Skip to main content

Phase Transitions of Starch and Molecular Mechanisms

  • Chapter
  • First Online:
Starch Structure, Functionality and Application in Foods

Abstract

Starch is a macro-constituent and the most important glycemic carbohydrate of many cereal-based foods. Gelatinization and retrogradation are two major phase transitions that determine the susceptibility of starch to enzymatic digestion and its functional properties for food processing and storage. The molecular mechanisms and measurements of phase transitions, and factors influencing starch gelatinization and retrogradation, have been studied extensively to better understand how these processes affect the quality and nutritive properties of starchy foods. This chapter provides a comprehensive review of starch gelatinization and retrogradation, including the definition of the processes and molecular mechanisms of how they occur, as well as measurement methods and influencing factors. The review also discusses the effect of gelatinization and retrogradation on the in vitro enzyme digestibility of starch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang S, Copeland L. Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: a review. Food Funct. 2013;4(11):1564–80.

    CAS  PubMed  Google Scholar 

  2. Li D, Fayet C, Homer S. Effect of NaCl on the thermal behaviour of wheat starch in excess and limited water. Carbohydr Polym. 2013;94(1):31–7.

    Google Scholar 

  3. Wajiras R, Chika O, Davids J. DSC enthalpic transitions during starch gelatinisation in excess water, dilute sodium chloride and dilute sucrose solutions. J Sci Food Agric. 2009;89(12):2156–64.

    Google Scholar 

  4. Considine T, Noisuwan A, Hemar Y, Wilkinson B, Bronlund J, Kasapis S. Rheological investigations of the interactions between starch and milk proteins in model dairy systems: a review. Food Hydrocoll. 2011;25(8):2008–201725.

    CAS  Google Scholar 

  5. Noisuwan A, Bronlund J, Wilkinson B, Hemar Y. Effect of milk protein products on the rheological and thermal (DSC) properties of normal rice starch and waxy rice starch. Food Hydrocoll. 2008;22(1):174–83.

    CAS  Google Scholar 

  6. Chiotelli E, Pilosio G, Meste ML. Effect of sodium chloride on the gelatinization of starch: a multimeasurement study. Biopolymers. 2002;63(1):41–58.

    CAS  PubMed  Google Scholar 

  7. Samutsri W, Suphantharika M. Effect of salts on pasting, thermal, and rheological properties of rice starch in the presence of non-ionic and ionic hydrocolloids. Carbohydr Polym. 2012;87(2):1559–68.

    CAS  Google Scholar 

  8. Sopade PA, Halley PJ, Junming LL. Gelatinisation of starch in mixtures of sugars. II. Application of differential scanning calorimetry. Carbohydr Polym. 2004;58(3):311–21.

    CAS  Google Scholar 

  9. Ahmad FB, Williams PA. Effect of sugars on the thermal and rheological properties of sago starch. J Agric Food Chem. 2001;49(3):1578–86.

    CAS  PubMed  Google Scholar 

  10. Maaurf AG, Che MY, Asbi BA, Junainah AH, Kennedy JF. Gelatinisation of sago starch in the presence of sucrose and sodium chloride as assessed by differential scanning calorimetry. Carbohydr Polym. 2001;45(4):335–45.

    CAS  Google Scholar 

  11. Gunaratne A, Ranaweera S, Corke H. Thermal, pasting, and gelling properties of wheat and potato starches in the presence of sucrose, glucose, glycerol, and hydroxypropyl β-cyclodextrin. Carbohydr Polym. 2007;70(1):112–22.

    CAS  Google Scholar 

  12. Kohyama K, Nishinari K. Effect of soluble sugars on gelatinization and retrogradation of sweet potato starch. J Agric Food Chem. 1991;39(8):1406–10.

    CAS  Google Scholar 

  13. Hardin M. Macromolecular interactions during gelatinisation and retrogradation in starch-whey systems as studied by rapid visco-analyser. Int J Food Eng. 2006;2(4):1–17.

    Google Scholar 

  14. Atwell WA, Hood LF, Lineback DR, Zobel HF, Varriano-Marston E. The terminology and methodology associated with basic starch phenomena. Cereal Foods World. 1988;33(3):306–11.

    Google Scholar 

  15. Biliaderis CG. Structural transitions and related physical properties of starch. In: BeMiller J, Whistler R, editors. Starch. 3rd ed. New York: Academic; 2009. p. 293–372.

    Google Scholar 

  16. Ratnayake WS, Jackson DS. Starch gelatinization. J Appl Polym Sci. 1975;19(2):221–68.

    Google Scholar 

  17. BeMiller JN. Pasting, paste, and gel properties of starch-hydrocolloid combinations. Carbohydr Polym. 2011;86(2):386–423.

    CAS  Google Scholar 

  18. Ii JWM, Pacsu E. Starch studies. Gelatinization of starches in water and in aqueous pyridine. Indengchem. 1942;34(7):807–12.

    Google Scholar 

  19. Goering KJ, Fritts DH, Allen GD. A comparison of loss of birefringence with the percent gelatinization and viscosity on potato, wheat, rice, corn, cow cockle, and several barley starches. Cereal Chem. 1974;51:764–71.

    Google Scholar 

  20. Leach HW. Gelatinization of starch. In: Whistler RL, Paschal EF, editors. Starch: chemistry and technology. New York: Academic; 1965. p. 289–307.

    Google Scholar 

  21. Watson SA. Determination of starch gelatinization temperature. In: Whistler RL, editor. Methods in carbohydrate chemistry. New York: Academic; 1964. p. 240–2.

    Google Scholar 

  22. Shetty RM, Lineback DR, Seib PA. Determining the degree of starch gelatinization. Cereal Chem. 1974;51:364–75.

    CAS  Google Scholar 

  23. Stevens DJ, Elton GH. Thermal properties of starch/water system. Part I. Measurement of heat of gelatinisation by differential scanning calorimetry. Starch-Stärke. 1971;23(1):8–11.

    CAS  Google Scholar 

  24. Goldstein A, Nantanga KKM, Seetharaman K. Molecular interactions in starch-water systems: effect of increasing starch concentration. Cereal Chem. 2010;87(4):370–5.

    CAS  Google Scholar 

  25. Wootton M, Bamunuarachchi A. Application of differential scanning calorimetry to starch gelatinization. I. Commercial native and modified starches. Starch-Stärke. 1979;31(6):201–4.

    CAS  Google Scholar 

  26. Donovan JW. Phase transitions of starch-water system. Biopolymers. 1979;18(2):263–75.

    CAS  Google Scholar 

  27. Wang S, Copeland L. Phase transitions of pea starch over a wide range of water content. J Agric Food Chem. 2012;60(25):6439–46.

    CAS  PubMed  Google Scholar 

  28. Patel B, Seetharaman K. Effect of heating rate at different moisture contents on starch retrogradation and starch-water interactions during gelatinization. Starch-Stärke. 2010;62(10):538–46.

    CAS  Google Scholar 

  29. Garcia V, Colonna P, Bouchet B, Gallant DJ. Structural changes of cassava starch granules after heating at intermediate water contents. Starch-Stärke. 1997;49(5):171–9.

    CAS  Google Scholar 

  30. Tomka I. Thermoplastic starch. In: Levine H, Slade L, editors. Water relationships in foods. New York: Springer; 1991. p. 627–37.

    Google Scholar 

  31. Steeneken PAM, Woortman AJJ. Identification of the thermal transitions in potato starch at a low water content as studied by preparative DSC. Carbohydr Polym. 2009;77(2):288–92.

    CAS  Google Scholar 

  32. Jang JK, Pyun YR. Effect of moisture content on the melting of wheat starch. Starch-Stärke. 1996;48(2):48–51.

    CAS  Google Scholar 

  33. Le Bail P, Bizot H, Ollivon M, Keller G, Bourgaux C, Buléon A. Monitoring the crystallization of amylose-lipid complexes during maize starch melting by synchrotron X-ray diffraction. Biopolymers. 1999;50(1):99–110.

    Google Scholar 

  34. Randzio SL, Flis-Kabulska I, Grolier JPE. Reexamination of phase transformations in the starch-water system. Macromolecules. 2002;35(23):8852–9.

    CAS  Google Scholar 

  35. Liu H, Lelièvre J. Effects of heating rate and sample size on differential scanning calorimetry traces of starch gelatinized at intermediate water levels. Starch-Stärke. 1991;43(6):225–7.

    CAS  Google Scholar 

  36. Fredriksson H, Silverio J, Andersson R, Eliasson AC, Åman P. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr Polym. 1998;35(3–4):119–34.

    CAS  Google Scholar 

  37. Biliaderis CG, Page CM, Maurice TJ, Juliano BO. Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch. J Agric Food Chem. 1986;34(1):6–14.

    CAS  Google Scholar 

  38. Garcia V, Colonna P, Lourdin D, Buleon A, Bizot H, Ollivon M. Thermal transitions of cassava starch at intermediate water contents. J Therm Anal. 1996;47(5):1213–28.

    CAS  Google Scholar 

  39. Yu L, Christie G. Measurement of starch thermal transitions using differential scanning calorimetry. Carbohydr Polym. 2001;46(2):179–84.

    CAS  Google Scholar 

  40. Derycke V, Vandeputte GE, Vermeylen R, Man W, Goderis B, Mhj K, et al. Starch gelatinization and amylose-lipid interactions during rice parboiling investigated by temperature resolved wide angle X-ray scattering and differential scanning calorimetry. J Cereal Sci. 2005;42(3):334–43.

    CAS  Google Scholar 

  41. Jovanovich G, Añón MC. Amylose-lipid complex dissociation. A study of the kinetic parameters. Biopolymers. 2015;49(1):81–9.

    Google Scholar 

  42. Raphaelides S, Karkalas J. Thermal dissociation of amylose-fatty acid complexes. Carbohydr Res. 1988;172(1):65–82.

    CAS  Google Scholar 

  43. Biliaderis CG, Page CM, Slade L, Sirett RR. Thermal behavior of amylose-lipid complexes. Carbohydr Polym. 1985;5(5):367–89.

    CAS  Google Scholar 

  44. Kugimiya M, Donovan JW, Wong RY. Phase transitions of amylose-lipid complexes in starches: a calorimetric study. Starch-Stärke. 1980;32(8):265–70.

    CAS  Google Scholar 

  45. Russell PL. Gelatinisation of starches of different amylose/amylopectin content. A study by differential scanning calorimetry. J Cereal Sci. 1987;6(2):133–45.

    CAS  Google Scholar 

  46. Liu P, Xie F, Li M, Liu X, Yu L, Halley PJ, et al. Phase transitions of maize starches with different amylose contents in glycerol-water systems. Carbohydr Polym. 2011;85(1):180–7.

    CAS  Google Scholar 

  47. Maurice TJ, Slade L, Sirett RR, Page CM. Polysaccharide-water interactions-thermal behavior of rice starch. In: Simatos D, Multon SL, Nijhoff M, editors. Influence of water on food quality and stability. Dordrecht: Nijhoff M; 1985. p. 211–27.

    Google Scholar 

  48. Wang S, Copeland L. New insights into loss of swelling power and pasting profiles of acid hydrolyzed starch granules. Starch-Stärke. 2012;64(7):538–44.

    CAS  Google Scholar 

  49. Wang S, Copeland L. Nature of thermal transitions of native and acid-hydrolysed pea starch: does gelatinization really happen? Carbohydr Polym. 2012;87(2):1507–14.

    CAS  Google Scholar 

  50. Tester RF, Morrison WR. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem. 1990;67(6):551–7.

    CAS  Google Scholar 

  51. Wang S, Zhang X, Wang S, Copeland L. Changes of multi-scale structure during mimicked DSC heating reveal the nature of starch gelatinization. Sci Rep. 2016;6:28271.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Vermeylen R, Derycke V, Delcour JA, Goderis B, Reynaers H, Koch MHJ. Gelatinization of starch in excess water: beyond the melting of lamellar crystallites. A combined wide-and small-angle X-ray scattering study. Biomacromolecules. 2006;7(9):2624–30.

    CAS  PubMed  Google Scholar 

  53. Jenkins PJ, Donald AM. Gelatinisation of starch: a combined SAXS/WAXS/DSC and SANS study. Carbohydr Res. 1998;308(1):133–47.

    CAS  Google Scholar 

  54. Biliaderis CG, Maurice TJ, Vose JR. Starch gelatinization phenomena studied by differential scanning calorimetry. J Food Sci. 1980;45(6):1669–74.

    Google Scholar 

  55. Wong RBK, Lelievre J. Comparison of the crystallinities of wheat starches with different swelling capacities. Starch-Stärke. 1982;34(5):159–61.

    CAS  Google Scholar 

  56. Cruz-Orea A, Pitsi G, Jamée P, Thoen J. Phase transitions in the starch-water system studied by adiabatic scanning calorimetry. J Agric Food Chem. 2002;50(6):1335–44.

    CAS  PubMed  Google Scholar 

  57. Fukuoka M, Ohta K-I, Watanabe H. Determination of the terminal extent of starch gelatinization in a limited water system by DSC. J Food Eng. 2002;53(1):39–42.

    Google Scholar 

  58. Tananuwong K, Reid DS. DSC and NMR relaxation studies of starch-water interactions during gelatinization. Carbohydr Polym. 2004;58(3):345–58.

    CAS  Google Scholar 

  59. Liu H, Yu L, Xie F, Chen L. Gelatinization of cornstarch with different amylose/amylopectin content. Carbohydr Polym. 2006;65(3):357–63.

    CAS  Google Scholar 

  60. Wang S, Li C, Yu J, Copeland L, Wang S. Phase transition and swelling behaviour of different starch granules over a wide range of water content. LWT-Food Sci Technol. 2014;59(2):597–604.

    CAS  Google Scholar 

  61. Evans ID, Haisman DR. The effect of solutes on the gelatinization temperature range of potato starch. Starch-Stärke. 1982;34(7):224–31.

    CAS  Google Scholar 

  62. Liu H, Lelievre J, Ayoung-Chee W. A study of starch gelatinization using differential scanning calorimetry, X-ray, and birefringence measurements. Carbohydr Res. 1991;210:79–87.

    CAS  Google Scholar 

  63. Liu H, Lelièvre J. A differential scanning calorimetry study of melting transitions in aqueous suspensions containing blends of wheat and rice starch. Carbohydr Polym. 1992;17(2):145–9.

    CAS  Google Scholar 

  64. Nakazawa F, Noguchi S, Takahashi J, Takada M. Thermal equilibrium state of starch-water mixture studied by differential scanning calorimetry. Agric Biol Chem. 1984;48(11):2647–53.

    CAS  Google Scholar 

  65. Slade L, Levine H. Non-equilibrium melting of native granular starch: part I. Temperature location of the glass transition associated with gelatinization of A-type cereal starches. Carbohydr Polym. 1988;8(3):183–208.

    CAS  Google Scholar 

  66. Waigh TA, Gidley MJ, Komanshek BU, Donald AM. The phase transformations in starch during gelatinisation: a liquid crystalline approach. Carbohydr Res. 2000;328(2):165–76.

    CAS  PubMed  Google Scholar 

  67. Vermeylen R, Derycke V, Delcour JA, Goderis B, Reynaers H, Koch MHJ. Structural transformations during gelatinization of starches in limited water: combined wide-and small-angle X-ray scattering study. Biomacromolecules. 2006;7(4):1231–8.

    CAS  PubMed  Google Scholar 

  68. Li Q, Xie Q, Yu S, Gao Q. New approach to study starch gelatinization applying a combination of hot-stage light microscopy and differential scanning calorimetry. J Agric Food Chem. 2013;61(6):1212–8.

    CAS  PubMed  Google Scholar 

  69. Baks T, Ngene IS, Van Soest JJG, Janssen AEM, Boom RM. Comparison of methods to determine the degree of gelatinisation for both high and low starch concentrations. Carbohydr Polym. 2007;67(4):481–90.

    CAS  Google Scholar 

  70. Parada J, Aguilera JM. Starch matrices and the glycemic response. Food Sci Technol Int. 2011;17(3):187–204.

    CAS  PubMed  Google Scholar 

  71. Liu K, Han J. Enzymatic method for measuring starch gelatinization in dry products in situ. J Agric Food Chem. 2012;60(17):4212–21.

    CAS  PubMed  Google Scholar 

  72. Holm J, Lundquist I, Björck I, Eliasson AC, Asp NG. Degree of starch gelatinization, digestion rate of starch in vitro, and metabolic response in rats. Am J Clin Nutr. 1988;47(6):1010–6.

    CAS  PubMed  Google Scholar 

  73. Di Paola RD, Asis R, Aldao MAJ. Evaluation of the degree of starch gelatinization by a new enzymatic method. Starch-Stärke. 2003;55(9):403–9.

    Google Scholar 

  74. Wang S, Wang S, Liu L, Wang S, Copeland L. Structural orders of wheat starch do not determine the in vitro enzymatic digestibility. J Agric Food Chem. 2017;65(8):1697–706.

    CAS  PubMed  Google Scholar 

  75. Svihus B, Uhlen AK, Harstad OM. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: a review. Anim Feed Sci Technol. 2005;122(3):303–20.

    CAS  Google Scholar 

  76. Debet MR, Gidley MJ. Why do gelatinized starch granules not dissolve completely? Roles for amylose, protein, and lipid in granule “ghost” integrity. J Agric Food Chem. 2007;55(12):4752–60.

    CAS  PubMed  Google Scholar 

  77. Goesaert H, Brijs K, Veraverbeke WS, Courtin CM, Gebruers K, Delcour JA. Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci Technol. 2005;16(1):12–30.

    CAS  Google Scholar 

  78. Hoover R, Hughes T, Chung HJ, Liu Q. Composition, molecular structure, properties, and modification of pulse starches: a review. Food Res Int. 2010;43(2):399–413.

    CAS  Google Scholar 

  79. Ring SG, Colonna P, I’Anson KJ, Kalichevsky MT, Miles MJ, Morris VJ, et al. The gelation and crystallisation of amylopectin. Carbohydr Res. 1987;162(2):277–93.

    CAS  Google Scholar 

  80. Hoover R. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym. 2001;45(3):253–67.

    CAS  Google Scholar 

  81. Jane JL, Robyt JF. Structure studies of amylose-V complexes and retrograded amylose by action of alpha amylases, and a new method for preparing amylodextrins. Carbohydr Res. 1984;132(1):105–18.

    CAS  PubMed  Google Scholar 

  82. Leloup VM, Colonna P, Ring SG, Roberts K, Wells B. Microstructure of amylose gels. Carbohydr Polym. 1992;18(3):189–97.

    CAS  Google Scholar 

  83. Shi YC, Seib PA. The structure of four waxy starches related to gelatinization and retrogradation. Carbohydr Res. 1992;227(92):131–45.

    CAS  Google Scholar 

  84. Yang F, Chen Y, Tong C, Huang Y, Xu F, Li K, et al. Association mapping of starch physicochemical properties with starch synthesis-related gene markers in nonwaxy rice (Oryza sativa L.). Mol Breed. 2014;34(4):1747–63.

    CAS  Google Scholar 

  85. Tang MC, Copeland L. Investigation of starch retrogradation using atomic force microscopy. Carbohydr Polym. 2007;70(1):1–7.

    CAS  Google Scholar 

  86. Ishiguro K, Noda T, Kitahara K, Yamakawa O. Retrogradation of sweet potato starch. Starch-Stärke. 2000;52(1):13–7.

    CAS  Google Scholar 

  87. Miles MJ, Morris VJ, Orford PD, Ring SG. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr Res. 1985;135(2):271–81.

    CAS  Google Scholar 

  88. Tran UT, Okadome H, Murata M, Homma S, Ohtsubo K. Comparison of Vietnamese and Japanese rice cultivars in terms of physicochemical properties. Food Sci Technol Res. 2001;7(4):323–30.

    CAS  Google Scholar 

  89. Fadda C, Sanguinetti AM, Del Caro A, Collar C, Piga A. Bread staling: updating the view. Compr Rev Food Sci Food Saf. 2014;13(4):473–92.

    CAS  Google Scholar 

  90. Gray JA, Bemiller JN. Bread staling: molecular basis and control. Compr Rev Food Sci Food Saf. 2003;2(1):1–21.

    CAS  Google Scholar 

  91. Mua JP, Jackson DS. Retrogradation and gel textural attributes of corn starch amylose and amylopectin fractions. J Cereal Sci. 1998;27(2):157–66.

    CAS  Google Scholar 

  92. McIver RG, Axford DWE, Colwell KH, Elton GAH. Kinetic study of the retrogradation of gelatinised starch. J Sci Food Agric. 1968;19(10):560–3.

    CAS  Google Scholar 

  93. Yao Y, Ding X. Pulsed nuclear magnetic resonance (PNMR) study of rice starch retrogradation. Cereal Chem. 2002;79(6):751.

    CAS  Google Scholar 

  94. Tian Y, Yang N, Li Y, Xu X, Zhan J, Jin Z. Potential interaction between β-cyclodextrin and amylose-lipid complex in retrograded rice starch. Carbohydr Polym. 2010;80(2):581–4.

    CAS  Google Scholar 

  95. Tian Y, Li Y, Xu X, Jin Z, Jiao A, Wang J, et al. A novel size-exclusion high performance liquid chromatography (SE-HPLC) method for measuring degree of amylose retrogradation in rice starch. Food Chem. 2010;118(2):445–8.

    CAS  Google Scholar 

  96. Karim AA, Norziah MH, Seow CC. Methods for the study of starch retrogradation. Food Chem. 2000;71(1):9–36.

    CAS  Google Scholar 

  97. Bao J, Shen Y, Jin L. Determination of thermal and retrogradation properties of rice starch using near-infrared spectroscopy. J Cereal Sci. 2007;46(1):75–81.

    CAS  Google Scholar 

  98. Russell PL. The ageing of gels from starches of different amylose/amylopectin content studied by differential scanning calorimetry. J Cereal Sci. 1987;6(2):147–58.

    CAS  Google Scholar 

  99. Wang S, Li C, Copeland L, Niu Q, Wang S. Starch retrogradation: a comprehensive review. Compr Rev Food Sci Food Saf. 2015;14(5):568–85.

    CAS  Google Scholar 

  100. Kong X, Zhu P, Sui Z, Bao J. Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chem. 2015;172:433–40.

    CAS  PubMed  Google Scholar 

  101. Tian Y, Li Y, Xu X, Jin Z. Starch retrogradation studied by thermogravimetric analysis (TGA). Carbohydr Polym. 2011;84(3):1165–8.

    CAS  Google Scholar 

  102. Tian Y, Xu X, Xie Z, Zhao J, Jin Z. Starch retrogradation determined by differential thermal analysis (DTA). Food Hydrocoll. 2011;25(6):1637–9.

    CAS  Google Scholar 

  103. Vandeputte GE, Vermeylen R. Rice starches. III. Structural aspects provide insight in amylopectin retrogradation properties and gel texture. J Cereal Sci. 2003;38(1):61–8.

    CAS  Google Scholar 

  104. Jankowski T. Influence of starch retrogradation on the texture of cooked potato tuber. Int J Food Sci Technol. 2010;27(6):637–42.

    Google Scholar 

  105. Hallberg LM, Chinachoti P. A fresh perspective on staling: the significance of starch recrystallization on the firming of bread. J Food Sci. 2002;67(3):1092–6.

    CAS  Google Scholar 

  106. Shiraishi K, Lauzon RD, Yamazaki M, Sawayama S, Sugiyama N, Kawabata A. Rheological properties of cocoyam starch paste and gel. Food Hydrocoll. 1995;9(2):69–75.

    CAS  Google Scholar 

  107. Biliaderis CG, Zawistowski J. Viscoelastic behavior of aging starch gels: effects of concentration, temperature, and starch hydrolysates on network properties. Cereal Chem. 1990;67(3):240–6.

    CAS  Google Scholar 

  108. Akuzawa S, Sawayama S, Kawabata A. Dynamic viscoelasticity and stress relaxation in starch pastes. J Texture Stud. 1995;26(5):489–500.

    Google Scholar 

  109. Rosenthal AJ. Texture profile analysis-how important are the parameters? J Texture Stud. 2010;41(5):672–84.

    Google Scholar 

  110. Yu S, Ma Y, Sun D-W. Effects of freezing rates on starch retrogradation and textural properties of cooked rice during storage. LWT-Food Sci Technol. 2010;43(7):1138–43.

    CAS  Google Scholar 

  111. Yu S, Ma Y, Sun D-W. Impact of amylose content on starch retrogradation and texture of cooked milled rice during storage. J Cereal Sci. 2009;50(2):139–44.

    CAS  Google Scholar 

  112. Zaidul ISM, Norulaini NAN, Omar AKM, Yamauchi H, Noda T. RVA analysis of mixtures of wheat flour and potato, sweet potato, yam, and cassava starches. Carbohydr Polym. 2007;69(4):784–91.

    CAS  Google Scholar 

  113. Larkin P, editor. Infrared and Raman spectroscopy: principles and spectral interpretation. Amsterdam: Elsevier; 2011.

    Google Scholar 

  114. Htoon A, Shrestha AK, Flanagan BM, Lopezrubio A, Bird AR, Gilbert EP, et al. Effects of processing high amylose maize starches under controlled conditions on structural organisation and amylase digestibility. Carbohydr Polym. 2009;75(2):236–45.

    CAS  Google Scholar 

  115. Wang S, Luo H, Zhang J, Zhang Y, He Z, Wang S. Alkali-induced changes in functional properties and in vitro digestibility of wheat starch: the role of surface proteins and lipids. J Agric Food Chem. 2014;62(16):3636.

    CAS  PubMed  Google Scholar 

  116. Soest JJGV, Wit DD, Tournois H, Vliegenthart JFG. The influence of glycerol on structural changes in waxy maize starch as studied by Fourier transform infra-red spectroscopy. Polymer. 1994;35(22):4722–7.

    Google Scholar 

  117. Flores-Morales A, Jiménez-Estrada M, Mora-Escobedo R. Determination of the structural changes by FT-IR, Raman, and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydr Polym. 2012;87(1):61–8.

    CAS  Google Scholar 

  118. Ambigaipalan P, Hoover R, Donner E, Liu Q. Retrogradation characteristics of pulse starches. Food Res Int. 2013;54(1):203–12.

    CAS  Google Scholar 

  119. Lian X, Zhu W, Wen Y, Li L, Zhao X. Effects of soy protein hydrolysates on maize starch retrogradation studied by IR spectra and ESI-MS analysis. Int J Biol Macromol. 2013;59(4):143.

    CAS  PubMed  Google Scholar 

  120. Thygesen LG, Lokke MM, Micklander E, Engelsen SB. Vibrational microspectroscopy of food. Raman vs. FT-IR. Trends Food Sci Technol. 2003;14(1–2):50–7.

    CAS  Google Scholar 

  121. Nuopponen MH, Wikberg HI, Birch GM, Jääskeläinen AS, Maunu SL, Vuorinen T, et al. Characterization of 25 tropical hardwoods with Fourier transform infrared, ultraviolet resonance Raman, and 13C-NMR cross-polarization/magic-angle spinning spectroscopy. J Appl Polym Sci. 2006;102(1):810–9.

    CAS  Google Scholar 

  122. Cho SY, Choi SG, Rhee C. Determination of degree of retrogradation of cooked rice by near infrared reflectance spectroscopy. Korean J Food Sci Technol. 1998;6(1):355–9.

    Google Scholar 

  123. Mariotti M, Sinelli N, Catenacci F, Pagani MA, Lucisano M. Retrogradation behaviour of milled and brown rice pastes during ageing. J Cereal Sci. 2009;49(2):171–7.

    CAS  Google Scholar 

  124. Barton FE, Himmelsbach DS, McClung AM, Champagne EL. Two-dimensional vibration spectroscopy of rice quality and cooking. Cereal Chem. 2002;79(1):143–7.

    CAS  Google Scholar 

  125. Li-Chan ECY. The applications of Raman spectroscopy in food science. Trends Food Sci Technol. 1996;7(11):361–70.

    CAS  Google Scholar 

  126. Wang S, Copeland L. Effect of acid hydrolysis on starch structure and functionality: a review. Crit Rev Food Sci Nutr. 2015;55(8):1081–97.

    CAS  PubMed  Google Scholar 

  127. Socrates G, editor. Infrared and Raman characteristic group frequencies: tables and charts. Chichester: Wiley; 2004.

    Google Scholar 

  128. Schuster KC, Urlaub E, Gapes JR. Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture. J Microbiol Methods. 2000;42(1):29–38.

    CAS  PubMed  Google Scholar 

  129. Kizil R, Irudayaraj J, Seetharaman K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J Agric Food Chem. 2002;50(14):3912–8.

    CAS  PubMed  Google Scholar 

  130. Fechner PM, Wartewig S, Kleinebudde P, Neubert RHH. Studies of the retrogradation process for various starch gels using Raman spectroscopy. Carbohydr Res. 2005;340(16):2563–8.

    CAS  PubMed  Google Scholar 

  131. Hu X, Shi J, Zhang F, Zou X, Holmes M, Zhang W, et al. Determination of retrogradation degree in starch by mid-infrared and Raman spectroscopy during storage. Food Anal Methods. 2017;10(11):3694–705.

    Google Scholar 

  132. Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev. 1946;69(1–2):37.

    CAS  Google Scholar 

  133. Bloch F. Nuclear induction. Phys Rev. 1946;70(7–8):460.

    CAS  Google Scholar 

  134. Malet-Martino M, Holzgrabe U. NMR techniques in biomedical and pharmaceutical analysis. J Pharm Biomed Anal. 2011;55(1):1–15.

    CAS  PubMed  Google Scholar 

  135. Bertocchi F, Paci M. Applications of high-resolution solid-state NMR spectroscopy in food science. J Agric Food Chem. 2008;56(20):9317–27.

    CAS  PubMed  Google Scholar 

  136. Ablett S. Overview of NMR applications in food science. Trends Food Sci Technol. 1992;3:246–50.

    CAS  Google Scholar 

  137. Teo CH, Seow CC. A pulsed NMR method for the study of starch retrogradation. Starch-Stärke. 1992;44(8):288–92.

    CAS  Google Scholar 

  138. Bosmans GM, Lagrain B, Fierens E, Delcour JA. The impact of baking time and bread storage temperature on bread crumb properties. Food Chem. 2013;141(4):3301–8.

    CAS  PubMed  Google Scholar 

  139. Bosmans GM, Lagrain B, Deleu LJ, Fierens E, Hills BP, Delcour JA. Assignments of proton populations in dough and bread using NMR relaxometry of starch, gluten, and flour model systems. J Agric Food Chem. 2012;60(21):5461–70.

    CAS  PubMed  Google Scholar 

  140. Lewen KS, Paeschke T, Reid J, Molitor P, Schmidt SJ. Analysis of the retrogradation of low starch concentration gels using differential scanning calorimetry, rheology, and nuclear magnetic resonance spectroscopy. J Agric Food Chem. 2003;51(8):2348–58.

    CAS  PubMed  Google Scholar 

  141. Wu JY, Bryant RG, Eads TM. Detection of solid-like components in starch using cross-relaxation and Fourier transform wide line proton NMR methods. J Agric Food Chem. 1992;40(3):449–55.

    CAS  Google Scholar 

  142. Wu JY, Eads TM. Evolution of polymer mobility during ageing of gelatinized waxy maize starch: a magnetization transfer 1H NMR study. Carbohydr Polym. 1993;20(1):51–60.

    CAS  Google Scholar 

  143. Vodovotz Y, Vittadini E, Sachleben JR. Use of 1H cross-relaxation nuclear magnetic resonance spectroscopy to probe the changes in bread and its components during aging. Carbohydr Res. 2002;337(2):147–53.

    CAS  PubMed  Google Scholar 

  144. Gidley MJ, Bociek SM. Molecular organization in starches: a carbon 13CP/MAS NMR study. J Am Chem Soc. 1985;107(24):7040–4.

    CAS  Google Scholar 

  145. Baik M-Y, Dickinson LC, Chinachoti P. Solid-state 13C CP/MAS NMR studies on aging of starch in white bread. J Agric Food Chem. 2003;51(5):1242–8.

    CAS  PubMed  Google Scholar 

  146. Blazek J, Gilbert EP, Copeland L. Effects of monoglycerides on pasting properties of wheat starch after repeated heating and cooling. J Cereal Sci. 2011;54(1):151–9.

    CAS  Google Scholar 

  147. Gidley MJ, Cooke D. Aspects of molecular organization and ultrastructure in starch granules. Biochem Soc Trans. 1991;19(3):551.

    CAS  PubMed  Google Scholar 

  148. Zhou X, Lim ST. Pasting viscosity and in vitro digestibility of retrograded waxy and normal corn starch powders. Carbohydr Polym. 2012;87(1):235–9.

    CAS  Google Scholar 

  149. Fu ZQ, Wang LJ, Li D, Zhou YG, Adhikari B. The effect of partial gelatinization of corn starch on its retrogradation. Carbohydr Polym. 2013;97(2):512.

    CAS  PubMed  Google Scholar 

  150. Hellmann N, Feirchield B, Senti F. The bread staling problem. Molecular organization of starch upon aging of concentrated starch gels at various moisture. Cereal Chem. 1954;31:495–505.

    Google Scholar 

  151. Osella CA, Sánchez HD, Carrara CR, de la Torre MA, Pilar BM. Water redistribution and structural changes of starch during storage of a gluten-free bread. Starch-Stärke. 2005;57(5):208–16.

    CAS  Google Scholar 

  152. Shamai K, Shimoni E, Bianco-Peled H. Small angle X-ray scattering of resistant starch type III. Biomacromolecules. 2004;5(1):219–23.

    CAS  PubMed  Google Scholar 

  153. Suzuki T, Chiba A, Yarno T. Interpretation of small angle X-ray scattering from starch on the basis of fractals. Carbohydr Polym. 1997;34(4):357–63.

    CAS  Google Scholar 

  154. Wang S, Yu J, Gao W, Pang J, Yu J, Xiao P. Characterization of starch isolated from Fritillaria traditional Chinese medicine (TCM). J Food Eng. 2007;80(2):727–34.

    CAS  Google Scholar 

  155. Wang S, Gao W, Jia W, Xiao P. Crystallography, morphology and thermal properties of starches from four different medicinal plants of Fritillaria species. Food Chem. 2006;96(4):591–6.

    CAS  Google Scholar 

  156. Perera C, Hoover R. Influence of hydroxypropylation on retrogradation properties of native, defatted and heat-moisture treated potato starches. Food Chem. 1999;64(3):361–75.

    CAS  Google Scholar 

  157. Jacobson MR, Obanni M, Bemiller JN. Retrogradation of starches from different botanical sources. Cereal Chem. 1997;74(5):511–8.

    CAS  Google Scholar 

  158. Hoover R, Ratnayake WS. Starch characteristics of black bean, chick pea, lentil, navy bean and pinto bean cultivars grown in Canada. Food Chem. 2002;78(4):489–98.

    CAS  Google Scholar 

  159. Yuan RC, Thompson DB. Freeze-thaw stability of three waxy maize starch pastes measured by centrifugation and calorimetry. Cereal Chem. 1998;75(4):571–3.

    CAS  Google Scholar 

  160. Liu J, Wang B, Lin L, Zhang J, Liu W, Xie J, et al. Functional, physicochemical properties and structure of cross-linked oxidized maize starch. Food Hydrocoll. 2014;36:45–52.

    CAS  Google Scholar 

  161. Jankowski T. Influence of starch retrogradation on the texture of cooked potato tuber. Int J Food Sci Technol. 1992;27(6):637–42.

    Google Scholar 

  162. Eerlingen RC, Jacobs H, Delcour J. Enzyme-resistant starch. 5. Effect of retrogradation of waxy maize starch on enzyme susceptibility. Cereal Chem. 1994;71(4):351–5.

    CAS  Google Scholar 

  163. Cui R, Oates CG. The effect of retrogradation on enzyme susceptibility of sago starch. Carbohydr Polym. 1997;32(1):65–72.

    Google Scholar 

  164. Sievert D, Pomeranz Y. Enzyme-resistant starch. I. Characterization and evaluation by enzymatic, thermoanalytical, and microscopic methods. Cereal Chem. 1989;66(4):342–7.

    CAS  Google Scholar 

  165. Kainuma K, Matsunaga A, Itagawa M, Kobayashi S. New enzyme system-beta-amylase-pullulanase-to determine the degree of gelatinization and retrogradation of starch or starch products. J Jpn Soc Starch Sci. 1981;28(4):235–40.

    CAS  Google Scholar 

  166. Tsuge H, Hishida M, Iwasaki H, Watanabe S, Goshima G. Enzymatic evaluation for the degree of starch retrogradation in foods and foodstuffs. Starch-Stärke. 1990;42(6):213–6.

    CAS  Google Scholar 

  167. Wu Y, Lin Q, Chen Z, Wu W, Xiao H. Fractal analysis of the retrogradation of rice starch by digital image processing. J Food Eng. 2012;109(1):182–7.

    CAS  Google Scholar 

  168. Utrilla-Coello RG, Bello-Perez LA, Vernon-Carter EJ, Rodriguez E, Alvarez-Ramirez J. Microstructure of retrograded starch: quantification from lacunarity analysis of SEM micrographs. J Food Eng. 2013;116(4):775–81.

    CAS  Google Scholar 

  169. Putaux J-L, Buleon A, Chanzy H. Network formation in dilute amylose and amylopectin studied by TEM. Macromolecules. 2000;33(17):6416–22.

    CAS  Google Scholar 

  170. Charoenrein S, Tatirat O, Rengsutthi K, Thongngam M. Effect of konjac glucomannan on syneresis, textural properties and the microstructure of frozen rice starch gels. Carbohydr Polym. 2011;83(1):291–6.

    CAS  Google Scholar 

  171. Roulet P, MacInnes WM, Würsch P, Sanchez RM, Raemy A. A comparative study of the retrogradation kinetics of gelatinized wheat starch in gel and powder form using X-rays, differential scanning calorimetry and dynamic mechanical analysis. Food Hydrocoll. 1988;2(5):381–96.

    CAS  Google Scholar 

  172. Zeleznak KJ, Hoseney RC. The role of water in the retrogradation of wheat starch gels and bread crumb. Cereal Chem. 1986;63(5):407–11.

    CAS  Google Scholar 

  173. Jouppila K, Kansikas J, Roos YH. Factors affecting crystallization and crystallization kinetics in amorphous corn starch. Carbohydr Polym. 1998;36(2-3):143–9.

    CAS  Google Scholar 

  174. Zhou X, Wang R, Yoo SH, Lim ST. Water effect on the interaction between amylose and amylopectin during retrogradation. Carbohydr Polym. 2011;86(4):1671–4.

    CAS  Google Scholar 

  175. Longton J, LeGrys GA. Differential scanning calorimetry studies on the crystallinity of ageing wheat starch gels. Starch-Stärke. 1981;33(12):410–4.

    CAS  Google Scholar 

  176. Sievert D, Würsch P. Thermal behavior of potato amylose and enzyme-resistant starch from maize. Cereal Chem. 1993;70:333–8.

    CAS  Google Scholar 

  177. Klucinec JD, Thompson DB. Amylopectin nature and amylose-to-amylopectin ratio as influences on the behavior of gels of dispersed starch. Cereal Chem. 2007;79(1):24–35.

    Google Scholar 

  178. Wang S, Li C, Zhang X, Copeland L, Wang S. Retrogradation enthalpy does not always reflect the retrogradation behavior of gelatinized starch. Sci Rep. 2016;6:20965.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Xie YY, Hu XP, Jin ZY, Xu XM, Chen HQ. Effect of temperature-cycled retrogradation on in vitro digestibility and structural characteristics of waxy potato starch. Int J Biol Macromol. 2014;67:79–84.

    CAS  PubMed  Google Scholar 

  180. Zhou X, Baik B-K, Wang R, Lim S-T. Retrogradation of waxy and normal corn starch gels by temperature cycling. J Cereal Sci. 2010;51(1):57–65.

    CAS  Google Scholar 

  181. Park EY, Baik B-K, Lim S-T. Influences of temperature-cycled storage on retrogradation and in vitro digestibility of waxy maize starch gel. J Cereal Sci. 2009;50(1):43–8.

    CAS  Google Scholar 

  182. Zhang L, Hu X, Xu X, Jin Z, Tian Y. Slowly digestible starch prepared from rice starches by temperature-cycled retrogradation. Carbohydr Polym. 2011;84(3):970–4.

    CAS  Google Scholar 

  183. Singh H, Lin JH, Huang WH, Chang YH. Influence of amylopectin structure on rheological and retrogradation properties of waxy rice starches. J Cereal Sci. 2012;56(2):367–73.

    CAS  Google Scholar 

  184. Ji Y, Zhu K, Qian H, Zhou H. Staling of cake prepared from rice flour and sticky rice flour. Food Chem. 2007;104(1):53–8.

    CAS  Google Scholar 

  185. Niba LL. Processing effects on susceptibility of starch to digestion in some dietary starch sources. Int J Food Sci Nutr. 2003;54(1):97–109.

    CAS  PubMed  Google Scholar 

  186. Mangala SL, Udayasankar K, Tharanathan RN. Resistant starch from processed cereals: the influence of amylopectin and non-carbohydrate constituents in its formation. Food Chem. 1999;64(3):391–6.

    CAS  Google Scholar 

  187. Shi M, Gao Q. Recrystallization and in vitro digestibility of wrinkled pea starch gel by temperature cycling. Food Hydrocoll. 2016;61:712–9.

    CAS  Google Scholar 

  188. Keetels C, Van Vliet T, Walstra P. Gelation and retrogradation of concentrated starch systems: 2. Retrogradation Food Hydrocolloids. 1996;10(3):355–62.

    CAS  Google Scholar 

  189. Fisher DK, Thompson DB. Retrogradation of maize starch after thermal treatment within and above the gelatinization temperature range. Cereal Chem. 1997;74(3):344–51.

    CAS  Google Scholar 

  190. Liu Q, Thompson DB. Retrogradation of du wx and su2 wx maize starches after different gelatinization heat treatments. Cereal Chem. 1998;75(6):868–74.

    CAS  Google Scholar 

  191. Liu H, Yu L, Chen L, Li L. Retrogradation of corn starch after thermal treatment at different temperatures. Carbohydr Polym. 2007;69(4):756–62.

    CAS  Google Scholar 

  192. Chang SM, Liu LC. Retrogradation of rice starches studied by differential scanning calorimetry and influence of sugars, NaCl and lipids. J Food Sci. 1991;56(2):564–6.

    CAS  Google Scholar 

  193. Wang YJ, Jane J. Correlation between glass transition temperature and starch retrogradation in the presence of sugars and maltodextrins. Cereal Chem. 1994;71(6):527–31.

    CAS  Google Scholar 

  194. Smits ALM, Kruiskamp PH, Van Soest JJG, Vliegenthart JFG. The influence of various small plasticisers and malto-oligosaccharides on the retrogradation of (partly) gelatinised starch. Carbohydr Polym. 2003;51(4):417–24.

    CAS  Google Scholar 

  195. Katsuta K, Nishimura A, Miura M. Effects of saccharides on stabilities of rice starch gels. 1. Mono-and disaccharides. Food Hydrocoll. 1992;6(4):387–98.

    CAS  Google Scholar 

  196. Katsuta K, Miura M, Nishimura A. Kinetic treatment for rheological properties and effects of saccharides on retrogradation of rice starch gels. Food Hydrocoll. 1992;6(2):187–98.

    CAS  Google Scholar 

  197. Aee LH, Hie KN, Nishinari K. DSC and rheological studies of the effects of sucrose on the gelatinization and retrogradation of acorn starch. Thermochim Acta. 1998;322(1):39–46.

    Google Scholar 

  198. Germani R, Ciacco CF, Rodriguez-Amaya DB. Effect of sugars, lipids and type of starch on the mode and kinetics of retrogradation of concentrated corn starch gels. Starch-Stärke. 1983;35(11):377–81.

    CAS  Google Scholar 

  199. Cairns P, I’Anson KJ, Morris VJ. The effect of added sugars on the retrogradation of wheat starch gels by X-ray diffraction. Food Hydrocoll. 1991;5(1–2):151–3.

    CAS  Google Scholar 

  200. Katsuta K, Nishimura A, Miura M. Effects of saccharides on stabilities of rice starch gels. 2. Oligosaccharides. Food Hydrocoll. 1992;6(4):399–408.

    CAS  Google Scholar 

  201. Rojas JA, Rosell CM, De Barber CB. Role of maltodextrins in the staling of starch gels. Eur Food Res Technol. 2001;212(3):364–8.

    CAS  Google Scholar 

  202. Durán E, León A, Barber B, de Barber CB. Effect of low molecular weight dextrins on gelatinization and retrogradation of starch. Eur Food Res Technol. 2001;212(2):203–7.

    Google Scholar 

  203. I’Anson KJ, Miles MJ, Morris VJ, Besford LS, Jarvis DA, Marsh RA. The effects of added sugars on the retrogradation of wheat starch gels. J Cereal Sci. 1990;11(3):243–8.

    Google Scholar 

  204. Tian Y, Li Y, Manthey FA, Xu X, Jin Z, Deng L. Influence of β-cyclodextrin on the short-term retrogradation of rice starch. Food Chem. 2009;116(1):54–8.

    CAS  Google Scholar 

  205. Gunaratne A, Kong X, Corke H. Functional properties and retrogradation of heat-moisture treated wheat and potato starches in the presence of hydroxypropyl β-cyclodextrin. Starch-Stärke. 2010;62(2):69–77.

    CAS  Google Scholar 

  206. Zhou Y, Wang D, Zhang L, Du X, Zhou X. Effect of polysaccharides on gelatinization and retrogradation of wheat starch. Food Hydrocoll. 2008;22(4):505–12.

    CAS  Google Scholar 

  207. Witczak T, Witczak M, Ziobro R. Effect of inulin and pectin on rheological and thermal properties of potato starch paste and gel. J Food Eng. 2014;124:72–9.

    CAS  Google Scholar 

  208. Qiu S, Yadav MP, Chen H, Liu Y, Tatsumi E, Yin L. Effects of corn fiber gum (CFG) on the pasting and thermal behaviors of maize starch. Carbohydr Polym. 2015;115:246–52.

    CAS  PubMed  Google Scholar 

  209. Pongsawatmanit R, Chantaro P, Nishinari K. Thermal and rheological properties of tapioca starch gels with and without xanthan gum under cold storage. J Food Eng. 2013;117(3):333–41.

    CAS  Google Scholar 

  210. Correa MJ, Ferrero C, Puppo C, Brites C. Rheological properties of rice-locust bean gum gels from different rice varieties. Food Hydrocoll. 2013;31(2):383–91.

    CAS  Google Scholar 

  211. Chen L, Ren F, Zhang Z, Tong Q, Rashed MMA. Effect of pullulan on the short-term and long-term retrogradation of rice starch. Carbohydr Polym. 2015;115:415–21.

    CAS  PubMed  Google Scholar 

  212. Alamri MS, Mohamed AA, Hussain S. Effects of alkaline-soluble okra gum on rheological and thermal properties of systems with wheat or corn starch. Food Hydrocoll. 2013;30(2):541–51.

    CAS  Google Scholar 

  213. Qiu S, Yadav MP, Zhu Q, Chen H, Liu Y, Yin L. The addition of corn fiber gum improves the long-term stability and retrogradation properties of corn starch. J Cereal Sci. 2017;76:92–8.

    CAS  Google Scholar 

  214. Li Q-Q, Wang Y-S, Chen H-H, Liu S, Li M. Retardant effect of sodium alginate on the retrogradation properties of normal cornstarch and anti-retrogradation mechanism. Food Hydrocoll. 2017;69:1–9.

    CAS  Google Scholar 

  215. Banchathanakij R, Suphantharika M. Effect of different β-glucans on the gelatinisation and retrogradation of rice starch. Food Chem. 2009;114(1):5–14.

    CAS  Google Scholar 

  216. Satrapai S, Suphantharika M. Influence of spent brewer’s yeast β-glucan on gelatinization and retrogradation of rice starch. Carbohydr Polym. 2007;67(4):500–10.

    CAS  Google Scholar 

  217. Day L, Fayet C, Homer S. Effect of NaCl on the thermal behaviour of wheat starch in excess and limited water. Carbohydr Polym. 2013;94(1):31–7.

    CAS  PubMed  Google Scholar 

  218. Uthayakumaran S, Batey I, Day L, Wrigley C. Salt reduction in wheat-based foods-technical challenges and opportunities. Food Aust. 2011;63(4):137–40.

    CAS  Google Scholar 

  219. Nunes MHB, Moore MM, Ryan LAM, Arendt EK. Impact of emulsifiers on the quality and rheological properties of gluten-free breads and batters. Eur Food Res Technol. 2009;228(4):633–42.

    CAS  Google Scholar 

  220. Miller RA, Hoseney RC. Role of salt in baking. Cereal Foods World. 2008;53(1):4–6.

    CAS  Google Scholar 

  221. Baker LA, Rayas-Duarte P. Freeze-thaw stability of amaranth starch and the effects of salt and sugars. Cereal Chem. 1998;75(3):301–7.

    CAS  Google Scholar 

  222. Yu S, Jiang LZ, Kopparapu NK. Impact of soybean proteins addition on thermal and retrogradation properties of nonwaxy corn starch. J Food Process Preserv. 2015;39(6):710–8.

    CAS  Google Scholar 

  223. Ottenhof MA, Farhat IA. The effect of gluten on the retrogradation of wheat starch. J Cereal Sci. 2004;40(3):269–74.

    CAS  Google Scholar 

  224. Lian X, Guo J, Wang D, Li L, Zhu J. Effects of protein in wheat flour on retrogradation of wheat starch. J Food Sci. 2014;79(8):1505–11.

    Google Scholar 

  225. Ribotta PD, Colombo A, Rosell CM. Enzymatic modifications of pea protein and its application in protein-cassava and corn starch gels. Food Hydrocoll. 2012;27(1):185–90.

    CAS  Google Scholar 

  226. Lockwood S, King JM, Labonte DR. Altering pasting characteristics of sweet potato starches through amino acid additives. J Food Sci. 2008;73(5):373–7.

    Google Scholar 

  227. Chen W, Zhou H, Yang H, Cui M. Effects of charge-carrying amino acids on the gelatinization and retrogradation properties of potato starch. Food Chem. 2015;167:180–4.

    CAS  PubMed  Google Scholar 

  228. An HJ, King JM. Using ozonation and amino acids to change pasting properties of rice starch. J Food Sci. 2009;74(3):C278–83.

    CAS  PubMed  Google Scholar 

  229. Xiao J, Zhong Q. Suppression of retrogradation of gelatinized rice starch by anti-listerial grass carp protein hydrolysate. Food Hydrocoll. 2017;72:338–45.

    CAS  Google Scholar 

  230. Putseys JA, Lamberts L, Delcour JA. Amylose-inclusion complexes: formation, identity and physico-chemical properties. J Cereal Sci. 2010;51(3):238–47.

    CAS  Google Scholar 

  231. Copeland L, Blazek J, Salman H, Tang MC. Form and functionality of starch. Food Hydrocoll. 2009;23(6):1527–34.

    CAS  Google Scholar 

  232. Becker A, Hill SE, Mitchell JR. Relevance of amylose-lipid complexes to the behaviour of thermally processed starches. Starch-Stärke. 2001;53(3–4):121–30.

    CAS  Google Scholar 

  233. Nakazawa Y, Wang YJ. Effect of annealing on starch-palmitic acid interaction. Carbohydr Polym. 2004;57(3):327–35.

    CAS  Google Scholar 

  234. Huang JJ, White PJ. Waxy corn starch: monoglyceride interaction in a model system. Cereal Chem. 1993;70:42–7.

    CAS  Google Scholar 

  235. Gudmundsson M, Eliasson AC. Retrogradation of amylopectin and the effects of amylose and added surfactants/emulsifiers. Carbohydr Polym. 1990;13(3):295–315.

    CAS  Google Scholar 

  236. Eliasson AC, Ljunger G. Interactions between amylopectin and lipid additives during retrogradation in a model system. J Sci Food Agric. 1988;44(4):353–61.

    CAS  Google Scholar 

  237. Miura M, Nishimura A, Katsuta K. Influence of addition of polyols and food emulsifiers on the retrogradation rate of starch. Food Struct. 1992;11(3):5.

    Google Scholar 

  238. Li W, Li C, Gu Z, Qiu Y, Cheng L, Hong Y, et al. Relationship between structure and retrogradation properties of corn starch treated with 1, 4-α-glucan branching enzyme. Food Hydrocoll. 2016;52:868–75.

    Google Scholar 

  239. Grewal N, Faubion J, Feng G, Kaufman RC, Wilson JD, Shi YC. Structure of waxy maize starch hydrolyzed by maltogenic α-amylase in relation to its retrogradation. J Agric Food Chem. 2015;63(16):4196–201.

    CAS  PubMed  Google Scholar 

  240. Wu Y, Chen Z, Li X, Li M. Effect of tea polyphenols on the retrogradation of rice starch. Food Res Int. 2009;42(2):221–5.

    CAS  Google Scholar 

  241. Zhu F, Wang Y-J. Rheological and thermal properties of rice starch and rutin mixtures. Food Res Int. 2012;49(2):757–62.

    CAS  Google Scholar 

  242. Gujral HS, Haros M, Rosell CM. Starch hydrolyzing enzymes for retarding the staling of rice bread. Cereal Chem. 2003;80(6):750–4.

    CAS  Google Scholar 

  243. Seyhun N, Sumnu G, Sahin S. Effects of different emulsifier types, fat contents, and gum types on retardation of staling of microwave-baked cakes. Mol Nutr Food Res. 2003;47(4):248–51.

    CAS  Google Scholar 

  244. Fu Z, Chen J, Luo SJ, Liu CM, Liu W. Effect of food additives on starch retrogradation: a review. Starch-Stärke. 2015;67(1–2):69–78.

    CAS  Google Scholar 

  245. Goesaert H, Leman P, Bijttebier A, Delcour JA. Antifirming effects of starch degrading enzymes in bread crumb. J Agric Food Chem. 2009;57(6):2346–55.

    CAS  PubMed  Google Scholar 

  246. Hirashima M, Takahashi R, Nishinari K. The gelatinization and retrogradation of cornstarch gels in the presence of citric acid. Food Hydrocoll. 2012;27(2):390–3.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (31871796) and Natural Science Foundation of Tianjin City (17JCJQJC45600). This chapter was modified from the papers published by our group in Comprehensive Reviews in Food Science and Food Safety, 2015, 14(5), 568-585 and Food & Function, 2013, 4(11), 1564–1580. The related materials are reused with the permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S., Chao, C., Huang, S., Yu, J. (2020). Phase Transitions of Starch and Molecular Mechanisms. In: Wang, S. (eds) Starch Structure, Functionality and Application in Foods. Springer, Singapore. https://doi.org/10.1007/978-981-15-0622-2_6

Download citation

Publish with us

Policies and ethics