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Abstract
Aptamers, including naturally existing riboswitches, are single-stranded nucleic 
acids (DNA or RNA) and peptides molecules, which show the high affinity, selec-
tivity, specificity, and versatility. Aptamers are selected by using the systematic 
evolution of ligands by exponential enrichment (SELEX) method against a par-
ticular target molecule. Aptamers can target the variety of molecules like proteins, 
carbohydrates, bacteria, viruses, toxins, and cancerous cells and can discriminate 
between closely related ligands. Aptamers used various strategies to sense the 
target binding like electrochemical, optical, mass-sensitive analytical technique 
etc. Thus, aptamers magnetizes the immense interest in the field of pathogen diag-
nostic and detection. In this chapter, we describe how the different strategies have 
updated for the isolation and selection of more efficient, novel and specific aptam-
ers. In the last, we also provide insights about the potential aptamers used for the 
detection several biothreat agents like bacteria and parasites, and viruses.
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1	 �Introduction

Aptamers are single stranded DNA or RNA oligonucleotides with unique 3D struc-
tures that allow them to bind their targets with high affinity and specificity. The 
possible targets of aptamers are ranging from small organic or non-organic mole-
cules over proteins and peptides to whole cells. They are potentially regarded as 
alternative to antibodies to various biological and biotechnological applications 
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(Ellington and Szostak 1990; Pfeiffer et al. 2017). Earlier aptamers were known as 
artificial molecules but later found in the component of naturally known ribo-
switches that affect transcription or translation (Lang et al. 2007; Ospina-Villa et al. 
2016). Aptamers are generated in vitro by an iterative process called SELEX 
(Systematic Evolution of ligands by exponential enrichment).

Aptamers have been extensively studied as biomaterials because of their use in wide 
applications like diagnostics, therapeutics and probe for biosensors, and development 
of drug delivery system and novel drugs, etc. A lot of efforts have been made to search 
for target specific aptamers involved in several diseases like viral infections, cancer and 
infectious diseases involving bacterial pathogens or parasites (Bunka and Stockley 
2006; Song et al. 2012). The studies involving the use of aptamers are increasing rap-
idly because the aptamers based technology has been known to be more effective and 
trustworthy. Aptamers offer several advantages over the antibodies, which are widely 
used in molecular diagnostics in wide range of applications (Han et al. 2010). First 
advantage of using oligonucleotide-based aptamer over protein-based antibodies is 
their stability at higher temperature, which allows them to use in many conditions. 
Second advantage is the cost effective production process of aptamers over laborious 
and extensive process of antibodies production. Also, aptamers offer advantage of easy 
modifications via chemical reactions to improve their stability aspects and resistance to 
enzyme degradation. Other advantages include the low immunogenicity and lessor tox-
icity of aptamers. Another important advantage offered by aptamers over antibodies is 
showing high affinity and binding to some ligands like ions or small molecules, which 
cannot be recognized by antibodies (Jayasena 1999). Based upon these advantages 
aptamers are regarded as alternative to antibodies in variety of applications.

2	 �Different Strategies for In Vitro Isolation and Selection 
of Aptamers

2.1	 �General Technique

Aptamers are generated in vitro using a conventional method referred as SELEX 
(Systematic evolution of ligands by exponential enrichment). Normally, SELEX is 
an iterative process in which the target specific sequences are selected after the rep-
etition of selection protocols with gradually increasing the stringency (Pereira et al. 
2018). Classically, the SELEX process consists of different steps where the initia-
tion step involves the generation of ssDNA or RNA library of 1012 to 1015 sequences. 
Each sequence has unique feature characterized by random region of 16–75 posi-
tions flanked by two constant regions where annealing of primer takes place. In 
order to get the sequences, which constitute the primers of interest, ssDNA is folded 
and exposed to its target. The ssDNA pool is then incubated with targets and best 
fitting species are collected and amplified using PCR (RT-PCR in case of RNA 
aptamer). To ensure the higher affinity of binders with target, reiterative rounds of 
SELEX are executed with increasing stringent conditions (Ulrich et  al. 2004). 
Aptamer can bind to diverse variety of targets based upon their 3D structures. The 
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forces which plays important role in governing the 3D structures of aptamers are 
Watson-Crick pairing, Hodgsteen-type pairing, hydrogen bonding, electrostatic 
forces, and Van der Waals forces (Mercier et al. 2017).

As the SELEX process involve iterations, the procedure employed to select the 
sequences of interests has to be repeated numerous times, and the number of cycles 
needed primarily depends on the rigorous conditions imposed on each cycle as well 
as on binding affinity between target and aptamers. Once the selection procedure is 
finished, an oligonucleotide population led by the target-binding sequences is 
obtained. The sequence of selected clones will be revealed using cloning and 
sequencing procedures, which further allow the prediction of the structure of 
selected ligands. Figure 2.1 gives the overall view of classical SELEX technology.

The initial library of ssDNA can be used instantly for the interaction with target 
while in case of generation of RNA library; there is an extra step for the synthesis 
of complementary strand by Klenow enzyme followed by in vitro transcription. 
Different approaches can be used to assess the interaction between target and oligo-
nucleotides but the primary goal is to select bound species and reject the unbound 
ones. Once the aptamers are selected, they are PCR amplified to begin new cycle of 
SELEX. DNA fragments are then cloned into a plasmid and sequenced when around 
90% aptamers recognize the target.

Fig. 2.1  Graphical representation of SELEX technology
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2.2	 �Selex Based upon Nitrocellulose Membrane Filtration

Nitrocellulose membranes primarily find their use in Western blots where they are 
employed to immobilize the proteins and other techniques like AFM (Atomic Force 
Microscopy) as these are simple and provide fast immobilization of proteins using 
non specific affinity of amino acids (Song et al. 2012). The SELEX method devel-
oped initially by the Gold’s group has used nitrocellulose membrane in the separa-
tion step where aptamer against T4 DNA polymerase has been developed (Tuerk and 
Gold 1990). During the early stages of SELEX the targets were primarily proteins 
therefore nitrocellulose membranes have been used for the immobilization purposes. 
However for small molecules they pose certain limitations as they are incapable of 
binding to small molecules or peptides and normally requires minimum of 12 selec-
tion rounds (Gopinath 2007).

2.3	 �Selex Technology Based upon Affinity Principles

Affinity chromatography techniques mainly used for the separation of recombinant 
proteins using specific biological affinity such as between receptor and ligand inter-
actions or antigen-antibody interactions. Here in SELEX method, this technique is 
applied for the immobilization of target species on the beads and assists in the selec-
tion of library components. For the immobilization of proteins different tags like 
GST or His tags are used, and for small molecules targets are covalently attached to 
the beads using chemical reactions such as EDC coupling (Song et  al. 2011). 
However this method has limitation, as it cannot be applied if target does not have 
the active functional group or affinity tag required for coupling to the beads.

Magnetic beads are also used to immobilize the targets using chemical reaction 
or an interaction between affinity tag and substrate on the beads. These are powerful 
tools for rapid isolation and selection of aptamers via immobilizing the target on 
magnetic beads (Joeng et al. 2009).

2.4	 �Selex Based upon Capillary Electrophoresis

Capillary electrophoresis (CE) offers many pleasing benefits over other separation 
techniques with respect to various aspects like quickness, resolution, capacity and 
minimum sample dilution. This technique is used to separate ionic species under the 
influence of electric field based upon their charge, frictional forces and hydrody-
namic size (Gopinath 2007).

In this technique, aptamer can be selected among the mixture of target, library 
and target-library complex using mobility shift. The main advantage of this method 
is successful selection of the aptamer with few rounds normally two to four rounds 
in comparison to other methods. For example Bowser’s group constructed an 
aptamer for neuropeptide Y and human antibody IgE merely after four cycles of 
selection (Mendonsa and Bowser 2005).
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2.5	 �Selex Based on Microfluidic Systems

To select an effective aptamer, SELEX technology using microfluidic or chip based 
system have been established (Hybarger et al. 2006). This technique offers advan-
tage of efficient selection of aptamer on small scale as the method is primarily pro-
cessed on a chip. For example, DNA based aptamer specific to neurotoxin type B 
was generated using single cycle of selection using the Continuous-flow Magnetic 
Activated Chip-based Separation (CMACS) device (Lou et al. 2009). The microflu-
idic or chip based system is grabbing attention as being an advanced method to 
select aptamers quickly and robotically.

2.6	 �Cell-SELEX Technology

Cell-SELEX is mainly designed for searching aptamers against the whole cell while 
the main targets of other SELEX techniques are purified proteins. The prime targets of 
cell- SELEX are proteins present on the extracellular surface of cell or distinctive struc-
tures specific to cell. In most cases, Cell based SELEX technology has additional steps 
of washing (for adhesive cells) or centrifugation (suspension cells) during the separa-
tion of aptamers as the target immobilization is not feasible in the solid phase (Fig. 2.2).

Cell SELEX uses living cells as target. In this process aptamers bind to cell 
membrane proteins. This procedure involves both positive selection as well as nega-
tive selection. The positive selection is incubation of target cells with library of 
ssDNA, followed by the collection of bound sequences. After that bound sequences 
are incubated with negative cell and unbound sequences are collected and served as 

Fig. 2.2  Schematic representation of cell SELEX technology
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the negative selection. The unbound sequences are used for amplification, cloning 
and sequencing. In this case aptamers are obtained after 10–15 alternative rounds.

Additionally, counter selections are essential in each step to avoid the non- spe-
cific aptamers, which can recognize the cell surface common to other cells. 
Therefore, this method is comparatively more complicated as compare to other 
SELEX methods because of counter selection and impossibility of immobilizing 
targets. However, once the aptamer selected they are powerful for cell surface diag-
nostics, cell specific therapy, cell targeted based drug delivery, etc. kind of different 
applications. For example, Kobatake’s group identified a DNA based aptamer for 
potential biomarker SBC3 for an adherent small lung cancer cell line (SCLC) using 
Cell SELEX based technology. This aptamer could be a potent SBC3 specific 
marker because usual biomarker (pro-GRP) which is used to diagnose SCLC is not 
expressed in this cell line (Kunii et al. 2011).

3	 �Post SELEX Optimization of Aptamers

Aptamers are widely regarded as alternative to antibodies in various applications 
like bio sensing, diagnostics and therapeutics. But very few aptamers have entered 
clinical trials, and approved by US Food and drug administration (FDA). The practi-
cal applications of aptamers are limited mainly because of instability to ribozymes, 
which are responsible for the degradation of aptamers by hydrolysis of phosphodi-
ester bonds in biological environment (Gao et  al. 2016). For example thrombin 
aptamer that showed good anticoagulant activity but has very short in vivo half-life 
of 108 s (Griffin et al. 1993). Consequently, it is very important to increase the ther-
mal and nuclease stability of aptamers through modifications. Therefore, here we 
will highlights some of the optimization methods that have been applied in recent 
years to improve the stability of aptamers.

3.1	 �Truncation

Aptamers selected by SELEX methods usually contain a region of randomized 
sequences with 30–50 length nucleotides and primer sequences fixed at each end to 
allow the PCR amplifications (Radom et al. 2013). However, research by Ellington 
group suggested that constant regions in aptamers generally don’t play important 
role in the binding properties, and have minimum involvement in the overall struc-
ture of aptamers. Also, longer sequences add to more synthesis costs (Cowperthwaite 
and Ellington 2008). Additionally, Zheng findings have shown that it is useful to 
reduce the length of aptamers, as shorter sequences had similar or enhanced binding 
affinity and specificity to target in comparison to longer aptamers (Zheng et  al. 
2015). Also to assess the assembly of multivalent aptamers truncation become more 
important. In order to find which nucleotides need to be deleted, the some knowl-
edge of conserve structure of aptamer is needed. This can be accomplished using 
available software algorithms like ClustalW and DNAMAN to perform multiple 
sequence alignment (MSA) and find the conserve high binding motif (Nadal et al. 
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2013). Furthermore, simulation programs such as Mfold and RNA structure can 
also be used to first predict the secondary structure elements, and later based upon 
the information of secondary structures truncation can be done in conserved stem-
loop regions which likely to be involved in the binding to target. Sung group 
obtained the modified RNA aptamer named 2′- fluoropyrimidine (8A-W) against 
IL-8 (Interleukin 8) using Mfold based truncation (Sung et al. 2014).

3.2	 �Chemical Modifications

The chemical modifications for the optimization of aptamers for improving their 
stability and other aspects have been categorized into three groups: (a) modifica-
tions of sugar ring (2′ and 4′ position); (b) modifications of bases (5′ position of 
pyrimidine); and (c) modifications of linkage methylphosphonate and phosphoro-
thioate replacement, 5–5′ or 3–3′ internucleotide linkage and 3′-biotin–streptavidin 
conjugates. RNA based aptamers are normally modified at 2′ positions of nucleo-
sides while modifications of DNA aptamers take place at phosphodiester backbone 
(Wang et al. 2011).

3.3	 �Bivalency or Multivalency of Aptamers

The uses of monovalent aptamers are restricted in therapeutics because they offer 
lesser retention time of target and absence of cross-linking which may reduce their 
therapeutic index. Therefore, building of multivalent aptamers is an important strat-
egy to improve the value of aptamer in clinical trials and swift detection 
(Mallikaratchy et al. 2010). Also, multivalent aptamers have been demonstrated to 
show better binding and activity over the monovalent aptamers. For example asso-
ciation of two thrombin binding aptamers gave ~17-fold better inhibition activity in 
comparison to monovalent aptamers (Kim et al. 2008). By adding the linkers, sev-
eral research groups have built the bivalent or multivalent aptamers to increase the 
affinity as well as activity. Nonaka made a bivalent homologous aptamer through 10 
mer thymine linker which have shown the binding to VEGF (Vascular Endothelial 
Growth Factor) with higher affinity (Kd = 30 pM) compared to monovalent aptamer 
(Kd = 300 pM) (Nonaka et al. 2012).

3.4	 �Random or Site Directed Mutagenesis

SELEX technique sometimes fails to recognize the aptamers which have high affin-
ity to the target because of reduced library diversity due to experimental manipula-
tions and amplification bias of PCR.  Nonaka group established an efficient 
mutagenesis technique based on a genetic algorithm to improve the binding affinity 
of VEa121 (VEGF binding aptamer)(Nonaka et al. 2012). Additionally, site-directed 
mutagenesis can also be applied to characterize the secondary structure conforma-
tion and binding motif of aptamer (Zheng et al. 2015).
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4	 �Role of Aptamers in the Detection of Biothreat Agents

The isolation, modification and optimization process of the aptamers sequences 
have established these molecules as an emerging and most promising class tool in 
the fields of diagnosis, therapeutics, and drug development (Wu and Kwon 2016). 
These molecules have proven superior in comparison to the other widely used tools 
and approaches (Culturing of microbes, Biochemical testing, Monoclonal antibod-
ies, PCR amplification, and Enzyme linked assays) in the detection, inhibition and 
therapeutic applications. The high affinity, avidity, specificity and/or selectivity of 
the aptamers are the most important parameters, which are essential for the formula-
tion of successful sensitive and specific assays for detection. Due to their great bind-
ing potential and versatility with a wide range of targets; small ions, proteins, 
chemicals, metabolites and whole cells, present in environment biological samples 
and food specimens, (Wu and Kwon 2016) various aptamers-based biosensing sys-
tems (Yang et al. 2005; Zhao et al. 2007), pharmaceutical agents and imaging probes 
(Nutiu and Li 2004; Yamamoto and Kumar 2000) have been isolated, identified and 
well-characterized (Majdinasab et al. 2018; Wu and Kwon 2016).

To date, most of the isolated aptamers against microorganisms have been selected 
for clinical applications and detection of environmental and food-borne patho-
gens using aptamers have become a promising area of research. In the following 
section of the current chapter, we have shed light on various reported aptamers used 
in the detection and/or diagnosis of several biothreat agents including bacteria, 
viruses, parasites, toxins and cancer cells.

4.1	 �Aptamers in Bacteria Detection

Due to the explosion of large human population and the emergence of several diseases 
causing pathogenic organisms, a rapid detection and surveillance of harmful microbes 
has become an important concern globally. Escherichia coli, Salmonella spp., Shigella 
spp., Vibrio spp., Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, 
Clostridium perfringens, Campylobacter jejuni, and Legionella spp., are majorly 
responsible for the various infectious and foodborne diseases outbreaks worldwide 
(Scallan et al. 2011). The infectious count of most these bacteria are as low as only ~10 
colony-forming units (cfu) (Jyoti et al. 2011). Therefore, it is considerable to develop 
very sensitive, selective, robustic and economical strategies which are suitable for on-
site detection and quantification of pathogenic bacteria and may very beneficial to pre-
vent and control several infectious and foodborne disease (Majdinasab et al. 2018).

Major efforts made in the direction of aptamers, high-end biosensors and apta-
assays development are generally based on the optical methods include colorimetry 
(Bayraç et al. 2017; Wu et al. 2017), surface-enhanced Raman scattering (SERS) 
(Duan et al. 2016a, c; Zhang et al. 2015) chemiluminescence (Hao et al. 2017a, b) 
fluorescence (Duan et al. 2012) and electrochemical methods (Bayraç et al. 2017; 
Luo et al. 2012). Although colorimetry is the most commonly employed method, it 
offers low sensitivity; thus, fluorescence based detection methods are quite popular 
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due to their higher sensitivity limit as compared to other assays. In the last decades, 
aptamers against several bacterial species based on the different above-mentioned 
phenomenon have been developed and reported by various groups.

Generally, in the detection of bacteria several cell components like cell-wall 
members, lipopolysachharide, and outer membrane proteins various other enzymes 
as well as whole cells of bacteria can be used as ligands for selection and binding 
with aptamers (Torres-Chavolla and Alocilja 2009). Campylobacter jejuni bacterium 
and Sterne strain spores of Bacillus anthracis have been used as whole-cells targets 
for the selection of aptamers (Bruno and Kiel 1999). These developed aptamers mol-
ecules have not shown any cross-reactivity against Salmonella typhimurium, a 
typhoid causing bacterium, but a very little reactivity has shown in the high concen-
tration of Helicobacter pylori and Listeria sp (Torres-Chavolla and Alocilja 2009).

Similarly, Chen et al. (2007) have also used whole cell SELEX strategy for the 
development of aptamer against Mycobacterium tuberculosis (H37Rv strain) (Chen 
et al. 2007). DNA aptamers against a large number of pathogenic bacteria which can 
specifically bind to the various components of the bacterial cell have been developed 
and reported and potentially used as prospective therapeutic agents and diagnostic 
tools (Bayraç et al. 2017; Brosel-Oliu et al. 2018; Bruno and Sivils 2017; Dinshaw 
et al. 2017; Duan et al. 2016b, c; Hao et al. 2017a; Sidhu et al. 2016; Wu et al. 2017).

A single-stranded DNA aptamer, very specific against a secreted protein, MPT64 
protein of M. tuberculosis has developed form the pool of a single stranded DNA 
library with randomized 40-nucleotide region. The dissociation constant value 
(KD = 8.92 nM) of this devepoled aptmer was determined using Surface Plasmon 
Resonance (SPR) binding assay and the existence of conserved sequences in the 
aptamers and presence of most probable binding site on MPT64 protein was also 
determined by using several Bioinformatics analysis (Sypabekova et al. 2017).

Zelada-Guillén et  al. (2009) have developed a potentiometric aptamer-based 
biosensor for the detection of S. enterica. They covalently immobilized the aptamer 
on the surface of carboxylated single-walled carbon nanotubes and based on the 
real -time assay. This developed aptamer is very rapid and specific, which is known 
as S-PS8.4, has shown no reactivity towards Escherichia coli or Lactobacillus 
casei (Zelada-Guillén et al. 2009).

Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginose are the most 
prevalent bacteria involved in the sepsis and bacteremia i.e., bloodstream infections 
(BSI) which further lead to the vascular leakage and multiorgan failure (Cohen 
2002; Dellinger et al. 2013; Rocheteau et al. 2015). But the detection of any patho-
gen, present in very low dose (~100 cells mL−1), is a challenging task due to the 
presence of various cells (RBCS, WBCS, Platelets and hemoglobin) and other con-
stituents of blood tissue from unprocessed blood sample. Therefore, in order to 
lessen the time needed for BSI identification, Haijing Shen et al. (2016) have also 
constructed an aptamer-based capture platform for the detection of bacteria in 
bloodstream. Herein, they have rationally constructed a very simple aptamer based 
capture platform (Shen et al. 2016). They have designed a platform with a targeted 
aptamer that was functionalized with a mesoporous TiO2-coated magnetic nanopar-
ticle (designated as Apt-Fe3O4@mTiO2). This developed capture platform showed 
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a favorable bacterial-capture efficiency of about 80% even at low infectious doses 
(10–2000 CFU mL−1), and thus integrates the capabilities of bacterial recognition 
and enrichment (Cheng et al. 2015; Wang et al. 2015; Wu et al. 2014).

4.2	 �Aptamers in Parasites Detection

Several protozoan parasites are responsible for the millions of people deaths in the 
developing and underdeveloped countries. Plasmodium spp., Trypanosoma spp., 
Entamoeba histolytica, Leishmania spp., and Cryptosporidium parvuum are majorly 
causing agents of various diseases worldwide (Ospina-Villa et al. 2018). The adhe-
sion, invasion and entry inside the host cell are most important events for the sur-
vival and pathogenesis of these intracellular parasitic organisms, and several surface 
components such as laminin, thrombospondin, heparin sulfate, and fibronectin mol-
ecules of the parasitic organisms are majorly contribute for the parasite-host cell 
interactions. Thus, the aptamers generated against these molecules, which are most-
suitable detection markers, will show significant potential in the detection and iden-
tification of parasites from the bloodstream of infected individuals. Although, earlier 
in the field of the parasitology, only a limited number of aptamers molecules have 
been selected and characterized. But nowadays, a large number of DNA and RNA 
aptamers, which bind with the parasites or parasite-derived molecules, have resulted 
by the efforts of various researchers that may be used for the parasites detection and 
diagnostics (Ospina-Villa et al. 2018).

Firstly in 1999, Homann and Goringer, utilized cell-SELEX strategy to identify 
and select a RNA aptamer (designated aptamer 2–16) (Homann and Göringer 1999). 
It has shown high binding affinity (KD 60  nM) with a flagellar pocket protein 
(~42 kDa) of bloodstream stage of Trypanosoma brucei. As, Trypanosoma cruzi is 
also a blood-borne parasite, which causes Chagas sickness in humans. 
Trypomastigotes, an infective form of the parasite, only can be distinguished in the 
blood of infected people by utilizing a PCR-based technique. But a lower number of 
the parasite, present during the chronic phase of diseases, is very difficult to detect 
by this simple PCR method.

In this concern, Nagarkatti et al. (2012) followed a parasite concentration approach 
to facilitates the PCR-based detection methods. They utilized a whole cell-SELEX 
strategy and developed a serum stable RNA aptamers, which bound with the live T. 
cruzi (trypomastigotes stage). The developed and most effiecient aptamer (designated 
Apt68) by Nagarkatti, showed very high binding affinity (KD 8–25  nM) and high 
specificity with T. cruzi only. Apt68 did not interact with any other the insect stage like 
epimastigotes of T. cruzi nor with any other related trypanosomatid parasites, T. bru-
cei and L. donovani. This behavior clearly suggested that the target of Apt68 apatmers 
was expressed only on T. cruzi (trypomastigotes stage) and it may be used exclusively 
and specifically for T. cruzi diagnostic applications (Nagarkatti et al. 2012).

Similarly, Barfod et al. (2009) also reported RNA aptamer that binds with a semi-
conserved region (known as DBL1α) of an erythrocyte membrane protein 1 from 
Plasmodium falciparum (PfEMP1) (Barfod et al. 2009). PfEMP1 protein is well known 
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for its involvement in the adhesion of parasite with the blood vessels and erythrocytes 
cells of the host (Barfod et al. 2009). Since then, different reports on the characterized 
aptamers against Plasmodium proteins have been published. These aptamers are gener-
ated new ways for the development of new diagnostic and detection methods.

More importantly, lactate dehydrogenase (LDH) protein of the Plasmodium and 
other parasites has been used as a potential biomarker. Due to the presence of sig-
nificant sequential differences between parasitic LDH and mammalian LDH pro-
tein, various aptamers against parasites have been discovered by different groups. 
Shum and Tanner (2008) have been indentified DNA aptamers (designated 2008s 
ssDNA aptamer) against P. falciparum, which bound with high affinity with the 
LDH enzyme and showed high affinity (KD 42 nM) and a 2:1 (LDH protein:aptamer) 
stoichiometry (Cheung et al. 2013). The crystal structure of LDH enzyme complex 
with aptamer showed the presence of a loop that specifically interacts with the 
aptamers. This loop is absent in the structure of the human LDH.

Moreover, Dirkzwager et al. (2015) developed and reported a rapid and novel diag-
nostic test for malaria. Herein, an aptamer captured the lactate dehydrogenase (PfLDH) 
biomarker of P. falciparum and the enzymatic activity of captured PfLDH was mea-
sured colorimetrically. This developed colorimetric assay i.e., an aptamer-tethered 
enzyme capture (APTEC) was robust and very sensitive (limit of detection = 4.9 ng 
mL_1) and could detect malaria in blood samples (Dirkzwager et al. 2015).

Ban’s group has reported electrochemical sensor based on the pL1 ssDNA aptamer, 
which also utilized and bind with the LDH enzyme of P. vivax and these sensors are 
capable to discriminate between malarial positive (i.e., presence of P. vivax and P. 
falciparum) and malarial negative samples (Lee et al. 2012). Surprisingly, pL1 was 
sequentially and structurally very different from the 2008s aptamer and targets the 
PvLDH with the involvement of many bridging water molecules with its predominant 
shape complementarity and it is totally different from that of 2008s (Choi and Ban 
2016). Afterward, the group of Goswani reported a P38 ssDNA aptamer, which also 
recognized the PfLDH and have shown (KD 0.35 uM) (Jain et al. 2016).

P. falciparum is most virulent, fatal, and worsen species from other existing spe-
cies of this parasite. Therefore, early detection and distinguishing other species is 
very important for the efficient treatment of malaria, particularly in patients, infected 
with P. falciparum. In this view, Cheug, clearly described the specificity of the pre-
viously reported ssDNA oligonucleotide aptamers (aptamer 2008s) against P. falci-
parum and could not show species discrimination in malaria patient blood samples 
(Cheung et  al. 2018). Furthermore, on taking the advantage of a unique epitope 
(LISDAELEAIFDC) of PfLDH, Frith et al. (2018) have reported an very specific 
aptamer (designated LDHp 11 aptamer) against P. falciparum (Frith et al. 2018).

Moreover, a few groups of researchers have used SELEX method and reported 
several specific aptamers against Leishmania, a hemoflagelate of the 
Trypanosomatidae family, for its detection and diagnosis purpose. The group of 
Gonzalez has majorly focused on the selection and development of aptamers, used 
as an identification tool for L. infantum. They have selected and reported a pool of 
DNA aptamers, which were targeted the nuclear histone proteins of L. infantum 
(LiH2A and LiH3). Although, the histone proteins are highly conserved in nature, 
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but these kinetoplastid histones have shown evolutionary divergenence at their N- 
and C-terminal, and this characteristic makes them a potential attractive aptamers 
binding targets. They have identified and described a population of ssDNA aptamer, 
specific for L. infantum. Among them most suitable aptamers (designated as 
AptLiH2A#1 and AptLiH2A#2) have shown higher binding affinity with LiH2A 
protein specifically. Another DNA aptamers recognize LiH3 of L. infantum have 
shown a potential application to detect leishmaniasis (Ramos et al. 2010).

Additionally, similar group has also described a new colloidal gold-based 
SELEX methodology and selected ssDNA aptamers for the detection of L. infan-
tum. These obtained aptamers targeted the kinetoplastid membrane protein-11 of L. 
infantum (LiKMP-11). It is a cytoskeleton-associated protein, which participates in 
mobility of the flagellar structure. The specificity of the obtained ssDNA aptamers 
has confirmed by ELONA (Enzyme-Linked OligoNucleotide Assay), Western blot, 
and slot blot assays (Ramos et al. 2007).

4.3	 �Aptamers in Virus Detection

In the current scenario, viruses are responsible for the various dangerous diseases 
and outbreaks globally. An early detection and correct diagnosis of the viruses is the 
most critical factor for adequate treatment and prevention of the outbreak of viruses 
associated infections (Binning et al. 2012; González et al. 2016). At present, this is 
a bottleneck because most of the virus diagnostic tools and assays are still per-
formed in the laboratories and conducted in batches. Recently, an over rise in the 
field of virus specific aptamers development, based on different phenomenon (colo-
rimetric, refraction index changes, and fluorescence), has been observed. Now, a 
whole range of virus-specific aptamers have generated against a large number of 
viruses like vaccinia virus (Parekh et al. 2010), dengue virus (Fletcher et al. 2010), 
severe acute respiratory syndrome (SARS) (Shum and Tanner 2008), hepatitis C 
(Roh et  al. 2011), human immunodeficiency virus (HIV) (Tombelli et  al. 2005), 
apple stem pitting virus (Balogh et al. 2010), bovine viral diarrhea virus (Park et al. 
2014), norovirus (Beier et al. 2014), rabies virus (Liang et al. 2014), hepatitis B 
(Suh et al. 2014), Ebola (Binning et al. 2013) and influenza (Gopinath et al. 2006; 
Lakshmipriya et al. 2013; Wandtke et al. 2015; Wongphatcharachai et al. 2012).

In viral diagnostics, the components targeted to detect the virus are whole virus 
(virion), nucleic acids and/or viral. The envelope is not targeted, as it has hardly any 
particular features to enable selective recognition (van den Kieboom et al. 2015). 
Cell surface antigens, integrase and protease proteins, heamglutannins, core anti-
gen, and glycoproteins are the main targets for the binding of an aptamer. The gly-
coproteins such as hemagglutinin (HA) and neuraminidase (NA), which are involved 
in the host-virus interactions and present on the surface of the Influenza A virus 
have been used as a target for the selection of aptamers (Parekh et al. 2010). An 
aptamer (designated P30-10-16 aptamer) has shown the unique feature to distin-
guish the various closely related strains and subtypes of Influenza A. Thus, differen-
tiation of highly pathogenic viral strains from the less virulent strains will facilitate 
the advancement in the field of diagnostics and therapeutics.
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Similarly, a fluorescently labeled aptamers (designated HBs-A22) targeting a 
surface antigens (HBsAg) present on the infected cells (hepatocytes) from the 
Hepatitis B virus has been reported (Liu et al. 2010). The fluorescently label aptam-
ers can be used and show the clear differences in the imaging of virus infected cells 
and non-infected cells in fluorescence microscopic studies. Moreover, for the detec-
tion of the Human Immunodeficiency Virus (HIV), an aptasensor, this target a trans-
activator of transcription (Tat) protein that regulates HIV-1 infection in early stage 
has been developed (Chang et al. 1997; Mucha et al. 2002). Aditionally, a multi-
component reporter system, for the detection of serotypes of Dengue virus, that 
contains an inhibitory aptamer interacted with the restriction endonucleases along 
with a target complement/trigger system have also reported (Fletcher et al. 2010).

5	 �Conclusion

Conclusively, it is worth noting that to overcome and prevent the diseases, platform 
based on the aptamers is an encouraging strategy and it can be used appropriate 
diagnosis/detection, quantification and identification of pathogens. Thus, it is envi-
sioned that in the near future this evolving technology may pave ways for the detec-
tion of biomarkers, and also find potential applications in diagnosis and therapy.
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