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Preface

Depleting coal resources have raised alarming signals for installation of renewable
energy systems (RES). The popularity of renewable sources is in cohesion with
power ecosystem with benefits like cleaner production and lower tariff rates,
making it reliable and secure candidate for electricity demands globally. Research
and development in wind and solar technologies has seen a tremendous rise in the
past two decades which, has attracted investors to put their money into these
projects. European countries like Denmark, Germany, Sweden, and England have
installed large offshore wind farms to cater their country’s load demands. China, on
the other hand, has been actively involved in manufacturing services, and India is
on the developing side of wind energy portfolio.

The book focuses on the two most important aspects of the wind farm operation,
that is, decision and control. The first part of the book deals with decision-making
processes in wind farms. Modern-day decision-making is a volatile process that is
sensitive to the internal and external factors which can directly influence
decision-makers’ decision. The introductory chapter on decision-making covers
prime methods to evaluate a set of alternatives for given criteria. A part of the
chapter is also dedicated to sensitivity analysis and how it influences
decision-making. We also introduce the concept of hybrid wind farms and enlist the
different strategies a operator can face to achieve optimal farm operation. Hybrid
wind farm operation is governed by a set of alternatives that the wind farm operator
must choose to ascertain optimal dispatch of wind power to the utility grid. The
decision-making is accompanied by accurate forecasts of wind speed that must be
known beforehand. Errors in wind forecasting are to be compensated fairly by
pumping power from reserve capacity to the grid in terms of battery energy storage
system (BESS). Alternatives, based on penalty cost, are assessed based on certain
criteria, and MCDM methods are used to evaluate the best choice. Further, con-
sidering the randomness in the dynamic phenomenon in wind farms, a fuzzy
MCDM approach is applied to the decision-making process to evaluate the best
alternative for the hybrid wind farm operation. Case studies from the wind farms
of the USA are presented with numerical solutions to the problem.
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The second part deals with the control aspect, in particular with yaw angle
control, that aids in power maximization in wind farms. A novel transfer
function-based methodology is presented that controls the wake center of the
upstream turbine(s). LIDAR-based numerical simulations are carried out for wind
farm layouts. An adaptive control strategy is implemented to achieve the desired
yaw angle for upstream turbines. The proposed methodology is tested for two wind
farm layouts. Wake management is also implemented for hybrid wind farms, where
BESS life enhancement is studied. The effect of yaw angle on the operational cost
of BESS is assessed, and the case studies for wind farm datasets from the USA and
Denmark are carried out. Overall, this book provides a comprehensive decision and
control aspect for hybrid wind farms which may be useful from an industrial point
of view.

Ahmedabad, India Harsh S. Dhiman
August 2019 Dipankar Deb
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Chapter 1
Fundamentals of Wind Turbine
and Wind Farm Control Systems

Wind is a randomly varying resource that needs to be appropriately tapped usingwind
turbines typically anchored to the ground and subjected to different torques and loads
with changing atmospheric conditions. There are significant challenges in modeling
such behaviors, and such issues become further complex in the case of offshore wind
turbines, hilly terrains, and during ramp events which are extensively dealt with in
this book. In this chapter, we present fundamental aspects of wind turbine blade-
pitching control, wake control, and also wind reserve power maximization strategy.
Micro-siting is an issue in wind farms that affects the total power generated from the
farm, and is interrelated to turbine control and wake effect.

1.1 Introduction

Modernwind turbines operate in the region characterized by a cubic relation between
extracted wind power and magnitude of wind speed. Performance of a wind turbine,
in terms of power capturing capability is not solely dependent on wind speed but also
on the orientation of the rotor blades and rotor hub. Control of this multidimensional
dependence is one of the key areas in wind energy research. Mathematically, wind
power extracted by a turbine with rotor area A from moving air with a velocity v is
given as

P(t) = 1

2
ρAv3(t)Cp(λ, β), (1.1)

whereCp(λ, β) is the power coefficient dependent on the tip-speed ratio λ and blade-
pitch angle β. The term Cp essentially reflects the turbine capability in terms of the
aerodynamic efficiency which has a maximum theoretical value of 0.59. A wind
turbine starts to extract power at a particular speed known as cut-in speed vin which
ranges typically from 2.5 to 5m/s. Further, the region from cut-in speed to rated speed
(speed at which the wind turbine is designed to optimally operate) is the region where
the turbine is primed to operate. For wind speeds greater than rated speed, the turbine
© Springer Nature Singapore Pte Ltd. 2020
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stalls power production owing to the generator capability limits in terms of armature
rating. If the turbine is operated above rated speed, collateral damage to the turbine
components like rotor shaft, gearbox, and yaw bearings is possible thus jeopardizing
the wind farm operation. Figure1.1 depicts the wind turbine power curve with three
regions where the turbine operation is defined. Region I, where no power extraction
is observed as the wind speed is less than cut-in speed. Region II, where the wind
power follows cubic relationship with incoming wind speed.

Figure1.2 illustrates the types of wind turbine controls that are being used in
modern wind power plants.

The yaw control is used for aligning the yaw toward the wind direction for extract-
ing maximum power from the wind. Over the years, yaw control of wind turbine(s)
as well as wind farm has gained a lot of importance owing to the amount of power
improvement and turbine load reduction it caters. Specifically, aerodynamic load-
ing on the downstream turbine(s) is a reason for concern that allows many wind
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farm operators to use high-fidelity sensor devices like light detection and ranging
(LIDAR). Further, for generator-torque control, the aim is to keep a track on the
tip-speed ratio and adjusting the reaction torque keeping the blade pitch constant. In
case of higher wind speed conditions, above rated speed, the blade-pitch controller
acts in order to keep generator torque constant. Figure1.3 illustrates the layout of a
generic wind farm controller aimed to maximize power output when it is allowed to
follow a given power reference. Various inputs like power produced, wind speed and
direction, and pitch angle are fed to the controller.

1.2 Blade-Pitch Control for Wind Turbines

Among various works in literature, Bossanyi has carried out studies in closed-
loop control of wind turbines focusing on pitch and torque control in modern
variable-speed wind turbines [5]. Since the market thrust is essentially reliant on
variable-speed machines, the control of power produced especially above rated
speeds becomes important. Classical proportional–integral control of wind turbines
includes the control of blade-pitch angle in order to regulate the aerodynamic power.
For a fixed-speed pitch-regulated turbine, the PI control may be expressed as

yβ =
(Ki

s
+ Kp

)
xp, (1.2)

where yβ and xp are the demanded pitch and arithmetic difference betweenmeasured
power and rated power. Figure1.4 illustrates the key components of a PI control for
pitch-regulated wind turbines.
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In case of PI control with integrating action solely responsible for correcting
steady-state error, a large input may cause overshoot which results from actuator
saturation [14]. Thus, a windup action is necessary to limit the output from controller
and can be expressed as

sat (xp) =

⎧⎪⎨
⎪⎩

x+
p , if xp > x+

p

xp, if x−
p ≤ xp ≤ x+

p

x−
p , if xp < x−

p

, (1.3)

where x+
p and x−

p are the saturation limits imposed on the controller input xp. In
case of pitch-regulated control, a large error in the turbine power may cause erro-
neous controller response leading to uncontrollable oscillations which may result in
excessive wear and tear of mechanical equipment.

Similar to blade-pitch control in fixed-speedmachines, in variable-speed turbines,
the error in the rotor speed is given as input to the controller while the torque is held
constant. This type of control strategy is used for Region III of wind turbine curve
above rated speed. Further, one of the major issues with wind turbine control is the
aerodynamic load causing mechanical damage to the rotor blades, turbine hub, and
tower. Individual pitch control (IPC) as well as collective pitch control (CPC) is
used to mitigate the transient oscillations arising due to turbulent flow. Since a wind
turbine consists of rotating and nonrotating parts, IPC uses Coleman transformation
where the sensor signals from rotating frame of reference are converted into non-
rotating frame of reference. First use of Coleman transformation was put forward
by Bossayni where the linear quadratic Gaussian (LQG) control is applied [6]. The
control algorithm works fast when it is decoupled in direct and quadrature axis and a
reverse transformation is then used to attain pitch demands for three blades. Coleman
transformation is given as
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θd
θq

)
=

(
cos(ψ) cos(ψ + 2π

3 ) cos(ψ + 4π
3 )

sin(ψ) sin(ψ + 2π
3 ) sin(ψ + 4π

3 )

) ⎛
⎝

θ1
θ2
θ3

⎞
⎠ (1.4)

and inverse Coleman transformation from d-q axis to rotating frame of reference is
given as ⎛

⎝
θ1
θ2
θ3

⎞
⎠ =

(
cos(ψ) cos(ψ + 2π

3 ) cos(ψ + 4π
3 )

sin(ψ) sin(ψ + 2π
3 ) sin(ψ + 4π

3 )

)T (
θd
θq

)
, (1.5)

where θd , θq refer to the direct and quadrature axes pitch demands in fixed axis,
whereas θ1, θ2, θ3 are the blade pitch demands in rotating frame of reference, and ψ

refers to the azimuth angle of rotor. Figure1.5 illustrates the architecture for CPC
and IPC of a wind turbine. The collective pitch control accounts for regulating rotor
speed ω(t) and IPC accounts for reducing perturbations in the flapwise root bending
moments on each turbine blade.

The blade dynamics for a wind turbine for load characterization as proposed by
Bossanyi is given as

Ṁi (t)

dt
+ 2π fbladeξblade Ṁi (t) + 4π2 f 2bladeMi (t) = 4π2 f 2bladeM f lap,i (t), (1.6)
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where fblade, ξblade are the natural frequency and damping ratio of the blade, Mi (t)
is the flapwise blade root bending moment, and M f lap,i is the flapwise aerodynamic
loading on i th blade [5]. Similarly, tower dynamics can be modeled as a mass–
spring–damper system for analyzing fore–aft motion as

mT ẍ f a(t) + ξT ẋ f a(t) + kT x f a(t) = FT (t) = 3

2h
Mtilt (t), (1.7)

where mT , ξT , kT denote tower mass, damping, and stiffness coefficients, respec-
tively, whereas Mtilt is the tilt moment of the rotor. In the line of the work carried
out by Selvam et al., the individual pitch control technique essentially uses Coleman
transformation for minimization of rotor and tilt movements [29]. Apart from LQG-
based control, a feedforward controller is also used to filter out the low-frequency
influence of wind on rotor vibrations. The results revealed that LQG-based IPC
resulted in better fatigue load reduction than conventional PI-based IPC. Further-
more, it is possible to improve the fatigue load reduction by means of LIDAR-based
measurement devices that offer excellent preview information ofwind speed. The use
of LIDAR inwind turbine control is studied by Schlipf et al. where a nonlinear model
predictive control is used for reducing the fatigue loads on wind turbine [28]. The
performance of this method is compared with baseline controller and results reveal
reduction up to 50% without any significant compromise in wind power. Baseline
controller implements torque controller in tandem with collective blade-pitch con-
trol, while a model predictive controller predicts the future behavior based on the
current measurements and an internal model.

In terms of speed regulation, Frost et al. have demonstrated a direct adaptive
control of a utility scale wind turbine [12]. According to wind turbine power curve
illustrated in Fig. 1.1, if a turbine operates in Region III which is characterized by
wind speeds greater than rated speed, generator may result in overheating armature
cables and thus causing damage to the power electronics equipment. Furthermore,
higher wind speeds also cause damage to the nonrotating parts of the turbine in
terms of excessive wear and tear and in some cases cracks in rotor blades and tower.
A direct model reference adaptive control is used for rejecting the disturbances for
improving the speed regulations and results are comparedwith conventional PI-based
pitch controller. Johnson et al. have discussed several standard and adaptive control
techniques for energymaximization inRegion II ofwind turbine curve [17]. Adaptive
control is applied for regions with positive and negative speeds. Further, Moradi et al.
have discussed the performance of classical PID control and H∞ control for a wind
turbine in presence of uncertainties like variation of power coefficient, discontinuity
in wind speed, and inaccurate wind speed measurement [22]. It is observed that, in
case of PID control, the oscillatory response is very high when the plant is subjected
to uncertainties while with H∞ control, a much more smooth response in turbine
speed is observed.
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1.3 Wake Control for Wind Turbines

Wind turbines placed behind upstream turbines face reduction in power due to wake
interactions. This decline in power captured is primarily responsible for the increased
use of ancillary devices like battery energy storage system (BESS) in a wind farm.
Irregular wind loads cause nonrotating turbine parts to experience fatigue that ulti-
mately result in turbine failure. Wind wakes can be characterized as loss in power
production and increase in dynamic loading on downstream turbines. With stochas-
tic wind flow, the variation in power produced can be a critical issue for wind farm
operators. Wind farms in United States have been generating 10–15% of less power
than their capacity due to wake interactions. Wake interactions need an accurate
modeling that aids in the micro-siting process and increase the annual energy pro-
duction (AEP) of a wind plant. In order to model wind wakes in a wind farm, various
kinematic models and 2D/3D models are used. Among kinematic models, Jensen’s
[16] model, Fradsen’s [11] model, Ainslie’s [1] model, and a Gaussian wake model
put forward by Bastankhah [3] are used for wake characterization. Kinematic model
utilizes simple algebraic equations that relate freestream velocity, downstream dis-
tance, and wake entrainment factor with wake velocity. On the other hand, 2D/3D
models are based on Navier–Stokes equations which, however, are time-consuming.
Figure1.6 illustrates different wake models used for wind resource assessment.

Various experimental studies have been carried out that validate wake models in
terms of power captured. Primarily, two methods, namely, axial induction control
and yaw angle control are implemented in wind industry. In axial induction control
method, the pitch angle of upstream turbines is increased in order to increase the
wind speed intended for downstream turbines. In yaw-based control, the yaw angle
of upstream turbines is varied in order to deflect wake flow away from the rotor of
downstream turbines. It is observed that it leads to significant reduction in dynamic
loading. From awind farm operator’s perspective, the objective ofmaximizing power
output and minimizing loading effect is of prime importance. This collective method
of improving wind farm performance is called as active wake control (AWC) and is
summarized in Fig. 1.7.

Mathematically, such an optimization problem may be expressed as

min
θ,γ

J = Jload (θ,γ )

Jpow(θ,γ )
, (1.8)

where Jload(θ, γ ) and Jpow(θ, γ ) refer to the individual optimization functions for
loading effect and power capture in a wind farm. Optimization based on multiple
objectives involves careful limits on the constraints. In order to optimize the loading
effect on wind turbines, the lifetime of each equipment is considered. The lifetime
(Lt ) of a turbine equipment is related inversely with stress (St ) acting on it. Mathe-
matically, it can be expressed as

Lt = 1

K SM
t

, (1.9)
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where K and M are the constants reflecting material properties. As far as pitch-based
active wake control is based, the pitching is carried out only on the leading turbines
in a wind farm. The turbines that are not experiencing any wake effect are pitched
suitably leading to increased velocity at downstream turbines. Kanev et al. have
studied the impact of wake mitigation control strategies for wind farms of different
layouts and scales [18]. An active wake control with pitch-based and yaw-based
methodology is applied for maximizing power capture in a wind farm. The potential
capability is also assessed for lifetime improvement. Results reveal that for pitch-
based AWC, only 1–5% of wake losses are recovered due to the limitations posed
by downstream distance. Further, Van Dijk et al. have presented a methodology that
involves yaw misalignment for power optimization on a 3 × 3 wind farm [9]. Power
increase of 2.8% was seen in the conditions of differential wind loading that also
saw a decrement of 8.2 and 12.5% of flapwise and edgewise loading on turbine
blade. The problem formulation is based on a constrained minimization which may
be expressed as

min
γ

c(γ ) = −λ
( N∑

i=1

Pi (γ )
)

+ 1 − λ

2N

N∑
i=1

(
�M̄ f,i (γ ) + �M̄e,i (γ )

)
, (1.10)

where γ is the yaw angle, Pi (γ ) is the power produced by i th turbine, N are the total
number of turbines, and�M̄ f,i (γ ),�M̄e,i (γ ) are the flapwise and edgewise loading
on the turbine blade. Lauresen et al. have discussed a model predictive control for
minimizing the load on the turbine in a wind farm [20]. The performance of MPC
controller is compared with classical PI control. Different scenarios relating the
demanded power and produced power are tested that validate the methodology for
power maximization while minimizing wake effect simultaneously. Further, in terms
of influence of wake on energy production, Nikoli et al. have presented an adaptive
neuro-fuzzy inference system based methodology [24]. Experimental analysis is
carried out for wind speeds 6, 8, and 10 m/s. Results revealed that ANFIS is a
reliable soft computing technique for predicting the power deficit losses as well
as wind speed deficit for a wind farm. It is also observed that wind direction has a
significant influence on the power deficit ratio andmust be considered while carrying
out micro-siting.

With the onset of renewable energy systems, the grid integration of wind energy
systems has increased drastically. This integration also questioned the reliability and
security of power system at large. Due to numerous advantages offered by wind
energy systems in form of pollution-free power, the investment has also increased
particularly in offshore platform. In case of offshore wind farms, the abundant wind
resource has also played a major role in attracting heavy investments in European
countries in particular. However, the intermittency, whether in onshore platform or
offshore platform, jeopardizes the capacity requirements for reserves power sources,
and hence it must be optimized.



10 1 Fundamentals of Wind Turbine and Wind Farm Control Systems

Farm Operator

WIND FARM
CONTROLLER

UTILITY GRID

Fig. 1.8 Schematic for wind power controller aimed at reserve power maximization

Since wind is stochastic, generation from wind power plants keeps on varying
which calls for the need of reserve power capacity. Wind power plants (WPPs) can
have battery energy storage systems as their reserve but are often critiqued due to their
high initial investment cost. Since wind resource is abundant and power potential is
enormous,WPPs can also serve the purpose of providing ancillary support tomodern-
day grids. This fast acting support can be in form of frequency regulation. Control
of WPPs in conventional terms focuses on power maximization with minimum cost.
However, in a study carried out by Siniscalchi-Minna et al., the power reserve is
optimized keeping in mind the generation capability of each turbine unit in a wind
farm [30]. Frequency support can be provided by WPPs by delivering real power
for a long duration in order to thrive frequency to its nominal value. A de-loading
mode of operation where each turbine unit operates at around 70–80% of its rated
value is implemented. However, this frequency support faces challenges posed by
the ever-changing aerodynamic conditions in Prandtl layer, where wind turbines
operate. Figure1.8 illustrates the control methodology adopted for reserve power
maximization.

Consider a scenario where the generated wind power Pgen is higher than power
demand Pdem , in such condition(s), the remaining power is termed as reserve power
Pres . The total available power is sum of wind powers produced by each turbine. In
presence of wind wakes, the upstream turbines are forced to produce less wind power
in order to maximize the power captured at downstream turbines. This can be done
by either yawing or tilting an upstreamwind turbine. Siniscalchi-Minna et al. discuss
reserve power maximization, a linear programming problem (LPP) is constructed to
minimize the difference between demanded power and set-point reference power.
Mathematically, this can be expressed as
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min wT ε (1.11)

subject to Pdem = ∑N
i=1 Pr,i , (1.12)

|Pdem − ∑N
j=1 Pr, j | ≤ εi , (1.13)

Pmin,i ≤ Pr,i ≤ Pav,i , (1.14)

where ε = [ε1, . . . , εN ]T and w = [w1, . . . , wN ]T are the weights and Pmin,i repre-
sents the minimum power contribution from the i th turbine while Pr,i is the reference
power set point for turbines. In order to validate this methodology, a 12-turbine wind
farm layout is considered and three cases are discussed. Results revealed that based
on the proposed strategy the downstream turbines were able to contribute to the
reserve power need. Further, it is observed that a significant amount of reserve power
is optimized for different wind directions, and the authors have stated a possible
expansion of the proposed scheme to evaluate the mechanical loads in wind farms.

Control objective for such a dynamic phenomenon involves use of accurate wind
measurement devices like LIDAR. In recent years, the use of LIDAR in control of
wind turbines aswell aswind farms has increased.Wind speedmeasurements in front
of a wind turbine can be used as part of feedforward- or preview-based controllers to
help mitigate dynamic structural loads caused by turbulent wind conditions. Various
studies have shown that improvements in turbine load performance can be achieved
with prior knowledge of incoming wind flow. Figure1.9 shows the block diagram of
LIDAR-based control of wind turbine. LIDAR detects the wind speed ahead in time
which helps the controller to act accordingly.

Commercially available LIDAR technologies include continuous wave (CW)
LIDAR and pulsed LIDAR. A LIDAR system estimates the wind speed compo-
nent in radial direction which is analogous to the freestream wind speed v0 assuming
the wind speed component in y- and z-directions is zero. Since LIDAR works on
the principle of laser beam transmission, any change in laser direction will lead to
directional bias error that contributes to erroneous wind speed measurement. Math-
ematically, the line-of-sight velocity estimated by LIDAR is given as
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sents incoming wind speed and violet (dashed) represents LIDAR estimate

vlos =
√
v2x + v2y + v2z cosαlos, (1.15)

where vx , vy, vz are the wind speed components in x-, y-, z-directions, respectively,
and αlos is the angle formed between LIDAR beam and incoming wind speed com-
ponent. Assuming zero directional bias error, the LIDAR estimate v̂x of wind speed
is given as

v̂x = vlos
cosαlos

. (1.16)

Figure1.10 illustrates the wind speed estimated by LIDAR for different line-of-
sight angles. It is observed that for αlos = 15◦, the error in wind speed estimation is
minimum and increases significantly upon increasing line-of-sight angle.

LIDAR-based control in wind farm has been in limelight for recent years. Rezaei
et al. have discussed an alternative to classical feedforward controller [27].ALIDAR-
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based controller that incorporates previewwind speedmeasurement is used for gener-
ator speed regulation. An uncertain wind speedmodel is used that is based on LIDAR
measurements.Numerical simulations are carried out in presence of uncertainties and
results reveal that LIDAR-based control outperforms CART3 controller by 62% in
terms of root mean square error for speed regulation. Raach et al. have described
a closed-loop wake steering method to simulate the LIDAR information for wind
turbines [25]. Wake center for upstream wind turbine is estimated and is controlled
for achieving desired yaw angle. The LIDAR data is also used on SOWFA simula-
tor. Howland et al. have carried out a site-specific wake steering control for power
maximization [15]. In order to statistically validate the control scheme,Kolmogorov–
Smirnov test was performed with null hypothesis stating the power production from
baseline controller and experimental analysis from yaw measurements have similar
distributions. Results reveal that K–S test is insignificant for wind sector 320◦ ± 5
and is only useful if smaller bins are used for calculating average power. Bossanyi et
al. have explored the possibility of combined axial induction control and wake steer-
ing control to minimize power losses and fatigue loads on wind turbines in a wind
farm [4]. A fast time-domain simulation model captures turbine and wake dynamic
effects, so that wind farm controllers can be tested in time-varying conditions for
assessing the performance of the combined power and yaw controller.

Predominately, the losses occurring due to wake are characterized by maximum
velocity deficit. The spatial location in terms of (x, y, z) coordinates is the position
in the wake field that corresponds to maximum power loss and this point is known as
the wake center. Wake center tracking is explored by Cacciola et al., where the hub
loads at the downstream turbine are used to collect information related to wind speed
deficit and horizontal shear [7]. A minimization problem is used to accurately deter-
mine wake center using the hub sensors to provide information with good accuracy.
The limitation of thismethod is the usage of Larsen’smodel that does not encapsulate
yaw misalignment. Barthelmie and Pryor have discussed an automated wake char-
acterization algorithm to identify wake center position under different atmospheric
conditions of the day [2]. The wake center position is measured using a Doppler
LIDAR for a duration of first 6 months of 2017 and scans reveal that this position
changes during night time when stable atmospheric conditions prevail during day-
time. Further, an important aspect of power maximization is studied by Raach et
al., where the authors have used a H∞ controller to redirect the wake streamflow
for yaw angle control [26]. The system identification toolbox is used for identifying
various plant models. Finally, closed-loop performance of the controller is tested
under different atmospheric conditions.

1.4 Wind Turbine Micro-Siting

Energy yield from fossil fuels is limited with environmental concerns being raised
globally. To deal with this, alternative sources of energy like Solar PV, Wind, Tidal,
Biomass, Geothermal, and Hydropower are being preferred. The hidden potential in
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Fig. 1.11 Commonly used wind resource assessment software tools

wind energy is best utilized if installation and commissioning are carried out which
are complemented by an accurate wind resource assessment [10]. Thrust factors that
affect the energy yield of a wind site include accurate wind speed measurement
campaign, local terrain, and accessibility to roadways and orographic conditions.
With the advent of LIDAR-based measurement devices, the wind resource assess-
ment (WRA) has significantly improved the annual energy production (AEP) of a
wind farm. Often while selecting land for a wind farm project, constraints in form
of area, forbidden zones, investment limit, and labor pose challenges for an investor.
However, various software packages are available that carry out the wind resource
assessment for determining the annual energy yield as illustrated in Fig. 1.11.

Themost popular software tool isWAsP,which is based onmicro-flow analysis for
determining the wind resource for a particular area. However, WAsP is not suitable
for carrying out WRA in complex terrain characterized by hilly areas. To tackle this,
based on CFD analysis, a latest release of this software is available that calculates
the energy yield for complex terrains. On the other hand, WindSim is based on
3D Navier–Stokes equation solver for determining the optimal locations for wind
turbines that offer better velocity profile and less turbulence. This tool is essentially
used for power maximization. MeteoDyn uses CFD-based simulations to estimate
the wind resource under the given area. It uses Katic model for calculating energy
yield under wake effect [19]. Windfarmer optimizes a given wind farm layout for
maximum return of investment. CFD is used for wake effect and along with that
the package also offers studies pertaining to noise and visual impact of turbines in
a wind farm. Similarly, Openwind and WindPro are used for optimizing wind farm
layout based on Katic model and determine the AEP. It is worthwhile to note that
Openwind offers a tool to study the shadow flicker effect in wind turbines that causes
tower deflection under high wind speed conditions.

It is observed that apart from the abovementioned thrust factors, the initial invest-
ment has had a major role to play while designing a wind farm. While we focus on
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onshore wind farms, the electrical infrastructure needed in forms of cables, auxil-
iary devices, and insulation increases the cost of the overall project. Similarly, with
offshore wind farms, the cost incurred to lay out high-voltage DC cables poses a
challenge too. Thus, for a proper wind farm design catered to deliver maximumAEP
with minimum investment cost, a channelized way of placing wind turbines in a
given area must be done. This process of optimal turbine placement is known as
micro-siting.

Wind turbinemicro-siting is governed by an aerodynamic phenomena calledwake
effect. The interactions amongwind turbines in a wind farm deteriorate the net power
capture and losses incurred from this are huge. To minimize the wake interactions,
optimization techniques based on a multi-objective perspective of power maximiza-
tion and cost minimization are chosen. Early works of micro-siting were carried
out by Mosseti et al. [23] and Grady et al. [13] which later on became benchmark
works for researchers to compare their novel micro-siting techniques. Mosseti et al.
have used genetic algorithm to determine optimal wind farm layout for maximizing
production capacity. The objective function can be expressed as

min
NT

Obj = 1

Pf arm
w1 + w2

cost f arm
Pf arm

, (1.17)

where Pf arm and cost f arm represent the total wind farm power and cost per annum
incurred, NT is the total number of wind turbines in a wind farm, and w1, w2 are the
weights imposed on objective function. The expressions for Pf arm and cost f arm can
be expressed as

Pf arm = T
Ns∑
i=1

NT∑
j=1

p(si j )
∫ uco, j

uci , j
PWT (u′

i j )pi j (u
′
i j )du (1.18)

cost f arm = NT

(
2

3
+ 1

3
e−0.00174N 2

T

)
, (1.19)

where T is the number of hours in a year, Ns are number of sectors of wind rose,
uci, j and uco, j are the cut-in and cut-off wind speed, and p(si j ) is the probability
of occurrence of wind in i th direction at the j th turbine. Further, Grady et al. have
implemented genetic algorithm for arriving at the optimal wind farm layout but have
used a simplistic objective function of form

min obj = cost f arm
Pf arm

. (1.20)

Although the efficiency reported by Mosetti et al. is higher than Grady et al.,
genetic algorithm can be used for optimizing layout of wind farms successfully.
Mosetti et al. do not consider enough generations for achieving targeted convergence.
MirHassani et al. have considered the effect of uncertain wind conditions on optimal
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wind farm layout [21].Amixed integer linear programming (MILP) technique is used
and turbines with different hub heights are considered. Results reveal that compared
to Chen et al. [8], the increment in power production is approximately 3.1%.

1.5 Hybrid Wind Farms: Paradigms and Challenges

Modern-day electricity grids operate on the concept of hybrid interconnection where
multiple power sources contribute their power to the point of common coupling.
With renewable energy sources (RES) becoming more popular day by day, wind and
solar technologies have been installed in large quantities to meet energy demands of
remote and rural areas. The essence of a hybrid renewable energy system relies on the
load demand which is stochastic in its nature. Consider a hybrid system comprised
of wind, solar, and battery sources. When the load demand is less, excess of power
from wind and solar is used to charge the battery system without violating battery
state of charge limits. In case when load demand is more than combined generation
of wind and solar, the power stored in battery is used to compensate the deficit power.

Hybrid renewable energy systems typically consist of battery backup in order
to cater events of deficit power. In the present context, the concept of hybrid wind
farms in particular is focused on multi-wind farms that interact with each other in the
events of power deficit or excess. The decision-making and control of such hybrid
wind farms equipped with BESS is a challenging task. Hybrid wind farms deal with
wind resource which is variable and in need of accurate forecast techniques. An
accurate wind forecasting technique ensures power reliability to the grid and lessens
the BESS duty. For a wind farm operator, the main objective is to maximize power
output from the wind farm and minimize the mechanical loads acting in turbulent
conditions. The decision-making techniques evaluated in this book are based on
a series of alternatives that aim to minimize the penalty incurred to a wind farm
operator. Amulti wind farm topology is selected where the decision is to be made for
choosing the best strategy for hybrid operation of wind farm. Figure1.12 illustrates
a schematic of hybrid renewable energy system feeding AC loads.

Control aspects for a hybrid wind farm are based on pitch and yaw angle based
methods where the controller aims to maximize the power output from a wind farm.
In the present context, a hybrid wind farm is considered with an objective to manage
the wake effects. Control-oriented techniques based on precise wind speed mea-
surements have carried out three different types of wind farm layouts. Adaptive PI
control and classical PI controlmethods are adopted and LIDAR simulations are used
to track the wake flow behind the upstream turbine in a wind farm. The potential
power maximization capability of wind farms is evaluated based on yaw correction
achieved by controller. Further, for BESS the operating cost incurred along with their
lifetime is analyzed under different wake scenarios.
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Fig. 1.12 Hybrid renewable energy system
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Chapter 2
Multi-criteria Decision-Making: An
Overview

Decision-making on day-to-day basis is a common human practice that essentially
requires one to choose a best alternative among many. Modern-day decision-making
has evolved over the years with early developments dealing with multi-objective
optimization approach in the field of operations research. The inception of decision-
making is explained lucidly by Benjamin Franklin based on his work on moral
algebra. He gives an example of his stand on an important issue where he writes
arguments that support his views and arguments that do not. Based on his own
understanding, he crosses out the arguments that hold equal importance. Once he
reaches a stage where all the arguments on one side are crossed out, he chose the
side with leftover arguments. This anecdote describes the importance of weights
in decision-making process. Since 1950s, Multi-criteria decision-making (MCDM)
has been practiced actively by theoretical and applied scientists to test the potential
capability of mathematical modeling of decision-making problem.

Figure2.1 illustrates the thrust applications of MCDM.
Similar to MCDM, multi-objective optimization approach that models an opti-

mization problemwith multiple objectives is also deployed for solving real-time sce-
narios. Such scenarios are often governed by constraints that reflect the economies
of scale. In the field of finance and economics, MCDM is widely used to make deci-
sions related to investments where apart from financial variables, intangible variables
like social, cultural, and political effects are also to be considered [6]. Hallerbach
et al. discussed the relevance of MCDM methods in finance sector where the firm
management’s aim is to maximize the profits incurred by investment from various
shareholders [8]. Usually, a firm has more than one shareholder deciding the main
objective.With a common objective of wealth maximization considering constraints,
the opportunity provided by MCDM methods in finance sector is tremendous.
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Fig. 2.1 Applications of multi-criteria decision-making

2.1 Terminologies Related to MCDM

Given a multi-criteria decision-making process, several terminologies are used that
describe the path to the decision. An MCDM approach is commonly used in the
field of supplier selection, renewable energy sector, selecting type of manufacturing
material. Following are the terminologies used in an MCDM process:

• Alternative: An alternative can be described as a “choice” that a decision-maker
has to make in order to arrive at the best plan of action that eventually supports
the designed framework. Alternatives can be of tangible and intangible form. For
example, for a supplier selection problem, alternatives can be a list of suppliers
with varied nature of material/product under investigation.

• Decision criteria or attributes: Criteria refer to an entity tangible or intangible
that directly influences the result of the decision-making process. In an MCDM
problem, there may be multiple criteria, each highlighting its importance in terms
of weights.

• Criteria weight: It refers to a quantitative numeric value assigned to each cri-
terion for aiding the decision-making process and streamlining beneficial and
non-beneficial criteria.
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2.2 MCDM: Materials and Methods

The MCDM approach helps the decision-makers in the identification of the best
alternative from an array of plausible criteria. An m × n matrix is identified with
matrix element, say hi j such that

H =

C1 C2 . . . Cn⎛
⎜⎜⎝

⎞
⎟⎟⎠

h11 h12 . . . h1 j A1

h21 h22 . . . h2 j A2
...

...
...

...

hi1 . . . . . . hi j Am

describes a performance score representing a semantic relationship between the alter-
native i = 1, 2, . . . ,m w.r.t the criteria j = 1, 2, . . . , n.

Figure2.2 illustrates a generic flowchart to approach a given MCDM problem.
We now discuss the decision-making problem through six methods: (i) simple

additive weighting (SAW), (ii) technique for order of preference by similarity to ideal
solution (TOPSIS), (iii) complex proportional assessment (COPRAS), (iv) analytic
hierarchical process, (v) ELECTRE, and (vi) PROMETHEE methods as illustrated
in Fig. 2.3.

2.2.1 Simple Additive Weighting (SAW) Method

Hwang et al. in 1981 presented this method by assigning each performance score of
alternative Ai with a specificweightwi , to obtain aweighted sum of all the criteria for
an alternative [9]. The steps involved are enumerated through this flowchart (Fig. 2.4).

The step-by-step procedure is described as follows:

• Step 1: Identify the alternatives (A1, A2, . . . , Am) and criteria (C1,C2, . . . ,Cn).
• Step 2: Develop a normalized decision matrix:

Ĥi j = min hi j
hi j

i = 1, 2, . . . ,m; j = 1, 2, . . . , n, (2.1)

Ĥi j = hi j
max hi j

i = 1, 2, . . . ,m; j = 1, 2, . . . , n, (2.2)

where (2.1) is used for non-beneficial criteria, and (2.2) for beneficial criteria.
• Step 3: For each criterion, find entropy e j and divergence values d j :

e j = − 1

logm

m∑
i=1

Ĥi j log(Ĥi j ), d j = |1 − e j |, j = 1, 2, . . . , n. (2.3)
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Fig. 2.2 Generic flowchart
for multi-criteria
decision-making

Define the problem and identify key
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Collect relevant data 
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decision

Obtain performance scores and rank them for
further analysis

• Step 4: Determine the weights for the respective criterion:

wj = d j∑n
j=1 d j

. (2.4)

• Step 5: Finally, calculate the priority score for each alternative and arrange accord-
ing to highest priority:

Si =
n∑
j=1

wjhi j . (2.5)

In order to demonstrate the SAWmethod, we consider an example of car selection
based on qualitative criteria given quantitative weights. Consider five automobiles,
namely, Jeep Compass, MG Hector, Kia Seltos, Tata Harrier, and Hyundai Creta.
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Fig. 2.4 Flowchart for simple additive weighting
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These automobiles are evaluated on criteria like style, lifespan, fuel economy, and
cost. Out of these, cost criterion is a non-beneficial criterion. Based on a survey
carried out by an automobile expert, a decision matrix Hi j is constructed which is
given as

H =

Style Lifespan Fuel economy Cost⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

7 5 5 4 Jeep Compass
9.5 8 6 6 MG Hector
10 7 6 6 Kia Seltos
9 7.5 6 7 Tata Harrier
5 7 6.5 4 Hyundai Creta.

Further, based on (2.1) and (2.2), a normalized decision matrix is obtained as

Ĥ =

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

0.7000 0.6250 0.7692 0.5714
0.9500 1.0000 0.9231 0.8571
1.0000 0.8750 0.9231 0.8571
0.9000 0.9375 0.9231 1.0000
0.5000 0.8750 1.0000 0.5714

.

Next, we determine the criteria weights using entropy method as described by
(2.3)–(2.4) and are given asw = {0.2299, 0.2700, 0.3135, 0.1865}. The performance
scores are determined using (2.5) and are depicted in Table2.1.

Themost preferred automobile isMGHector followed byTataHarrier, Kia Seltos,
Hyundai Creta, and Jeep Compass. It is therefore possible to explore a potential
choice based on a mathematical model.

2.2.2 Technique for Order of Preference by Similarity
to Ideal Solution

The technique for order of preference by similarity to ideal solution (TOPSIS)
ascertains the ideal choice by determining the shortest Euclidean distance to the
positive ideal solution and the longest distance to the negative ideal solution [5].

Table 2.1 Performance scores based on SAW method

Alternative Performance score Ranking

Jeep Compass 0.6775 5

MG Hector 0.9377 1

Kia Seltos 0.9155 3

Tata Harrier 0.9360 2

Hyundai Creta 0.7714 4
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Lourenzutti et al. have identified a method to incorporate the factors considered by
multiple decision-makers, and the same has been tested for three different cases [11].
Yang et al. discussed TOPSIS and Shanon entropy methods for flood vulnerability
assessment for aHainan province inChina [14].Variousfloodvulnerability indicators
are assessed by TOPSIS method, and the nonhomogeneous nature in the indicators
is handled by Shanon entropy method. The values of the vulnerability index are cal-
culated by using a hydrodynamic model. In terms of dam site selection, Balioti et
al. presented a method based on AHP to find the criteria weights and TOPSIS as a
method to find the best site in Greece [1]. A total of five designs for spillways are
assessed considering nine criteria. Figure2.5 illustrates a flowchart highlighting the
steps followed for TOPSIS method.

The following steps are used for priority score determination:

• Follow Steps 1–2 as in the case of the SAW method.
• Construct a normalized decision matrix with its elements as

Ĥi j = hi j√∑n
j=1 h

2
i j

i = 1, . . . ,m; j = 1, . . . , n. (2.6)

• Construct a weighted normalized matrix using the weights for each criterion:

ĥ = wj Hi j i = 1, . . . ,m; j = 1, . . . , n. (2.7)

Identify alternatives
and criteria for
MCDM problem

Develop a decision
matrix

Construct a
normalized decision

matrix 

Identify Beneficial & Non-
beneficial criteria

Using entropy
method, obtain
criteria weights

Obtain Priority
score & rank the

alternatives 

Identify positive
(PIS) & negative

(NIS) ideal solution 

Determine
euclidean distance

from each PIS & NIS

Fig. 2.5 Flowchart for TOPSIS method
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• Identify positive and negative ideal solutions S+ and S−, respectively, as

S+
j = {(max hi j | j ∈ t); (min hi j | j ∈ n − t)|i = 1, 2, . . . ,m}, (2.8)

S−
j = {(min hi j | j ∈ t); (max hi j | j ∈ n − t)|i = 1, 2, . . . ,m}, (2.9)

where t and n − t represent the number of beneficial and non-beneficial criteria,
respectively.

• Evaluate relative closeness of each alternative from the p-norm Euclidean dis-
tances D+

i and D−
i , and rank in descending order:

Gi = D−
i

D−
i + D+

i

i = 1, . . . ,m; 0 ≤ Gi ≤ 1, (2.10)

D+
i =

{ n∑
j=1

(
ĥi j − S+

j

)p
}1/p

, D−
i =

{ n∑
j=1

(
ĥi j − S−

j

)p
}1/p

, j = 1, . . . , n. (2.11)

TOPSIS method is tested for the same example as done for the SAWmethod. The
normalized decision matrix based on (2.6) is given as

Ĥ =

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

0.3767 0.3206 0.3777 0.3234
0.5113 0.5129 0.4532 0.4851
0.5382 0.4488 0.4532 0.4851
0.4844 0.4809 0.4532 0.5659
0.2691 0.4488 0.4910 0.3234

. (2.12)

After calculating the normalized decision matrix, the criteria weights are calcu-
lated that highlight their relative importance over another. Based on entropy method
used in SAW method, the weights are given as

w = {0.2186, 0.2654, 0.2885, 0.2275}. (2.13)

Next, we evaluate the positive and negative ideal solutions. A positive ideal solution
(PIS) supports a particular alternativewhile the negative ideal solution (NIS) provides
an insight into the worst possible one. Using (2.8), (2.9), the PIS and NIS are

S+ = {0.1177, 0.1361, 0.1416, 0.0736}, S− = {0.0588, 0.0851, 0.1090, 0.1287}.

We find the distances D+, D− based on (2.11), and since it is a p-norm distance,
only positive integer values are to be set. The distances are given as

D+ = {0.0025, 0.0008, 0.0009, 0.0017, 0.0019},
D− = {0.0018, 0.0031, 0.0027, 0.0023, 0.0026}.
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Table 2.2 Performance scores based on TOPSIS method for car selection problem

Alternative Performance score Ranking

Jeep Compass 0.4223 5

MG Hector 0.8051 1

Kia Seltos 0.7552 2

Tata Harrier 0.5716 4

Hyundai Creta 0.5842 3

Finally, we calculate the priority or performance scores for each alternative using
(2.10). The priority scores indicate the best choice and worst choice which are purely
based on the element values of decision matrix chosen by decision-maker. The pri-
ority scores are enlisted below (Table2.2).

From TOPSIS and SAW method analysis, we observe that Jeep Compass still
remains the least preferred choice for automobile given the adopted criteria used.

2.2.3 Complex Proportional Assessment (COPRAS) Method

The complex proportional assessment (COPRAS) method involves a stepwise rank-
ing process to ascertain the performance of each alternative while taking into account
different conflicting situations. Zolfani et al. implemented COPRAS and AHP to
solve the quality control manager selection problem with knowledge, experience,
and educational background as key factors [15]. Bhowmik et al. discussed the prob-
lem of selecting an appropriate green energy source for Tripura, India based on the
entropy-based COPRAS method [3]. Possible alternatives like solar, hydro, biogas,
and biomass are chosen along with a set of beneficial and non-beneficial criteria.
Following are the steps for COPRAS method:

• Decision matrix is constructed either based on a survey or a questionnaire.
• Work out the normalized decision matrix and establish the weights based on
entropy method as discussed for TOPSIS method.

• Determine weighted normalized matrix Ĥi j using (2.6).
• Determine the aggregated weighted scores for beneficial and non-beneficial crite-
ria:

R+
i =

q∑
j=1

ĥi j , R−
i =

n∑
j=q+1

ĥi j | i = 1, 2, . . . ,m, (2.14)

where q represents the number of beneficial criteria, and n − q represents the
number of non-beneficial criteria.
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Fig. 2.6 Flowchart for COPRAS method

• Determine relative priorities for each alternative as

Ui = R+
i +

∑m
i=1 R

+
i

R−
i

∑m
i=1

1
R−
i

. (2.15)

• Find the final priority score for each alternative, arranged in descending order:

Li = Ui

Umax
× 100%. (2.16)

The steps involved in this method can be enumerated through this flowchart
(Fig. 2.6).

As an example,wenowsolve theMCDMproblemdiscussed for SAWandTOPSIS
method and see how the performance results unfold based on COPRASmethod. The
decision matrix remains the same as well as the normalized decision matrix along
with the criteria weights as obtained in the TOPSIS method. The sum of weighted
scores for beneficial and non-beneficial criteria is evaluated using (2.14) and is given
as follows:
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Table 2.3 Performance scores based on COPRAS method

Alternative Performance score Ranking

Jeep Compass 0.8708 5

MG Hector 1.000 1

Kia Seltos 0.9760 2

Tata Harrier 0.9428 4

Hyundai Creta 0.9640 3

R+ = {0.2764, 0.3787, 0.3675, 0.3643, 0.3196}, (2.17)

R− = {0.0736, 0.1103, 0.1103, 0.1287, 0.0736}. (2.18)

The relative priorities of the alternatives are evaluated using (2.15) and (2.16) and
the priority scores are listed in Table2.3.

Thus, results reveal that as per COPRASmethod,MGHector is themost preferred
automobile followed by Kia Seltos, Hyundai Creta, Tata Harrier, and Jeep Compass
is the worst possible choice.

2.3 The Analytic Hierarchy Process

Analytic hierarchy process (AHP) was coined by Saaty that is based on decomposing
a given MCDM problem into a system of hierarchies [12]. A matrix representing
relative importance of the alternatives with respect to each criterion is built. AHP
provides a key framework based on designing a decision matrix which highlights
the hierarchies depicting environmental scenarios, objectives pertaining to corporate
decisions and medical strategies. AHP has been successfully applied to domains like
prioritization, resource allocation, and decision-making, and is described as follows:

• Define the decision-making problem and identify key criteria.
• Based on the criteria, set of alternatives, and decision goal, structure the hierarchy
of the problem.

• Construct pairwise comparisonmatrices where the elements of thematrices higher
in the priority are compared with those of lower priority.

• Based on the priorities obtained, weigh up the priorities in lower level and repeat
this step for every element. Add these priorities to obtain final priorities for the
lowest level.

In order to assign relative importance among different criteria quantitatively, the
following scales are used in the AHP method as shown in Table2.4.

Consider anMCDMproblemwith three alternatives and four criteria. The decision
matrix is given by
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Table 2.4 Relative
importance for AHP method

Scale Importance

1 Equal importance

3 Moderate importance

5 Strong importance

7 Very strong importance

9 Absolute importance

2, 4, 6, 8 Compromise between 1, 3, 5, 7, 9

Table 2.5 Performance
scores based on AHP

Alternatives Score Ranking

A1 0.34 2

A2 0.35 1

A3 0.31 3

H =
C1 C2 C3 C4( )25 20 15 30 A1

10 30 20 30 A2

30 10 30 10 A3.

Consider the weights of the criteria asw = {0.2, 0.15, 0.40, 0.25}. Next we evalu-
ate K j = ∑m

i=1 hi j and divide the respective elementswith K j where j = 1, 2, . . . , n
and ai j are the elements of the matrix. The relative matrix is given as

H∗ =
C1 C2 C3 C4( )25/65 20/55 15/65 30/65 A1

10/65 30/55 20/65 30/65 A2

30/65 10/55 30/65 10/65 A3.

Next, we evaluate the performance score of the alternatives given as

Bi =
n∑
j=1

wj ĥi j , i = 1, 2, . . . ,m, (2.19)

where wj is the weight assigned to each criterion and ĥi j represents the elements of
the H∗ matrix. The performance scores are listed in Table2.5.

Based on the performance scores, the alternatives are ranked as A2 � A1 � A3.
AHP is a simplistic method that involves careful study of the alternatives as it con-
siders their pairwise comparison. The common areas where AHP is applied include
corporate planning, public policy, and strategic planning.
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2.4 ELECTRE Method

Another method used in MCDM approach was ELECTRE method, which stands
for elimination and choice translating reality, and was first put into use in 1966
[7]. In this approach, the alternatives are compared with each other in a pairwise
manner for given criteria. A pairwise comparison between alternatives h and k may
be based on a monetary value or a physical entity given as r(h) and r(k). Sometimes
a decision-maker may come up with a threshold value like average of r(h) and r(k)
or arithmetic difference between them. ELECTRE method comprises two parts, that
is, outranking the alternatives and an exploitation procedure to ascertain the decision.

In terms of outranking procedure, a degree of concordance is obtained between
two alternatives h and k. Consider a relation hSk which implies preference of h over
k provided the majority criteria are consistent with it. If the concordance condition
holds, none of the criteria that support hSk should oppose it. Concordance index
C(hSk) is determined using

C(hSk) =
∑

j∈l ′ wj∑
j∈l w j

, (2.20)

where l ′ is the set of criteria satisfying the concordant condition and l is the set
of all criteria. Concordance condition C(hSk) > C∗ must be satisfied in order to

hSk rejected hSk accpted

Fig. 2.7 Flowchart for ELECTRE method
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proceed further for discordance test.C∗ refers to the concordance level. Discordance
index determines the possibility of a disagreement between preference of h over k
as asserted by concordance test. The discordance index is given by

D(hSk) = max
j :rhj<rk j

{rk j − rhj }
dmax

, (2.21)

where dmax represents the maximum difference between performance alternatives.
For a given discordance level D∗ ≥ D(hSk), the preference of h over k is rejected.
This procedure is performed for every pair (h, k) to arrive at the best alternative.

Figure2.7 illustrates the flowchart for ELECTRE method.

2.5 Preference Ranking Organization Method of
Enrichment Evaluation (PROMETHEE)

Consider a multi-criteria problem as a set of alternatives

max {c1(a), c2(a), . . . , cn(a), |a ∈ A}, (2.22)

where A represents a finite set of alternatives {a1, . . . , am} and {c1(a), . . . , cn(a)}
represents a set of criteria. According to the mathematical problem stated above,
there exists no set of alternatives that would maximize all the given criteria. Hence,
it is only meaningful to talk about relative comparisons between alternatives. In
relation to the preference ranking organization method of enrichment evaluation
(PROMETHEE) method for decision-making, the principle of dominance is widely
used for expressing preference of one alternative over other for given criteria under
a certain function evaluation [4]. Mathematically for alternatives (a1, a2) ∈ A, this
can be expressed as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∀ j : g j (a1) ≥ g j (a2), ⇐⇒ a1Pa2
∀ j : g j (a1) = g j (a2), ⇐⇒ a1 I a2
∃l : gl(a1) > gl(a2),

∃l : gk(a1) < gk(a2), ⇐⇒ a1Ra2

(2.23)

where P, I, andR refer to preference, indifferent, and incomparable. An alternative
is considered better than others if it is better than on all criteria. Similarly, if an
alternative performs better for criterion l but underperforms for a criterion k, in that
case the two alternatives are said to be incomparable. The stepwise procedure of
PROMETHEE algorithm is pictorially depicted in Fig. 2.8 and is enumerated below:

• Construct a pairwise comparison matrix between alternatives based on the quali-
tative and quantitative data available.
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Fig. 2.8 Flowchart for PROMETHEE method

• Based on the application, identify a suitable preference function which determines
the preference of alternative a1 over a2 and so on. The preference values are either
“1” or “0” where former indicates strong preference and latter means indiffer-
ent preference. Various function like usual criterion, U-shape criterion, V-shape
criterion, and Gaussian criterion are used.

• Calculate global preference index,
∏

(a1, a2) between alternatives a1 and a2 as

∏
(a1, a2) =

n∑
j=1

wj Pj (a1, a2), (2.24)

where wj is the weight corresponding to criteria j ; Pj (a1, a2) is the preference
function value between alternatives a1 and a2.

• Based on the global preference indices, calculate positive flow (η+(ai )) and neg-
ative flow (η−(ai )). The positive flow is indicative of preference of an alternative
over others while the negative flow determines the quantitative index showing by
howmuch a particular alternative is outranked by others. The positive and negative
flows are given as

η+(a) = 1

1 − n

∑ ∏
(a1, a2), η−(a) = 1

1 − n

∑ ∏
(a2, a1). (2.25)

• Calculate the net flow score for each alternative using

η(a) = η+(a) − η−(a). (2.26)

The alternative with maximum net flow score is considered the best.
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Compared to other methods, PROMETHEE has a simplistic approach and finds
its application in the field of logistics, transportation, and energy management.

2.6 Sensitivity Analysis in Decision-Making

Decision-making process is often challenged by the variations in input parame-
ters. Decision-makers face scenarios where the processes involved are stochastic in
nature. Any new alternative or criteria added or removed from the decision environ-
ment can have drastic repercussions on the decision result. Early works in sensitivity
analysis are carried out by Wendell where the effect of varying the input param-
eters after optimizing the problem through linear programming is discussed [13].
Traditional sensitivity analysis methods vary only one parameter at a time, but Wen-
dell describes a tolerance method to vary multiple parameters at the same time. As
research progressed, Barron and Smith presented two methods for sensitivity anal-
ysis for multi-attribute models based on entropy method and a least square method.
Both the methods operate on a pair of alternatives where the best one is evaluated
based on the closest set of weights that equates their ranking [2].

Sensitivity analysis carried out on MCDMmethods also reflects the uncertainties
present in the decision-making process. Uncertainty is defined as an entity that is
not fixed or has no crisp status. Uncertainties can be internal or external of which
latter holds significant importance. Internal errors are the uncertainties pertaining
to structure of the MCDM problem. These errors may arise due to lack of human
knowledge or biased opinions adopted during a mass survey. In the present context
of hybrid wind farms, the criteria dealing with hybrid wind farm operation may pose
some uncertainties in form of wind wakes and sudden change in wind speed and
direction. Such difficulties are solved by using a fuzzy-based approach that models
the decision-making problem to resolve the complexities faced by decision-maker,
thereby increasing the reliability of the method and also the sensitivity to internal
changes in model. On the other hand, external uncertainties relate to the situations
that deal with external environment of the decision. For example, while selecting
the site for construction of a multipurpose shopping arcade, factors like geographic
location, amenities offered, and security act as external uncertainties. The effect
of sensitivity can be modeled mathematically by using function evaluations that
may represent a distance metric from a desired one or a utility. Consider a function
η(T (x, ξ), φ), where ξ and φ represent the external and internal uncertainties on
a decision-making process. The impact of variations in ξ and φ is assessed for
testing the robustness of the MCDM method. Sometimes, the decision-maker may
be provided with specified values of function η(ξ, φ). In such cases, it is mandatory
to vary the parameter values outside their range to see how the decision-making
results unfold. The commonly used sensitivity analysis method is stochastic multi-
criteria acceptability analysis (SMAA) that determines an acceptability index for
each alternative uncertainties [10]. It is therefore important to incorporate sensitivity
analysis into MCDM processes.
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This chapter highlights the popular MCDMmethods used in everyday life as well
as in sectors like finance, economics, and management. Out of these methods, our
study on hybrid operation in wind farms deals with SAW, TOPSIS, and COPRAS.
Predominately, these methods objectively analyze each alternative with respect to
given criteria. However, in methods like AHP and ELECTRE, the pairwise compar-
ison of alternatives with respect to each other is the key step in identifying the best
choice which is not relevant to our problem definition of hybrid wind farms. The
sole objective AHP process is based on interdependencies among alternatives and
criteria which can cause rank reversal. While dealing with TOPSIS and COPRAS
method, the evaluation of performance scores becomes simple and is easy to under-
stand while this is not true with ELECTRE method. It is also important to note that
in decision-making the assigning weights to the criteria is a crucial task. Techniques
like entropy method and moora method are often used for this purpose. The strate-
gies modeled as alternatives are discussed in the next chapter are purely independent
to each other. Coincidentally, the randomness in the input model (decision matrix)
is also discussed via a suitable form of sensitivity analysis for SAW, TOPSIS, and
COPRAS methods.
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Chapter 3
Decision-Making in Hybrid Wind Farms

Having dominated as primary energy source, fossil fuel consumption has seen a sig-
nificant spurt in the twentieth century. However, with increased carbon footprints
from fossil fuels globally, renewable energy technologies have been reinforced as
energy source in developing and developed countries. Increased penetration of wind
power in utility grid questions stable power system operation due to random wind
speed causing erratic dispatch of generated power. The concern of forecasting chal-
lenges among wind practitioners has gathered industrial limelight over the years in
order to minimize their financial losses. An accurate wind power forecast ensures
system reliability and reduces auxiliary equipment cost. Traditionally, wind fore-
casting techniques are categorized into two broad models: statistical models and
machine learning models. With wind being stochastic on temporal scale, nonlinear-
ity induces forecasting challenges for statistical models. Machine learning models
in tandem with signal decomposition techniques (wavelet transform and empirical
model decomposition) form the bulwark for accurate forecasting methods.

Hybrid operation ofwind farmshas seen a lot of interest in recent timeswherein the
stochastic nature of wind results in market operators choosing an optimal strategy
to maximize profit. The current problem deals with three non-beneficial criteria,
namely, wind wakes, wind curtailment, and forced outages, to find the best option.
Three MCDMmethods are applied to find the best alternative, and the results reveal
that for all thesemethods, borrowingdeficit power fromaneighboring farm is thebest.
Comparative analyses in terms of data requirement, the effect of dynamic decision
matrices, and rank reversal are also presented.

3.1 Introduction

Global scenario in the wind energy sector has led to an increase in job creation with
heavy investments in both onshore and offshore platforms. Wind energy integration
in utility grid has also brought attention toward its sophisticated and reliable control
operations [7].Wind turbines operating in an atmospheric boundary layer experience
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a wide range of physical phenomenon and achieving economies of scale is one of
the primary objectives for a wind farm operator. Majority of the losses occurring in
a wind farm are due to inaccurate forecasting. To compensate for the deficit power,
wind farm operators have to rely on reserve power sources like a system of batteries.
Thus, it is essential to approach a wind farm operation with a strategy that focuses
on a plan of action to minimize cost incurred.

Multi-criteria decision-making (MCDM) poses a cost-effective solution through
its mathematical modeling approach for determining the best available choice. Pri-
marily, MCDM methods are categorized into compensatory and outranking tech-
niques. Compensatory techniques approach toward the best alternative solely based
on their positive traits over negative traits which indicative of a trade-off situation.
Analytical hierarchical process (AHP) and fuzzy logic decision-making (FLDM)
are commonly used compensatory techniques. Thrust applications of compensatory
MCDM techniques include water resources engineering, rural water supply evalua-
tion, and desalination plants, while outranking techniques follow a series of logical
decision-making rules based on weights assigned to a set of criteria. Some of the
popular outranking methods include the COPRAS, the TOPSIS, the weighted sum
and product method, Elimination Et Choix Traduisant la Realite Method (ELEC-
TRE), and the preference ranking organization method for enrichment evaluation
(PROMETHEE) [15]. ELECTRE method involves a lot of computational complex-
ity and is not preferred for MCDM problems. Similarly, with PROMETHEE, the
rank reversal of the alternatives may question the decision process along with the
weights assigned which otherwise are qualitative in nature [9].

One of the most common ways to design an MCDM problem is to conduct mass
surveys and questionnaire which has helped thrust applications in the field of science
and technology. Renewable energy sources, energy resource planning, utility plan-
ning, and building energy management along with transportation energy manage-
ment are the key areas where MCDM is applied [5]. As discussed by Georgiou et al.,
AHP and PROMETHEEmethods seem to arrive at optimal decisions for an efficient
energy configuration for a reverse osmosis desalination plant. Five such topologies
as alternatives are ranked considering social, environmental, and economic impact
[4]. Kundakc et al. used two outranking techniques, namely, measuring attractiveness
by a categorical-based evaluation technique (MACBETH) and evaluation based on
distance from average solution (EDAS) to choose the best boiler for a dyehouse in
the textile industry [11]. Lee et al. explored MCDM approach to select wind tur-
bine model for installation of a wind farm using interpretive structural modeling
(ISM) and the fuzzy analytical hierarchical process (FAHP) [12]. A binary matrix
representing relationship between each criterion and its sub-criterion is developed.
In the field of offshore wind energy platform, the potential power production sce-
nario in Egypt is analyzed by Mahdy et al. Based on the geographical information
system (GIS)-AHP method, factors like water depth, wind flow, and distance from
shore are considered for formulating theMCDMproblem [14]. Kolios et al. explored
the problem of selecting turbine structures for offshore wind farm platform where
inputs are varied while designing the decision matrix. Several factors like depth
compatibility environmental impact, maintenance cost and cost of installation are
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considered as criteria for assessing the alternatives [10]. In Saudi Arabia, the prob-
lem of selecting appropriate renewable energy source is studied by Garni et al. with
several factors like political, environmental and sociocultural impact, considered as
criteria. AHP method is used, solar PV technology followed by solar thermal tech-
nology is found as a best choice of alternative [3]. Decision-making process involves
mathematical steps as discussed in previous chapter. One such step is normalization
of decision matrix. Jahan et al. discussed normalization techniques and their impact
on the decision-making procedure [8].

Decision-making process is based on evaluating the alternatives based on a quan-
titative value which can be ordered in a descending manner. Thus, decision-makers
depend solely on the information available from mass surveys and questionnaire to
model it into a structured decision problem which can be impartially assessed over
given set of criteria. The criteria weights in an MCDM problem cannot be assigned
randomly as it may ill-condition the decision matrix which may lead to non-optimal
decisions. Based on the prospects that an MCDM problem offers, this chapter high-
lights some of the MCDM techniques to be applied to the hybrid wind farms. The
major contribution of this chapter includes formulation of an optimal hybrid wind
farm strategy where aerodynamic phenomena like wind curtailment, wind wakes,
and forced outage are considered to affect the choice of an operational strategy. The
operational strategy is modeled in form of penalty incurred to a wind farm operator.
This requires an accurate wind forecasting scheme to be considered for evaluating
the penalty cost. This chapter is structured as follows: Sect. 3.2 discusses the pre-
liminaries of a hybrid operation of a wind farm. The alternatives are described with
each involving a penalty cost to be incurred. Results and discussions are explored in
Sect. 3.3. We also present a comparative outcome of theMCDMmethods considered
for this study in Sect. 3.4.

3.2 Problem Formulation

Wind resource available in an abundant form ensures a strong wind power density
and is key to a reliable wind farm operation. For maximum power capture, it is
beneficial for a wind site to have a terrain that does not escalate the turbulent eddies
in atmospheric boundary layer which otherwise can lead to reduced annual energy
production. Automation and cutting-edge technologies have ensured the production
costs within acceptable limits for a wind farm [2]. It is also observed that apart from
the rough terrain and complexities posed by micro-siting, lack of accessibility to the
natural resources can be a determining factor in overall project cost for a wind farm.

The concept of a hybrid wind farm as discussed in Chap.1 deals with accurate
wind forecasting schemes. A common practice includes wind power schedules to be
available ahead in time to ensure guaranteed power transmission to utility grid. The
inherent stochasticity in wind speed causes errors in forecasting which is responsible
for deficit or surplus power. Currently, the excess or deficit wind power is taken care
by reserve power sources known as battery energy storage system (BESS). Since in
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an event of large excess or deficit wind power involving BESS to charge or discharge
power, respectively, determination of BESS capacity should be done beforehand.
Patel et al. presented methodologies for hybrid wind power generation [17] and we
extend these to solve the MCDM problem. The alternatives are listed as follows:

• Alternative 1 (A1): In this situation, the forecasted wind power is compared with
actual wind power and then based on the deficit in each dispatch window the total
cost is evaluated. Assuming p̂i to be the forecasted wind power and pi to be the
actual one, for ka such instances, the cost is given as

F1 = βw

ka∑

i=1

(
p̂i − pi

)
, (3.1)

where βw is cost paid in $ per 1 kW of deficit wind power. It is worthwhile to note
that in case of pi > p̂i , the operator decides not to pay any penalty.

• Alternative 2 (A2): Here, the farm operator pays the penalty via combination of
two strategies. The deficit in forecasted wind power and actual wind power is cal-
culated and a threshold limit for battery Pth

b is calculated in events of deficit power
exceeding battery threshold limit. Forms such events, the wind farm operator pays
penalty cost given as

F2 = ζs

ms∑

i=1

(
pthbi − p̂i + pi

)
, (3.2)

where ζs represents penalty paid in $ for per kW of exceeding threshold limit.

• Alternative 3 (A3): Consider a situation where the wind farms in neighborhood
have excess of wind power. The wind farm dealing with deficit power may borrow
power and pay an equivalent penalty. Let p2i , p̂2i , p3i , and p̂3i be the actual and
forecasted wind powers for wind farms 2 and 3, respectively; in this case, the wind
farm operator of farm 1 pays a penalty for lz given as

F3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αz

lz∑

i=1

(p2i − p̂2i ), if p2i > p̂2i ,

αz

lz∑

i=1

(p3i − p̂3i ), if p3i > p̂3i ,

δz

lz∑

i=1

( p̂i − pi ),

(3.3)

where αz and δz are the penalty cost and cost of discharging the battery units to
compensate 1 kW of deficit power, respectively. It is worthwhile to note that the
penalty cost of battery unit is higher than A1 and A2.
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• Alternative 4 (A4): Here the wind farm operator pays penalty where the entire
deficit wind power faced by a wind farm is supplied by a set of batteries. The cost
expression for ul such instances is given as

F4 = δx

ul∑

i=1

( p̂i − pi ), (3.4)

where δx is the cost in $ for per 1 kW of deficit power supplied by a set of batteries.

Next, we discuss different criteria based on which our MCDM problem is to
be assessed. One of the most common aerodynamic phenomena in atmospheric
boundary layer is wind wakes. The power loss caused in a wind farm due to wakes
is subjected to a set of alternatives. Wind curtailment is another phenomena which
the farm operators deal with due to limitations posed by generator system. Wind
curtailment also impacts the economic operation of wind farms andmore specifically
the effect is discussed for thermal generators by Henriot [6]. Curtailment can be
helpful in scenarios where a system of batteries are not capable to deliver bulk
power. Forced outage is another criteria that affect the hybrid operation of wind
farms. It occurs when a wind turbine unit(s) is stalled from its normal operation and
is withdrawn from wind farm. This may be due to a regular scheduled maintenance
for turbine blades and internal mechanisms.

Quality of landscape is one of the reasons on which the lifetime of a wind farm is
dependent. Qualitative and quantitative analysis of landscape has been done actively
over the years and it is observed that various sociocultural and economic impacts have
affected the surrounding area to the wind farm. Cost action report, namely, “Renew-
able Energy and Landscape quality” has been brought out to map a relationship
between the landscape quality and renewable energy sources [18]. It is interesting to
note that the landscape quality of a wind farm is directly related to the set of alterna-
tives discussed. For example, in events where the wind farm operator pays penalty
by discharging a system of batteries, the lead discharge can deplete the ecosystem
surrounded by the wind farm. However, the landscape quality can be improved by
manufacturing batteries that are made up of eco-friendly material.

In the present case, the wind farms considered are with equal number of wind
turbines. With different number of turbines, the impact of the alternatives on the
landscape quality will be different. As discussed earlier, the lead emissions from
battery deteriorate the ecosystem, and with higher number of battery units this effect
will be more pronounced. Noise emitted from wind turbine units is also a cause of
concern among wind farm operators. Aerodynamic and mechanical noises are com-
monly observed in awind farm.Wake generated behind the turbine hub is responsible
for aerodynamic noise, while the wear and tear caused in generator and shaft section
lead to mechanical noise. Empirical models relating turbine parameters and noise are
often used to assess the noise impact on the surroundings of a wind farm. Lowson
[13] relates the emitted noise (in dB) to turbine diameter as

LW A = 44 log10 Rx + 72, (3.5)
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Table 3.1 Criteria for the MCDM approach

Label Criteria Consequences

C1 Wind wakes Leads to power loss

C2 Wind curtailment Excess wind speed to be curtailed

C3 Forced outage Reduction in farm output

Hybrid Operation of Wind Farms

Wind Wakes Wind Curtailment Forced Outage

Alternative 1 Alternative 2 Alternative 3 Alternative 4

Fig. 3.1 MCDM technique applied to hybrid operation of wind farms

for rotor radius Rx . The logarithmic relationship is indicative of the fact that wind
farms with a large diameter turbine can pose significant noise emissions. Table3.1
depicts the criteria used for assessing alternatives in the MCDM problem. Figure3.1
illustrates different criteria involved in the MCDM problem.

3.3 Results and Discussions

In this section, we discuss the multi-criteria decision-making approach for hybrid
wind farms. To begin with, three wind farms, Bishop and Clerks (Farm X), Paxton
(FarmY), andBlandford (FarmZ) are selected.Wind speed datasets pertaining to two
different years are acquired fromWind Energy Center, University of Massachusetts,
MA. Using cup anemometer, the wind speed is measured at heights of 15, 78, and
60m from ground for Farm X, Farm Y, and Farm Z, respectively. To determine the
forecasted powers at same hub height, the wind speed for Farm X and Farm Y is
transformed to a hub height of 60m using the standard wind law for elevation [20].
Datasets D1 and D2 for three wind farms are collected for the duration of January
2011 and January 2013 [1] with descriptive statistics listed in Table 3.2. The wind
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Table 3.2 Statistical parameters for wind speed Datasets D1 and D2

Statistic D1 (January 2011) D2 (January 2013)

Farm X Farm Y Farm Z Farm X Farm Y Farm Z

Mean 8.3364 8.3612 5.189 10.146 9.4411 6.1096

Std. Dev. 3.2224 3.0543 2.4075 4.2897 2.8944 2.1752

Skewness –0.0943 –0.1040 0.9670 –0.3428 –0.3219 0.2102

Bishop & Clerks

Paxton

Blandford

Utility Grid

BESS

BESS

BESS

Fig. 3.2 A hybrid wind farm topology depicting Bishop and Clerks, Paxton and Blandford

farms are considered to have a rotor diameter of 77m and wind direction is directly
facing the wind turbines.

A schematic representation of the three wind farms along with battery units is
pictorially depicted in Fig. 3.2. First, the penalty cost incurred by the wind farm X,
that is, Bishop and Clerks, is calculated. For this, the wind power is forecasted and is
compared with actual wind power. Penalty cost for all the alternatives as discussed
is then determined.

Figure3.3 pictorially depicts the wind speed plots for two datasets. The alterna-
tives discussed here are assessed based on a cumulative score. The first part deals
with computing the penalty cost for all the alternatives by calculating the deficit
power for the wind farm. Second part deals with the non-tangible effect which is
calculated from the performance scores of the MCDMmethods like SAW, TOPSIS,
and COPRAS. The cost obtained in first step is normalized with respect to minimum
penalty cost incurred and then is multiplied with performance score to obtain the
cumulative priority score for each alternative.
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Fig. 3.3 Wind speed pattern for three wind farms in Massachusetts

Least square support vector regression is implemented to predictwind speedwhich
then is later translated into wind power. A dataset with 1000 samples is segmented
into training (800) and (200). Based on the forecasted wind speed, we then calculate
the forecasted wind power. In order to determine whether a BESS will charge or
discharge in any event, the forecasted and actual wind powers are compared. For
example, consider Dataset D1 where Fig. 3.4 illustrates the magnitude of charging
and discharging powers at each instant. As put forward by Nguyen et al., the BESS
capacity can be determined by calculating aggregated sum of charging and discharg-
ing powers [16]. The same principle is used here to determine the BESS capacity.
Optimal BESS capacity aids its sizing and is also indicative of space requirements
for a wind farm operator.

For Datasets D1 and D2, the BESS capacity is enlisted in Table3.3.
In order to determine a penalty cost for particular alternative, the sum of deficit

power in each forecast window is calculated. For each alternative, the cost to dispatch
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Fig. 3.4 Discharging and charging powers for Bishop and Clerks, Jan 2011

Table 3.3 BESS capacity for two datasets

Dataset BESS capacity (MW) Threshold limit (kW)

D1 15 110

D2 50 955

Table 3.4 Penalty cost and normalized cost score for Datasets D1 and D2. PC, penalty cost; NCS,
normalized cost score

Alternatives D1 D2

PC ($) NCS PC ($) NCS

A1 1971.2 1.1665 6514.2 1.3238

A2 1689.8 1.0000 4920.8 1.0000

A3 3916.5 2.3177 13587 2.7612

A4 2252.8 1.3332 7444.8 1.5129

1kW of deficit power is taken as βw = $ 0.5, ζs = $ 0.75, αz = $ 0.4, and δx =
$ 0.8. It is worthwhile to note that for alternative A4 the cost to dispatch 1 kW of
deficit power is taken as maximum due to erratic charging and discharging as it can
deplete battery life and leads to high maintenance cost. Using the principle of min-
max described by Nguyen et al., the BESS threshold limits of 955 and 110 kW are
determined for Datasets D2 and D1. For Datasets D1 and D2, the penalty cost ($)
along with the normalized cost score (NCS) is depicted in Table3.4.

In order to determine the intangible effect in form of performance scores, we
consider four alternatives and three criteria for the hybrid wind farm operation.
Table3.5 depicts a logical relationship between criteria and different alternatives. In
the present context, the criteria discussed are non-beneficial, and hence rather than
assigning conventional indices to the alternatives we assign highest score to the least
preferred and lowest score to the most preferred alternative. Consider wind wakes
as a criteria to evaluate the four alternatives. The power losses in a wind farm due
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Table 3.5 Performance scores for the decision matrix [19]

Importance Performance score as per AHP Performance score in current
work

Equally preferred (EP) 1 9

Equally to moderately
preferred (EMP)

2 8

Moderately preferred (MP) 3 7

Moderately to strongly
preferred (MSP)

4 6

Strongly preferred (SP) 5 5

Strongly to very strongly
preferred (SVP)

6 4

Very strongly preferred (VP) 7 3

Very strongly to extremely
preferred (VEP)

8 2

Extremely preferred (XP) 9 1

to wakes can be best handled if alternatives A2 and A3 are practiced. Due to large
penalty cost for battery discharging, alternative A4 is not preferred and is given a
score accordingly. For the case of wind curtailment, the power which is curtailed can
be best dealt if it is supplied to the neighboring wind farm in case of deficit scenario.
While for forced outages, it would be an abrupt decision to deliver power via a system
of batteries as it could cause deep discharge and would incur high operational cost.

Let us now discuss the reasoning behind assigning element values for each alter-
native with respect to given criteria in a decision matrix. When it comes to wind
wakes, the power losses are high and can be best dealt with alternative A3 so a score
of 2 is assigned to it. For alternatives A1 and A2, a score of 8 and 3 is assigned,
respectively, due to the large penalty cost incurred to wind farm operator owing to
poor forecasting scheme. Similarly, for alternative A4, discharging a large amount
of power will make the farm operator pay more and is not suitable for battery health.
Hence, a score of 9 is given to it. For the case of wind curtailment, alternatives A1 and
A2 are assigned scores of 5 and 4, respectively, while alternative A4 is given a score
of 7 due to high operational cost. Forced outage means taking out wind turbine(s)
units out of wind farm which then means that the only legitimate strategy for a wind
farm operator could be to deliver power or borrow power from neighboring wind
farms and pay an equivalent penalty for it.

As per Saaty, a matrix H is constructed and based on our MCDM problem a
matrix H ′ is given as
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Table 3.6 Ranking for alternatives based on the simple additive weighting (SAW) method

Alternatives D1 D2 Ranking

PS CPS PS CPS

A1 0.3120 0.3640 0.3120 0.4130 3

A2 0.5021 0.5021 0.5021 0.5021 2

A3 1.0000 2.3177 1.0000 2.7612 1

A4 0.2529 0.3372 0.2529 0.3826 4

H =

C1 C2 C3⎛

⎜⎝

⎞

⎟⎠

2 3 1 A1

7 6 4 A2

8 7 9 A3

1 3 2 A4

, H ′ =

C1 C2 C3⎛

⎜⎝

⎞

⎟⎠

8 5 9 A1

3 4 6 A2

2 3 1 A3

9 7 8 A4.

We solve the decision-making problem having designed a decision matrix. For
simple additive weighting (SAW) method, the normalized decision matrix is deter-
mined using (2.1) and (2.2). Further, as described in Sect. 2.2.1, the weights for the
criteria are calculated. For the SAW method, the normalized matrix is given as

Ĥ =

⎡

⎢⎢⎣

0.2500 0.6000 0.1111
0.6667 0.7500 0.1667
1.0000 1.0000 1.0000
0.2222 0.4286 0.1250

⎤

⎥⎥⎦ . (3.6)

Using (2.3)–(2.4), based on entropy method, the weights are as follows

w = {0.2864, 0.3296, 0.3840}. (3.7)

Table3.6 enlists the cumulative priority score for the SAW method. The priority
scores are determined using the sum of product of weight vector and normalized
matrix.

Alternatives are ranked as A3 � A2 � A1 � A4 based on the SAW method. It
is observed that paying penalty cost when the deficit power is borrowed from the
neighboring wind farm is the best alternative followed by A2 which is a mix of two
strategies. We attempt to find the best alternative using COPRAS method. With the
same decision matrix H ′, using (2.6) the normalization is done and is expressed as

Ĥ =

⎡

⎢⎢⎣

0.6364 0.5025 0.6671
0.2387 0.4020 0.4447
0.1591 0.3015 0.0741
0.7160 0.7035 0.5930

⎤

⎥⎥⎦ . (3.8)
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Table 3.7 Ranking based on CPS for the complex proportional assessment (COPRAS) method

Alternatives D1 D2 Ranking

PS CPS PS CPS D1 D2

A1 0.2153 0.2511 0.2153 0.2850 4 4

A2 0.3857 0.3857 0.3857 0.3857 2 2

A3 1.0000 2.3177 1.0000 2.7612 1 1

A4 0.2079 0.2772 0.2079 0.3145 3 3

As discussed in Sect. 2.2.1, based on entropy method, the weight vector is

w = {0.4142, 0.1201, 0.4658}. (3.9)

Using (2.15) and (2.16), the aggregated sum of the criteria is evaluated. Table3.7
depicts the priority score along with cumulative priority score for COPRAS method.

According to the CPS, the alternatives are ranked as A3 � A2 � A4 � A1. We
observe that A3 remains the best choice for the two datasets. Here, it is also important
to note that these decision results may vary as we move from one dataset to another.
The essence of this approach is based on the accuracy of forecastedwind powers. The
decision-making is then solved usingTOPSISmethodwhere thematrix is normalized
using (2.6). Entropymethod is used to calculate theweights. The normalized decision
matrix and weights are given as

Ĥ =

⎡

⎢⎢⎣

0.6364 0.5025 0.6671
0.2387 0.4020 0.4447
0.1591 0.3015 0.0741
0.7160 0.7035 0.5930

⎤

⎥⎥⎦ , w = {0.4142, 0.1201, 0.4658}. (3.10)

Using (2.8) and (2.9), the positive (PIS) and negative ideal solutions (NIS) are
given as

S+ = {0.0659, 0.0362, 0.0345}, S− = {0.2965, 0.0845, 0.3107}.

The Euclidean distance which is indicative of the best and worst possible alternative
is calculated and for the p-norm distance we take p = 2. The distances are given as

D+ = {0.0580, 0.0155, 0, 0.0570}, (3.11)

D− = {0.0008, 0.0256, 0.0659, 0.0006}. (3.12)

Table3.8 depicts the ranking for the alternatives based on cumulative priority
scores for the two Datasets D1 and D2.

Alternatives are ranked as A3 � A2 � A1 � A4 for the TOPSIS method. Once
again it is validated that A3 is the best alternative among the four strategies. Paying
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Table 3.8 Ranking using the TOPSIS method

Alternatives D1 D2 Ranking

PS CPS PS CPS

A1 0.0142 0.0166 0.0142 0.0188 3

A2 0.5323 0.5323 0.5323 0.5323 2

A3 1.0000 2.3177 1.0000 2.7612 1

A4 0.0104 0.0139 0.0104 0.0157 4
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Fig. 3.5 Pareto charts for alternatives for Datasets D1 and D2

penalty for the deficit wind power by borrowing power from neighboring wind speed
is an optimal way to make sure wind farm operation is reliable and secure.

Based on the tangible effect and intangible effect, the cumulative priority scores
are used as ametric for arriving at the best alternative. Figure3.5 illustrates the Pareto
charts for the alternatives for the two datasets.



50 3 Decision-Making in Hybrid Wind Farms

3.4 Comparative Analysis of MCDMMethods

Till now we have discussed three MCDM methods for the decision-making pro-
cess. With each method possessing its own advantages and disadvantages, for a
decision-maker it is extremely difficult to select one method out of the bunch. We
have evaluated SAW, TOPSIS, and COPRAS methods for hybrid wind farm opera-
tion and have chosen four alternatives with three criteria, while it is still possible to
have a situation where a new alternative(s) or criteria can be added or removed from
the decision-making process. Mathematically, the number of data T required in the
decision matrix to be considered in each MCDM method is given as

T = (H + 1) S, (3.13)

where H represents the number of alternatives and S is the number of criteria. It is
observed that for the MCDM problem dealing with hybrid operation of wind farms,
the methods discussed need a minimum of 15 judgments. This is indicative of the
fact that the methods work with same level of inputs.

The problemof rank reversal in decision-making problems is very common.Meth-
ods like PROMETHEE and AHP suffer from rank reversal and may skew the deci-
sion. In some critical situations of finance and management, such rank reversal may
jeopardize the functioning or a crucial decision ultimately resulting in business risk.
Wang et al. discussed several scenarios where methods like AHP, SAW, and TOPSIS
face the issue of rank reversal [21]. It is also observed that rank reversal can occur
due to the addition of indifferent criteria or alternatives. From the SAW method
analysis, it is observed that alternative A3 is the most preferred while A4 is the least
preferred alternative. In order to test the rank reversal phenomenon in the discussed
MCDM methods, let us eliminate the least preferred alternative A4 and test the per-
formance scores again. The same procedure is repeated for COPRAS and TOPSIS
method and it is found that alternative A3 dominates the decision space followed
by A2. This analysis affirms the fact that given the datasets and the structure of the
MCDM problem and under all given constraints, the methods are insusceptible to
any indifferent alternative or criteria. Table3.9 showcases the new ranks for SAW,
TOPSIS, and COPRASmethods when they are tested for rank reversal, thus assuring
the decision-maker of their robustness under dynamic situations.

Table 3.9 Ranking under
dynamic decision matrices in
the SAW, TOPSIS, and
COPRAS methods

Alternatives Initial A4 A1 A2

Rank

A4 4

A1 3 3

A2 2 2 2

A3 1 1 1 1
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3.5 Decision-Making for Wind Farms in Hills

Wenow discuss the problem of decision-making for wind farms sites situated in hills.
Since it is difficult to locate three wind farm sites in hills which at close proximity, we
assume three wind farms with datasets from hilly regions. Consider wind farms XX,
YY, and ZZwith their wind speed data pertaining to sites Challicum hills (Australia),
Longyuan hills (Tibet), and Ngong hills (Kenya). The wind farms are analyzed for
the best alternative as previously assessed for onshore wind farm sites. The wind
speed data for May 2019 is taken with a 10min interval. Figure3.6 illustrates the
wind speed time-series plots for three hilly wind sites.

First, the normalized cost score for each alternative is determined using the pre-
dicted and actual wind powers. Wind power is forecasted using LSSVR where the
dataset is segmented into training (800) and testing (200). The cost for compensat-
ing 1kW of deficit wind power is taken as βw = $ 0.5, αz = $ 0.4, ζs = $ 0.75, and
δx = $ 0.8. The normalized cost score is determined by normalizing the total cost
incurred as penalty for all the four alternatives and is depicted in Table3.10.

Next, we evaluate the priority score for all the alternatives based onSAW,TOPSIS,
and COPRAS methods. Since the decision matrix here remains same, the priority
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Fig. 3.6 Wind speed time series for hilly wind sites
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Table 3.10 Penalty cost and normalized cost score for Hilly wind sites. PC, penalty cost; NCS,
normalized cost score

Alternatives Hilly wind site

PC ($) NCS

A1 52831 1.000

A2 84530 1.600

A3 59945 1.134

A4 84530 1.600

Table 3.11 Ranking for hilly wind sites using SAW, TOPSIS, and COPRAS methods

Alternatives SAW TOPSIS COPRAS Ranking

CPS CPS CPS

A1 0.3120 0.2153 0.0142 4

A2 0.8034 0.6171 0.8517 2

A3 1.1347 1.1347 1.1347 1

A4 0.4046 0.3326 0.0166 3

scores for all the alternatives remain unchanged. The cumulative priority scores are
tabulated in Table3.11 for SAW, TOPSIS, and COPRAS methods.

3.6 Decision-Making for Offshore Wind Farms

Deployment of offshore wind energy systems has increased over the years owing
to abundant wind resource available in sea. In the present context, the multi-criteria
decision-making technique is applied to see how things unfold when it comes to
alternatives for an offshore wind farm. To study this, three offshore wind farms,
namely, Anholt (Denmark), Horns Rev 2 (Denmark), and Amrumbank (Germany)
are selected as illustrated in Fig. 3.7. The total distance between these wind farms is
approximately 600km.

We now approach toward constructing decisionmatrix H for offshore wind farms.
Here, the MCDM approach is carried out for wind farm Anholt (Denmark) consider-
ing the effects from neighboring wind farms Horns Rev 2 (Denmark) and Aumrum-
bank (Germany). First, we evaluate the normalized cost score for each alternative
based on the deficit forecasted wind powers.

The wind speed datasets for three wind farms are taken for the month of May
2019 each measured at a 10min interval and are illustrated in Fig. 3.8.

The wind power for three wind farms is forecasted using LSSVR with a training
set (800) and testing set (200). The normalized cost score is depicted in Table3.12.
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Fig. 3.7 Geographic location of offshore wind farms. Source Google Maps

Table 3.12 Penalty cost (PC) and normalized cost score (NCS) for offshore wind farms

Alternatives D1

PC ( $ ) NCS

A1 37393 1.000

A2 59829 1.600

A3 82919 2.217

A4 59829 1.600

The decision matrix is based on three criteria, namely, wake effect, wind curtail-
ment, and forced outage. The elements of decision matrix are selected based on their
relative importance of each alternative with respect to each criteria as explained in
previous sections:

H =

C1 C2 C3⎛

⎜⎝

⎞

⎟⎠

2 3 1 A1

7 6 4 A2

7 9 9 A3

1 3 2 A4

, H ′ =

C1 C2 C3⎛

⎜⎝

⎞

⎟⎠

8 5 9 A1

3 4 6 A2

3 1 1 A3

9 7 8 A4.
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Fig. 3.8 Wind speed time series for offshore wind farms

Based on SAW method, we evaluate the performance scores for alternatives. First,
the decision matrix is normalized based on beneficial and non-beneficial criteria and
is given as

Ĥ =

C1 C2 C3⎛

⎜⎝

⎞

⎟⎠

0.3750 0.2000 0.1111
1.0000 0.2500 0.1667
1.0000 1.0000 1.0000
0.3333 0.1429 0.1250

.

The weights are calculated using entropy method and are given as w = {0.3893,
0.2625, 0.3483} and the performance scores are listed in Table3.13.

Next, we use the TOPSIS method to solve the MCDM problem with the normal-
ized decision matrix calculated as per (2.6), and given as

Ĥ =

⎡

⎢⎢⎣

0.6266 0.5241 0.6671
0.2350 0.4193 0.4447
0.2350 0.1048 0.0741
0.7049 0.7338 0.5930

⎤

⎥⎥⎦ . (3.14)
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Table 3.13 Ranking for alternatives based on SAW method for offshore wind farm site

Alternatives PS CPS Ranking

A1 0.2372 0.2372 4

A2 0.5129 0.8206 2

A3 1.0000 2.2175 1

A4 0.2108 0.3019 3

Table 3.14 Ranking using the TOPSIS method for offshore wind farm site

Alternatives PS CPS Ranking

A1 0.0610 0.0610 3

A2 0.5086 0.8137 2

A3 1.0000 2.2175 1

A4 0.0082 0.0131 4

Using entropy method stated in Sect. 2.2.1, weights can be determined and are given
as

w = {0.2602, 0.3437, 0.3961}. (3.15)

Positive and negative ideal solutions are worked out using (2.8) and (2.9), and are
given as

S+ = {0.0611, 0.0360, 0.0294}, S− = {0.1834, 0.2522, 0.2642}.

Further, the Euclidean distance from the PIS and NIS is calculated using (2.11),
where p = 2, and is found as

D+ = {0.0432, 0.0166, 0, 0.0520}, (3.16)

D− = {0.0028, 0.0172, 0.0584, 0.0004}. (3.17)

Table3.14 depicts the ranking for alternatives based on TOPSIS method.
On the lines of same decision matrix, the MCDM problem is approached with

COPRAS method. However, for normalization, we use (2.6)

Ĥ =

⎡

⎢⎢⎣

0.6266 0.5241 0.6671
0.2350 0.4193 0.4447
0.2350 0.1048 0.0741
0.7049 0.7338 0.5930

⎤

⎥⎥⎦ . (3.18)

Based on entropy method described in (Sect. 2.2.1), the weights are given as

w = {0.2602, 0.3437, 0.3961}. (3.19)
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Table 3.15 Ranking strategies for offshore wind farm site based on COPRAS method

Alternatives PS CPS Ranking

A1 0.2083 0.2083 4

A2 0.0172 0.5307 2

A3 1.0000 2.2175 1

A4 0.1887 0.3019 3

Using Eqs. (2.14)–(2.16), the performance scores are computed and final ranks
are calculated based on CPS as listed in Table3.15.

This chapter deals with multi-criteria methods for solving the decision-making
problem for hybrid operation of wind farms. The proposed approach is based on
identifying the criteria that affect the hybrid operation. In our definition of hybrid
wind farms, we have a farm along with a system of batteries that function in events of
deficit wind power. Two datasets for wind sites nearMassachusetts labeled as D1 and
D2 are taken for this study. Wind powers are forecasted using least square support
vector regression by training a set of 800 samples. The forecasted wind power is then
compared with actual wind power and the deficit power is calculated based on error
in forecasting. The normalized cost score is obtained for each alternative based on
minimization normalization. Three methods, namely, SAW, TOPSIS, and COPRAS
are used to find out the performance scores. A cumulative priority score is then used
to select the best alternative. TOPSIS, SAW, and COPRAS methods indicated A3

to be the best alternative, while rank reversal is observed in case of alternatives A1

and A4 for COPRAS method. Meanwhile, we also test the proposed approach for
hilly and offshore wind farm sites and results reveal that alternative A3 is the most
preferred choice.
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Chapter 4
Fuzzy-Based Decision-Making in Hybrid
Wind Farms

Growing energydemands have heightened the concern for renewables in recent times.
A hybrid wind farm operation is often taken into consideration while interconnecting
large power systems with the decision being dependent on the wind farm operator.
The choice of best strategy results in an optimal market scenario. The current work
deals with multi-criteria decision-making for hybrid wind farms. A tangible and non-
tangible effect of wind phenomenon is considered to obtain the cumulative priority
of each alternative based on a set of criteria.

As already explained so far, decision-making is the process of ascertaining the
best possible option among feasible alternatives in an environment where goals,
limitations, and outcomes of actions taken are imprecisely available and in such
conditions, fuzzy set theory can be used to deal with imprecision in the decision-
making. Owing to stochastic nature of wind, fuzzy-based TOPSIS and COPRAS
methods are candidate methods to be implemented to ascertain the best solution.
Further, uncertainties in decision-making are considered to evaluate the rank reversal
phenomenon among the set of alternatives. Results indicate that paying penalty for
deficit power borrowed from neighboring wind farm is the best option.

4.1 Introduction

Uncertainties inwind speed affect energy assessment, economic study ofwind farms,
micro-siting, and wind speed prediction. Fuzzy logic and probability distribution
technique are extensively used to bridge any shortfall caused due to such random-
ness. Fuzzy logic finds its application in modeling energy planning activities and
deals with real-time application by assigning semantic values. Various methods exist
that express the said uncertainty in terms ofmembership function of triangular, trape-
zoidal, andGaussian type. Jafarian et al. have explored the annual wind energy output
for 25 different sites in the Netherlands based on fuzzy modeling and ANN [11].
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The wind energy estimated using fuzzy technique and ANN is compared with the
conventional methods like random number generation, Kiranoudis method, and one-
two-three equationmethod. The proposedmethod is validated for two turbinemodels
(S47 and E82). In terms of forecasting, Wang et al. have presented a hybrid approach
using fuzzy time series model for Hainan wind farm of China [18]. The model
is divided into two parts. First, the outliers are determined based on initial ARMA
model, and second, the wind forecast is carried out using a neural network based on a
backpropagationprinciple. Fuzzy logic is also applied in order tomitigatefluctuations
in electromagnetic torque in wind energy conversion systems (WECS). Bezza et al.
describe an MPPT fuzzy controller for reducing the effect of wind fluctuations on
a 10W doubly-fed induction generator (DFIG). The rotor side converter (RSC) of
DFIG is controlled using a fuzzy logic controller [3].

In terms of optimization, Benlarbi et al. have demonstrated a fuzzy logic-based
optimizationmethod tomaximize the overall efficiency of PVwater pumping system.
Fuzzy logic is used to tune the duty ratio of chopper-driven water pump connected
via an induction motor [2]. Decision-making is an important market procedure with
transmission and distribution operators trying to maximize their profits by imple-
menting optimal strategy. Multi-criteria decision-making (MCDM) which has been
in limelight recently, allows decision-makers to choose the best possible alterna-
tive. Among the MCDM methods, analytical hierarchical process (AHP), technique
for order or preference by similarity to ideal solution (TOPSIS), and complex pro-
portional assessment (COPRAS) are popular choices that are often practiced by
decision-makers globally, as has been seen in the last chapter.

Fuzzy-based analytic network process (FANP) method has been applied by
Shafiee to assess the risk connected to offshore wind farms [17]. Such a wind farm
with a total of 30 2MWwind turbines is studied and fourmethodologies that mitigate
the operational risk are studied to identify the best alternative. The results fromFANP
are compared with AHP. Further, Chen et al. have demonstrated a fuzzy AHPmethod
to select the best plan or strategy for environment-watershed in Taiwan [7]. Fuzzy
logic is used to assign weights to criteria in terms of linguistic scale.Wang Chen et al.
have presented fuzzy AHP and fuzzy TOPSISmethods to evaluate the green supplier
selection problem given the environmental and economic factors [6]. Chamodrakas
et al. have discussed the supplier selection problem for electronic marketplaces using
fuzzy preference programming where the initial screening of the alternatives is done
through hard limits on selection attributes [4].

Multi-criteria decision-making is also used to select suitable wind turbines as ex-
plored by Lee et al. using interpretive structural modeling (ISM) and fuzzy analytical
hierarchical process (FAHP) [12]. For each criterion, a sub-criterion is identified, and
a binary matrix indicating relationship between them is created. Ghosh et al. have
carried out a study on vulnerability assessment of wetlands in Kolkata using fuzzy
MCDM techniques [8]. Results reveal that 60% of area lies between medium to
high wetland conversion zones and thus helps the municipal authority to evaluate
vulnerable zones nearby. Zhao et al. have described an integrated fuzzy MCDM
approach to select the best battery energy storage system (BESS) considering risks
associated with technological, social, environmental factors [20]. Empirical analysis
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shows that lithium-ion battery is more preferred followed by sodium sulfide battery.
Further, fuzzy Delphi and fuzzy AHP methods are applied to select an appropriate
lubricant regenerative technology. In this work, fuzzy Delphi is used to extract the
critical factors of regenerative technology through rigorous interviews and question-
naires and fuzzy AHP method is used to rank the alternatives [10]. Further, Hsu
et al. have applied a combined fuzzy AHP and fuzzy VIKOR method to evaluate
the service gaps for a case study of cinema in Taiwan where managerial strategies
are empirically assessed [9]. Results revealed that considering customer choices and
perceptions, managers can suitably improve the gaps in service quality in a fuzzy
environment. Samanlioglu et al. have demonstrated a fuzzy AHP and fuzzy TOPSIS
MCDM approach to select IT personnel for a Turkish diary [16]. A group of three
decision-makers is involved in assessing the alternatives for which fuzzy TOPSIS is
implemented with the criteria weights as given by fuzzy AHP. The main highlight
of this chapter lies in formulating the hybrid operation of wind farms along with
identifying a set of criteria with tangible and non-tangible effect of dynamic wind
phenomenon. Finally, fuzzy TOPSIS and fuzzy COPRAS methods are applied to
address the hybrid operation of wind farms and in case of dynamic decision matri-
ces, rank reversal phenomenon is studied and is validated for wind farm application.
This chapter is organized as follows: Sect. 4.2 discusses the fuzzy basics along with
fuzzy MCDM techniques: fuzzy TOPSIS and fuzzy COPRAS, for hybrid operation
of wind farms. Section4.3 highlights results and discussions for a problem related
to three wind farms.

4.2 Fuzzy MCDM: Materials and Methods

In this section,wepresent fuzzy-basedMCDMapproach to solve the said hybridwind
farm problem. A generic flowchart for fuzzy MCDM is illustrated in Fig. 4.1. Owing
to random nature of wind, fuzzy logic helps decision-makers to assign linguistic
values to the alternatives for a given criteria (beneficial and non-beneficial).

Qualitative importance of criteria is looked at in order to mitigate any bias gener-
ated from favorable situations. Next, we discuss fuzzy numbers and basic arithmetic
operations useful in MCDM approach.

4.2.1 Fuzzy Numbers: Fundamentals

A fuzzy set B̄ in X is defined as

B̄ = {x, μB(x)}, x ∈ X, (4.1)

where μB(x) : X → [0, 1] represents a membership function of B̄ and μB(x) is the
degree of pertinence of x in μB(x). Given μB(x) has a value in between 0 and 1, x
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priority
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Rank the
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Fig. 4.1 Schematic representation of fuzzy MCDM problem for wind farms

belongs to a fuzzy set B̄. Triangular fuzzy numbers (TFNs) are often used to express
a degree of uncertainty associated with alternatives [14]. A membership function
μB(x) for TFNs B̄ = (e, f, g) is given as

μB(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 for x < e
x − e

f − e
for e ≤ x ≤ f

x − g

g − f
for g ≤ x ≤ h

0 for x > f,

(4.2)

where (e, f, g) are the real numbers. The arithmetic operations on fuzzy numbers
B̄1 = (e1, f1, g1) and B̄2 = (e2, f2, g2) are described as

1. Addition: B̄1 + B̄2 = (e1 + e2, f1 + f2, g1 + g2).

2. Subtraction: B̄1 − B̄2 = (e1 − e2, f1 − f2, g1 − g2).

3. Multiplication: B̄1 × B̄2 = (e1 × e2, f1 × f2, g1 × g2).

4. Division: B̄1 ÷ B̄2 = (e1 ÷ e2, f1 ÷ f2, g1 ÷ g2).

5. Inverse of a TFN: B̄−1
1 =

(
1
g1

, 1
f1
, 1
e1

)
.



4.2 Fuzzy MCDM: Materials and Methods 63

4.2.2 Fuzzy TOPSIS

Proposed by Chen, fuzzy TOPSIS is implemented in decision-making processes that
lack certainty [5]. TOPSIS method is further extended by assigning linguistic values
as performance scores in the decision matrix. Since decision-making varies from
person to person, fuzzy TOPSIS method is carried out among k decision-makers for
k existing fuzzy decision matrices.

This method is appropriate for solving group decision-making under the fuzzy
environment. In this method, the important weights associated with various criteria
are given as linguistic variables with the values given as fuzzy numbers. The assess-
ments of criteria are provided in linguistic variables whose values are given as fuzzy
numbers. The decision-makers utilize the linguistic variables and their given values
to evaluate the importance of the criteria.

The procedure of fuzzy TOPSIS is given as follows:

1. Obtain aggregate weights (w̃i j ) of the criteria assessed by k decision-makers and
also the aggregate performance score (h̃i j ) of alternatives Ai (i = 1, 2, ...m) with
respect to C j ( j = 1, 2, ...n) given by

w̃i j = 1

k

(
w̃1
i j + w̃2

i j + ... + w̃k
i j

)
, h̃i j = 1

k

(
h̃1i j + h̃2i j + ... + h̃ki j

)
. (4.3)

2. Using (4.3), aggregate decision matrix H is given as

H =

C1 C2 . . . Cn
⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠

h̃11 h̃12 . . . h̃1 j A1

h̃21 h̃22 . . . h̃2 j A2
...

...
...

...

h̃i1 . . . . . . h̃i j Am .

3. A normalized fuzzy decision matrix D with its elements d̃i j for beneficial criteria
and non-beneficial criteria is given as

d̃i j =
(
ei j
g+
j

,
fi j
g+
j

,
gi j
g+
j

)

; g+
j = max gi j , (4.4)

d̃i j =
(
e−
j

gi j
,
e−
j

fi j
,
e−
j

ei j

)

; e−
j = min ei j . (4.5)

The normalization is done so as to preserve the property that the ranges of nor-
malized triangular fuzzy numbers belong to [0, 1].

4. Obtain the weighted normalized decision matrix given weights w̃i j for each cri-
terion

H̃ = [h̃i j ]m×n = w̃i j × d̃i j . (4.6)
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5. Now, obtain fuzzy positive (FPNIS) and negative ideal solution (FNIS) as

G+ = {h̃+
1 , h̃+

2 , ..., h̃+
m}, G− = {h̃−

1 , h̃−
2 , ..., h̃−

m}. (4.7)

6. Use euclidean distances z+
j and z

−
j for each alternative from their respective FPIS

and FNIS:

z+
i =

n∑

j=1

z p(h̃i j , h̃
+
j ), z−

i =
n∑

j=1

z p(h̃i j , h̃
−
j ), (4.8)

z p(x, y) =
√
1

3
(ex − ey)2 + ( fx − fy)2 + (gx − gy)2, (4.9)

and x = (ex , fx , gx ) and y = (ey, fy, gy) as the two TFNs and z p(x, y) as the
euclidean distance according to vertex method, we obtain priority score (Oi ) for
each alternative and rank them in descending order:

Oi = z−
i

z−
i + z+

i

. (4.10)

4.2.3 Fuzzy COPRAS

Complex proportional assessment (COPRAS) method has been successfully em-
ployed to study decision-making process since 1994 Zavadskas et al. implemented
the same to solve problems related to construction management and economics [19].
However, due to uncertainties present in the decision-making process, a fuzzy CO-
PRAS method that essentially thrives on COPRAS methodology is adopted to solve
the MCDM problem. Bekar et al. have presented a fuzzy COPRAS method to assess
the performance measures in productive maintenance [1]. In this paper, a compara-
tive analysis between COPRAS method with grey relations and fuzzy COPRAS is
carried out. Further, Nourianfar et al. have explored the selection problem in supply
chain management using fuzzy COPRASmethod [13]. Here, the criteria weights are
assigned with trapezoidal fuzzy numbers (TrFNs) and supplier selection problem
is solved based on four criteria: (i) product quality, (ii) relationship closeness, (iii)
delivery performance, and (iv) price. Now, we discuss the steps followed to solve
MCDM problem using fuzzy COPRAS method.

1. Formulate theMCDMproblem based on a set of alternatives (Ai ; i = 1, 2, ...,m)
and criteria (C j ; j = 1, 2, ..., n) and construct a fuzzy decision matrix.

2. Obtain the normalized fuzzy decision matrix using (4.4) and (4.5) as in fuzzy
TOPSIS method.

3. For each alternative Ai , obtain aggregate beneficial and non-beneficial indices
T+
i and T−

i as
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T̃+
i =

⎧
⎨

⎩

t∑

j=1

h̃ei j ,
t∑

j=1

h̃ f
i j ,

t∑

j=1

h̃g
i j

⎫
⎬

⎭
, T̃−

i =
⎧
⎨

⎩

n∑

j=t+1

h̃ei j ,
n∑

j=t+1

h̃ f
i j ,

n∑

j=t+1

h̃g
i j

⎫
⎬

⎭
,

(4.11)

where j = 1, 2, ...t are the beneficial criteria and j = t + 1, t + 2, . . . , n are the
non-beneficial criteria.

4. Using (4.12), determine the crisp values U (B̃) for each alternative Ai from the
fuzzy numbers (B̄ = (e, f, g)) obtained in the previous step:

U (B̃) = 2e(1 − α) + g − f

2
(1 − α)2, (4.12)

where α ∈ [0, 1] is the alpha-cut of fuzzy set B̄ in X such that B̄α = {x ∈ X :
μB(x) > α}.

5. Obtain the priority scores and rank them in the order of descending degree:

XCi = Ui

Umax
× 100%. (4.13)

The current fuzzy TOPSIS and fuzzy COPRAS methods are applied to solve the
problem of hybrid wind farm operation where a set of four alternatives are assessed
based on three criteria. The fuzzy decision matrix is constructed based on linguistic
scores assigned to an alternative with respect to each criterion. Since all the criteria
in our MCDM problem are non-beneficial, we define the linguistic scores where
the least preferred alternative is assigned the highest score and vice versa. Table4.1
describes the linguistic scores (LS) used to construct the fuzzy decision matrix.

Since wake effect results in large power loss in a wind farm, compensating the
losses via paying penalty will not benefit economically to a farm operator. In such
cases, paying an equivalent penalty for borrowed power is a better option. The same
methodology of borrowing power is best suited for wind curtailment situation as it is
not economical to discharge power in a large magnitude. While in the case of forced
outages, it is evident that removal of a turbine unit(s) leads to a sudden reduction in

Table 4.1 Performance scores for decision matrix [15]

Importance LS as per AHP LS in this work

Equally preferred (EP) (1, 1, 3) (7, 9, 9)

Moderately preferred (MP) (1, 3, 5) (5, 7, 9)

Strongly preferred (SP) (3, 5, 7) (3, 5, 7)

Very strongly preferred (VSP) (5, 7, 9) (1, 3, 5)

Extremely preferred (XP) (7, 9, 9) (1, 1, 3)
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Table 4.2 Linguistic scores
for criteria weights

Importance LS

Very low (VL) (1, 1, 3)

Low (L) (1, 3, 5)

Average (AVG) (3, 5, 7)

High (H) (5, 7, 9)

Very high (VH) (7, 9, 9)

total wind farm capacity, however, such drastic scenarios can be treated economically
by using alternative A2 as discussed in Chap.3.

As per the linguistic scores stated in Table4.2, the fuzzy decision matrix (FDM)
for our MCDM problem is given as

H =

C1 C2 C3
⎛

⎜
⎝

⎞

⎟
⎠

MP MP EP A1

V SP SP SP A2

X P V SP V SP A3

EP EP EP A4.

Further, in terms of TFNs, the fuzzy decision matrix is given as

H =

C1 C2 C3
⎛

⎜
⎝

⎞

⎟
⎠

(5, 7, 9) (5, 7, 9) (7, 9, 9) A1

(1, 3, 5) (3, 5, 7) (3, 5, 7) A2

(1, 1, 3) (1, 3, 5) (1, 3, 5) A3

(7, 9, 9) (7, 9, 9) (7, 9, 9) A4.

4.3 Results and Discussions

Next, we present an application of fuzzy TOPSIS method on a hybrid wind farm
problem. Three onshore wind farms, Bishop and Clerks, Paxton, and Blandford
are selected in order to study the hybrid operation pertaining to four alterna-
tives/methodologies discussed in the last chapter. The wind speed data for all the
three sites measured at a hub height of 61m using a cup anemometer centrally avail-
able atWind energy center, University ofMassachusetts. The datasets are labeled X1
(June 2006) and X2 (June 2013) for three wind farms. The wind speed time series
for two datasets is illustrated in Figs. 4.2 and 4.3.

For all the three wind farms, we assume a rotor diameter of 120m and wind
direction facing directly the wind turbines. The power produced from the three wind
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Fig. 4.2 Wind speed pattern for three wind farms in Massachusetts, June 2006

farms is transmitted to the utility grid. Here the decision-making approach is carried
out forwind farmBishop andClerks.Least square support vector regression (LSSVR)
based technique is used for wind speed forecasting and then it is transformed into
wind power. The penalty cost is determined for each alternative when the forecasted
power exceeds the actual one. The cost for compensating 1kW of deficit power
in each alternative as discussed in the previous chapter is βw = $ 0.5, ζs = $ 0.75,
αz = $ 0.4 and δx = $ 0.8. Due to consecutive charging and discharging events, the
penalty cost for alternative A4 is highest in order to preserve BESS life. Table4.3
highlights the penalty cost (PC) (in $) and normalized cost score for each alternative
for two datasets X1 and X2.

Based onminimumnormalization technique, the normalized cost scores are deter-
mined. In this case, a score of 1 is assigned to the alternative with minimum penalty
cost. This reflects the tangible effect incurred to the farm operator from the penalty
cost. Likewise, the intangible effect is determined by using the fuzzy MCDMmeth-
ods. The overall score for the alternatives is worked out by a cumulative priority
score (CPS) which is multiplication of priority score (PS) and normalized cost score
(NCS). Using fuzzy TOPSIS method, the ranks for the alternatives are computed.
The fuzzy decision matrix (FDM) in terms of TFNs normalized according to (4.5)
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Fig. 4.3 Wind speed pattern for three wind farms in Massachusetts, June 2013

Table 4.3 Penalty cost and normalized cost score for dataset D1 and D2

Alternatives X1 X2

PC ($) NCS PC ($) NCS

A1 1620.8 0.9880 1551.3 1.0000

A2 1601.4 1.0000 1921.2 0.8075

A3 1612.7 0.9930 3392.5 0.4573

A4 2593.3 0.6175 2482.1 0.6250

is given as

H =

C1 C2 C3
⎛

⎜
⎝

⎞

⎟
⎠

(5, 7, 9) (5, 7, 9) (7, 9, 9) A1

(1, 3, 5) (3, 5, 7) (3, 5, 7) A2

(1, 1, 3) (1, 3, 5) (1, 3, 5) A3

(7, 9, 9) (7, 9, 9) (7, 9, 9) A4,
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Table 4.4 Euclidean distance and closeness coefficient for each alternative

Alternatives z+ z− O

A1 9.9542 0.3933 0.0380

A2 7.5398 3.3752 0.3095

A3 0 10.3223 1.0000

A4 10.3223 0 0.0000

D =

C1 C2 C3
⎛

⎜
⎝

⎞

⎟
⎠

(0.11, 0.142, 0.2) (0.11, 0.14, 0.2) (0.11, 0.11, 0.14) A1

(0.2, 0.33, 1) (0.14, 0.2, 0.33) (0.14, 0.2, 0.333) A2

(0.33, 1, 1) (0.2, 0.33, 1) (0.2, 0.33, 1) A3

(0.11, 0.11, 0.14) (0.1, 0.11, 0.14) (0.11, 0.11, 0.14) A4.

The corresponding weights for criteria are expressed in TFNs as w̃1 = H, w̃2 =
V H, w̃3 = AVG, which further can be expressed in terms of TFNs as w̃1 =
(5, 7, 9), w̃2 = (7, 9, 9), w̃3 = (3, 5, 7). The weighted normalized fuzzy decision
matrix is obtained using (4.6) and is given as

H̃ =

C1 C2 C3
⎛

⎜
⎝

⎞

⎟
⎠

(0.56, 1, 0.6) (0.78, 1.28, 1) (1, 1, 1) A1

(1, 0.33, 3) (1, 1.8, 1.6) (1.28, 1.8, 2.3) A2

(1.67, 7, 3) (1.4, 3, 5) (1.8, 3, 7) A3

(0.55, 0.78, 0.42) (0.77, 1, 0.71) (1, 1, 1) A4.

Next, we identify the FPIS and FNIS using (4.7), given as

G+ = {(1.666, 7, 3), (1.4, 3, 5), (1.8, 3, 7)} (4.14)

G− = {(0.55, 0.77, 0.42), (0.77, 1, 0.71), (1, 1, 1)}. (4.15)

The euclidean distance between each TFN of weighted normalized fuzzy decision
matrix and FPIS and FNIS is provided in Table4.4.

We observe that the most preferred alternative is A3 followed by A2, A1 and A4.
The cumulative priority scores for datasets X1 and X2 are tabulated in Table4.5.

Next, we discuss theMCDM results using fuzzy COPRASmethod. The weighted
fuzzy decision matrix obtained in fuzzy TOPSIS is then evaluated to obtain the
aggregate beneficial and non-beneficial indices for each alternative using (4.11).
Since all the criteria in our MCDM problem are non-beneficial, we evaluate T̃−

i and
are given as

T̃−
i = {(2.333, 3.2857, 2.6), (3.2857, 5.9333, 7.000), (4.16)

(4.8667, 13, 15), (2.333, 2.778, 2.1429)}.
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Table 4.5 Cumulative priority score and ranking based on fuzzy TOPSIS method

Alternatives X1 X2

PS CPS PS CPS

A1 0.0380 0.0376 0.0380 0.0380

A2 0.3095 0.3095 0.3095 0.2499

A3 1.0000 0.9930 1.0000 0.4573

A4 0.0000 0.0000 0.0000 0.0000

Alternatives Ranking

X1 X2

A1 3 3

A2 2 2

A3 1 1

A4 4 4

Table 4.6 Crisp numbers for fuzzy indices (T̃−
i )

Alpha-cut A1 A2 A3 A4

0.1 3.9223 6.3463 9.5700 3.9429

0.2 3.5139 5.5985 8.4267 3.5302

0.3 3.0987 4.8613 7.3033 3.1111

0.4 2.6766 4.1349 6.2000 2.6857

0.5 2.2476 3.4190 5.1167 2.2540

0.6 1.8118 2.7139 4.0533 1.8159

0.7 1.3691 2.0194 3.0100 1.3714

0.8 0.9196 1.3356 1.9867 0.9206

0.9 0.4632 0.6625 0.9833 0.4635

1.0 0 0 0 0

Next, we convert the fuzzy indices obtained in (4.16) using (4.12) for different
alpha-cut values into a crisp number. Table4.6 highlights the crisp numbers for each
alternative Ai .

The crisp numbers highlighted in Table4.6 are then evaluated for the priority
scores (XC) using (4.13). The ranking for alternatives based on cumulative priority
scores for α = 0.5 is listed in Table4.7.

FromTable4.7,we observe that for datasetX2, the ranks for alternatives A1 and A2

are reversed in terms of cumulative priority score which is due to a higher normalized
cost score. Such rank reversal is tested by removing one of the alternatives from the
fuzzy decision matrix and then testing further the remainder of the alternatives for
the best option. The rank reversal due to dynamic decision matrices is tested under
fuzzy TOPSIS and fuzzy COPRAS methods.
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Table 4.7 Cumulative priority score and ranking based on fuzzy COPRAS method

Alternatives X1 X2

PS CPS PS CPS

A1 43.17 42.65 43.17 43.17

A2 66.69 66.69 66.69 53.85

A3 100.00 99.300 100.00 45.73

A4 43.31 26.74 43.31 27.07

Alternatives Ranking

X1 X2

A1 3 3

A2 2 1

A3 1 2

A4 4 4

Table 4.8 Ranking of alternative strategies under dynamic decision matrices in fuzzy TOPSIS
(M1) and fuzzy COPRAS (M2) methods

Alternatives M1 M2

Initial rank A4 A1 A2 A4 A1 A2

A4 4 − − − − − −
A1 3 3 − − 3 − −
A2 2 2 2 − 2 2 −
A3 1 1 1 1 1 1 1

From Table4.8, the effect of dynamic decision matrices can be seen on the rank
of alternatives. In first case, when alternative A4 is removed, A3 is still the most
preferred alternative followed by A2 and A1. Further, in next step, when alternative
A1 is removed, A3 is ranked superior to A2 indicating the most preferred strategy is
paying penalty for deficit power by borrowing power from neighboring wind farm.

4.4 Fuzzy-Based Decision-Making for Hilly Wind Sites and
Offshore Wind Farms

Hilly wind farm sites pose a lot of challenges in form of forecasting wind speed
due to the uneven terrain. This causes wind farm operators to optimally select their
strategy while paying penalty for the deficit wind power. The problem can be tackled
by modeling the decision-making in a fuzzy environment where the elements of the
decision matrix are TFNs. We use the datasets chosen in the previous chapter. Wind
speed data from Challicum hills (Australia), Longyuan hills (Tibet) and Ngong hills
(Kenya) is taken for the month of May 2019. The wind power is forecasted using
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Table 4.9 Penalty cost and normalized cost score for hilly wind sites

Alternatives PC ($) NCS

A1 52831 1.000

A2 84530 1.600

A3 59945 1.134

A4 84530 1.600

Table 4.10 Ranking for alternatives based on fuzzy TOPSIS method for hilly wind sites

Alternatives PS CPS Ranking

A1 0.0380 0.0380 3

A2 0.3095 0.4952 2

A3 1.0000 1.1347 1

A4 0.0000 0.0000 4

LSSVR technique with wind speed data segmented into training (800) and testing
(200) set. The penalty cost for all the alternatives is evaluated and a normalized
cost score is determined. With reference to the methodology discussed in previous
sections, p2i , p̂2i represent the actual and forecasted wind power for Longyuan hills
at i th instant. Similarly, p3i , p̂3i represent the actual and forecasted wind power for
Ngong hills at i th instant. Table4.9 depicts the normalized cost scores.

FromTable4.9, we can observe that alternative A2 and A4 incurmaximumpenalty
to the wind farm operator. Now we evaluate the priority scores using fuzzy TOPSIS
and fuzzy COPRAS methods. The fuzzy decision matrix remains the same for hilly
wind sites. As the wind speed gets more pronounced due to hilly terrain, for criteria
likewind curtailment and forced outage the best alternative is A3. It is alsoworthwhile
to note that in hilly areas the wind speed changes drastically, so to deal with such
a large amount of wind power, charging and discharging the battery system is not
suitable and can incur large penalty cost. The fuzzy decision matrix is

H =

C1 C2 C3
⎛

⎜
⎝

⎞

⎟
⎠

(5, 7, 9) (5, 7, 9) (7, 9, 9) A1

(1, 3, 5) (3, 5, 7) (3, 5, 7) A2

(1, 1, 3) (1, 3, 5) (1, 3, 5) A3

(7, 9, 9) (7, 9, 9) (7, 9, 9) A4.

Table4.10 depicts the cumulative priority scores obtained after multiplying nor-
malized cost scores (Table4.9) and priority scores (Table4.4).
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Table 4.11 Ranking for alternatives based on fuzzy COPRAS method for hilly wind sites

Alternatives PS CPS Ranking

A1 43.17 43.17 4

A2 66.69 106.70 2

A3 100.00 113.4 1

A4 43.31 69.29 3

Table 4.12 Penalty cost and normalized cost score for offshore wind farm

Alternatives PC ($) NCS

A1 37393 1.000

A2 59829 1.600

A3 82919 2.217

A4 59829 1.600

Similarly, for fuzzy COPRAS method, the cumulative priority scores for alpha-
cut α = 0.5 are given by multiplying priority scores (Table4.7) and normalized
cost scores (Table4.9). The ranking based on cumulative priority scores for fuzzy
COPRAS method is depicted in Table4.11.

Uncertainties in offshore wind farm are mainly related to rapid changes in wind
speed. Since the wind resource is abundant, the power capturing capacity varies
drastically due to wake effects and curtailment. In the present context, as discussed
in the previous chapter, the decision-making for three wind farms, namely, Anholt
(Denmark), Amrumbank (Germany), and Horns Rev 2 (Denmark). The geographic
location of these wind farms is illustrated in Fig. 3.7. Themethodology for arriving at
the best choice remains the same. The normalized cost score for all the alternatives is
determined based on actual and forecasted wind powers. The normalized cost score
is depicted in Table4.12.

Next, we evaluate the fuzzy decision matrix for the best alternative based on the
given criteria. In case of offshore wind farms, the variability in wind speed causes
wind operators to take immediate actions like wind curtailment and forced outage of
turbine unit(s). Based on this, the fuzzy decision matrix can be expressed as

H =

C1 C2 C3
⎛

⎜
⎝

⎞

⎟
⎠

(5, 7, 9) (5, 7, 9) (7, 9, 9) A1

(1, 3, 5) (3, 5, 7) (3, 5, 7) A2

(1, 1, 3) (1, 1, 3) (1, 1, 3) A3

(7, 9, 9) (7, 9, 9) (7, 9, 9) A4.

To start off with, we adopt fuzzy TOPSIS method where the weighted normalized
decision matrix is calculated according to (4.6) and is given as
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Table 4.13 Euclidean distance and closeness coefficient for each alternative

Alternatives z+ z− O

A1 14.692 0.3933 0.0261

A2 12.35 3.379 0.2148

A3 0.00 15.06 1.000

A4 15.06 0 0.000

Table 4.14 Ranking for alternatives based on CPS for fuzzy TOPSIS method for offshore wind
farm sites

Alternatives PS CPS Ranking

A1 0.0261 0.0261 3

A2 0.2148 0.3436 2

A3 1.000 2.217 1

A4 0.000 0.000 4

H̃ =

C1 C2 C3
⎛

⎜
⎝

⎞

⎟
⎠

(0.556, 1, 0.600) (0.778, 1.285, 1) (1, 1, 1) A1

(1, 2.33, 3) (1, 1.8, 1.667) (1.285, 1.8, 2.333) A2

(1.667, 7, 3) (2.333, 9, 5) (3, 9, 7) A3

(0.5556, 0.778, 0.4286) (0.778, 1, 0.7143) (1, 1, 1) A4.

Further, the fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution
is calculated using (4.7) and are given as

G+ = {(1.667, 7, 3), (2.33, 9, 5), (3, 9, 7)} (4.17)

G− = {(0.555, 0.778, 0.4286), (0.778, 1, 0.7143), (1, 1, 1)}. (4.18)

The priority scores are obtained by calculating the euclidean distance using (4.9) and
are depicted in Tables4.13 and 4.14.

Next, we evaluate the alternatives based on fuzzy COPRAS method. The deci-
sion matrix remains the same along with weighted normalized decision matrix. We
evaluate the aggregated scores for beneficial and non-beneficial criteria. Since in the
present context, all the criteria are non-beneficial, we evaluate T̃−

i and are given as

T̃−
i = {(2.33333.28572.6000), (3.28575.93337.0000),

(7.000025.000015.0000), (2.33332.77782.1429)}. (4.19)
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Table 4.15 Crisp numbers for fuzzy indices (T̃−
i ) for offshore wind farm site

alpha-cut A1 A2 A3 A4

0.1 3.9223 6.3463 8.5500 3.9429

0.2 3.5139 5.5985 8.0000 3.5302

0.3 3.0987 4.8613 7.3500 3.1111

0.4 2.6766 4.1349 6.6000 2.6857

0.5 2.2476 3.4190 5.7500 2.2540

0.6 1.8118 2.7139 4.8000 1.8159

0.7 1.3691 2.0194 3.7500 1.3714

0.8 0.9196 1.3356 2.6000 0.9206

0.9 0.4632 0.6625 1.3500 0.4635

1.0 0 0 0 0

Table 4.16 Ranking for alternatives based on CPS for fuzzy COPRAS method for offshore sites

Alternatives PS CPS Ranking

A1 2.2476 2.2476 4

A2 3.4190 5.4704 2

A3 5.7500 12.7475 1

A4 2.2540 3.6064 3

Next, we convert the fuzzy indices obtained in (4.19) using (4.12) for different
alpha-cut values into a crisp number. Table4.15 highlights the crisp numbers for
each alternative Ai .

The crisp numbers highlighted in Table4.15 are then evaluated for the priority
scores (XC) using (4.13). The ranking for alternatives based on cumulative priority
scores for α = 0.5 is listed in Table4.16.

FromTable4.16, we can observe that A3 is themost preferred alternative followed
by A2, A4 and A1.We also see a rank reversal for alternatives A1 and A4 as compared
to fuzzy TOPSIS method. In the present work, an MCDM approach for a hybrid
operation of three wind farms situated in western Massachusetts is considered. The
tangible and non-tangible effect of different dynamic phenomenon is considered
to evaluate the best alternative. Fuzzy TOPSIS and fuzzy COPRAS methods are
used owing to uncertainties present in wind speed characteristics. Triangular fuzzy
numbers are used to assign relative importance of each alternative with respect to
each criterion. Based on these two methods, it is found that alternative A3 is the most
preferred choice followed by A2, A1 and A4. Further, in case of dynamic decision
matrices, the rank reversal phenomenon is tested for the methods. It is found that A3

is the most preferred alternative indicating its dominance in case of uncertainties.
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Chapter 5
Control Applications in Hybrid Wind
Farms

As understood by now,wind turbines extract energy from the randomly varyingwind.
However, downstream of the turbine, a wake is created where wind speed is reduced.
As per the basic definition in fluid dynamics, a wake is the region of recirculating
flow behind amoving or stationary blunt object, caused by viscosity, possibly accom-
panied by flow separation and turbulence. As the flow further proceeds downstream,
this wake spreads and finally recovers toward free stream conditions. Such a wake
effect is the aggregated influence on the energy produced in the wind farm resulting
from effectivewind speed changes caused by the impact of the turbines on each other.
Wake effect from an upwind turbine undermines a downwind wind turbine’s power
generation and therefore the revenues from the wind farm itself. There is therefore a
need to design a wake steering control scheme to increase the power production of
wind farms. Wake effects also vary with the atmospheric conditions.

Wake management in wind farms is complemented by usage of precision mea-
surement devices like light detection and ranging (LIDAR). Aerodynamics in the
Prandtl layer of atmospheric boundary layer imposes uncertainties in wind flow
which calls for the need of adaptive control. Wake center tracking by LIDAR simu-
lations is used to model the effective wind speed deficit into effective wake center for
multiple wake situations. A wake management scheme based on yaw angle variation
is implemented for multiple wind turbines. Uncertainties in the wake flow are taken
care by an adaptive PI controller which shifts the wake center behind the upstream
turbine. Yaw angle of upstreamwind turbines is used as a variable parameter in order
to redirect the wake flow behind upstream turbine. Parameters like effective wind
velocity, deficit, and air turbulence are calculated and are assessed for comparison.
The major contribution of this chapter is a methodology based on transfer function
where the LIDAR simulations are used to control wake center at the downstream
turbine. The proposed scheme is validated for 2-turbine, 5-turbine, and 15-turbine
wind farm layouts.
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5.1 Introduction

The reliability of a wind power plant depends on the accuracy and robustness of its
control system which not only improves the annual energy production but also safe-
guards its prolonged lifetime of mechanical and electrical equipment. Turbines are
erected in a wind farm in a particular fashion which affects the net power captured.
However, due to the inherent wake effect, the downstream turbines contribute lesser
power to the utility grid. This also leads to subsequent reduction in wind farm effi-
ciency and calls for an appropriate control strategy to lessen the power losses. Wake
mixing, a common aerodynamic phenomenon leads to increased structural loading
on nonrotating turbine parts like nacelle and tower [5]. Mathematical models like
Jensen’s model and Frandsen’s model which are of high fidelity are widely being put
into use for accurately determining velocity and power deficit. In a wind farm, ambi-
ent air turbulence is also coupled with turbulence generated from wake interactions
which can deplete the power profile.

Extensive research has been carried out recently on the control-oriented wake
models that are designed to modify wake characteristics behind upstream turbine.
From industrial point of view, a wind farm operator always chooses to maximize the
power capture available from wind resource and minimize the resultant mechanical
loading on the nonrotating parts of the turbine [39]. Power fluctuations as a result
of dynamic nature of wind cause farm operators to increase the dependence on
battery energy storage systems (BESS) which calls for efficient and optimal wind
farm control. Primarily, two types of control methods are used in wind farms. Axial
induction control focuses on altering the pitch angle of the turbine whenever changes
in wind speed are noticed which ultimately improves the power captured and reduces
structural loading on turbines. Whereas wake redirection-based control redirects the
wake stream behind upstream turbine for improving power capture capability of
downstream turbines [10]. This type of control is based on yaw angle correction of
upstream turbines.

Themain objective for any wind farm operator is to maximize power capture from
available wind regime. Some of the industry preferred techniques to increase power
capture include pitch angle management and yaw angle control. Further, Schlipf et
al. described an improvised collective pitch controller to mitigate load fluctuations,
transients in rotor speed during sudden and extreme operating conditions [42] using
a PI control strategy to curb rotor speed variations by 70–80%. Industry preferred
standard feedback control is compared to feedforward blade pitch control for load
reduction and increasing wind turbine lifetime [19]. Simulations are carried out for
rated and above rated wind field conditions. The individual feedforward pitch con-
trollers are found to perform slightly better than the individual feedback controllers
without reduction in power generated.

In [21], the authors carried out a CFD simulation to redirect wakes away from
turbine rotor for improved downstream power capture. SOWFA simulation tool is
used to study redirection of turbine wakes for a 5-MW wind turbine model using
yaw angle-based and IPC-based strategies. Results reveal that IPC-based redirection
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does not lead to significant reduction in loading rather yaw based wake redirection
improves power capture profile at the downstream turbine. Antonini et al. tested the
CFDmodels forwind simulations by incorporating the uncertainties inwind direction
[2] for three wind farms.Wake predictions are carried out based onRANSSST k − ω

and Reynolds stress model and are significantly accurate owing to precise wind
direction measurements. Boersma et al. discussed various control-oriented methods
for power maximization of wind farms [7].

Simulation tools like FLORIS and SOWFA are used for estimating the velocity
deficit. Further, Gebraad et al. presented a novel dynamic wake model for estimating
wake center, effective wind speed, and power production for downstream turbines
in a wind farm [22]. Experimental analysis has revealed yaw angle control of the
upstream turbine to deflect the wake field behind rotor and enhance the power cap-
turing capabilities of the downstream turbine [24, 26]. Repositioning the downwind
turbine can significantly reduce the rotor shadowunder upstream turbine as described
by Gebraad et al. as it improves velocity profile and increase net power capture [23]
from the wind farm. Vali et al. presented an MPAC technique for wind farms which
minimizes the wind farm reference error [50]. An adjoint-based MPAC is applied to
2×3wind farm layout where thewind farm power follows the time-varying reference
signal. Yaw angle control for a fixed downstream distance of 3D and 6D in a wind
tunnel study is experimentally verified and results reveal a 12% increase in power
captured [1]. Maeda et al. carried out an experimental analysis on the effect of terrain
changes along with turbulent wind field on the total power production with HAWT
placed in a wind tunnel [33].

For a single column wind farm layout, optimization study is carried out based on
yaw angle control keeping axial induction factor same at each downstream turbine
[13]. An experimental analysis has been carried out by Dou et al. where the wake
structure and its properties are studied for a small-scale turbine [16]. Parameters
like pitch angle, yaw angle, and tip speed ratio are explored for determining optimal
turbine performance. Further, an analytical model for predicting the yaw offset is
proposed and validated with experimental results. In [43], LIDAR-assisted measure-
ments in tandem with look-ahead controller is demonstrated for load reduction in
wind turbines. Fatigue based on damage equivalent load (DEL) which is equivalent
load produced when subjected to the same load throughout lifetime, is calculated.
The blade and tower bending moment are reduced by 10% and 20%, respectively.
In [41], a robust wind-scheduled control is applied for generator speed regulation.
LIDAR provides an indirect control that eliminates the uncertainties in wind speed
measurement. However, the accuracy of wind speed measurement plays an impor-
tant role. The robust controller performance for regulating generator speed is seen
effective for speeds above rated value. A more comprehensive LIDAR-based wake
tracking is studied [40] wherein LIDAR is used to track wake flow and to set the
actuator to the desired set point of yaw angle. The measured line-of-sight (los) wind
speed is compared with simulated wind speed for estimating wind field parameters.

Predominately, the losses occurring due to wake are characterized by maximum
velocity deficit. The spatial location in terms of (x, y, z) coordinates is the position
in the wake field that corresponds to maximum power loss and this point is known as
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the wake center. Wake center tracking is explored by Cacciola et al., where the hub
loads at the downstream turbine are used to collect information related to wind speed
deficit and horizontal shear [9]. A minimization problem is used to accurately deter-
mine wake center using the hub sensors to provide information with good accuracy.
The limitation of thismethod is the usage of Larsen’smodel that does not encapsulate
yaw misalignment. Barthelmie and Pryor have discussed an automated wake char-
acterization algorithm to identify wake center position under different atmospheric
conditions of the day [3]. The wake center position is measured using a Doppler
LIDAR for a duration of first 6 months of 2017 and scans reveal that this position
changes during night time when more stable atmospheric conditions prevail as com-
pared to that during the daytime. Further, an important aspect of power maximization
is studied by Raach et al., where the authors have used a H∞ controller to redirect
the wake streamflow for yaw angle control [39]. The system identification toolbox
is used for identifying various plant models. Finally, the closed-loop performance of
the controller is tested under different atmospheric conditions.

Experimental analysis carried out by Howland et al. reveal a significant improve-
ment in wind power capture at the downstream turbines as a result of reduced wake
shadow from upstream turbine(s) [24]. Gebraad et al. explored a unique method
of repositioning downstream wind turbines for reducing the wake effect and thus
increasing their power capture [23]. However, in practical situation, the wind tur-
bine repositioning is limited by the constraints posed by land availability. Fleming
et al. discussed individual pitch control (IPC) and tilt induced control for redirecting
wake flow behind upstream turbines using a high precision tool called simulator
for on/offshore wind farm applications (SOWFA) [21]. In a study carried out by
Adaramola et al., a 12% increase in power capture is observed when the wind turbine
in the upstream is operated by yawing to dominant wind direction [1]. Meanwhile, it
is also important to note that terrain conditions and wake generated turbulence also
affect the effective yield of a wind farm. Maeda et al. demonstrated in a study the
impact of irregular surface conditions and how the turbulence due to wake interac-
tions affect the performance of a Horizontal axis wind turbines (HAWT)when placed
in a wind tunnel section [33]. Dar et al. took a case study of single column wind farm
layout to understand the effect of optimizing yaw angle of turbines keeping axial
induction factor constant [13].

LIDAR-based wake control for power maximization was first put into use by
Raach et al. [40] where the measurements by LIDAR mounted on a downstream
turbine are used to send appropriate information to a yaw controller of upstream
turbine and is tested for a two-turbine system. In an experimental study carried out
by Doubrawa et al., characterization of wake flow is studied [17]. Results of the large
eddy simulation (LES) study are found to be in tandem with the LIDAR measure-
ment campaign. Furthermore, Doubrawa et al. extended their work on wake charac-
terization by implementing a stochastic model that determines the wake shape and
width [18]. When compared to Reynolds-averaged Navier–Stokes (RANS) model,
the proposed model performs better on an LES framework. LIDAR-based campaign
is utilized for analyzing the effect of variance in radial velocity on the wake shape
and deficit [51]. It is interesting to note that the control action achieved with LIDAR
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measurements results in a controlled turbulence, and it is also reported that the length
of probe results in major errors in radial velocity variance.With the onset of wind tur-
bine and farm control, the challenge has always revolved around precise and accurate
measurement equipment.

For an efficient wind farm performance in terms of minimum wake losses and
maximum lifetime of turbines, advanced control schemes are required that can better
handle the uncertainties in the aerodynamic flow in a wind farm. To deal with such
system uncertainties, adaptive control is widely used [11, 25, 30, 36]. The essence of
adaptive control is based on parameter estimation when a system encounters uncer-
tainties and thus achieving desired performance in such random events [14, 15,
35, 37]. The desired value of the variable under observation is compared with the
actual one in a feedback loop. The parameter adjustment in adaptive control is a
key process that allows the controller to take appropriate action. Gain scheduling is
one of the most popular forms of adaptive control which is actively used in process
engineering. This chapter highlights a transfer function-based approach for control-
ling wake center of a turbine and improve the performance of a downstream turbine
wake management for a wind farm layout is performed. This chapter is organized as
follows: Sect. 5.2 highlights the basics of control scheme for a wind farm layout and
Sect. 5.3 throws light on a multi-model and multiple wake scenario. In Sect. 5.4, key
parameters like power captured and effective air turbulence are presented for wind
farms under wake effect, and in Sect. 5.5, a framework for proposed methodology is
validated and simulation results are discussed.

5.2 Closed-Loop Control Methodology

Wind speedmeasurement using a high precision device likeLIDARand control of the
wake center are the main objectives of a closed-loop control. LIDAR stands for Light
Detection and Ranging which is primarily used to estimate the wind speed ahead in
time by using a systemof laserswhich is installed at the downstream turbines.Various
experimental studies have shown that yawing an upstream turbine depletes its power
capture but increases the same for a downstream turbine. The wake management
strategy implemented here uses the transfer function for modeling wind turbine and
estimating wake center deflection. LIDAR enables the tracking of the deflection of
wake center caused by changes in yaw angle alignment. Themain function of LIDAR
is to get relevant information which tracks the trajectory of wake center in terms of
an equivalent deflection which is often expressed in terms of rotor diameter.

Wind turbine uses cup anemometer and wind vane for measuring wind speed
and direction, respectively. With the advent of LIDAR, nacelle-based wind speed
measurement is being carried out in order to take appropriate control actions which
ensures the farm operator has enough time to take crucial decisions in case of emer-
gencies [47]. In wind energy market, continuous wave (CW) and pulsed wave (PW)
type of LIDAR systems are available of which former is used owing to its ease
of use and market value [44]. A beam of specified frequency is emitted and the
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Fig. 5.1 Wake center estimation for a single set of upwind and downwind turbines

back-scattered beam collected by receiver is processed further. Since the operation
of an LIDAR is limited to a certain distance, it is important that the wind speeds
are measured for a certain preview distance. The line-of-sight velocity is estimated
using the time-average wind speed measured after processing it through Doppler
spectra. In subsequent subsections, we talk about the key components that comprise
a wake redirection control strategy. Primarily, a wind turbine model which inputs
a yaw angle and a wake center deflection estimation block for locating the wake
center. Figure5.1 illustrates a systematic arrangement of components of the strategy
implemented for wind turbines.

5.2.1 Wind Turbine Model

On the fundamentals of actuator disk theory, for a i th wind turbine in a wind farm,
the power extracted is given as

Pi = 1

2
ρw AwCpu

3
i , (5.1)

for air density ρw, rotor swept area Aw, power coefficient Cp, and wind speed ui
at the i th turbine [6]. It is also observed that the wind power when captured by an
upstream turbine reduces by a certain factor of cosh γ for a tunable parameter h, and
yaw angle γ when operated in a yawed condition. Fleming et al. explored that the
tunable parameter h varies in the range h ∈ (1.4–2.2) [20]. Jonkman et al., further
affirmed that the power coefficient which is indicative of aerodynamic efficiency gets
modified by a factor cosh γ for an upstream turbine in a yawed condition [28]. For
power capture at a maximum value of Cp = 0.482 while accounting for losses due
to turbulent wakes, h is chosen as 2. A 2-DOF model for the yaw alignment and
nacelle of an upwind turbine is formulated as

γ̈ + 2Dωγ̇ + ω2γ = ω2γre f , (5.2)

for undamped eigenfrequency ω, damping factor D, such that the desired yaw angle
input γre f and output γ for a wind turbine are modeled as a transfer function using a
system identification block in MATLAB. Output yaw angle γ is determined for a set
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of γre f ∈ (−25◦, 25◦). With this, the transfer function so obtained has np = 2 poles
and nZ = 1 zero and an accuracy of 99.99%. It is of the following form:

G1(s) = 0.533s + 0.01094

s2 + 0.1538s + 0.002736
. (5.3)

Qian et al. [38] stated that for an upstream turbine operating in the yaw mode, the
power captured is given as

Pi = 1

2
ρw AwCp u

3
i cos

3(γi ). (5.4)

An adaptive controller corrects the yaw angle setting for an upstream turbine. Mea-
surements done by LIDAR aim to track the wake center deflection and based on
the control action the wake flow is deflected away from the rotor. Power capture
by a downstream turbine gets altered as the yaw angle of the upstream turbine is
changed. Section5.4 throws light on the changes in velocity profile when the wind
farm is operated in a yawed condition. For the wake management strategy discussed,
the turbine model aims to calculate the power captured whenever a control action is
initiated by LIDAR measurements.

5.2.2 Wake Center Estimation

Wake center position caused from yaw misalignment has been a center of focus
among many researchers to study maximization of power in a wind farm. Empirical
relationships between streamwise distance and yaw misalignment have been studied
rigorously to accurate locate the position of wake center. In a study carried out by
Howland et al., it is found that an error of ±0.02D exists between theoretical and
experimental estimation of wake center deflection based on a 3D printed porus drag
disk model [24]. Empirically, wake center deflection is worked out for an upstream
turbine in yawed condition which is also dependent on the longitudinal distance d
between two turbines. As per Jimnez et al. [27], the wake center deflection due to
yaw misalignment is given as

δ(d) =
ξini t

(
15

( 2kdd
D0

+ 1
)4 + ξ 2

ini t

)

30kd
D0

( 2kdd
D0

+ 1
)5 − ξini t D0(15 + ξ 2

ini t )

30kd
, (5.5)

ξini t (γ,CT ) = 1

2
cos2(γ ) sin(γ )CT , Mγ = −2γ̇ � cosψ Ib, (5.6)

where ξini t is the initial angle between the wake stream and upstream turbine rotor
axis, d is the distance between upstream and downstream turbine, D0 is the turbine
diameter, and kd is the model parameter subjected to uncertainties. Furthermore,
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(5.6) represents the yaw bearing moment caused as a change in yaw angle where γ̇

represents yaw rate (in rad/sec), � represents the angular velocity of rotor, ψ is the
azimuth angle of blades and Ib is the moment of inertia of blades [34].

Wake recovery in a wake flow is defined by the parameter kd to tune which poses
a lot of challenges. Wind speed measurement by LIDAR is carried out by a circular
scan in a wind field that measures the effective velocity with respect to rotor hub
[32]. An appropriate, LIDAR preview distance dL I DAR will lead to accurate mea-
surement of wake center deflection which occurs when an upstream turbine is yawed.
In the present context, for a two-turbine wind farm layout, a system identification
toolbox is used to determine the transfer function for wake center deflection. Input
to the transfer function is the yaw angle misalignment and wake center deflection
is the output. Using (5.5), the values of wake center deflection are computed for
γ ∈ (−25◦–25◦). Considering atmospheric conditions, model parameter kd = 0.15
is taken.With accuracy of 93.76%, the transfer functionwith np = 2 poles and nz = 0
zeros is given as

G2(s) = −0.158

s2 + 2.56 × 10−12s + 0.2404
. (5.7)

Primary objective of an LIDAR in a wind farm is to acquire precise wind speed
measurements that enhance a predictive mode of control. Widespread control struc-
ture used in the industry is the PID controllers, primarily because PID controllers can
be, in a relative sense, easily implemented, programmed, fine-tuned, and are con-
ceptually straightforward. The proportional gain helps improve the system rise time
and response, the integral gain helps modify steady-state errors, and the derivative
gain is generally useful in modifying any system overshoot. To maximize the wind
farm performance, industry preferred control action based on proportional–integral
(PI) technique may be implemented for optimizing the power capture and reduce
mechanical loading and tower vibrations. In terms of control error, PI control action
can be expressed as

f = Kp

(
δ̃(γ ) + 1

Ti

∫
δ̃(γ )dt

)
, (5.8)

where δ̃(γ ) is the error in measured and reference wake center deflection and f is
the output yaw angle. Ti and Kp represent the time constant and proportional gain,
respectively. The best performance for a controller can be achieved by optimally
tuning the constants.

5.3 Wake Center Estimation and Adaptive Control

LIDAR-based wake center estimation and control is extendable to a multi-model
setup with an upwind and a downwind turbine under different conditions like initial
wake stream angle, distance between upwind and downwind turbine, rotor diameter,
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Fig. 5.2 Block diagram representation for wake center estimation

Table 5.1 Estimation
accuracies for multi-model
transfer function models

LIDAR distance (dLI DAR) Estimation accuracy (%)

1D0 93.76

1.5D0 95.08

2D0 94.94

2.5D0 94.82

3D0 94.71

and model parameter kd as defined in (5.5). Apart from such factors, the wake devel-
opment zone, that is, near-wake zone and far-wake zone, also significantly affects
wake center estimation [31]. In the present study, a multi-model wake center esti-
mation is studied through a data-driven approach with a constant model parameter
kd , and by varying LIDAR scanning distance dL I DAR in terms of multiples of rotor
diameter D0. Figure5.2 shows a schematic representation of the proposed strategy
for a multi-model scenario.

It is important to note that wind farm operation is accompanied by uncertainties
and control objective to track the reference can be difficult in such cases. By varying
parameter in a transfer function, the uncertainties can be modeled. In the present
case, the uncertainties posed by wake center model can be handled much better by an
adaptive controller rather than a classical PI control. Table5.1 depicts the estimation
accuracies of various transfer function models obtained from system identification
toolbox in MATLAB.

Wake Center Estimation and Control for Multiple Turbines

Till now, we have described a two-turbine wind farm layout for wake management
based on a transfer function methodology. However, large-scale wind farms consist
of more than twowind turbines, and the effect of wake interactions among turbines is
more pronounced. The wake flow in a large wind farm is also affected by the manner
in which turbines are arranged, that is, the layout of the farm. Bastankhah and Porte-
Agel devised a Gaussian wake model to describe a wind velocity deficit caused by
multiple upstream turbines [4]. Based on various factors like radial distance r from
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turbine hub, longitudinal downstreamdistance x , and thrust coefficientCT , themodel
assumes a Gaussian profile. Mathematically, this model can be expressed as

u = u0
(
1 − C(x)e

−r2

2σ2

)
, (5.9)

C(x) = 1 −
√
1 − CT

8(σ/D0)2
, σ = kx + εD0, (5.10)

whereC(x) represents the maximum normalized velocity deficit caused at a longitu-
dinal distance x and σ is width of the wake which is a function of rotor diameter D0

and wake growth constant k. Based on quadratic superposition and linear superposi-
tion the wake deficit is determined in case of multiple wind turbines.Mathematically,
the principle of linear superposition is given as

�ulini =
N∑
j=1

(
1 − u j

u0

)
, (5.11)

where N is the total number of upstream turbines, �ui is the velocity deficit for i th
due to all upstream turbines on in its wake and �u j is the velocity deficit cause due
to individual j th upstream turbine.

Katic et al. [29] described a quadratic principle of superposition given as

�uquadi =
√√√√

N∑
j=1

(�u j )2. (5.12)

A wake management strategy that modifies the yaw angle of the upstream tur-
bines is needed for increasing the power output from downstream turbines. Apart
from yawmisalignment, repositioning downstream reduces the shadow under wakes
from upstream turbines. However, because of space constraints, the repositioning of
turbines is not preferred and thus control of wake center deflection via yawmisalign-
ment is an effective method [12]. Due to the yawmisalignment of upstream turbines,
the thrust coefficient offered by the turbines to the incoming wind flow gets altered
by a factor of cos3 γ j , where γ j is the yawmisalignment for the j th upstream turbine
in a wind farm.

At i th downstream turbine, the transformed velocity deficit is given as

ui = u0
(
1 − Ci j (x)e

−r2

2σ2i j

)
, Ci j (x) = 1 −

√
1 − CT cos3(γ j )

8(σi j/D0)2
, (5.13)

σi j = kxi j + εD0, β = 0.5

(
1 + √

1 − CT√
1 − CT

)
, (5.14)
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Fig. 5.3 Proposed strategy for multiple wake scenario

where ε = 0.25
√

β, and σi j is the wake width at a distance xi j between j th upwind
and i th downwind turbine. Using (5.13), the velocity deficit can be determined for
each upstream turbine given the yaw angle misalignment γ j . Further, for N such
upstream turbines, using (5.12), the effective velocity deficit at i th downwind turbine
is determined. Figure5.3 pictorially depicts the schematic block diagram for wake
management in case of multiple wind turbines.

For the case of multiple wind turbines, we propose a wake management strategy
that takes into account the effective velocity and models the effective wake center
faced by a downstream turbine. Such an empirical relationship between wake center
position and velocity deficit is given as

f (y) = ume
−(y−μy )2

2σ2L I DAR , σL I DAR = kdL I DAR + εD0, (5.15)

where y,μy are the hub height and wake center position for a velocity deficit of f (y)
given an LIDAR preview distance dL I DAR . Maximum velocity deficit is represented
by um and is used to estimate the wake center in multiple wake scenario as illustrated
in Fig. 5.3. The transfer function models between effective wind velocity deficit and
effective wake center can be obtained using the system identification toolbox in
MATLAB. Based on the proposed methodology, the transfer function so obtained is
of multiple input single output (MISO) form as there are multiple yaw angles from
different wind turbines, and there is one effective wake center.

Developed in 1960,Kalmanfilter (KF)was named after scientistRudolphKalman,
which aims to estimate the states in presence of noisy measurements or disturbances.
State estimation usingKF revolves around the recursive processing of noisy data [46]
and is extensively used in estimating the state of charge of battery for electric vehicle
and energy storage application [48]. Mathematically, KF is modeled as

x̂k+1 = Axk + Buk + wk,

ŷk = Cxk + Duk + vk, (5.16)
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where A,B,C,D are the state-space matrices of the plant; wk, vk are process noise
and measurement noise at discrete time step k, respectively; and x̂k+1 is the update
of state vector xk at time k + 1. In the present case, KF is used to estimate the
wake center for a given set of upstream and downstream turbines. The yaw angle
setting acts as an input and wake center as output to the transfer function model
so obtained using system identification toolbox (SIT). The block diagram of wake
center estimation is illustrated in Fig. 5.4.

Kalman filter takes in state-space matrices A,B,C,D and estimates the states
and plant output at time k + 1. The state-space model can be obtained using SIT
available in MATLAB.

5.4 Performance Parameters for Waked Wind Farms

Awind farm performance is typically judged by the power profile and themechanical
loading on the downstream turbines. Commonly used models for wake interactions
include Jensen’s model, Frandsen’s model, and Gaussian model. Since wind wakes
cause power loss and increase loading on the turbines, it is important for a wind farm
operator to quantify the changes in these parameters in terms of % improvement in
power captured as well as effective air turbulence. Figure5.5 illustrates a two-turbine
wind farm layout and depicts the deflection in the wind flow behind upstream turbine
WT1 due to a yaw misalignment of γ .

Jensen’s model estimates wind speed for a downstream turbine given a radial
distance r and longitudinal distance x and is

u(x, r) = u0
[
1 − 2a

( r0
r0 + kx

)2]
, (5.17)
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Fig. 5.5 Wake stream deflection in two-turbine wind farm layout

where u0 is the freestream wind speed, r0 is the rotor radius, and k is the wake
expansion constant. For a given wind direction θ j and a yaw misalignment of γ j , the
wake stream gets deflected by an angle φ j given as

φ j = (0.6a j + 1)γ j + θ j , (5.18)

where a j is the axial induction factor for given turbine j ∈ X (set of all upwind tur-
bines). Now, the velocity profile for a downstream turbine due to a yawmisalignment
of upstream turbine is given as

ui (x, r) =
⎧⎨
⎩
u0

[
1 − 2a j

( 1

1 + 2kL cos(φ j )

)2 × cos2(4.5φ j )
]
, φ j ≤ 20◦

u0, φ j > 20◦,
(5.19)

where L = x
D0

∈ [2, 3, 4, 5] is the turbine spacing factor expressed as a multiple of
turbine diameter. Based on (5.19), an improved velocity profile can be obtained by
suitably yawing the upstream turbines by an angle γ j . The power captured by a yawed
upstream turbine is altered by a factor of cos3 γ j . The net air turbulence faced by a
downstream turbine is calculated by introducing a yawmisalignment on an upstream
turbine. Using vector sum, the net turbulence due to ambient airflow and wake effect
for a downstream turbine is given as

Ie f f =
√√√√I 2a + K 2

N∑
j=1

(1 − √
1 − CT cos γ j )x

−2/3
j , (5.20)
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where Ia is the ambient turbulence and Ie f f is net turbulence calculated for a given
downstream distance x j for given N upstream turbines for a wind farm and K= 0.93
is a constant [49].

5.5 Adaptive PID Control Scheme

In spite of several benefits of PID control, a long-standing issue is the need to improve
the robustness of PID controllers for reduced sensitivity to gain tuning for uncertain-
ties in the system and time variations, both of which are very prominent issues in
the wind farm control problem. Therefore, a variant of PID control like the adaptive
PID control which would allow for adaptive modification of the controller gains,
needs to be explored under the random wind scenario. If one implements certain
rules to change along time, all or some of the parameters the PID controller gains,
as per certain input characteristics without modifying the basic PID controller struc-
ture, then one essentially has an adaptive PID controller. Wind farm performance is
dependent on the effective wind speed seen by the different turbines in presence of
wake. That is, the wind farm power output can change with operational and environ-
mental scenarios. For output power stability, the wind farm should be able to operate
at controlled conditions. In case of variable load, the conventional PID control can
be modified to an adaptive control action for a wind farm.

Transfer function of plant and PID controller, Gp2(s) and Gc2(s) are given by

Gp2(s) = A

s2 + a1 s + a0
, Gc2(s) = kp + kd s + ki

s
, (5.21)

where A, a1, and a0 are constants of transfer function, and kp, ki , and kd are propor-
tional, integral, and differential gains of PID controller.

Let us parametrize kd = k, kp = 2kλ and ki = λ2k, and a closed-loop transfer
function wc2 is given by

wc2 = A Gc2(s)

s2 + a1 s + a0 + A Gc2(s)
, (5.22)

w−1
c2 = 1 + (s2 + a1 s + a0) A

−1 G−1
c2 (s). (5.23)

The reference input is given by

r = w−1
c2 xd = xd + ((s2 + a1 s + a0) A

−1 Gc(s)
−1) xd (5.24)

= xd + ẅd + a1 ẇd + a0 wd , (5.25)

where xd is the desired output and wd = (A−1 Gc2(s)−1) xd . Using (5.25), the block
diagram (Fig. 5.6) can be further represented as Fig. 5.7.
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Fig. 5.6 Closed-loop transfer function

Fig. 5.7 Modified block diagram of closed-loop system

Moving Pa0 and Pa1 from forward to feedback path, controller and closed-loop
transfer function can be represented as

Gc2(s) = (k + 2λP) s2 + (2λk + λ2P) s + λ2k

s
, (5.26)

Gp2(s) = (k + 2λP) s2 + (2λk + λ2P) s + λ2k

Ps3 + (k + 2λP) s2 + (2λk + λ2P) s + λ2k
. (5.27)

Closed-loop transfer function can be given as

wc2(s) = Gc2(s)

Ps2 + Gc2(s)
. (5.28)
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Now, (5.25) can be represented as

r = w−1
c2 xd = (1 + Ps2Gc2(s)

−1) xd = xd + Pẅd . (5.29)

Plant input u can be given as

u = Pẍd + Pa1 ẋ + Pa0 x + Gc2(s)e

= P(ẍd + 2λe + λ2e) + Pa1 ẋ + Pa0x + k
(
ė + 2λe + λ2

∫
e(u)du

)
.

We define control error e1(t) and auxiliary error e2(t) as

e1(t) = ẍd + 2λė + λ2e, e2(t) = ė + 2λe + λ2
∫

e(u)du. (5.30)

Using control and auxiliary error, plant input may be given as

u = Pẍd + Pâ1 ẋ + Pâ0 x + e2(t). (5.31)

Using estimate of â0 and â1, the adaptive control input u can be given as

u = Pẍd + Pa1 ẋ + Pa0 x + e2(t). (5.32)

From (5.21), derivative of state can be represented as

ẍ = −a1 ẋ − a0 x + P−1 u. (5.33)

Substituting (5.32) in (5.33), we get

ẍ = −a1 ẋ − a0x + P−1(Pe1(t) + Pâ1 ẋ + Pâ0 + Pk e2(t)) (5.34)

= ã1 ẋ + ã0x + e1(t) + P−1ke2(t). (5.35)

From (5.30), we get

ė2 = ë + 2 λ ė + λ2 e = ẍd − ẍ + 2 λ ė + λ2 e. (5.36)

Substituting (5.35) in (5.36), we get

ė2 = ẍd − ã1 ẋ + ã0 x − e1(t) − Pke2 + 2λė + λ2e (5.37)

= −P−1ke2 − (ã1 ẋ + ã0 x). (5.38)

Choosing appropriate adaptive laws as

˙̂a1 = γ3 ẋ e2, ˙̂a2 = γ4 x e2, (5.39)
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for adaptation gains γ3, γ4 > 0 and to be appropriately chosen by the control engineer
to appropriately handle the desired transient response, and by choosing a Lyapunov
candidate function as

V2 = 1

2

(
e22 + ã1

2

γ3
+ ã0

2

γ4

)
, (5.40)

we find
V̇2 = P−1ke22 < 0. (5.41)

Based on the corollary of the Barbalat’s Lemma, the stability of the transfer
function (5.21), is ensured. Individually, both the fractions of transfer function are
stable. Thus, the stability of complete system along with sum of fractions is ensured.

5.6 Results and Discussions

A two-turbine wind farm layout is tested for wake control strategy based on LIDAR
simulations. For this purpose, turbines with diameter D0 = 80 m and a hub height of
90m are taken.Wind turbinesWT1 (upstream) andWT2 (downstream) are placed at a
distance of 400 m apart. Using (5.19), the wind velocity atWT2 is worked out. Given
the atmospheric conditions, the wake expansion constant k can be approximated
using the logarithmic law for wind speed profile. Initially, for wind turbine WT1,
the yaw angle is set as γ1 = 0◦ assuming the wind direction is directly facing the
nacelle of WT1. Deflection caused by yaw angle correction of WT1 is determined
for an LIDAR preview distance dL I DAR = 1D0.

While it is also important to note that the LIDAR operates for a particular range
of preview distance and to support this, a range of 0–250 m is assumed in our
simulations [45]. Based on the proposed control scheme (Fig. 5.1), wake center for
upstream turbine WT1 is estimated and the controller output sets the required yaw
angle setting. The simulation case of 1000 s considers a wind profile where for
first 500 s a wind speed of 8 and 10 m/s for the rest 500 s. Considering ambient
air turbulence of 10%, turbine model and wake center deflection estimation model
are simulated in MATLAB/Simulink given a model parameter kd = 0.15. Model
parameter kd represents how fast a wake flow is recovered behind upstream turbine.
The total farm power produced by turbines WT1 and WT2 and the wake center
estimated by LIDAR simulation is illustrated in Figs. 5.8 and 5.9. The reference
wake center is varied from 5m to –5 m and is compared with the measured value.
Further, the error is then processed by adaptive controller to set appropriate value
of yaw angle for upstream turbine WT1. Resulting from this, the wake profile for
upstream turbine WT1 gets modified in form of velocity profile.

For model parameter kd = 0.15, the total wind farm power captured with and
without wake redirection is plotted. Compared to Raach et al. [39] which leads to
4.5% increase in total farm power, the proposed wake redirection strategy leads to
a power increase of 7.552%. While it is still possible to increase power capture by
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Fig. 5.8 Estimated wake center and yaw angle alignment for model parameter kd = 0.15

repositioning downstream turbine but this is limited by space constraints and thus
yaw angle correction is treated as one of the primary methods for wind farm control.
The mechanical loading acting on the yaw motor is also important while changing
yaw angle. To evaluate this, yaw bearing moment is calculated based on (5.6) due
to the proposed control scheme when upstream turbine is operated in yaw mode
and is pictorially depicted in Fig. 5.10. The turbine blade mass of 69 tons with a
rotor diameter 80m and azimuth angle ψ = 0◦ is considered. From Fig. 5.10, we
can be that the power spectral density plot has spikes of smaller amplitude which
is indicative of a smooth adaptive control achieved. This also states that for a wind
turbine yawing beyond limits can cause significant wear and tear to the motor which
can be prevented with an adaptive control scheme.

Figure5.11 pictorially depicts the sensitivity related to input to plant for a two-
turbine wind farm layout. The turbine model and wake center estimation model are
considered together as a plant as indicated by cascade transfer function G1(s)G2(s).

The proposed scheme is also tested for evaluating the effective air turbulence
on turbine WT2. Figure5.12 illustrates the effective air turbulence acting on WT2
for different values of yaw angle correction. For a fixed yaw angle, the effective
air turbulence on WT2 decreases as we increase the longitudinal separation between
WT1 andWT2. This is indicative of the fact that without yawing the upstream turbine,
repositioning the downstream turbine can significantly reduce themechanical loading
on the nonrotating parts of the turbine.

The proposed control scheme is then evaluated for multi-model scenario where
the LIDAR preview or scanning distance is varied to track the wake center deflection
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Fig. 5.10 Bearing moment for yaw motor and spectral density

caused by yaw misalignment. It is important to note that the preview distance must
be varied until a point that complements the range of LIDAR. Using (5.5), the wake
center deflection is determined and a transfer function is estimated using system
identification toolbox in MATLAB. The yaw angle is taken as input and wake center
deflection as output of the transfer function. Model order with best estimation accu-
racy is chosen. LIDAR simulations are performed with WT2 tracking the wake tra-
jectory for different preview distances dL I DAR = MLD0, where ML ∈ [1, 2, 2.5, 3].
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Fig. 5.12 Net turbulence for
a downstream turbine
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A transfer function model for wake model is obtained for every LIDAR preview dis-
tance and the wake center calculated for different models. It is then allowed to track
reference wake trajectory to set a desired yaw setting for upstream turbineWT1 using
an adaptive PI controller. For a multi-model approach, the wake center estimation is
illustrated in Fig. 5.13.
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Fig. 5.14 Five-turbine wind farm layout for non-yawed and yawed condition

The model uncertainty which reflects in the form of dL I DAR is considered in this
case, and it is observed that for a preview distance of dL I DAR = 2D0, the control
is fast and the error between reference and measured value is less. Consider a wind
farm layout with five turbines as depicted in Fig. 5.14. Based on the proposed wake
management scheme for multiple wind turbines, here we track the effective wake
centers faced by turbines WT4 and WT5. For example, wind turbine WT4 observes
wake effect from upstream turbines WT1 and WT2. Similarly, for wind turbine WT5
we can observe that wake effect fromWT1,WT3 andWT4 is dominant. The longitu-
dinal distances between turbines are illustrated in terms of rotor diameter (D0). Using
(5.13), Gaussian deficit proposed by Bastankhah and Porté-Agel [4], we calculate
the effective velocity deficit at downstream turbine location WT4 and WT5. In this
scenario, the velocity deficit is determined for two cases: (i) non-yawed, when the
yaw angles of upstream turbines are left unchanged and (ii) when the yaw angles of
upstream turbines are changed.

Table5.2 depicts parameters related to turbines and thewakemodel. For determin-
ing the effective velocity deficit in yawed condition, yaw angle γ j for j ∈ [1, 2, 3, 4]
are listed in Table5.2.

Now, using (5.12) based on quadratic superposition principle, the effective veloc-
ity deficit for downstream turbinesWT4 andWT5 is calculated. Further, using system
identification toolbox available in MATLAB, the transfer function model that maps
input yaw angle of turbines to the output effective velocity deficit is determined using
(5.15). Figure5.3 is indicative of the multiple wake scenario where each upstream–
downstream turbine model is considered as a collective unit for estimating effective
wake center. Figure5.15 illustrates the wake center estimation for WT1 and WT2
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Table 5.2 Wind turbine parameters for WT4 and WT5
Parameter Value

Rotor radius (r0) 40 m

Wake expansion factor (k) 0.0075

Wake model parameter (kd ) 0.15

Thrust coefficient (CT ) 0.888

γ1 [−5◦, 5◦]
γ2 [−10◦, 10◦]
γ3 [−25◦, 25◦]
γ4 [−15◦, 15◦]
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Fig. 5.15 Wake center estimation for upwind turbines WT1 and WT2

which are upstream turbines for WT4. For WT1 and WT2, the wake center is esti-
mated and then controlled using adaptive PI controller for desired yaw angle as listed
in Table5.2. With reference to Fig. 5.15, yre fc1 , yre fc2 are the reference wake centers for
WT1 andWT2, respectively. Similarly forWT5, the wake center for upwind turbines
WT1,WT3, andWT4 is estimated and controlled using an adaptive PI controller. The
upstream turbines aim to follow reference wake centers where the measured output
is the effective wake center for the downstream turbines.

Similarly, Fig. 5.16 illustrates the reference and estimated wake centers for WT1
and WT4 based on the proposed scheme for multiple wake scenario.

In the present context, LIDAR-based closed-loop adaptive control is studied for
a two-turbine and five-turbine wind farm layout. An adaptive control method is
implemented for identifying the uncertainties present in the wake center estimation
model. The transfer function models for wind turbine and wake center are obtained
using system identification toolbox available in MATLAB/Simulink. LIDAR simu-
lations are carried out for two-turbine wind farm layout that track the wake center
trajectory. An LIDAR preview distance of 1D0 is used and the corrected yaw angle
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Fig. 5.16 Wake center
estimation for upwind
turbines WT1 and WT4

is then applied to the upstream turbine. Results reveal that a 7.552% increase in
total wind farm power. The effect of yaw angle misalignment on the effective air
turbulence is also studied and for γ = 0◦, the turbulence acting on a downstream
turbine, specifically, WT2 is maximum thus indicating the need for yaw misalign-
ment. Using adaptive controller, the scenario of multi-model approach is also studied
and wake management strategy is verified for different LIDAR preview distances.
Further, using a five-turbine layout, a strategy based on effective wake center and
effective velocity deficit is modeled as transfer functions and can be used for opti-
mizing power output. The scope of this proposed methodology lies in extension to
Ekman layer where eddies dominate the wake flow in form of Coriolis force.

5.7 Case Study for 15-Turbine Wind Farm Layout

Wake center control for multiple wind turbines is tested for a 15-turbine layout
where turbine WT12 is chosen as turbine of interest as it faces wake effect from the
upwind turbines such asWT2,WT3,WT4,WT5,WT7,WT9, andWT10. The distance
between each turbine is expressed as a multiple of rotor diameter as illustrated in
Fig. 5.17.

The wake centers for individual upstream turbines are controlled by calculating
effective velocity deficit in yawed condition. The appropriate yaw angles of WTj

for j ∈ [2, 3, 4, 5, 7, 9, 10] are γ2 = 2◦, γ3 = 2.5◦, γ4 = 5◦, γ5 = 7◦, γ7 = 9◦, γ9 =
10◦, and γ10 = 15◦. The empirical relationship between effective wake center and
effective velocity deficit so calculated from (5.15) is then transformed into an overall
transfer functionwithmultiple inputs and single output. Thewake center of individual
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Fig. 5.17 Layout for 15-turbine wind farm in non-yawed (black solid line) and yawed condition
(blue solid line)

upstream turbines is controlled for yaw angle based on effective wake center due to
all upstream turbines. The LIDAR mounted at nacelle of WT12, scans the effective
wind field due to all upstream turbines. The LIDAR scanning distance is taken as
dL I DAR = 2D0 for estimating the wake width. Figures5.18 and 5.19 illustrate the
wake center estimated by transfer function and by Kalman filter. The Kalman filter
estimates the wake center based on the yaw angle input for multi-input single-output
(MISO) system.

Results from Figs. 5.18 and 5.19 reveal that Kalman filter does not track the wake
center with high accuracy owing to the nonlinear nature of wind speed, whereas the
same is handled with high accuracy by the proposed methodology. The wake center
control for the 15-turbine wind farm layout based on the proposed methodology
yields in improved power capture and reduced turbulence.

Since wind speed possesses enormous randomness, the Kalman filter-based esti-
mation fails to track the uncertainties posed by wind field dominated by wake effect.
This is not to state that recent variants of KF techniques would not perform better,
but the fact that the basic variant does not perform as good as the proposed method
is significant. In order to evaluate the proposed methodology, the velocity deficit
caused due to each upstream turbine for the 15-turbine layout is calculated using the
Gaussian wake profile for both, non-yawed and yawed configuration using (5.12).

Figure5.20 illustrates the effective velocity deficit and during yawed configuration
the deficit is found to be 6.15% less than that in non-yawed configuration.

Table5.3 indicates power captured by each turbine in the 15-turbine farm layout.
Further, Fig. 5.21 represents the normalized velocity atWT12 due to each upstream

turbine. The plots for WT2 and WT3 show that the yaw angle does not have any
significant impact on velocity deficit due to the large downstream distance of 6D0 to
turbine WT12. For WT7,WT9, and WT10 yawing, the turbine improves the velocity
deficit which in turn is reflected in increased power capture. Theminimum velocity is
found to be at y/D0 = 0 that essentially indicates wake center or the position where
maximum power loss occurs.



102 5 Control Applications in Hybrid Wind Farms

0 200 400 600 800 1000 0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000

-3

-2

-1

0

1

2

3

W
ak

e 
ce

nt
er

 (
m

)

-4

-2

0

2

4

-10

-5

0

5

10

W
ak

e 
ce

nt
er

 (
m

)

-15

-10

-5

0

5

10

15

WT
3

WT
2

WT
5WT

4

time (seconds)

-20

-15

-10

-5

0

W
ak

e 
ce

nt
er

 (
m

)

time (seconds)

-20

-10

0

10

20

WT
9

WT
7

Fig. 5.18 Wake center estimated by transfer function model (orange dotted line) and reference
wake center (blue solid line) for upstream turbines of WT12

The powers for non-yawed (Pny) and yawed (Py) configuration are calculated
considering a freestream wind speed v0 = 10 m/s. Further, the wind speed at each
downstream turbine is calculated based on Gaussian wake model. For each turbine,
the power captured when upstream turbines are yawed is more than that in non-
yawed configuration. Quantitatively, a 1.7% increase in the total wind farm power
is observed when operated in yawed configuration. Among the similar studies car-
ried out for power maximization based on yaw correction, in [1] the authors have
conducted a wind tunnel test for which the effect of yawing the upstream turbine
is analyzed on downstream turbine. The increase in the power coefficient of down-
stream turbine is validated by experimental study for a downstream distance of 3D.
An advantage of the proposed methodology includes the computation time since
the blocks involve transfer function models. However, it is limited by the dynamic
effects in atmospheric boundary layer such as turbulent mixing of wakes. LIDAR-
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Fig. 5.19 Wake center estimated by transfer function model (blue solid line) and Kalman filter
(orange dotted line) for upstream turbines of WT12

based measurement of wind speed aids in controller action for appropriate yaw angle
corrections. Further, industrial experiments from General Electric reveal that wake
management-based control increases the plant output in the range 0.5–2% [8].

The current work proposes a novel transfer function-based closed-loop wake con-
trol strategy for wind farms which aims to track wake center of upstream turbine for
power maximization at the downstream turbine. A data-driven approach is used to
determine transfer functions between input yaw angle and output wake center for a
multi-model scenario. Further, for multiple wind turbine scenario, the effective wind
speed deficit is used to model effective wake center for a particular upstream tur-
bine (WT12) in our case. Utilizing advanced control algorithms, wake management
incorporates data with random wind characteristics and micro-siting information.
The proposed methodology is compared with KF technique. Results reveal that KF-
based wake center estimation suffers from uncertainties in wind speed which are
handled accurately by LIDAR-based measurement. Further, a 1.7% increase in total
wind power is found when upstream turbines are operated in the yawed mode.
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Fig. 5.20 Effective velocity deficit for WT12 for non-yawed and yawed condition

Table 5.3 Individual turbine power in non-yawed and yawed condition

Wind turbine Upstream turbine Power (Pny) (MW) Power (Py) (MW) % change

WT1 NA 2.8274 2.8274 0.00

WT2 NA 2.8274 2.8223 –0.1800

WT3 NA 2.8274 2.8223 –0.1800

WT4 1, 2 1.5074 1.5116 +0.2786

WT5 2, 3 2.6816 2.6916 +0.3729

WT6 1, 4 2.0666 2.0891 +1.0887

WT7 2, 4, 5 2.0561 2.1541 +4.7663

WT8 3, 5 2.0162 2.1130 +4.8011

WT9 1, 4, 6, 7 2.0053 2.1016 +4.8022

WT10 2, 5, 7, 9 2.0001 2.0884 +4.4414

WT11 1, 2, 4, 6, 9 2.0761 2.0962 +0.9681

WT12 2, 3, 4, 5, 7, 9, 10 1.9821 1.9959 +0.6962

WT13 3, 5, 8 2.0752 2.0965 +0.9782

WT14 2, 3, 4, 5, 7, 9, 10, 12 1.9701 1.9862 +0.8172

WT15 2, 5, 7, 8, 10, 12, 13, 14 1.9970 2.0866 +4.4867∑
Pny = 32.916

∑
Py = 33.483
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Fig. 5.21 Normalized velocity for WT12 for non-yawed (blue) and yawed (orange) condition
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Chapter 6
BESS Life Enhancement for Hybrid
Wind Farms

A battery energy storage system (BESS) is a system that stores energy via the use of
a battery technology for it to be used when needed later on. Intermittent wind power
not only increases the cost of specifically constructed BESS needed in stochastic
wind power generation but also leads to degraded battery life. This chapter deals
with battery optimization by a wind wake management technique aimed at reducing
the operational cost. A two-turbine wind farm is studied, and battery charging and
discharging events are identified based on the forecast error of wind speed. The life
cycle count is determined based on an empirical relationship between the counts of
charging and discharging cycles and depth of discharge of battery.

Three different conditional analysis of wind farm layout exist and are as follows:
(i) without wake, (ii) without wake management, and (iii) with wake management.
Further, the operating cost and life cycle count for the BESS are assessed based
on a global battery aging model that accounts for temperature changes. Results are
validated for two datasets, and it is found that the battery operational cost is minimum
with the implementation of wake management technique on upwind turbine.

6.1 Introduction

Power output from a wind energy source is subjected to high variation owing to
random nature of wind. Dispatch of wind power not only suffers from fluctuations
but also from the cost involved from the ancillary support. Battery energy storage
systems (BESS) pose a cost-efficient solution to mitigate the fluctuations in wind
output [2]. BESS-based energy dispatch is governed by operational constraints which
often decide the discharging capabilities for a battery system. Penalty faced by the
wind energy operators typically is considerably high if the forecasted power levels
do not meet the assured ones. Such intermittency can jeopardize system stability and
enhance dependency on storage systems [25]. Thus, integrating storage systems and
renewable sources for an optimized grid operation are challenging [28].
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Various studies have discussed optimization of wind-battery hybrid system opera-
tion but the possibility under wind wakes remains unexplored.Wind forecasting is an
important market procedure to ensure a reliable grid-connected operation. Catalao et
al. have presented forecasting methods based on temporal scales with short-term and
medium-term wind forecasting in electricity markets [6]. However, wind prediction
encounters challenges in terms of nonlinearity of wind speed time series which is
handled better by advanced machine learning algorithms like support vector regres-
sion and extreme learning machine.

Du et al. present a new hybrid wind forecasting model that encapsulates the
ensemble empirical mode decomposition [40, 41] for extracting the main features of
the wind speed time series and have used multi-objective moth-flame optimization
to obtain optimal parameters for neural network [14]. The proposed method is then
applied at a wind farm Sotavento in Spain. Four time series with 1500 data points are
taken and are segregated into training (1200) and testing (300) set. Results reveal that
the proposed model outperformed Generalized neural network and Wavelet neural
networkwith respect to error attributes likeRMSEandMAE.Accuracy inwind speed
prediction determines the dependency on the storage systems to outlay the economic
blueprint for the entire system. Hao et al. described a detailed two-stage model that
incorporates the error in wind power forecasts initially to forecast a more stable
and reliable wind power by using multi-objective grey wolf optimizer (MOGWO)
based on extreme learning machine (ELM model) [21, 29, 38, 39], and for model
validation, three datasets from Ontario, Canada, and Galicia, Spain, are used, and
the proposed model is compared with benchmark models like persistence model,
ARIMA, backpropagation neural network, and Elman neural networks.

The operation of BESS is governed by state of charge (SoC) at a given time.
The SoC estimation and forecasting plays an important role in battery charging and
discharging characteristics. Conventionally, SoC is defined as the charge present in
the battery as a percentage of full charge capacity. The estimation of SoC of a battery
system finds its primary application in hybrid electric vehicles and storage systems
for renewable energy sources (solar and wind). Parameters like open-circuit voltage
(OCV) and transfer impedance directly influence the SoC. Among many methods,
Kalman filtering [32], extended Kalman filtering [7, 9, 34, 36, 45], and unscented
Kalman filtering [42] are commonly used.

Kalman filter-based SoC estimation is carried out to estimate the battery capacity
by considering an equivalent circuit of battery in terms of voltage source, resistors,
and capacitors. The relationship between SoC and open-circuit battery voltage is
often reported as nonlinear over different temperature ranges [43]. Kalman filter was
initially presented in 1960 that essentially involves discretemathematical expressions
to model the state estimation along with process and measurement noise [20, 31].
Yu et al. discussed SoC estimation in lithium-ion batteries using Kalman filter [44].
The authors consider a dual-polarization model equivalent to second-order model
for a battery. To validate the model, experimental analysis is carried out for a Li-
ion phosphate battery with rated voltage of 2.5V and capacity of 280 mAh. Results
indicate an error of 0.5%. Mastali et al. discussed two models, extended Kalman
filter and dual Kalman filter, for estimating SoC considering the effect of battery
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geometry [32]. Extended Kalman filter and dual extended Kalman filter techniques
are used for fixed parameter and varying parameters battery models. Two geometries
with cylindrical and prismatic shapes are considered and results reveal an estimation
error of 4% .

Chen et al. presented SoC estimation for a Li-ion battery using a feedforward neu-
ral network (FFNN) framework and extended Kalman filtering [7] to model a battery
specifically at low temperatures with unknown initial SoC. FFNN is used to trace
a neural network for mapping the inputs SoC, battery current, surface temperature,
and polarization state to output battery terminal voltage. Further, SoC estimation is
also used in hybrid electric vehicles in harmony with battery management system
(BMS). Due to the dynamic nature of the battery, SoC determination is done on-
line for predicting the remaining life so as to take preventive steps before potential
failure. Claude et al. carried out an extended Kalman filter (EKF) based experimen-
tal validation for Li-ion battery [9] by considering a double RC electrical circuit
whose parameters are calculated by determining the voltage drop upon application
of charge/discharge signals. Polynomial equations relating to open-circuit voltage
and SoC with fourth and sixth-order degree have been determined with an error
approximately in the range of 4–18% between experimental values and those de-
termined by EKF. Further, Chen et al. demonstrated an online SoC estimation for
Li-ion battery using an improved unscented Kalman filter (IUKF) method [8]. The
battery parameters are identified offline and a relationship between open-circuit volt-
age and SoC is obtained in MATLAB. In order to overcome the limitations posed
by improper modeling of battery and process noise, an adaptive model and noise
algorithm is proposed. Experimental results suggested the superiority of IUKF over
adaptive UKF with an error as low as 1.5%.

Coulomb counting and machine learning-based methods like artificial neural net-
works and support vector machines are also used for estimating SoC of a battery
[26]. Commercially available BESS include lead acid battery (LA), lithium-ion bat-
tery (Li-ion), sodium sulfur (NaS), and nickle cadmium (NiCd) battery.Among these,
lead acid battery is used for providing reserve capacity in wind farms owing to its
deep charging and discharging.

Wind farm operation not only suffers from forecasting errors but also from wake
effect created due to upwind turbines. The aforementioned aerodynamic phenomenon
leads to reduction in effective power captured at the downstream turbines. Earlywake
model developed by N. Jensen encapsulates the development of wake behind rotor
diameter [24]. Jensen’s wakemodel is utilized for wind farm power calculations [35],
and other works have been validated and tested to accommodate the power losses
in wind and the losses are found in acceptable range [5, 10, 33]. Velocity deficit
due to wake effect can be minimized by either axial induction method that alters the
pitch of the upwind turbine or by redirection of the wake behind the upwind turbine
by changing the yaw angle. Control-oriented wake redirection has been explored by
Fleming et al. with a high-fidelity simulation tool to investigate the wake redirection
on the power capture capability of the downstream turbine [17]. Further, Gebraad et
al. have demonstrated a novel dynamicwakemodel for estimatingwake center, effec-
tive wind speed, and power production for downstream turbines in a wind farm [18].
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Experimental analysis has also revealed yaw angle control of the upstream turbine
to deflect the wake field behind rotor and enhance the power capturing capabilities
of downstream turbine [22, 23]. Repositioning the downstream turbine can signifi-
cantly reduce the rotor shadow under upstream turbine as described by Gebraad et
al., as it improves velocity profile and increases net power capture [19].

With a hybrid wind farm operation, the focus is also laid on the accurate forecasts
needed to schedule BESS dispatch. On the lines of wind forecasting, our previous
work based on hybrid machine intelligent SVR variants [13], we now extend the
hybrid wind farm operation by considering the wake phenomenon. A typical BESS-
enabled wind farm is subjected to erratic power dispatch, and in order to optimize
the overall system cost and lessen the hurdles in frequent maintenance, a wake man-
agement technique is implemented and validated for a two-turbine wind farm. The
major contribution of this chapter includes BESS cost estimation for every kilowatt
(kW) of wind power forecasted in the presence of wakes with inaccuracy in forecast-
ing error. Further, the life cycle improvement of the BESS with appropriate wake
management technique based on yaw angle is investigated for a two-turbine wind
farm layout. This chapter is organized as follows: Sect. 6.2 discusses the problem
formulation where the energy reservoir model for state of charge (SoC) forecast is
discussed for battery along with the forecast strategy for wind speed and BESS cost
model. Section6.3 throws light on results followed by discussion in Sect. 6.4.

6.2 Problem Formulation

With reference to wind speed forecasting, deterministic and probabilistic forecasting
methods are used. However, with advances in deterministic forecasting methods like
support vector regression and ensemble models, here probabilistic approach is not
considered with each wind regime representing a unique distribution profile. Dhiman
et al. have discussed hybrid variants of machine intelligent SVR models for wind
forecasting andwind ramp events [13]. The current scenario of BESS for wind power
integration involves significant error in forecastingwind speedwhich is then assessed
to either charge or discharge the BESS. In case the forecasted wind speed exceeds the
actual wind speed, the deficit power is then compensated by discharging the BESS
given the SoC constraints are not violated. However, in presence of wind wakes, the
actual wind speed at the downstream turbine is much less than the freestream wind
speed at the upwind turbine, and the deficit in power generated is then compensated
by the BESS. Since the storage devices are expensive initial investments, erratic
charging and discharging schedules can significantly hamper battery life and hence
the operational cost. A yaw angle based wake management strategy redirects the
wake stream behind the upwind turbine to reduce the velocity deficit caused, and
thus increases the power captured by the downstream turbine.
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6.2.1 Wind Forecasting Using Least Square Support Vector
Regression

Least square support vector regression (LSSVR), a variant of the original formulation
of Suykens et al. [37], which chooses equality constraints and minimizes the square
of the penalty term in the loss function, is applied for accurate forecasts in many
diverse areas as illustrated in Fig. 6.1.

Mathematically, LSSVR is expressed as

f (x) = wTφ(x) + b, (6.1)

with w ∈ Rn as the weight vector, T representing vector transform, xi ∈ Rn, y ∈ R,
and b as a bias term:

min
1

2
‖ w ‖2 +1

2
γz

n∑

i=1

ε2i (6.2)

s.t. yi = wTφ(xi ) + b + εi , (i = 1, 2, . . . , n), (6.3)

where γz is the margin parameter and εi is the error term for each xi , and using
Lagrange multipliers, we have

Fig. 6.1 Applications of
LSSVR
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L(w, b, ε, α) = 1

2
‖ w ‖2 +1

2
γz

n∑

i=1

ε2i −
n∑

i=1

αi (w
Tφ(xi ) + b + ε − yi ). (6.4)

The Karush–Kuhn–Tucker (KKT) conditions for this formulation are obtained by
partial differentiation with respect to w, b, ε, α given as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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∂ε
= 0 ⇒ γzεi = αi

∂L

∂α
= 0 ⇒ wTφ(xi ) + b + ε − yi = 0

[
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b

]
=

[
y
0

]
, (6.5)

fLS−SV R(x) =
n∑

i=1

αi k(x, xi ) + b, (6.6)

where I is the identity matrix of appropriate dimension and k(x, xi ) is the kernel
function. The parameter α which is a Lagrangian multiplier is half the size of that in
conventional ε-SVR regression problem. This smaller sized matrix increases com-
putation time significantly. The parameterw essentially assigns a quantitative weight
to each training sample while the bias term b is more of a correction term. The term
ε is tolerance error that can be imposed on support vectors during training phase.
Errors more than ε are penalized with a termC . The regressor given by (6.6) provides
a solution to the optimization problem of a size smaller than the ε-SVR regressor
and is therefore computationally faster. This technique is used to predict wind speed
under three different cases, and the respective wind power is calculated. If the actual
wind power exceeds the predicted one, the excess power is used to charge BESS,
else discharging occurs.

Liu et al. studied the parameter optimization methods in tandem with LSSVR
for forecasting dissolved oxygen content in transformer oil during incipient faults
[30]. The data for dissolved gases is collected from several power companies, and
imperialist competition algorithm (ICA) is used to find optimal hyperparameters for
LSSVR. The method is compared with several other methods like back propagation
neural network, generalized regression neural network, and radial basis function neu-
ral network. Results reveal that ICA-LSSVR-based forecasting yields better results
in terms of MAPE and R2.
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In terms of river flow forecasting, Adnan et al. carried out a hybrid forecasting
method based on LSSVR and Gravitational search algorithm (HLSGA) where two
catchment areas on the upper Indus basin of Pakistan are selected [3]. The mean
annual data for 32 years is chosen to study the hybrid method. In order to validate
the method, n datasets are divided into n − 1 sets for training. Further, various input
combinations based on the autocorrelation values of the river flowdata. Results reveal
that HLSGA method outperforms model 5 regression tree (M5RT) and multiple
linear regression (MLR) in terms of RMSE and MAE. Further, the effect of log
transformation on the river flow time series is also analyzed, and the forecasting
results of log-HLSGA are compared with HLSGA. The log transformation reduces
skewness in the time-series data and yields better forecasts for all methods when
compared to the original methods.

6.2.2 SoC Estimation Based on Energy Reservoir Model

The SoC estimation for battery is carried out using standard Kalman filter, extended
Kalman filter [32], unscented Kalman filtering technique [4] based on battery model.
Energy reservoir model (ERM) is based on the BESS charging and discharging
powers. SoC is then estimated depending on the current available energy in the
battery in terms of kWh and is expressed as

xSoC (t) = xSoC (t0) − �t/3600

Qbatt

T∑

i=1

(pdis(i) + ηb pch(i) + ps), (6.7)

where xSoC (t), xSoC (t0) are the estimated SoC at time interval t and initial SoC,
respectively, pdis , pch , ηb, and ps are the discharging power, charging power, ef-
ficiency, and self-discharging scale factor, respectively. Charging and discharging
powers are calculated based on the equations

pbatt =
{
pch = Pwind − P̂wind > 0

pdis = P̂wind − Pwind > 0,
(6.8)

where Pwind and P̂wind are the actual and forecasted wind powers. The ERM is
computationally rich and deals with linear equations which are easier to implement.
In matrix form, ERM can be expressed as

H = −1/3600

Qbatt

⎡

⎣
1
ηb
ps

⎤

⎦ , (6.9)
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Fig. 6.2 Flowchart for SoC forecast based on charging/discharging powers

Pp =

⎡

⎢⎢⎢⎣

�tpdis(1) �tpch(1) �t
�t (pdis(1) + pdis(2)) �t (pch(1) + pch(2)) 2�t

...
...

...

�t
∑T

i=1 pdis(i) �t
∑T

i=1 pch(i) n�t

⎤

⎥⎥⎥⎦ ,

where �t is the time horizon (in seconds) for the next SoC estimate and first two
columns of the Pp matrix represent the cumulative sum of discharging and charging
power in kWh, respectively. In the present study, the ERM is used based on charging
and discharging power calculated from the error in wind power forecasting. The SoC
can be estimated as

xSoC = PpH + xSoC (t0), (6.10)

where xSoC (t0) is the randomly generated initial SoC calculated using random func-
tion generator MATLAB. The ERM model for SoC estimation is subjected to con-
straints (xmin

SoC < xSoC < xmax
SoC ) and upon violation of these constraints, the surplus

power can be fed to neighboring wind farm(s).
The flowchart for ERM for SoC estimation is illustrated in Fig. 6.2.
Furthermore, in case the forecasted wind power P̂wind exceeds Pwind , the BESS

is allowed to discharge to compensate for deficit power. However, if the magnitude
of discharge power violates the SoC limits, the wind farm operator decides to pay
penalty or borrow deficit power from neighboringwind farms. In the present scenario
with twowind turbines, the objective is to obtain accurate wind forecasts tominimize
the duty on BESS. Based on the SoC calculated from (6.10), the depth of discharge
(xDoD = 100 − xSoC ) is determined for the BESS charging/discharging event.
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6.2.3 Operational Cost Model for BESS

Charging and discharging of batteries according to the forecasting error, poses an
operational cost to be incurred. For a lithium-ion battery, a linear relationship between
number of life cycles (Ncyc) and logarithm of depth of discharge (xDoD) is obtained
in [15] and is given as

Ncyc = m × log(xDoD) + c, (6.11)

wherem and c are slope and intercept for the linear equation (6.11), withm = −1808
and c = 8644.5.

The cost of BESS for each charging/discharging event can be calculated if the
battery’s health condition is known. Farzin et al. have discussed a model for BESS
that determines the operational cost of BESS depending on number of life cycles left
with battery in use [16] and is given as

Cbatt = Bbatt

N−1∑

i=1

[ 1

Ncyc(i + 1)
− 1

Ncyc(i)

]
, (6.12)

where Ncyc is the life cycle count at the end of i th charging/discharging event, and
Bbatt is the capital cost of the BESS.

Battery aging is a complex process and is not only dependent on depth of discharge
but also on the ambient temperature that accelerates the aging [27]. A mathemat-
ical model that describes the relationship between number of life cycles, depth of
discharge, and ambient temperature is given as

Ncyc =
⎧
⎨

⎩

(
12850e−(9.738∗xDoD) + 3210e−(1.429∗xDoD)

)
, Tamb ≤ 20◦C(

12850e−(9.738∗xDoD) + 3210e−(1.429∗xDoD)
)

(
37.68T−1.101

amb − 0.3897
)
, Tamb > 20◦C,

where xDoD and Tamb are the depth of discharge and ambient temperature. Figure6.3
illustrates the number of BESS cycles as a function of depth of discharge and ambient
temperature. For ambient temperature of more than 20◦ C, the battery life is affected
in terms of reduction in cycle count.

6.2.4 Wake Management for Wind Farms

The reduction in wind speed due to upwind turbines leads to lesser power extraction
at the downstream turbines. A wake redirection approach where the yaw angle for
upwind turbine is varied to deflect the wake stream away from downstream rotor
improves the wind speed profile [12].
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Fig. 6.3 Number of BESS cycles as a function of xDoD and ambient temperature

The improved velocity profile then further improves the power captured at the
downstream turbine. The wind speed under wake calculated based on Jensen’s wake
model is

v j = v0
(
1 +

(√
1 − CT − 1

)( r0
rx

)2)
, rx = r0 + αyx, (6.13)

where v j , v0 are the wind speed under wake effect and freestream wind speed [24].
The factor αy gives an idea about how quickly wake expands behind rotor. The wake
stream is deflected by an angle φ as shown in Figure 5.5 for a given yaw angle
misalignment γ and wind direction θ given as

φ = (0.6a + 1)γ + θ, (6.14)

where a is the axial induction factor and θ is the wind speed direction which is 0◦ in
the present case [11].

Similarly, using wake management by varying the yaw angle (from 0◦ to γ ◦), the
wind speed vγ

j at the downstream turbine is given as

vγ

j =
⎧
⎨

⎩
v0

[
1 − 2a

( 1

YY

)2 × cos2(4.5φ)
]
, φ ≤ φth

v0, φ > φth,

(6.15)

where YY = 1 + 2αy Z cosφ , Z = x
D0

is the turbine spacing factor and φth is the
threshold wake angle (here φth = 20◦).
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6.3 Numerical Simulation for Proposed Methodology

In the present study, a wind farm with two-turbine (adj)s is considered whereWT1 is
the upwind turbine andWT2 is the downstream turbine as illustrated in Fig. 5.5. The
wind speed (v0) is collected for all the wind farm sites mentioned in Table6.1. The
data is collected every 10min for all the datasets labeled as X1 (Bishop & Clerks,
Massachusetts), X2 (Blandford, Massachusetts), X3 (Paxton, Massachusetts), and
X4 (Middelgrunden, Denmark) at hub heights 15m, 60m, 78m, and 10m, respec-
tively.

The wind speed for WT2 is calculated under wake effect using (6.13) and (6.15).
The downstream distance between WT1 and WT2 is 5D0. Table6.2 highlights the
turbine and BESS parameters used.

In wake aerodynamics, since the thrust coefficient of wind turbine varies with
speed, using look-up table we find CT for wind speed data under consideration. For
this purpose, GE2.5-120 wind turbine model is selected and the curve as shown in
Fig. 6.4 between CT and wind speed is imported [1].

Wind forecasting is carried out using Least square support vector regression for
Cases I, II, and III. The wind speed data is segmented into training (800) and testing
(200) sets. Figure6.6 illustrates thewind speed scenario under freestream,waked and
yawed (γ = 5◦) turbine conditions depicted by symbols v0, v j , and v

γ

j , respectively.
Further, the charging and discharging powers for BESS are calculated from (6.8) and
SoC is determined based on (6.10). TheBESS life cycle and operational cost ($/kWh)
are determined for three cases (as shown in Fig. 6.5) with fixed rotor diameter and
yaw angle (γ = 5◦) in case of upwind turbine:

Table 6.1 Description of wind datasets

Dataset Site coordinates Data duration

Bishop and Clerks 41.574◦ N, 70.249◦ E Jan 1, 2011–Jan 7, 2011

Blandford 42.223◦ N, 72.968◦ E Jan 1, 2011–Jan 7, 2011

Paxton 42.303◦ N, 71.897◦ E Jan 1, 2011–Jan 7, 2011

Middelgrunden 55.691◦ N, 12.670◦ E Feb 1, 2019–Feb 7, 2019

Table 6.2 Wind turbine and BESS parameters

Parameters Value

Rotor diameter (D0) 120 m

xmax
SoC 90%

xmin
SoC 10%

xSoC (t0) 81.47%

Charging efficiency (ηb) 91.86%

Self-discharge factor (kW) 1.545

Battery capital cost (Bbatt ) 250 $/kWh
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Fig. 6.4 Variation of thrust
coefficient (CT ) with
freestream wind speed
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• Case I (without wake effect for a two-turbine wind farm layout): The BESS charg-
ing and discharging powers are calculated based on the forecast error.

• Case II (considering wake effect of WT1 on WT2 given the wind turbines operate
in stable atmospheric boundary layer): The wind power for WT2 is forecasted
considering wake effect.

• Case III: Considering wake management strategy with variation in the yaw angle
of WT1.

Table6.3 highlights the operational cost (Bbatt ) for different BESS battery ratings.
A fixed yaw angle of 5◦ for WT1 gives a saving of 11.22% in BESS operational cost
for battery rating of 300 kWh for dataset X1. Further, we observe that the operational
cost increases with BESS rating for all the cases.

A BESS rating of 1000 kWh however gives minimum operational cost but is
subjected to size constraints. An optimal BESS rating is preferred for wind farm
operation. The operational cost is determined for different yaw angles and is found
minimum for γ = 15◦, suggesting an optimal yaw angle setting for upwind turbine
as shown in Fig. 6.7. Further, we observe from Fig. 6.8 that the life cycle count of
BESS varies monotonically with depth of discharge for all the datasets.

The life cycle count starts from the same initial point since the initial SoC is same
for all the cases. However, case I is an ideal scenario that does not practically exist
for a wind farm due to the spacing constraints. The life cycle count is evaluated
using (6.11) for all the three cases with Qbatt = 500 kWh, and it is found that a
wake management technique of varying yaw angle by 5◦ increases life cycle count
of BESS by 5.86%, 4.19%, 5.64% and 29.53% for datasets X1, X2, X3 and X4,
respectively.
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Obtain wind
speed time-

series

Step 1 (Ideal Scenario)

Wavelet
transform
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Segment data
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Step 2 
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Step 3 
(With Wake Management)

Wake Management based Lifecycle
and Operational cost assessment

Set appropriate yaw angle
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Fig. 6.5 Flowchart for proposed methodology

6.3.1 Operational Cost and Life Enhancement for Hilly Wind
Site

Wind speed distribution and variability is high in hilly areas. The rapid changes in
speed and direction can cause large discharging events. In order to test the validity
of the proposed scheme, two wind datasets from hilly area are undertaken and BESS
operational cost along with life cycle improvement is studied. The wind speed data
for Challicum hills, Australia labeled as dataset Z1 and Longyuan wind farm in Tibet
labeled as dataset Z2 is collected for the month of May 2019 with 10min interval.
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Fig. 6.6 Wind speed under different wake scenarios
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Table 6.3 Operational cost (OC) for different datasets for γ = 5◦

Dataset Rating
(kWh)

Case I Case II Case III % saving in
OC

% saving in
life cycles

X1 300 0.0217 0.0603 0.0536 11.22 12.63

400 0.0316 0.0666 0.0617 7.35 7.93

500 0.0417 0.0704 0.0665 5.53 5.86

750 0.0576 0.0754 0.0728 3.46 3.58

1000 0.0646 0.0779 0.0760 2.53 2.59

X2 300 0.0558 0.0570 0.0525 7.91 8.59

400 0.0598 0.0614 0.0581 5.31 5.61

500 0.0603 0.0640 0.0614 4.02 4.19

750 0.0612 0.0674 0.0657 2.52 2.59

1000 0.0621 0.0691 0.0678 1.84 1.85

X3 300 0.0217 0.0527 0.0466 11.51 13.01

400 0.0210 0.05893 0.0541 7.22 7.78

500 0.0352 0.0615 0.0582 5.34 5.64

750 0.0506 0.0658 0.0636 3.27 3.38

1000 0.0568 0.0679 0.0663 2.37 2.42

X4 300 0.0102 0.0437 0.0219 10.56 12.63

400 0.0121 0.0501 0.0421 6.73 8.52

500 0.0135 0.0567 0.0438 6.12 7.11

750 0.0187 0.0627 0.0548 4.18 6.92

1000 0.0212 0.0656 0.0598 2.54 3.35
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Fig. 6.7 Operational cost for different yaw angles
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Fig. 6.8 BESS life cycle without (case II) and with (case III) wake management
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Fig. 6.9 Life cycle count without (Case II) and with wake management (Case III) for hilly wind
sites

Table 6.4 Operational cost (OC) for hilly wind datasets for γ = 5◦

Dataset BESS rating
(kWh)

Case II Case III % saving in
OC

% saving in
life cycles

Z1 500 0.1662 0.0925 44.37 79.74

750 0.2077 0.1403 32.46 48.05

1000 0.2335 0.1720 26.33 35.74

Z2 500 0.1217 0.1092 13.17 15.16

750 0.1375 0.1253 8.87 9.73

1000 0.1438 0.1341 6.72 7.20

Figure6.9 illustrates the life cycle without (Case II) and with wake management
(Case III) for hilly sites.

From Table6.4, we can see that for hilly wind sites, the methodology adopted for
estimating operational cost and determining life cycle count of BESS is validated.
For a BESS rating of 500 kWh, the % saving in operational cost is 44.37% while %
saving in life cycles is 79.74%.
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Fig. 6.10 BESS life cycle count based on global battery aging model for dataset Z1
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Fig. 6.11 BESS life cycle count based on global battery aging model for dataset Z2

6.3.2 Operational Cost Based on Global Battery Aging Model

Since the current data for BESS is available experimentally by knowing voltage level
of wind farms apriori, we have incorporated the global battery aging model for life
cycle and operational cost assessment. For validation of the proposed method, the
life cycle assessment along with operating cost of BESS are determined based on
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Table 6.5 Operational cost (OC) based on Global battery aging model for γ = 5◦

Dataset BESS rating
(kWh)

Case II Case III % saving in
OC

% saving in
life cycles

Z1 500 0.1361 0.1262 7.274 15.69

750 0.1626 0.1561 3.997 10.62

1000 0.1961 0.1899 3.161 5.31

Z2 500 0.0999 0.0808 19.13 23.65

750 0.1119 0.0994 11.16 12.57

1000 0.1179 0.1086 7.84 8.51

global battery aging model for two different wind datasets labeled as Z1 and Z2.
Apart from wind speed data, the temperature data is collected for the two wind farm
sites. The data available in ◦K is converted into ◦C. Figures6.10 and 6.11 illustrate
the life cycle for Cases II and III as explained in the previous section.

The % saving in operating cost for dataset Z1 is 7.274% for a BESS rating of
500 kWh and 3.161% for a rating of 1000 kWh. Similarly, for dataset Z2, the %
saving in operating cost for a BESS rating of 500 kWh is 19.13% while for 1000
kWh it is 7.84%.

6.4 Discussion

Based on the proposed methodology for BESS life enhancement and operating cost
minimization, we discuss primarily two main cases as described in the previous
section. Case II that involves operation of downstream turbine without yaw angle
misalignment results in higher operational cost than Case III. It is also worthwhile to
note that, the BESS operational cost increases with increase in its capacity owing to
higher investment costs. Further, the % saving in life cycles decreases as we increase
BESS rating as depicted in Tables6.3, 6.4, and 6.5. It is also found that with ambient
temperature taken into account the proposed methodology holds a good agreement
for saving in operational cost and life cycles. The current methodology involves
the availability of actual and forecasted wind powers that essentially determines the
charging and discharging schedules of BESS. Hence, the SoC estimation largely
depends on the accuracy of the forecasting method used. Several other methods like
KF, EKF, andUKF require the physical and electrical parameters of the batterymodel
to determine the SoC. In the proposed methodology, only actual and forecasted wind
power schedule is needed.

The present study deals with BESS optimization in terms of operational cost and
life cycle count. The wind power forecasting accuracy is treated as a measure for
charging and discharging the BESS. Energy reservoir model is used to estimate the
SoC during charging/discharging event and based on that the depth of discharge is
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determined for calculating the life cycle count. A two-turbine wind farm with yaw
angle for upwind turbine γ = 15◦ results in minimal BESS operational cost for a
wakemanagement strategy and leads to optimumusage of BESS in terms of life cycle
count. Further, in order to analyze the effect of ambient temperature on the BESS
performance, a global battery aging model is considered and life cycle assessment
along with operating cost is determined. Results reveal a significant improvement in
BESS performance when upstream turbine is operated in yaw mode.
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Appendix

A.1 Barbalat’s Corollary

Corollary A.1 Suppose f (t) ∈ C1(a,∞) and lim
t→∞ f (t) = α where α < ∞. If f̈ is

uniformly continuous, then lim
t→∞ ḟ (t) = 0.

Proof Wewill prove this result by contradiction. Suppose lim
t→∞ ḟ (t) �= 0. The∀ε > 0

and a monotonic function {tn} such that tn → ∞ as n → ∞ and | ḟ (tn)| ≥ ε for all
n ∈ N. Since ḟ (t) is a continuous function for such ε, ∀δ > 0 such that ∀n ∈ N

|t − tn| < δ ⇒ ∣
∣ f ′(t) − f ′ (tn)

∣
∣ ≤ ε

2
. (A.1)

Hence if t ∈ {tn, tn + δ} then

| ḟ (t)| = | ḟ (tn) − ( ḟ (tn) − ḟ (t))|
≥ | ḟ (tn)| − | ḟ (tn) − ḟ (t)|
≥ ε − ε

2

≥ ε

2
. (A.2)

Since f (t) ∈ C1, we have,
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∣
∣
∣
∣

∫ tn+δ

a
ḟ (t)dt −

∫ tn

a
ḟ (t)dt

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ tn+δ

tn

ḟ (t)dt

∣
∣
∣
∣

≥ ∣
∣ ḟ (t)dt

∣
∣

≥ ε

2
dt

= εδ

2
. (A.3)

However,

lim
t→∞

∣
∣
∣
∣

∫ tn+δ

a
ḟ (t)dt −

∫ tn

a
ḟ (t)dt

∣
∣
∣
∣
= lim

t→∞ | f (tn + δ) − f (tn)|
= lim

t→∞ | f (tn + δ)| − | f (tn)|
= |α| − |α| = 0.

This is a contradiction. Therefore lim
t→∞ ḟ (t) = 0. �

A.2 Wind Speed Datasets

• https://www.umass.edu/windenergy/resourcedata/format
• http://www.sotaventogalicia.com/en/real-time-data/historical
• http://www.soda-pro.com/web-services/meteo-data/merra

Multi-criteria decision-making source codes

A.3 Simple Additive Weighting

f u n c t i o n [ S , w , Xn ]= saw (X)
t i c
%n o r m a l i z e d e c i s i o n m a t r i x a c c o r d i n g t o b e n e f i c i a l
%and non− b e n e f i c i a l c r i t e r i a
[m , n ]= s i z e (X ) ;
f o r i = 1 :m

f o r j = 1 : n
Xn ( i , j ) =min (X ( : , j ) ) / X ( i , j ) ;

end
end
Q=(Xn ) . ∗ l o g ( Xn ) ;

%C o n s t r u c t c r i t e r i a w e i g h t m a t r i x w u s i n g E n t r o p y me t h o d
f o r j = 1 : n

E ( j )= −1 / l o g (m ) . ∗ sum (Q ( : , j ) ) ;

https://www.umass.edu/windenergy/resourcedata/format
http://www.sotaventogalicia.com/en/real-time-data/historical
http://www.soda-pro.com/web-services/meteo-data/merra
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d ( j ) = abs (1−E ( j ) ) ;
end
f o r j = 1 : n

w( j ) = d ( j ) / sum ( d ) ;
end

%C o n s t r u c t w e i g h t e d d e c i s i o n m a t r i x v ( i , j ) and C a l c u l a t e
%p e r f o r m a n c e i n d e x S f o r a l l a l t e r n a t i v e s

v=w . ∗ Xn ;
d i s p ( ’ P e r f o r m a n c e i n d e x u s i n g SAW me thod ’ )
S=sum ( v , 2 ) ;

t o c
end

A.4 Technique for Order of Preference by Similarity to
Ideal Solution

%D e t e r m i n i s t i c TOPSIS

f u n c t i o n [ C , w , Xn , v p l u s , vminus , S p l u s , Sm inu s ] = t o p s i s (X )
t i c
%C o n s t r u c t D e c i s i o n m a t r i x
%X= i n p u t ( ’ e n t e r D e c i s i o n m a t r i x ’ )
[m , n ]= s i z e (X ) ;
%C o n s t r u c t n o r m a l i z e d d e c i s i o n m a t r i x
f o r i = 1 :m

f o r j = 1 : n
Xn ( i , j ) =X( i , j ) . / s q r t ( sum (X ( : , j ) . ^ 2 ) ) ;

end
end
Q=(Xn ) . ∗ l o g ( Xn ) ;
%C o n s t r u c t c r i t e r i a w e i g h t m a t r i x w u s i n g E n t r o p y me t h o d

f o r j = 1 : n
E ( j )= −1 / l o g (m ) . ∗ sum (Q ( : , j ) ) ;
d ( j ) = abs (1−E ( j ) ) ;
%w( j )= d ( j ) / sum ( d ) ;

end
f o r j = 1 : n

w( j ) = d ( j ) / sum ( d ) ;
end

%C o n s t r u c t w e i g h t e d d e c i s i o n m a t r i x v ( i , j )
%wx = [ 0 . 1 0 . 4 0 . 3 0 . 2 ] ;
f o r i = 1 :m

f o r j = 1 : n
v ( i , j ) =w( j ) . ∗ Xn ( i , j ) ;

end
end

%I d e n t i f y p o s i t i v e and n e g a t i v e i d e a l s o l u t i o n s
%f o r i =1:m
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f o r j = 1 : n
v p l u s ( j ) =min ( v ( : , j ) ) ; %p o s i t i v e i d e a l s o l u t i o n
vm i nu s ( j ) =max ( v ( : , j ) ) ; %n e g a t i v e i d e a l s o l u t i o n
end

%end
%C a l c u l a t e E u c l e d i a n d i s t a n c e f o r Non− b e n e f i c i a l s o l u t i o n
p= i n p u t ( ’ e n t e r Lp norm t y p e ’ ) ;

f o r i = 1 :m
f o r j = 1 : n

xx ( i , j ) = ( v ( i , j )− v p l u s ( j ) ) ^ p ;
xxn ( i , j ) = ( v ( i , j )− vm i n u s ( j ) ) ^ p ;

end
end

f o r i = 1 :m
S p l u s ( i ) = ( sum ( xx ( i , : ) ) ) ^ 1 / p ;
Sm inu s ( i ) = ( sum ( xxn ( i , : ) ) ) ^ 1 / p ;

end

d i s p ( ’ P e r f o r m a n c e i n d e x u s i n g TOPSIS me t hod ’ ) ;
%Rank t h e a l t e r n a t i v e s a c c o r d i n g t o r e l a t i v e c l o s e n e s s
f o r i = 1 :m

C ( i ) = Sm inu s ( i ) / ( S p l u s ( i ) + Sm inu s ( i ) ) ;
Rank= s o r t ( C ) ;

end

%[Qp]=COPRAS ( v )
%[w , S ]= saw ( X )

t o c
end

A.5 Complex Proportional Assessment

f u n c t i o n [ Qp , Xn , w]=COPRAS (X)
%C o n s t r u c t D e c i s i o n m a t r i x
[m , n ]= s i z e (X ) ;
%C o n s t r u c t n o r m a l i z e d d e c i s i o n m a t r i x
f o r i = 1 :m

f o r j = 1 : n
Xn ( i , j ) =X( i , j ) . / s q r t ( sum (X ( : , j ) . ^ 2 ) ) ;

% Xn ( i , j ) = ( 1 / ( X ( i , j ) ) ) . / ( sum ( 1 . / X ( : , j ) ) ) ;
end

end
Q=(Xn ) . ∗ l o g ( Xn ) ;
%C o n s t r u c t c r i t e r i a w e i g h t m a t r i x w u s i n g
% E n t r o p y me t h o d

f o r j = 1 : n
E ( j )= −1 / l o g (m ) . ∗ sum (Q ( : , j ) ) ;
d ( j ) = abs (1−E ( j ) ) ;
%w( j )= d ( j ) / sum ( d ) ;

end
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f o r j = 1 : n
w( j ) = d ( j ) / sum ( d ) ;

end

%C o n s t r u c t w e i g h t e d d e c i s i o n m a t r i x v ( i , j )

f o r i = 1 :m
f o r j = 1 : n

v ( i , j ) =w( j ) . ∗ Xn ( i , j ) ;
end

end
[m , n ]= s i z e ( v ) ;

f o r i = 1 :m
Sm ( i ) = sum ( v ( i , : ) ) ;

end

yy=sum ( Sm ) ;
z z = ( sum ( 1 . / Sm ) ) ;
%e v a l u a t e p e r f o r m a n c e i n d e x
%f o r e a c h a l t e r n a t i v e
f o r i = 1 :m

Cp ( i ) = ( yy . / ( Sm ( i ) . ∗ z z ) ) ;
end

d i s p ( ’ P e r f o r m a n c e i n d e x u s i n g COPRAS me t hod ’ )
f o r i = 1 :m

Qp ( i ) = Cp ( i ) / max ( Cp ) ;
end

end

A.6 Fuzzy TOPSIS

%Fu z z y TOPSIS f o r h y b r i d o p e r a t i o n o f w i nd f a rm
%E n t e r f u z z y d e c i s i o n m a t r i x L ,M, U
%L=[3 5 5 ; 5 3 3 ; 5 3 1 ; 1 1 1 ] ;
%M= [ 5 . 6 6 7 8 . 3 3 7 ; 7 7 5 ; 8 . 3 3 5 2 . 3 3 ; 2 . 3 3 4 . 3 3 1 ] ;
%U=[9 9 9 ; 9 9 7 ; 9 7 5 ; 5 7 3 ] ;
L= i n p u t ( ’ e n t e r L m a t r i x ’ ) ;
M= i n p u t ( ’ e n t e r M m a t r i x ’ ) ;
U= i n p u t ( ’ e n t e r U m a t r i x ’ ) ;

[m , n ]= s i z e ( L ) ;

% i d e n t i f y min imum l o w e r TFN f o r e a c h TFN
f o r i = 1 : n

k ( i ) =min ( L ( : , i ) ) ;
end
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%compu t e n o r m a l i z e d L ,M, U m a t r i c e s
f o r i = 1 :m

f o r j = 1 : n
NL ( i , j ) = k ( j ) . / U ( i , j ) ;

end
end

f o r i = 1 :m
f o r j = 1 : n

NM( i , j ) = k ( j ) . /M( i , j ) ;
end

end
f o r i = 1 :m

f o r j = 1 : n
NU( i , j ) = k ( j ) . / L ( i , j ) ;

end
end

%d e c l a r e w e i g h t s f o r c r i t e r i a f o r L ,M, U m a t r i c e s
%WL=[5 7 3 ] ;
%WM=[7 9 5 ] ;
%WU=[9 9 7 ] ;
WL= [ 5 , 7 , 9 ] ;
WM=[7 9 9 ] ;
WU= [ 3 5 7 ] ;

%compu t e w e i g h t e d n o r m a l i z e d L ,M, U m a t r i c e s
f o r i = 1 :m

f o r j = 1 : n
WNL( i , j ) =WL( j ) . ∗ NL ( i , j ) ;
WNM( i , j ) =WM( j ) . ∗NM( i , j ) ;
WNU( i , j ) =WU( j ) . ∗NU( i , j ) ;

end
end

% i d e n t i f y FPIS and FNIS s o l u t i o n s

f o r i = 1 :m
f o r j = 1 : n

FPL ( j ) =max (WNL ( : , j ) ) ; %P o s i t i v e i d e a l L s o l n
FPM ( j ) =max (WNM( : , j ) ) ; %P o s i t i v e i d e a l M s o l n
FPU ( j ) =max (WNU( : , j ) ) ; %P o s i t i v e i d e a l U s o l n

FNL ( j ) =min (WNL ( : , j ) ) ; %N e g a t i v e i d e a l L s o l n
FNM( j ) =min (WNM( : , j ) ) ; %N e g a t i v e i d e a l M s o l n
FNU ( j ) =min (WNU( : , j ) ) ; %N e g a t i v e i d e a l U s o l n

end
end

%c a l c u l a t e d i s t a n c e o f e a c h e l e m e n t f r om FPIS & FNIS
f o r i = 1 :m
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f o r j = 1 : n
%P o s i t i v e d i s t a n c e L M a t r i x
DL ( i , j ) = (WNL( i , j )−FPL ( j ) ) ^ 2 ;

%P o s i t i v e d i s t a n c e M Ma t r i x
DM( i , j ) = (WNM( i , j )−FPM ( j ) ) ^ 2 ;

%P o s i t i v e d i s t a n c e U Ma t r i x
DU( i , j ) = (WNU( i , j )−FPU ( j ) ) ^ 2 ;

%N e g a t i v e d i s t a n c e L M a t r i x
DNL( i , j ) = (WNL( i , j )−FNL ( j ) ) ^ 2 ;

%N e g a t i v e d i s t a n c e M Ma t r i x
DNM( i , j ) = (WNM( i , j )−FNM( j ) ) ^ 2 ;

%N e g a t i v e d i s t a n c e U Ma t r i x
DNU( i , j ) = (WNU( i , j )−FNU ( j ) ) ^ 2 ;

end
end
%Ag g r e g a t e p o s i t i v e & n e g a t i v e d i s t a n c e m a t r i x
APDM= s q r t ( 0 . 3 3 . ∗ ( DL+DM+DU ) ) ;
ANDM= s q r t ( 0 . 3 3 . ∗ ( DNL+DNM+DNU ) ) ;

%Compu te d i s t a n c e d e g r e e f o r e a c h a l t e r n a t i v e
PD=sum (APDM , 2 ) ; %summa t i o n a c r o s s r ows
ND=sum (ANDM, 2 ) ;

%compu t e c l o s e n e s s c o e f f i c i e n t
f o r i = 1 :m

CC ( i ) =ND( i ) / ( PD ( i ) +ND( i ) ) ;
end

[ kenny , ADDL] =FuzzyCOPRAS (WNL,WNM,WNU)

A.7 Fuzzy COPRAS

% ke n n y i s t h e p r i o r i t y s c o r e f o r a l t e r n a t i v e s
f u n c t i o n [Q , ADDL]= FuzzyCOPRAS (WNL,WNM,WNU)
[m, n ]= s i z e (WNL ) ;

ADDL= [ sum (WNL, 2 ) sum (WNM, 2 ) sum (WNU, 2 ) ] ;

%d e f u z z y f y i n t o c r i s p n umbe r s

a l p h a = i n p u t ( ’ e n t e r a l p h a c u t v a l u e ’ )

f o r k = 1 : l e n g t h ( a l p h a )
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f o r i = 1 :m
Q( k , i ) = 2∗ADDL( i , 1 ) ∗ ( 1 − a l p h a ( k ) ) + 0 . 5 ∗ ( ADDL( i , 3 )

−ADDL( i , 2 ) ) ∗ ( 1 − a l p h a ( k ) ) ^ 2 ;
end

end

f o r i = 1 : 4
Qmax ( i ) =max (Q ( i , : ) ) ;
end

a l p h a c u t = i n p u t ( ’ e n t e r a l p h a c u t v a l u e ’ ) ;
s w i t c h a l p h a c u t

c a s e 0 . 2
a l p h a c u t = 1 ;

c a s e 0 . 4
a l p h a c u t = 2 ;

c a s e 0 . 6
a l p h a c u t = 3 ;

o t h e r w i s e
a l p h a c u t = 4 ;

end
k enny = (Q( a l p h a c u t , : ) / Qmax ( a l p h a c u t ) ) ∗ 1 0 0 ;

NCS= i n p u t ( ’ e n t e r n o r m a l i z e d c o s t s c o r e ’ ) ;
NCS2= i n p u t ( ’ e n t e r n o r m a l i z e d c o s t s c o r e ’ ) ;

FPS=NCS . ∗ k enny
FPS2=NCS2 . ∗ k enny
end
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Having presented both the decision-making aspects and also the control aspects
related to wake center estimation, involved in the wind farm profit maximization,
whatwould tie both these aspects together for futurework, is an integratedmechanism
to compute wind turbine computational fluid dynamics (CFD) simulations. Such
simulation, possibly in the form of a toolbox, should be capable of modeling wake
effects for any given arrangement of upwind turbines, at any yawed condition and
under a plethora of decision-making scenarios. Real-time adaptive control meant to
enable profit maximization in such a way that decision-making is dynamic is needed.

For such an integrated decision and control toolbox of wind power management
in wind farms, the toolbox needs to be provided with an extensive database of criteria
and attributes for different types of wind farms and wind turbines therein. In order to
ensure that the chosen criteria and attributes are exhaustive in terms of all possible
variants of wind turbines and wind farms and the conditions therein, it is important
to study a large number of wind farms and also collate extensive data through the
process of an exhaustive survey of experts prior to the selection of the prospective
choices in decision-making.

Apart from such a simulation framework, it is also needed to carry out exhaustive
wind tunnel tests for different decision-making attributes, criteria, and also with
different advanced controllers under yawed and pitched conditions of turbine blades.
As explained in Chap.4, fuzzy set theory is useful in decision-making when the
goals, limitations, and outcomes of actions taken are imprecisely available, and since
exhaustive wind tunnel tests and exhaustive survey of experts cannot intrinsically
remove the inherent stochastic nature of wind, fuzzy logic-based decision making
like fuzzyTOPSIS and fuzzyCOPRASare envisioned to be continued force to reckon
with in the area of wind farm power generation.

This indicative multipronged approach of optimization will need to be further
extended to an extensive research of BESS for deployment in onshore wind farms at
different levels, so as to be able to continue to enhance life cycle count and reduce
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operational cost. There is extensive research going on in the estimation of SoC and
models which are more advanced than the Energy reservoir model used in this book,
would find appropriate use in further study in this field. Experimental work would
need to be carried out for yaw angle control of different configurations of upwind
turbines to ascertainminimal BESS operational cost for advanced wakemanagement
strategies.
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