1):e54578. https://doi.org/10.1371/journal.pone.0054578

    Article  CAS  Google Scholar 

  113. Wason MS, Colon J, Das S, Seal S, Turkson J, Zhao J, Baker CH (2013) Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomed Nanotechnol Biol Med 9(4):558–569

    CAS  Google Scholar 

  114. Bast RC, Urban N, Shridhar V, Smith D, Zhen Z, Skates S, Lu K, Liu J, Fishman D, Mills G (2002) Early detection of ovarian cancer: promise and reality. Cancer Treat Res 107(2):61

    Google Scholar 

  115. Friedlander ML (1998) Prognostic factors in ovarian cancer. Semin Oncol 25(3):305–314

    CAS  Google Scholar 

  116. Sack M, Alili L, Karaman E, Das S, Gupta A, Seal S, Brenneisen P (2014) Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles–a novel aspect in cancer therapy. Mol Cancer Ther 13(7):1740–1749

    CAS  Google Scholar 

  117. Alili L, Sack M, Montfort CV, Carroll K, Giri S, Das S, Zanger K, Seal S, Brenneisen P (2013) Downregulation of tumor growth and invasion by redox-active nanoparticles. Antioxid Redox Signal 19(8):765–778

    CAS  Google Scholar 

  118. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8(9):705

    CAS  Google Scholar 

  119. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Cancer 4(11):891–899

    CAS  Google Scholar 

  120. Kuphal S, Winklmeier A, Warnecke C, Bosserhoff AK (2010) Constitutive HIF-1 activity in malignant melanoma. Eur J Cancer 46(6):1159

    CAS  Google Scholar 

  121. Das J, Choi YJ, Han JW, Reza A, Kim JH (2017) Nanoceria-mediated delivery of doxorubicin enhances the anti-tumour efficiency in ovarian cancer cells via apoptosis. Sci Rep 7(1):9513. https://doi.org/10.1038/s41598-017-09876-w

    Article  CAS  Google Scholar 

  122. Rahimi R, Nikfar S, Larijani B, Abdollahi M (2005) A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother 59(7):365–373

    CAS  Google Scholar 

  123. Pourkhalili N, Hosseini A, Nili-Ahmadabadi A, Hassani S, Pakzad M, Baeeri M, Mohammadirad A, Abdollahi M (2011) Biochemical and cellular evidence of the benefit of a combination of cerium oxide nanoparticles and selenium to diabetic rats. World J Diabetes 2(11):204–210. https://doi.org/10.4239/wjd.v2.i11.204

    Article  Google Scholar 

  124. Pourkhalili N, Hosseini A, Nili-Ahmadabadi A, Rahimifard M, Navaei-Nigjeh M, Hassani S, Baeeri M, Abdollahi M (2012) Improvement of isolated rat pancreatic islets function by combination of cerium oxide nanoparticles/sodium selenite through reduction of oxidative stress. Toxicol Methods 22(6):476

    CAS  Google Scholar 

  125. Charbgoo F, Soltani F, Taghdisi SM, Abnous K, Ramezani M (2016) Nanoparticles application in high sensitive aptasensor design. TrAC Trends Anal Chem 85:85–97

    CAS  Google Scholar 

  126. Charbgoo F, Ramezani M, Darroudi M (2017) Bio-sensing applications of cerium oxide nanoparticles: advantages and disadvantages. Biosens Bioelectron 96:33–43. https://doi.org/10.1016/j.bios.2017.04.037

    Article  CAS  Google Scholar 

  127. Ujjain SK, Das A, Srivastava G, Ahuja P, Roy M, Arya A, Bhargava K, Sethy N, Singh SK, Sharma RK (2014) Nanoceria based electrochemical sensor for hydrogen peroxide detection. Biointerphases 9(3):031011

    Google Scholar 

  128. Yang X, Ouyang Y, Wu F, Hu Y, Ji Y, Wu Z (2017) Size controllable preparation of gold nanoparticles loading on graphene sheets@cerium oxide nanocomposites modified gold electrode for nonenzymatic hydrogen peroxide detection. Sens Actuat B Chem 238:40–47

    CAS  Google Scholar 

  129. Yang X, Ouyang Y, Wu F, Hu Y, Zhang H, Wu Z (2016) In situ & controlled preparation of platinum nanoparticles dopping into graphene sheets@cerium oxide nanocomposites sensitized screen printed electrode for nonenzymatic electrochemical sensing of hydrogen peroxide. J Electroanal Chem 777:85–91

    CAS  Google Scholar 

  130. Mu J, Zhao X, Li J, Yang EC, Zhao XJ (2017) Coral-like CeO2/NiO nanocomposites with efficient enzyme-mimetic activity for biosensing application. Mater Sci Eng C, Mater Biol Appl Sens 74:434–442. https://doi.org/10.1016/j.msec.2016.12.037

    Article  CAS  Google Scholar 

  131. Ozdemir Olgun FA, Uzer A, Ozturk BD, Apak R (2018) A novel cerium oxide nanoparticles-based colorimetric sensor using tetramethyl benzidine reagent for antioxidant activity assay. Talanta 182:55–61. https://doi.org/10.1016/j.talanta.2018.01.047

    Article  CAS  Google Scholar 

  132. Sardesai NP, Ganesana M, Karimi A, Leiter JC, Andreescu S, Chem A (2015) Platinum-doped ceria based biosensor for in vitro and in vivo monitoring of lactate during hypoxia. Anal Chem 87(5):2996–3003

    CAS  Google Scholar 

  133. Sharan R, Dutta A (2017) Structural analysis of Zr4+ doped ceria, a possible material for ammonia detection in ppm level. J Alloy Compd 693:936–944

    CAS  Google Scholar 

  134. Khan SB, Faisal M, Rahman MM, Jamal A (2011) Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Sci Total Environ 409(15):2987–2992

    CAS  Google Scholar 

  135. Library WP (2011) WHO model list of essential medicines

    Google Scholar 

  136. Liu Q, Ding Y, Yang Y, Zhang L, Sun L, Chen P, Gao C (2016) Enhanced peroxidase-like activity of porphyrin functionalized ceria nanorods for sensitive and selective colorimetric detection of glucose. Mater Sci Eng C, Mater Biol Appl Sens 59:445–453. https://doi.org/10.1016/j.msec.2015.10.046

    Article  CAS  Google Scholar 

  137. Guan P, Li Y, Zhang J, Li W (2016) Non-enzymatic glucose biosensor based on CuO-decorated CeO2 nanoparticles. Nanomaterials 6(9):159

    Google Scholar 

  138. Zhang J, Guan P, Li Y, Li W, Guo Q (2016) Polyaniline/cerium oxide hybrid modified carbon paste electrode for non-enzymatic glucose detection. Bull Korean Chem Soc 37(7):985–986

    CAS  Google Scholar 

  139. Huang F, Wang J, Chen W, Wan Y, Wang X, Cai N, Liu J, Yu F (2018) Synergistic peroxidase-like activity of CeO2-coated hollow Fe3O4 nanocomposites as an enzymatic mimic for low detection limit of glucose. J Taiwan Inst Chem Eng 83:40–49. https://doi.org/10.1016/j.jtice.2017.12.011

    Article  CAS  Google Scholar 

  140. Alizadeh N, Salimi A, Hallaj R (2019) Mimicking peroxidase-like activity of Co3O4–CeO2 nanosheets integrated paper-based analytical devices for detection of glucose with smartphone. Sens Actuat B-Chem 288:44–52. https://doi.org/10.1016/j.snb.2019.01.068

    Article  CAS  Google Scholar 

  141. Weinberger DR (1987) Implications of normal brain-development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44(7):660–669

    CAS  Google Scholar 

  142. Cummings JL (1992) Depression and Parkinsons-disease—a review. Am J Psychiatry 149(4):443–454

    CAS  Google Scholar 

  143. Spanagel R, Weiss F (1999) The dopamine hypothesis of reward: past and current status. Trends Neurosci 22(11):521–527. https://doi.org/10.1016/s0166-2236(99)01447-2

    Article  CAS  Google Scholar 

  144. Nayak P, Santhosh PN, Ramaprabhu S (2015) Cerium oxide nanoparticles decorated graphene nanosheets for selective detection of dopamine. J Nanosci Nanotechnol 15(7):4855

    CAS  Google Scholar 

  145. Crespo LM, Oliveira NDD, Damatta RA, Nascimento VVD, Soares TP, Machado OLT (2016) Identification of IgE-binding peptide and critical amino acids ofJatropha curcasallergen involved in allergenic response. Springerplus 5(1):454

    Google Scholar 

  146. Andersen HH, Elberling J, Arendt-Nielsen L (2015) Human surrogate models of histaminergic and non-histaminergic itch. Acta dermato-venereologica 95(7):771

    CAS  Google Scholar 

  147. Gumpu MB, Nesakumar N, Sethuraman S, Krishnan UM, Rayappan JBB (2014) Development of electrochemical biosensor with ceria–PANI core–shell nano-interface for the detection of histamine. Sens Actuat B Chem 199(6):330–338

    CAS  Google Scholar 

  148. Re Ö, Ispas C, Ganesana M, Leiter JC, Andreescu S (2014) Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamate in hypoxic environments. Biosens Bioelectron 52(4):397–402

    Google Scholar 

  149. Ansari AA, Azahar M, Malhotra BD (2012) Electrochemical urea biosensor based on sol-gel derived nanostructured cerium oxide, pp 5490–5498

    Google Scholar 

  150. Song HP, Jang JY, Bae SH, Choi SB, Yu BJ, Kim MI (2018) Convenient colorimetric detection of thrombin via aptamer-mediated inhibition and restoration of the oxidase activity of nanoceria. J Nanosci Nanotechnol 18(9):6570–6574. https://doi.org/10.1166/jnn.2018.15696

    Article  CAS  Google Scholar 

  151. Jin X, Yin W, Ni G, Peng J (2018) Hydrogen-bonding-induced colorimetric detection of melamine based on the peroxidase activity of gelatin-coated cerium oxide nanospheres. Anal Methods 10(8):841–847. https://doi.org/10.1039/c7ay02296d

    Article  CAS  Google Scholar 

  152. Nair H, Brooks WA, Katz M, Roca A, Berkley JA, Madhi SA, Simmerman JM, Gordon A, Sato M, Howie S (2011) Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis. Lancet 378(9807):1917

    Google Scholar 

  153. Feng KJ, Yang YH, Wang ZJ, Jiang JH, Shen GL, Yu RQ (2006) A nano-porous CeO2/Chitosan composite film as the immobilization matrix for colorectal cancer DNA sequence-selective electrochemical biosensor. Talanta 70(3):561–565

    CAS  Google Scholar 

  154. Li S, Wang L, Li Y, Zhu X, Liang Z, Lu L, Zhang W, Liu B, Xie G, Feng W (2013) Electrochemical determination of BCR/ABL fusion gene based on in situ synthesized gold nanoparticles and cerium dioxide nanoparticles. Colloids Surf, B 112(12):344–349

    CAS  Google Scholar 

  155. Zhang W, Yang T, Zhuang X, Guo Z, Jiao K (2009) An ionic liquid supported CeO2 nanoshuttles-carbon nanotubes composite as a platform for impedance DNA hybridization sensing. Biosens Bioelectron 24(8):2417

    CAS  Google Scholar 

  156. Bulbul G, Hayat A, Mustafa F, Andreescu S (2018) DNA assay based on nanoceria as fluorescence quenchers (NanoCeracQ DNA assay). Sci Rep 8(1):2426. https://doi.org/10.1038/s41598-018-20659-9

    Article  CAS  Google Scholar 

  157. Lu L, Liu B, Li S, Zhang W, Xie G (2011) Improved electrochemical immunosensor for myeloperoxidase in human serum based on nanogold/cerium dioxide-BMIMPF6/L-Cysteine composite film. Colloids Surf B Biointerfaces 86(2):339–344

    CAS  Google Scholar 

  158. Li F, Hu X, Wang F, Zheng B, Du J, Xiao D (2018) A fluorescent “on-off-on” probe for sensitive detection of ATP based on ATP displacing DNA from nanoceria. Talanta

    Google Scholar 

  159. Bargheer D, Nielsen J, Gã©Bel G, Heine M, Salmen SC, Stauber R, Weller H, Heeren J, Nielsen P (2015) The fate of a designed protein corona on nanoparticles in vitro and in vivo. Beilstein J Nanotechnol 6(1):36–46

    Google Scholar 

  160. Feliu N, Docter D, Heine M, Del PP, Ashraf S, Kolosnjaj-Tabi J, Macchiarini P, Nielsen P, Alloyeau D, Gazeau F (2016) In vivo degeneration and the fate of inorganic nanoparticles. Chem Soc Rev 45(9):2440

    CAS  Google Scholar 

  161. Arami H, Khandhar A, Liggitt D, Krishnan KM (2015) In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 44(23):8576–8607

    CAS  Google Scholar 

  162. Lu C, Huang Z, Liu B, Liu Y, Ying Y, Liu J (2017) Poly-cytosine DNA as a high-affinity ligand for inorganic nanomaterials. Ange Chemie 56(22)

    Google Scholar 

  163. Yang D, Fa M, Gao L, Zhao R, Luo Y, Yao X (2018) The effect of DNA on the oxidase activity of nanoceria with different morphologies. Nanotechnology 29(38). https://doi.org/10.1088/1361-6528/aacf86

  164. Zhao F (2011) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7(10):1322–1337

    CAS  Google Scholar 

  165. Shah J, Purohit R, Singh R, Karakoti AS, Singh S (2015) ATP-enhanced peroxidase-like activity of gold nanoparticles. J Colloid Interface Sci 456:100–107

    CAS  Google Scholar 

  166. Nemmar A, Yuvaraju P, Beegam S, Fahim MA, Ali BH (2017) Cerium oxide nanoparticles in lung acutely induce oxidative stress, inflammation, and DNA damage in various organs of mice. Oxid Med Cell Longev 2017:9639035. https://doi.org/10.1155/2017/9639035

    Article  CAS  Google Scholar 

  167. Karakoti A, Singh S, Dowding JM, Seal S, Self WT (2010) Redox-active radical scavenging nanomaterials. Chem Soc Rev 39(11):4422–4432. https://doi.org/10.1039/b919677n

    Article  CAS  Google Scholar 

  168. Celardo I, Traversa E, Ghibelli L (2011) Cerium oxide nanoparticles: a promise for applications in therapy. J Exp Therap Oncol 9(1):47

    CAS  Google Scholar 

  169. Estevez AY, Erlichman JS (2014) The potential of cerium oxide nanoparticles (nanoceria) for neurodegenerative disease therapy. Nanomedicine 9(10):1437–1440

    CAS  Google Scholar 

  170. Wong LL, McGinnis JF (2014) Nanoceria as bona fide catalytic antioxidants in medicine: what we know and what we want to know. Adv Exp Med Biol 801:821–828. https://doi.org/10.1007/978-1-4614-3209-8_103

    Article  Google Scholar 

  171. Yokel RA, Hussain S, Garantziotis S, Demokritou P, Castranova V, Cassee FR (2014) The Yin: an adverse health perspective of nanoceria: uptake, distribution, accumulation, and mechanisms of its toxicity. Environ Sci Nano 1(5):406–428. https://doi.org/10.1039/C4EN00039K

    Article  CAS  Google Scholar 

  172. Walkey C, Das S, Seal S, Erlichman J, Heckman K, Ghibelli L, Traversa E, McGinnis JF, Self WT (2015) Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environ Sci Nano 2(1):33–53. https://doi.org/10.1039/C4EN00138A

    Article  CAS  Google Scholar 

  173. Cai X, McGinnis JF (2016) Nanoceria: a potential therapeutic for dry AMD. Adv Exp Med Biol 854:111–118. https://doi.org/10.1007/978-3-319-17121-0_16

    Article  CAS  Google Scholar 

  174. Singh S (2016) Cerium oxide based nanozymes: Redox phenomenon at biointerfaces. Biointerphases 11(4):04B202. https://doi.org/10.1116/1.4966535

    Article  CAS  Google Scholar 

  175. Naz S, Beach J, Heckert B, Tummala T, Pashchenko O, Banerjee T, Santra S (2017) Cerium oxide nanoparticles: a ‘radical’ approach to neurodegenerative disease treatment. Nanomedicine (London, England) 12(5):545–553. https://doi.org/10.2217/nnm-2016-0399

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 81930050, 31871005, 31530026, 31900981), Chinese Academy of Sciences under Grant No. YJKYYQ20180048, the Strategic Priority Research Program (No. XDB29040101), the Key Research Program of Frontier Sciences (No. QYZDY-SSW-SMC013), Chinese Academy of Sciences and National Key Research and Development Program of China (No. 2017YFA0205501), and Youth Innovation Promotion Association CAS (2019093).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kelong Fan or Xiyun Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, R., Fan, K., Yan, X. (2020). Cerium Oxide Based Nanozymes. In: Yan, X. (eds) Nanozymology. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1490-6_9

Download citation

Publish with us

Policies and ethics