Skip to main content

Selective Autophagy Regulates Innate Immunity Through Cargo Receptor Network

  • Chapter
  • First Online:
Autophagy Regulation of Innate Immunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1209))

Abstract

Autophagy, an evolutionarily conserved cargo degradation process, is responsible to remove superfluous and unwanted cytoplasmic materials and maintain cellular homeostasis. Autophagy can be highly selective and target specific cargoes by utilizing multiple cargo receptors, which bind both ubiquitinated cargoes and autophagosomes. Mounting evidence has revealed the deep involvement of selective autophagy in innate immunity upon pathogen invasion, including eliminating microbial pathogens, initiating the anti-microbe responses, and inhibiting excessive immune responses. Given the importance of selective autophagy in innate immunity, how cargo receptors deliver pathogens and intracellular host constitutes to autophagosomes during infection remains to be elucidated. In this review, we summarize current evidence for the regulation of innate immunity by selective autophagy and try to elucidate the mechanisms employed by cargo receptor network in mediating diverse innate immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ait-Goughoulte M, Kanda T, Meyer K, Ryerse JS, Ray RB, Ray R (2008) Hepatitis C virus genotype 1a growth and induction of autophagy. J Virol 82:2241–2249

    CAS  PubMed  Google Scholar 

  2. Bakshi S, Taylor J, Strickson S, McCartney T, Cohen P (2017) Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon beta. Biochem J 474:1163–1174

    Article  CAS  PubMed  Google Scholar 

  3. Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, Salem S, Radovanovic I, Grant AV, Adimi P et al (2012) Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency. Science 337:1684–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bulut Y, Faure E, Thomas L, Equils O, Arditi M (2001) Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol 167:987–994

    Article  CAS  PubMed  Google Scholar 

  5. Burns K, Clatworthy J, Martin L, Martinon F, Plumpton C, Maschera B, Lewis A, Ray K, Tschopp J, Volpe F (2000) Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol 2:346–351

    Article  CAS  PubMed  Google Scholar 

  6. Capelluto DG (2012) Tollip: a multitasking protein in innate immunity and protein trafficking. Microbes Infect 14:140–147

    Article  CAS  PubMed  Google Scholar 

  7. Chen M, Meng Q, Qin Y, Liang P, Tan P, He L, Zhou Y, Chen Y, Huang J, Wang RF et al (2016) TRIM14 Inhibits cGAS degradation mediated by selective autophagy receptor p62 to promote innate immune responses. Mol Cell 64:105–119

    Article  CAS  PubMed  Google Scholar 

  8. Choi Y, Bowman JW, Jung JU (2018) Autophagy during viral infection—a double-edged sword. Nat Rev Microbiol

    Google Scholar 

  9. Choi YB, Shembade N, Parvatiyar K, Balachandran S, Harhaj EW (2017) TAX1BP1 restrains virus-induced apoptosis by facilitating itch-mediated degradation of the mitochondrial adaptor MAVS. Mol Cell Biol 37

    Google Scholar 

  10. Deng Z, Purtell K, Lachance V, Wold MS, Chen S, Yue Z (2017) Autophagy receptors and neurodegenerative diseases. Trends Cell Biol 27:491–504

    Article  CAS  PubMed  Google Scholar 

  11. Deretic V (2010) Autophagy in infection. Curr Opin Cell Biol 22:252–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deretic V, Levine B (2018) Autophagy balances inflammation in innate immunity. Autophagy 14:243–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  CAS  PubMed  Google Scholar 

  14. Du Y, Duan T, Feng Y, Liu Q, Lin M, Cui J, Wang RF (2018) LRRC25 inhibits type I IFN signaling by targeting ISG15-associated RIG-I for autophagic degradation. EMBO J 37:351–366

    Article  CAS  PubMed  Google Scholar 

  15. Ellinghaus D, Zhang H, Zeissig S, Lipinski S, Till A, Jiang T, Stade B, Bromberg Y, Ellinghaus E, Keller A et al (2013) Association between variants of PRDM1 and NDP52 and Crohn’s disease, based on exome sequencing and functional studies. Gastroenterology 145:339–347

    Article  CAS  PubMed  Google Scholar 

  16. Feng Y, Duan T, Du Y, Jin S, Wang M, Cui J, Wang RF (2017) LRRC25 functions as an Inhibitor of NF-κB signaling pathway by promoting p65/RelA for autophagic degradation. Sci Rep 7:13448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Franco LH, Nair VR, Scharn CR, Xavier RJ, Torrealba JR, Shiloh MU, Levine B (2017) The ubiquitin ligase Smurf1 functions in selective autophagy of mycobacterium tuberculosis and anti-tuberculous host defense. Cell Host Microbe 21:59–72

    Article  CAS  PubMed  Google Scholar 

  18. Franco LH, Nair VR, Scharn CR, Xavier RJ, Torrealba JR, Shiloh MU, Levine B (2017) The ubiquitin ligase Smurf1 functions in selective autophagy of mycobacterium tuberculosis and anti-tuberculous host defense. Cell Host Microbe 22:421–423

    CAS  PubMed  Google Scholar 

  19. Gleason CE, Ordureau A, Gourlay R, Arthur JS, Cohen P (2011) Polyubiquitin binding to optineurin is required for optimal activation of TANK-binding kinase 1 and production of interferon beta. J Biol Chem 286:35663–35674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gomes LC, Dikic I (2014) Autophagy in antimicrobial immunity. Mol Cell 54:224–233

    Article  CAS  PubMed  Google Scholar 

  21. Hafren A, Macia JL, Love AJ, Milner JJ, Drucker M, Hofius D (2017) Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proc Natl Acad Sci USA 114:E2026–E2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hashimoto K, Simmons AN, Kajino-Sakamoto R, Tsuji Y, Ninomiya-Tsuji J (2016) TAK1 regulates the Nrf2 antioxidant system through modulating p62/SQSTM1. Antioxid Redox Sig 25:953–964

    Article  CAS  Google Scholar 

  23. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362

    Article  CAS  PubMed  Google Scholar 

  24. Heath RJ, Goel G, Baxt LA, Rush JS, Mohanan V, Paulus GLC, Jani V, Lassen KG, Xavier RJ (2016) RNF166 determines recruitment of adaptor proteins during antibacterial autophagy. Cell Rep 17:2183–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW (2015) The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 60:7–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herhaus L, Dikic I (2018) Regulation of Salmonella-host cell interactions via the ubiquitin system. Int J Med Microbiol 308:176–184

    Article  CAS  PubMed  Google Scholar 

  27. Huett A, Heath RJ, Begun J, Sassi SO, Baxt LA, Vyas JM, Goldberg MB, Xavier RJ (2012) The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium. Cell Host Microbe 12:778–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Husnjak K, Dikic I (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81:291–322

    Article  CAS  PubMed  Google Scholar 

  29. Ikeda F, Dikic I (2008) Atypical ubiquitin chains: new molecular signals. ‘Protein Modifications: Beyond the Usual Suspects’ review series. EMBO Rep 9:536–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jin S, Tian S, Luo M, Xie W, Liu T, Duan T, Wu Y, Cui J (2017) Tetherin suppresses type I interferon signaling by targeting MAVS for NDP52-mediated selective autophagic degradation in human cells. Mol Cell 68(308–322):e304

    Google Scholar 

  31. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kanayama M, Inoue M, Danzaki K, Hammer G, He YW, Shinohara ML (2015) Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat Commun 6:5779

    Article  CAS  PubMed  Google Scholar 

  33. Kanki T (2010) Nix, a receptor protein for mitophagy in mammals. Autophagy 6:433–435

    Article  CAS  PubMed  Google Scholar 

  34. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  CAS  PubMed  Google Scholar 

  35. Khaminets A, Behl C, Dikic I (2016) Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol 26:6–16

    Article  CAS  PubMed  Google Scholar 

  36. Kim N, Kim MJ, Sung PS, Bae YC, Shin EC, Yoo JY (2016) Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A. Nat Commun 7:10631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kimura T, Jain A, Choi SW, Mandell MA, Schroder K, Johansen T, Deretic V (2015) TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J Cell Biol 210:973–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kirkin V (2019) History of the selective autophagy research: how did it begin and where does it stand today? J Mol Biol 1–25

    Google Scholar 

  39. Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P et al (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33:505–516

    Article  CAS  PubMed  Google Scholar 

  40. Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34:259–269

    Article  CAS  PubMed  Google Scholar 

  41. Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937

    Article  CAS  PubMed  Google Scholar 

  42. Kohler LJ, Roy CR (2017) Autophagic targeting and avoidance in intracellular bacterial infections. Curr Opin Microbiol 35:36–41

    Article  PubMed  Google Scholar 

  43. Lamark T, Perander M, Outzen H, Kristiansen K, Overvatn A, Michaelsen E, Bjorkoy G, Johansen T (2003) Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem 278:34568–34581

    Article  CAS  PubMed  Google Scholar 

  44. Levine B (2005) Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120:159–162

    CAS  PubMed  Google Scholar 

  45. Li T, Hu J, Li L (2004) Characterization of Tollip protein upon Lipopolysaccharide challenge. Mol Immunol 41:85–92

    Article  CAS  PubMed  Google Scholar 

  46. Ling J, Kang Y, Zhao R, Xia Q, Lee DF, Chang Z, Li J, Peng B, Fleming JB, Wang H et al (2012) KrasG12D-induced IKK2/ β/NF-κB activation by IL-1α and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell 21:105–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu K, Zhang L, Zhao Q, Zhao Z, Zhi F, Qin Y, Cui J (2018) SKP2 attenuates NF-κB signaling by mediating IKKβ degradation through autophagy. J Mol Cell Biol 10:205–215

    Article  CAS  PubMed  Google Scholar 

  48. Liu T, Tang Q, Liu K, Xie W, Liu X, Wang H, Wang RF, Cui J (2016) TRIM11 suppresses AIM2 inflammasome by degrading AIM2 via p62-dependent selective autophagy. Cell Rep 16:1988–2002

    Article  CAS  PubMed  Google Scholar 

  49. Lu Y, Wang L, He M, Huang W, Li H, Wang Y, Kong J, Qi S, Ouyang J, Qiu X (2012) Nix protein positively regulates NF-kappaB activation in gliomas. PLoS One 7:e44559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mandell MA, Jain A, Arko-Mensah J, Chauhan S, Kimura T, Dinkins C, Silvestri G, Munch J, Kirchhoff F, Simonsen A et al (2014) TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev Cell 30:394–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mandell MA, Kimura T, Jain A, Johansen T, Deretic V (2014) TRIM proteins regulate autophagy: TRIM5 is a selective autophagy receptor mediating HIV-1 restriction. Autophagy 10:2387–2388

    Article  CAS  PubMed  Google Scholar 

  52. Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G, Rae CS, Schneider DS, Nakamura K, Shiloh MU, Cox JS (2013) The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501:512–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marin M, Rose KM, Kozak SL, Kabat D (2003) HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med 9:1398–1403

    Article  CAS  PubMed  Google Scholar 

  54. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Ann Rev Immunol 27:229–265

    Article  CAS  Google Scholar 

  55. Meena NP, Zhu G, Mittelstadt PR, Giardino Torchia ML, Pourcelot M, Arnoult D, Ashwell JD, Munitic I (2016) The TBK1-binding domain of optineurin promotes type I interferon responses. FEBS Lett 590:1498–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Minowa-Nozawa A, Nozawa T, Okamoto-Furuta K, Kohda H, Nakagawa I (2017) Rab35 GTPase recruits NDP52 to autophagy targets. EMBO J 36:2790–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  CAS  PubMed  Google Scholar 

  58. Moresco EM, LaVine D, Beutler B (2011) Toll-like receptors. Curr Biol 21:R488–R493

    Article  CAS  PubMed  Google Scholar 

  59. Moscat J, Diaz-Meco MT (2009) p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137:1001–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mostowy S, Sancho-Shimizu V, Hamon MA, Simeone R, Brosch R, Johansen T, Cossart P (2011) p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J Biol Chem 286:26987–26995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Munitic I, Giardino Torchia ML, Meena NP, Zhu G, Li CC, Ashwell JD (2013) Optineurin insufficiency impairs IRF3 but not NF-κB activation in immune cells. J Immunol 191:6231–6240

    Article  CAS  PubMed  Google Scholar 

  62. Nagabhushana A, Bansal M, Swarup G (2011) Optineurin is required for CYLD-dependent inhibition of TNFα-induced NF-κB activation. PLoS One 6:e17477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakashima H, Nguyen T, Goins WF, Chiocca EA (2015) Interferon-stimulated gene 15 (ISG15) and ISG15-linked proteins can associate with members of the selective autophagic process, histone deacetylase 6 (HDAC6) and SQSTM1/p62. J Biol Chem 290:1485–1495

    Article  PubMed  CAS  Google Scholar 

  64. Nakazawa S, Oikawa D, Ishii R, Ayaki T, Takahashi H, Takeda H, Ishitani R, Kamei K, Takeyoshi I, Kawakami H et al (2016) Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat Commun 7:12547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Noad J, von der Malsburg A, Pathe C, Michel MA, Komander D, Randow F (2017) LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB. Nat Microbiol 2:17063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Lohr F, Popovic D, Occhipinti A et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11:45–51

    Article  CAS  PubMed  Google Scholar 

  67. Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-κB signaling pathways. Nat Immunol 12:695–708

    Article  CAS  PubMed  Google Scholar 

  68. Orvedahl A, MacPherson S, Sumpter R Jr, Talloczy Z, Zou Z, Levine B (2010) Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7:115–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Orvedahl A, Sumpter R Jr, Xiao G, Ng A, Zou Z, Tang Y, Narimatsu M, Gilpin C, Sun Q, Roth M et al (2011) Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480:113–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Parvatiyar K, Barber GN, Harhaj EW (2010) TAX1BP1 and A20 inhibit antiviral signaling by targeting TBK1-IKKi kinases. J Biol Chem 285:14999–15009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Petkova DS, Verlhac P, Rozieres A, Baguet J, Claviere M, Kretz-Remy C, Mahieux R, Viret C, Faure M (2017) Distinct contributions of autophagy receptors in measles virus replication. Viruses 9

    Google Scholar 

  72. Polajnar M, Dietz MS, Heilemann M, Behrends C (2017) Expanding the host cell ubiquitylation machinery targeting cytosolic Salmonella. EMBO Rep 18:1572–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ponpuak M, Davis AS, Roberts EA, Delgado MA, Dinkins C, Zhao Z, Virgin HW 4th, Kyei GB, Johansen T, Vergne I et al (2010) Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 32, 329–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Prabakaran T, Bodda C, Krapp C, Zhang BC, Christensen MH, Sun C, Reinert L, Cai Y, Jensen SB, Skouboe MK et al (2018) Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. EMBO J 37

    Google Scholar 

  75. Qi N, Shi Y, Zhang R, Zhu W, Yuan B, Li X, Wang C, Zhang X, Hou F (2017) Multiple truncated isoforms of MAVS prevent its spontaneous aggregation in antiviral innate immune signalling. Nat Commun 8:15676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Richter B, Sliter DA, Herhaus L, Stolz A, Wang C, Beli P, Zaffagnini G, Wild P, Martens S, Wagner SA et al (2016) Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci USA 113:4039–4044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rogov V, Dotsch V, Johansen T, Kirkin V (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53:167–178

    Article  CAS  PubMed  Google Scholar 

  78. Sagnier S, Daussy CF, Borel S, Robert-Hebmann V, Faure M, Blanchet FP, Beaumelle B, Biard-Piechaczyk M, Espert L (2015) Autophagy restricts HIV-1 infection by selectively degrading Tat in CD4+ T lymphocytes. J Virol 89:615–625

    Article  PubMed  CAS  Google Scholar 

  79. Sanchez-Martin P, Saito T, Komatsu M (2019) p62/SQSTM1: ‘Jack of all trades’ in health and cancer. FEBS J 286:8–23

    Article  CAS  PubMed  Google Scholar 

  80. Schneider WM, Chevillotte MD, Rice CM (2014) Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shaid S, Brandts CH, Serve H, Dikic I (2013) Ubiquitination and selective autophagy. Cell Death Differ 20:21–30

    Article  CAS  PubMed  Google Scholar 

  82. Sharma V, Verma S, Seranova E, Sarkar S, Kumar D (2018) Selective autophagy and xenophagy in infection and disease. Front Cell Dev Biol 6:147

    Article  PubMed  PubMed Central  Google Scholar 

  83. Shembade N, Harhaj NS, Liebl DJ, Harhaj EW (2007) Essential role for TAX1BP1 in the termination of TNF-α-, IL-1- and LPS-mediated NF-κB and JNK signaling. EMBO J 26:3910–3922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shembade N, Parvatiyar K, Harhaj NS, Harhaj EW (2009) The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-κB signalling. EMBO J 28:513–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M, Fitzgerald KA, Sher A, Kehrl JH (2012) Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13:255–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Slowicka K, van Loo G (2018) Optineurin functions for optimal immunity. Front Immunol 9:769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Slowicka K, Vereecke L, Mc Guire C, Sze M, Maelfait J, Kolpe A, Saelens X, Beyaert R, van Loo G (2016) Optineurin deficiency in mice is associated with increased sensitivity to Salmonella but does not affect proinflammatory NF-κB signaling. Eur J Immunol 46:971–980

    Article  CAS  PubMed  Google Scholar 

  88. Spinnenhirn V, Farhan H, Basler M, Aichem A, Canaan A, Groettrup M (2014) The ubiquitin-like modifier FAT10 decorates autophagy-targeted Salmonella and contributes to Salmonella resistance in mice. J Cell Sci 127:4883–4893

    Article  PubMed  CAS  Google Scholar 

  89. Staring J, von Castelmur E, Blomen VA, van den Hengel LG, Brockmann M, Baggen J, Thibaut HJ, Nieuwenhuis J, Janssen H, van Kuppeveld FJ et al (2017) PLA2G16 represents a switch between entry and clearance of Picornaviridae. Nature 541:412–416

    Article  CAS  PubMed  Google Scholar 

  90. Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16:495–501

    Article  CAS  PubMed  Google Scholar 

  91. Sudhakar C, Nagabhushana A, Jain N, Swarup G (2009) NF-κB mediates tumor necrosis factor α-induced expression of optineurin, a negative regulator of NF-κB. PLoS One 4:e5114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Sumpter R Jr, Sirasanagandla S, Fernandez AF, Wei Y, Dong X, Franco L, Zou Z, Marchal C, Lee MY, Clapp DW et al (2016) Fanconi Anemia Proteins function in mitophagy and immunity. Cell 165:867–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tanishima M, Takashima S, Honda A, Yasuda D, Tanikawa T, Ishii S, MaruYama T (2017) Identification of optineurin as an interleukin-1 receptor-associated kinase 1-binding protein and its role in regulation of MyD88-dependent signaling. J Biol Chem 292:17250–17257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10:1215–1221

    Article  CAS  PubMed  Google Scholar 

  95. Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F (2012) Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482:414–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Till A, Lipinski S, Ellinghaus D, Mayr G, Subramani S, Rosenstiel P, Franke A (2013) Autophagy receptor CALCOCO2/NDP52 takes center stage in Crohn disease. Autophagy 9:1256–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tumbarello DA, Manna PT, Allen M, Bycroft M, Arden SD, Kendrick-Jones J, Buss F (2015) The autophagy receptor TAX1BP1 and the molecular motor Myosin VI are required for clearance of Salmonella Typhimurium by autophagy. PLoS Pathog 11:e1005174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Valera MS, de Armas-Rillo L, Barroso-Gonzalez J, Ziglio S, Batisse J, Dubois N, Marrero-Hernandez S, Borel S, Garcia-Exposito L, Biard-Piechaczyk M et al (2015) The HDAC6/APOBEC3G complex regulates HIV-1 infectiveness by inducing Vif autophagic degradation. Retrovirology 12:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. van Wijk SJL, Fricke F, Herhaus L, Gupta J, Hotte K, Pampaloni F, Grumati P, Kaulich M, Sou YS, Komatsu M et al (2017) Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation. Nat Microbiol 2:17066

    Article  PubMed  CAS  Google Scholar 

  100. von Muhlinen N, Thurston T, Ryzhakov G, Bloor S, Randow F (2010) NDP52, a novel autophagy receptor for ubiquitin-decorated cytosolic bacteria. Autophagy 6:288–289

    Article  Google Scholar 

  101. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xian H, Yang S, Jin S, Zhang Y, Cui J (2019) LRRC59 modulates type I interferon signaling by restraining the SQSTM1/p62-mediated autophagic degradation of pattern recognition receptor DDX58/RIG-I. Autophagy 1–11

    Google Scholar 

  103. Yang Q, Liu TT, Lin H, Zhang M, Wei J, Luo WW, Hu YH, Zhong B, Hu MM, Shu HB (2017) TRIM32-TAX1BP1-dependent selective autophagic degradation of TRIF negatively regulates TLR3/4-mediated innate immune responses. PLoS Pathog 13:e1006600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Zhang X, Bogunovic D, Payelle-Brogard B, Francois-Newton V, Speer SD, Yuan C, Volpi S, Li Z, Sanal O, Mansouri D et al (2015) Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517:89–93

    Article  CAS  PubMed  Google Scholar 

  105. Zhang X, Zhang MC, Wang CT (2018) Loss of LRRC25 accelerates pathological cardiac hypertrophy through promoting fibrosis and inflammation regulated by TGF-beta1. Biochem Biophys Res Commun 506:137–144

    Article  CAS  PubMed  Google Scholar 

  106. Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183:5909–5916

    Article  CAS  PubMed  Google Scholar 

  107. Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, He F, Boassa D, Perkins G, Ali SR et al (2016) NF-κB restricts inflammasome activation via elimination of damaged Mitochondria. Cell 164:896–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhu G, Wu CJ, Zhao Y, Ashwell JD (2007) Optineurin negatively regulates TNFα- induced NF-κB activation by competing with NEMO for ubiquitinated RIP. Curr Biol 17:1438–1443

    Article  CAS  PubMed  Google Scholar 

  109. Zotti T, Scudiero I, Settembre P, Ferravante A, Mazzone P, D’Andrea L, Reale C, Vito P, Stilo R (2014) TRAF6-mediated ubiquitination of NEMO requires p62/sequestosome-1. Mol Immunol 58:27–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31870862, 31700760, and 31800751), Science and Technology Planning Project of Guangzhou, China (201804010385), and the Fundamental Research Funds for the Central Universities (18lgpy53).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, Y., Cui, J. (2019). Selective Autophagy Regulates Innate Immunity Through Cargo Receptor Network. In: Cui, J. (eds) Autophagy Regulation of Innate Immunity. Advances in Experimental Medicine and Biology, vol 1209. Springer, Singapore. https://doi.org/10.1007/978-981-15-0606-2_9

Download citation

Publish with us

Policies and ethics