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Key Points
•	 Visual environment (or the quality of the retinal image) modulates the 

refractive development of the eye.
•	 Ocular response to form-deprivation and lens induced defocus is evident 

across a wide range of animal species, including humans.
•	 The visual system appears to be more sensitive to myopic than hyperopic 

defocus.
•	 Evidence suggests that greater time spent outdoors is protective against 

development and progression of myopia in children.

4.1	 �Emmetropization and Normal Ocular Growth in Human 
Eyes

When incident parallel rays of light from distant objects are brought to a focus upon 
the retina without accommodation, it is known as emmetropia. During postnatal 
eye growth, the precise matching of the axial length (the distance from the anterior 
corneal surface to the retina along the visual axis) and the optical power of the eye 
brings the eye to emmetropia [1, 2]. This active regulatory process that harmonizes 
the expansion of the eye with the optical power of the cornea and the crystalline lens 
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is known as emmetropization [1]. Any disruption to these highly coordinated ocular 
changes results in the development of refractive errors, wherein distant images are 
focused either behind (hyperopia) or in front (myopia) of the retina [1].

Human eyes exhibit a distinctive pattern of eye growth during the early period 
of visual development. The distribution of refractive errors at birth appears to be 
normally distributed [3, 4]. Apart from some exceptions [5], the majority of new-
born infants are moderately hyperopic (~+2.00 to +4.00 D) and this refractive error 
reduces significantly during the first 18 months of life [3, 6–8] (Fig. 4.1). By about 
2–5 years of age, the distribution becomes leptokurtic with a peak around emmetro-
pia to low hyperopia of about +0.50 to +1.00 D [5, 6, 8, 11, 12]. Although studies 
have reported small reductions in hyperopic refraction until the middle to late teen 
years [13, 14], emmetropization is believed to be largely completed by 5–6 years of 
age [5, 6, 8, 14].

Based on the visually guided ocular growth observed in a variety of animal mod-
els [15–17] (see Sect. 4.3), the growth of the human eye is also believed to be modu-
lated by an active visual feedback from the hyperopic refractive error in neonatal 
eyes [18]. Studies have found a strong correlation between the rapid reduction in 
hyperopia and the changes in axial length during early ocular development [18, 
19]. Human eyes are ~17 mm long after birth and grow to about 20 mm after the 
first year [11, 18–20]. This rapid expansion of the eye is largely attributed to the 

Fig. 4.1  Comparison of refractive error distribution among newborns [3] and 6–8-year-old chil-
dren [9]. The distribution of refractive errors narrows between infancy to early childhood during 
the process of emmetropization. Adapted from FitzGerald and Duckman [10]
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expansion of the vitreous chamber [18, 21]. From 2–3 years of age, axial elonga-
tion slows to approximately 0.4 mm/year until preschool age [11]. Consistent with 
changes in ocular refraction, the growth of the eye stabilizes further at 5–6 years, 
and only increases by 1–1.5 mm through the teenage years [11, 20, 21]. Together, 
these studies suggest that axial length is the most influential factor for emmetropiza-
tion in human eyes.

In addition to changes in axial length, there is also a significant reduction in the 
refractive power of the cornea and the crystalline lens that contributes to the overall 
reduction in hyperopia in the first year of life [11, 18, 22]. Mutti et al. [18] reported 
a reduction of 1.07 and 3.62 D in corneal and crystalline lens powers, respectively, 
associated with flattening of the corneal and lens radii in newborn infants, between 
the ages of 3 and 9 months. Studies have also found higher degrees of corneal astig-
matism in newborn infants [23–28], which reduces during the first 4 years of life 
and is associated with corneal flattening [24, 27, 29, 30]. Overall, these studies sug-
gest that emmetropization in human eyes is largely attributed to the changes in axial 
length with minor contributions from corneal and crystalline lens powers.

Refractive errors occur as a result of either variations in (a) axial length with 
respect to the total refractive power of the eye (termed axial myopia or hyperopia) 
or (b) refractive power of the cornea and the crystalline lens with respect to the axial 
length of the eye (termed refractive myopia or hyperopia). This chapter focuses on 
the pathogenesis and potential underlying mechanisms of myopia, and the follow-
ing section discusses the changes in different ocular parameters during myopic eye 
growth.

4.2	 �Ocular Biometric Changes in Human Myopia

As discussed earlier, the axial length of the eye is the primary biometric determinant 
of refractive error; however, the dimensions, curvature, and refractive index of each 
individual ocular structure contribute to the final refractive state. Ocular biometrics 
vary considerably throughout childhood, during the development and progression 
of myopia, and in response to clinical myopia control interventions.

4.2.1	 �Cornea

Several cross-sectional analyses have revealed a weak association between increas-
ing corneal power (a steeper radius of curvature) and increasing levels of myopia 
[31–33], while others report no association [34], or the opposite relationship [35]. 
Longitudinal studies indicate that changes in corneal curvature during childhood 
[36–38] and early adulthood [39] are minimal and not associated with the mag-
nitude of myopia progression. However, since the correlation between spherical 
equivalent refraction (SER) and the axial length to corneal radius ratio is typically 
stronger than that of axial length alone (by 15–20%) [40–43], corneal curvature 
does appear to make a modest contribution to the magnitude of myopia. Although 
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corneal thickness does not vary systematically with refractive error [44–47], a 
reduction in corneal hysteresis (an estimate of corneal biomechanical strength or 
viscoelasticity) has been observed with increasing levels of myopia in children [48, 
49] and adults [50–52]. However, the causal nature of this relationship remains 
unclear, or if such corneal metrics correlate with posterior scleral biomechanics.

4.2.2	 �Crystalline Lens and Anterior Chamber Depth

While the cornea flattens substantially during infancy and then remains relatively 
stable throughout childhood, the crystalline lens continues to thin, flatten, and 
reduce in optical power until approximately 10 years (a 0.25–0.50 D reduction per 
year), concurrent with lens fiber compaction [53–55]. These changes may be part 
of an emmetropization mechanism to compensate for continued axial elongation 
or a mechanical consequence of equatorial eye growth. Across a range of ethnici-
ties, Mutti et al. [56] observed that within 1 year of myopia onset, compensatory 
crystalline lens thinning and flattening abruptly halted compared to children who 
remained emmetropic (Fig. 4.2), suggesting that childhood myopia is not purely 
axial in nature, but involves a decoupling of highly correlated anterior and posterior 
segment eye growth. In Singaporean children, Iribarren et al. [57] reported a tran-
sient acceleration in the reduction of lens power during myopia onset when the rate 

Fig. 4.2  The change in crystalline lens thickness as a function of age in myopes and emmetropes 
during childhood (after Mutti et al. [56]). Shortly after myopia onset (10–12 years), compensatory 
crystalline lens thinning abruptly halted compared to children who remained emmetropic suggest-
ing that myopia development involves a decoupling of anterior and posterior segment eye growth
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of axial growth was high, which was not sustained as myopia progressed (Fig. 4.3). 
Paradoxically, after 10 years of age, the lens continues to thicken and increase in 
curvature with the bedding down of additional fibers, but reduces in optical power, 
most likely due to a steepening of the gradient refractive index [58]. Changes in 
anterior chamber depth throughout childhood are inversely related to changes in 
lens thickness (as the lens thins, the anterior chamber deepens), and the anterior 
chamber is typically deeper in myopes compared to emmetropes and vice versa for 
the crystalline lens [53].

4.2.3	 �Vitreous Chamber and Axial Length

In contrast to the anterior segment, changes in the posterior segment (particularly, 
the vitreous chamber, choroid, and sclera) are more pronounced in myopic com-
pared to non-myopic eyes (Fig. 4.4). Axial length, or more precisely, the vitreous 
chamber depth is the primary individual biometric contributor to refractive error 
in children, young adults, and the elderly [34, 59, 60], with the vitreous chamber 
depth accounting for over 50% of the observed variation in SER, followed by the 
cornea (~15%) and crystalline lens (~1%) [60]. Modeling of cross-sectional and 

Fig. 4.3  The change in crystalline lens power during childhood (calculated from refraction and 
biometric measurements) in young Singaporean children for a range of refractive error groups 
(after Iribarren et al. [57]) The reduction in lens power increases during myopia onset (to a greater 
extent than other refractive error groups), but is not sustained throughout myopia progression
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longitudinal data from emmetropic children indicates that axial length and vitreous 
chamber depth increase by approximately 0.16 mm per year from age 6–10 years, 
slowing to 0.05 mm per year from 11 to 14 years [61]. In myopic children aged 
between 6 and 11 years (corrected with single vision spectacles or contact lenses) 
average growth rates of approximately 0.30 mm per year have been reported [37, 
62, 63], with greater vitreous chamber and axial elongation observed in younger 
females with myopic parents [37]. A range of myopia control interventions sig-
nificantly slow the rate of eye growth and myopia progression during childhood, in 
some cases by up to 50% [64], and this reduction in axial elongation appears to be 
initially modulated by changes in the choroid underlying the retina.

4.2.4	 �Choroid

The choroid supplies the outer retina with oxygen and nutrients and regulates intra-
ocular pressure and ocular temperature. The choroid is typically thinner in myopic 
compared to non-myopic eyes (most pronounced at the fovea [65, 66]) and thins 
with increasing myopia and axial length in both adults [67–74] and children [75–
77]. Significant choroidal thinning is also observed in high myopia (<−6.00 D) or 

Fig. 4.4  Optical low coherence reflectometry A-Scan output from two 11-year-old males (one 
myope and one emmetrope). The predominant biometric differences are the deeper vitreous cham-
ber (19.05  mm compared to 15.47  mm) and the longer axial length (25.87  mm compared to 
22.69 mm) in the myopic eye. The anterior chamber depth is slightly shallower in the emmetropic 
eye (by 0.13 mm) while the crystalline lens is thicker (by 0.49 mm) in comparison to the myopic 
eye. The corneal thickness varies by only 0.04 mm
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eyes with posterior staphyloma [78], and has been associated with the presence of 
lacquer cracks [79], choroidal neovascularization [80], and reduced visual acuity 
[81]. The choroid also appears to be a biomarker of ocular processes regulating eye 
growth given that the central macular choroid thins during the initial development 
and progression of myopia [82–84] and thickens in response to imposed peripheral 
myopic retinal image defocus [85, 86], topical anti-muscarinic agents [87, 88], and 
increased light exposure [89] (clinical interventions associated with a slowing of 
eye growth in children).

4.2.5	 �Sclera

Scleral thinning associated with axial myopia is primarily restricted to the posterior 
pole [90–92], due to scleral tissue redistribution [93]. Scleral thinning may alter the 
tissue strength surrounding the optic nerve head, rendering myopic eyes more sus-
ceptible to glaucomatous damage [94, 95]. Consequently, posterior reinforcement 
surgery using donor scleral tissue has been refined over the years to arrest further 
axial elongation and scleral thinning in highly myopic eyes [96, 97]. Although ante-
rior scleral thickness is similar between myopic and non-myopic eyes [98–100], 
there is growing evidence that the anterior sclera thins slightly during accommoda-
tion, particularly in myopic eyes [101, 102], most likely due to biomechanical forces 
of the ciliary muscle. A greater thinning observed in myopic eyes may be a result of 
a thicker posterior ciliary muscle [103–105] or changes in biomechanical properties 
of the sclera reported in animal models of form-deprivation myopia [106, 107].

4.3	 �Visual Environment, Emmetropization, and Myopia: 
Evidence from Animal Models

Over the last four decades, numerous animal models have provided valuable insight 
into the mechanisms underlying emmetropization and refractive error development. 
Much of the knowledge on vision-dependent changes in ocular growth has ema-
nated from animal experiments in which either the quality of image formed on the 
retina is degraded (known as form-deprivation [FD]), or the focal point of the image 
is altered with respect to the retinal plane (known as lens induced defocus). Both 
FD and lens induced defocus result in abnormal eye growth and development of 
refractive errors. This section summarizes the attributes of experimental ametropias 
derived from these two visual manipulations, their differences, and significance for 
understanding refractive error development in humans.

4.3.1	 �Form-Deprivation Myopia

FD is the most commonly used experimental paradigm to model axial myopia in 
animals. Depriving the retina of form or patterned vision through eyelid suture 
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[108–110], or translucent diffusers [2, 15, 111–114] consistently produces axial 
myopia (Fig. 4.5). The use of noncontact translucent diffusers offers a more reliable 
representation of ocular changes with FD since they do not induce corneal changes 
(unlike eyelid fusion techniques). The ocular changes observed in response to FD 
clearly illustrate that degrading retinal image quality can produce robust myopic 
changes. Schaeffel et al. [115] proposed that FD is an open-loop condition, in which 
myopia develops as a result of uncoordinated ocular growth due to reduced retinal 
image contrast (or mid-range spatial frequency vision) [116] and the absence of 
visual feedback related to the effective refractive state of the eye [117].

The myopic response to FD varies among different animals. It is generally great-
est in chickens (−9 D after 5 days of FD) [118], followed by tree shrews (−8 D after 
12 days in young animals) [119] and guinea pigs (−6.6 D after 11 days) [113], and 
is less pronounced and much more variable in marmosets (−8 D after 4.5 weeks) 
[120] and rhesus monkeys (~−5 to −6 D after 17 weeks) [121, 122]. Variations 
observed between individual studies and animal models may be due to differences 
in experimental paradigms, the duration and extent of FD, inherent ocular ana-
tomical variations, and/or differences in susceptibility to environmental myopia. 
Nevertheless, the myopic response to FD is conserved across a wide range of ani-
mal species (including fish, rabbit, mouse, and kestrel) [123]. In all species, axial 
myopia is predominantly caused by a significant elongation of the vitreous cham-
ber, along with thinning of the choroid and the sclera [16, 17, 113, 124–132]. Few 
studies have also reported changes in corneal curvature and lens thickness with FD 
[131, 133–135]. Interestingly, ocular conditions that cause varying degrees of visual 
deprivation in humans such as ptosis [136], congenital cataract [137], corneal opac-
ity [138], and vitreous hemorrhage [139] are associated with myopia, which may 
result from mechanisms similar to FD myopia observed in animals.

a

b
Sclera

Choroid

Retina

Fig. 4.5  Ocular 
compensation for 
form-deprivation (FD). (a) 
A diffuser causes 
nondirectional blur and a 
reduction in contrast of the 
retinal image. (b) The 
absence of visual feedback 
related to the effective 
refractive state of the eye 
causes a thinning of the 
posterior choroid and an 
increase in ocular growth, 
resulting in myopia
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FD myopia is a graded phenomenon, where increasing degrees of image degrada-
tion are positively correlated with the magnitude of induced axial myopia [129, 140]. 
In addition, the effects of FD declines with age. Younger chicks [141, 142], macaques 
[143], tree shrews [119], and marmosets [144] show greater ocular changes in response 
to image degradation compared to older animals, potentially due to age-related reduc-
tions in sensory processing of blur stimuli or changes in scleral growth [144].

4.3.2	 �Lens Defocus Ametropias

Perhaps the strongest evidence of visual regulation of ocular growth comes from 
animal studies that show eyes can actively compensate for artificially induced myo-
pic and hyperopic defocus by adjusting the axial length to the altered focal plane 
(i.e., emmetropization through the treatment lenses) (Fig. 4.6) [145]. Myopic defo-
cus with plus lenses simulates artificial myopia that leads to a thickening of the 
choroid (moving the retina forward) and a reduction in the overall growth of the 
eye, thus, causing a hyperopic refractive error. Conversely, hyperopic defocus with 
minus lenses induces artificial hyperopia that leads to a thinning of the choroid 

a

b

Sclera

Choroid
Retina

Fig. 4.6  (a) Schematic of imposed lens defocus. With no lens (black arrow), incident parallel rays 
of light from distant objects are focused on the retina. A plus lens (green, convex) causes the retinal 
image to focus in front of the retina known as myopic defocus, whereas a minus lens (blue, concave) 
focuses the image behind the retina known as hyperopic defocus. (b) A normal eye with no imposed 
lens defocus (black) exhibits normal ocular growth and choroidal thickness. Myopic defocus with 
plus lenses (green) causes a thickening of the choroid (moving the retina forward) and a reduction 
in the overall growth of the eye, causing a hyperopic refractive error. Hyperopic defocus with minus 
lenses (blue) leads to a thinning of the choroid (moving the retina backward) and an increase in 
ocular growth, resulting in myopia. Adapted from Wallman J and Winawer J, 2004 [1]
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(moving the retina backward) and an increase in ocular growth, resulting in myopia 
to re-establish the optimal refractive state. This phenomenon was first documented 
in chicks [145], and has been extensively studied in chicks [16, 17, 146–148], tree 
shrews [149], rhesus monkeys [15, 150], marmosets [151], guinea pigs [152, 153], 
and mice [154] thereafter, indicating that the mechanisms regulating ocular growth 
can distinguish the sign of the imposed defocus in a wide range of animal species.

Chick eyes can compensate for a remarkable range of +15 to −10 D of imposed 
defocus [16, 147]. However, the operating range of defocus is much smaller for other 
animal species (monkey: −2 to +8 D [15], marmosets: −8 to <+4 D [151], tree shrew: 
−10 to +4 D [155], guinea pig: −7 to +4 D) [152, 156]. Compared to birds, the inabil-
ity of primates to compensate for greater magnitudes of defocus may be due to bigger 
eye size [15, 150], the process of emmetropization [150], differences in the accom-
modative response to defocus stimuli, and/or the degree of independent accommo-
dation between fellow eyes [15, 150, 157]. In all animals, the axial response to lens 
induced defocus is dependent upon the power of the treatment lens [147, 149–152, 
158], and is predominantly attributed to the changes in vitreous chamber depth [16, 
147, 159]. Similar to FD, the ocular response to lens induced defocus decreases with 
age [16]. Recent evidence suggests that the human visual system may also be able to 
detect the sign and magnitude of imposed defocus and make compensatory changes 
in axial length, similar to other animals. A number of studies have reported small 
bidirectional changes in axial length and choroidal thickness in response to 1–2 h of 
myopic and hyperopic defocus in children and young adults [160–165].

Studies have shown that the biological mechanisms underlying alterations in 
ocular growth to myopic and hyperopic defocus may be completely different (and 
not merely opposite to each other), and that the visual system is perhaps more sen-
sitive to myopic defocus [166, 167]. In fact, the ocular response to lens induced 
defocus depends on the frequency and duration of lens wear, and not simply the 
“total duration” per day [166–169]. These findings argue for a nonlinear processing 
of myopic and hyperopic defocus signals across the retina [166, 167].

4.3.3	 �Comparing Form-Deprivation and Lens Defocus

Although FD and lens induced defocus use different visual stimuli to induce com-
pensatory changes in ocular growth, there are features that are common to both 
visual manipulations. Removal of the visual manipulation triggers “recovery” from 
both FD and lens induced defocus [16, 17, 170]. During this recovery phase, the 
eyes quickly return to emmetropia by reversing the changes in choroidal thickness 
and axial eye growth (mainly by changing the vitreous chamber depth) [16, 17, 119, 
150, 151, 170–173].

Further evidence from animal work suggests that the elimination of accommo-
dation by cycloplegia, ciliary nerve section or damage to the Edinger-Westphal 
nucleus does not prevent the response to imposed FD [145, 174] or lens induced 
defocus [148, 175]. These results suggest that intact accommodation is not essential 
for visually guided growth [176] or there might be another accommodative pathway 
(not through ciliary and iris sphincter muscles) underlying optical defocus induced 
alterations in ocular growth [175].
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Other studies argue that mechanisms underlying the response to FD and 
lens induced defocus may not be the same [177]. Some studies show different 
light paradigms selectively disrupt the response to FD or lens induced defocus 
[178–180]. For instance, high luminance levels inhibit myopia caused by FD in 
monkeys and chicks, but only slow the response to negative lenses [181, 182]. 
Furthermore, dopamine (a strong ocular growth inhibitor, see Sect. 4.4.1) may not 
signal eye growth in a similar manner for these two forms of experimental myopia 
[183]. While most studies indicate that dopamine agonists block increased axial 
elongation [177], one study reported that dopamine agonists inhibit FD, but not 
lens-induced myopia in guinea pigs [184]. More studies are needed to determine 
if these contradictory results are due to different regulatory mechanisms of eye 
growth or other parameters of the experimental paradigm.

4.4	 �Other Visual Cues for Emmetropization

Whilst the clarity of the retinal image dominates the nature of ocular growth, other 
visual cues may also influence the process of emmetropization. This section exam-
ines some of the important cues that could significantly affect retinal image quality, 
and hence ocular growth in human eyes.

4.4.1	 �Retinal Physiology

Work from animal models suggests that retinal defocus (or visual blur) initiates a 
signaling cascade that leads to a number of cellular and biochemical changes in 
the retina and the retinal pigment epithelium (RPE), which signal changes to the 
choroid, and eventually the sclera, leading to alterations in the overall growth and 
refractive state of the eye (Fig.  4.7) [16, 17, 185]. The retina is an integral part 
of this visual signaling as it is the first layer of photosensory neurons that detect 

Fig. 4.7  A biochemical signal cascade beginning at the retina and ending at the sclera regulating 
ocular growth and the refractive state. Retinal defocus may initiate a signaling cascade that leads 
to a number of cellular and biochemical changes in the retina and the retinal pigment epithelium 
(RPE), the choroid, and eventually the sclera, leading to alterations in the overall growth and the 
refractive state of the eye
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defocus [186]. Furthermore, ocular compensation for both FD and lens induced 
defocus are largely regulated at the retinal level. Severing the optic nerve in young 
chicks does not prevent the development of refractive errors in response to spec-
tacle lenses [16, 187] or diffusers [130]. In both chicks [17, 188, 189] and primates 
[190], partial diffusers and hemifield spectacle lenses restricted to only half of the 
visual field cause corresponding myopic changes only in the visually deprived part 
of the globe. These studies demonstrate that the visual regulation of ocular growth 
in response to diffusers and lenses primarily occurs within the retina, with minimal 
input from the brain.

Retinal neurons also secrete a number of growth regulatory neurotransmitters 
(such as dopamine [191, 192], retinoic acid [153], nitric oxide [193, 194] and glu-
cagon [195]) that can directly alter ocular growth in mammalian eyes. Dopamine, 
one of the most widely studied neurotransmitters with regard to myopia in animal 
models, has been implicated as a potent stop signal for myopic eye growth [183, 
196]. In both chickens [191, 197] and primates [198], FD myopia is associated 
with lower levels of 3,4-dihydroxyphenylacetate (DOPAC, the primary metabolite 
of dopamine) and dopamine in the retina. Although the protective effects of outdoor 
light exposure on myopia development in children has been hypothesized to be 
mediated by greater dopamine synthesis in the eye (see Sect. 4.5), the exact mecha-
nisms underlying the protective effects of dopamine on myopia are not fully known. 
Together, these studies suggest that alterations in normal retinal physiology and/
or changes in retinal neurotransmitters may lead to the development of refractive 
errors, as shown in chickens [186, 199, 200] and mice [201–206]. Some features 
of retinal abnormalities and refractive errors are evident in humans as well; for 
instance, NYX [207] and GRM6 [208] retinal ON pathway mutations and retinal 
degenerations such as cone-rod dystrophy [209] and retinitis pigmentosa [210] are 
associated with myopia.

4.4.2	 �Aberrations

A long held belief is that myopia may develop due to the eye’s emmetropization 
response to inherent ocular aberrations that degrade retinal image quality and trigger 
axial elongation [211]. Since there is minimal variation in longitudinal chromatic 
aberration between individuals or refractive error groups in humans [212], most 
investigations have focused on monochromatic higher order aberrations (HOAs) 
as a potential myopigenic stimulus. Evidence concerning the relationship between 
HOAs during distance viewing and refractive error from cross-sectional studies is 
conflicting [211, 213]. However, during or following near work tasks, adult myopic 
eyes tend to display a transient increase in corneal and total ocular HOAs (Figs. 4.8 
and 4.9), suggesting a potential role for near work induced retinal image degrada-
tion in myopia development [214, 215]. Longitudinal studies of myopic children 
also indicate that eyes with greater positive spherical aberration demonstrate slower 
eye growth [63, 216].
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A number of myopia control interventions also alter the HOA and peripheral 
refraction profile. While relative peripheral refraction was initially thought to 
modulate central eye growth, recent longitudinal studies have found no associa-
tion between peripheral refraction and myopia progression in children [217, 218]. 
Multifocal soft contact lenses and orthokeratology significantly increase the magni-
tude of positive spherical aberration [219, 220]. The anticholinergic agent atropine 
may also provide visual feedback that influences eye growth due to an increase in 
positive spherical aberration or horizontal coma associated with cycloplegia and 
pupil mydriasis, respectively [221]. Collectively, these findings suggest that changes 
in HOAs may influence eye growth and refractive development during childhood.

Fig. 4.8  Corneal refractive power difference map following a 10 min reading task at 25° down-
ward gaze. The black circle denotes the pupil outline detected by the video keratoscope. A horizon-
tal band of corneal flattening is observed in the superior aspect of the pupil corresponding to the 
position of the upper eyelid during downward gaze. This refractive change is equivalent to a 0.20 D 
hyperopic shift over the central 4 mm

a b c

Fig. 4.9  Refractive power maps, a graphical representation of total ocular higher order aberra-
tions, during (a) distance fixation (0 D accommodation demand), (b) a 5 D accommodation task, 
and (c) the difference (B minus A) over a 3 mm pupil diameter. A significant increase in negative 
spherical aberration of −0.10 μm is displayed
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4.4.3	 �Accommodation

Given the association between near work and the development and progression of 
childhood myopia [222], numerous studies have compared various characteristics 
of accommodation between refractive error groups, typically the accuracy of the 
accommodation response, since a lag of accommodation (hyperopic retinal defo-
cus) may stimulate axial elongation as observed in animal models. Using a range 
of experimental approaches, the accommodative response to a 3 D accommodative 
stimulus is ~0.25 to 1.00 D less in myopic adults compared to emmetropes [223–
227]. The slowing of myopia progression during childhood with progressive addi-
tion or bifocal lenses, designed to improve accommodation accuracy and minimize 
a lag of accommodation, adds some weight to the role of accommodation in myopia 
development and progression [62, 228]. However, the exact underlying mechanism 
of myopia control with such lenses may be related to imposed peripheral retinal 
defocus or a reduction in the near vergence demand [229]. In a longitudinal study 
of young infants [230], a significant relationship was observed between the accom-
modative response and the reduction in neonatal refractive error in the first 2 years 
of life, supporting a potential role for accommodation-guided eye growth.

4.4.4	 �Circadian Rhythms

Like many of the human body’s physiological processes, numerous ocular struc-
tures and functions exhibit cyclic variations over the course of the day. Visual inputs 
such as daily patterns of light exposure are considered critical factors in entraining 
the timing of these circadian rhythms. Findings from animal studies demonstrate 
that normal eye growth exhibits significant circadian variations, with the eye gener-
ally being longest during the day and shorter at night [231]. Choroidal thickness 
also exhibits a circadian rhythm in normal eyes, which is generally in antiphase 
to the rhythms in axial length [172]. Similar patterns of diurnal variation in axial 
length and choroidal thickness have also been documented in normal human eyes 
[232–234].

It has also been suggested that ocular circadian rhythms may play a role in eye 
growth regulation and the development of myopia, since altering the visual inputs 
that drive circadian rhythms (e.g., rearing animals in constant light [235] or constant 
darkness [236], or exposing the eye to bright light at night time [237]) can result in 
alterations in normal eye growth in animal models. Furthermore, when refractive 
errors (both hyperopic and myopic) are induced experimentally in animals, changes 
in the magnitude and phase of the normal circadian rhythms of axial length and 
choroidal thickness also occur, which also supports a potential role of circadian 
rhythms in the development of refractive errors [172, 238]. These findings from 
animal research were paralleled by studies in young adult humans, where changes 
in the normal diurnal rhythms of axial length and choroidal thickness occurred in 
response to short-term (12-h) exposure to monocular myopic [165], and hyperopic 
blur [163]. Although the exact role played by circadian rhythms in the regulation of 
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human eye growth is not fully understood, human studies also indicate that myopes 
exhibit alterations in their systemic melatonin levels [239], and also exhibit altered 
sleep patterns [240] compared to non-myopic individuals.

4.5	 �Effects of Key Environmental Factors on Myopia

As discussed in Chaps. 1 and 2, myopia represents a “complex” disorder with both 
environmental and genetic origins [241, 242]. This section discusses some of the 
important environmental factors, and their influence on myopia.

4.5.1	 �Near Work and Education

Since the age when myopia normally develops and progresses coincides with the 
school years, myopia has long been suggested to be connected with increased levels 
of education. Indeed, numerous studies conducted across a range of different popu-
lations have consistently found that higher levels of education are associated with 
a higher prevalence of myopia [243–245]. The exact mechanism linking increased 
education with myopia, however, is less clear. Although it is possible that opti-
cal [214, 224] or biomechanical [246, 247] ocular changes associated with near 
work could potentially promote myopic eye growth in those with higher levels of 
education (and hence near work demands), population studies examining the link 
between near work activities and myopia have been conflicting, with some studies 
suggesting an association between near work and myopia [222, 248], and others 
indicating no significant effects [249]. The relatively inconsistent findings linking 
near work with myopia development suggests a potential role for other factors in the 
association between education and myopia, such as a lack of outdoor light exposure, 
discussed further below.

4.5.2	 �Urbanization

Aspects of the living environment may also be involved in the development and 
progression of myopia, since population-based studies consistently report a higher 
prevalence of myopia in children living in urban regions, compared to children liv-
ing in rural regions [250, 251]. These associations between the urban environment 
and myopia could at least partially be explained by socioeconomic and educational 
differences between urban and rural regions, which could in turn result in differences 
in near work and outdoor activities. However, a number of recent studies indicate 
that a higher population density is significantly associated with increased myopia 
prevalence in children, independent of near work and outdoor activities [252, 253]. 
This suggests other aspects of the urban environment may potentially impact upon 
eye growth. Studies have also reported associations between housing type and myo-
pia, with children living in smaller homes reported to have a significantly higher 
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prevalence of myopia [253, 254]. Although further research is required to estab-
lish the causative nature and mechanisms underlying these associations, it has been 
hypothesized that a constricted living space may result in an increased exposure to 
hyperopic blur, thus promoting myopia.

4.5.3	 �Light Exposure

A number of recent studies report that the time children spend engaged in outdoor 
activities is negatively associated with their risk of myopia [241, 249, 255–259]. 
Both cross-sectional and longitudinal studies indicate that greater time spent out-
doors is associated with a significantly lower myopia prevalence and reduced risk 
of myopia onset in childhood. Although some studies report significant associations 
between myopia progression and outdoor activity [257, 259], this is not a consis-
tent finding across all longitudinal studies [260]. A recent meta-analysis of studies 
examining the relationship between outdoor time and myopia indicated that there 
was a 2% reduction in the odds of having myopia for each additional hour per week 
spent outdoors [261].

These associations [241, 255, 256] have prompted recent interest in the potential 
influence of light exposure in the regulation of eye growth and myopia. Since out-
door activity typically involves exposure to high intensity light, it has been hypothe-
sized that increased exposure to bright light may be the important factor underlying 
these protective effects of outdoor activity [256]. Other factors, such as the typical 
pattern of retinal focus experienced in outdoor environments (which is likely to 
involve less near focusing and potentially less exposure to hyperopic blur), may 
also play a role [262].

Light Intensity and Myopia  Animal studies indicate that the intensity of daily light 
exposure can influence refractive development. In normal growing young chickens, 
rearing animals under a normal daily light-dark cycle, but with daily bright ambient 
lighting (~10,000 lux) resulted in significantly less myopic refractive errors than 
when animals were reared under dim ambient lighting during the day (50 lux) [263]. 
Bright light exposure also inhibits the development of FD myopia in a range of dif-
ferent animal species [114, 181, 264], with the strength of inhibitory effects corre-
lating significantly with the log of the intensity of ambient light exposure [264]. The 
effects of increased light intensity upon lens induced myopia (through imposing 
hyperopic defocus) in animals however are less consistent, with either a slowing of 
lens compensation (with no change in refractive endpoint) [182], or no significant 
effects on lens compensation reported [265].

Recent observational longitudinal studies in humans utilizing wearable light sen-
sors to assess ambient light exposure have enabled the relationship between light 
exposure and axial eye growth in childhood to be examined [266, 267]. Similar to 
findings in animals, both of these recent studies have reported that slower axial eye 
growth is associated with greater daily ambient light exposure (with a 1-log unit 
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increase in light exposure being associated with ~0.1  mm/year slower axial eye 
growth), with this relationship reaching statistical significance in the study with the 
larger sample size (n = 102) [266], and bordering on significance (p = 0.07, n = 60) 
in the other study [267]. A recent randomized, controlled trial in Taiwan examined 
the effect of increasing outdoor time during the school day (an extra 40  min of 
outdoor time during school recess) upon myopia development and axial eye growth 
over 12 months [268]. In this study, light exposure was also monitored using wear-
able light sensors, and a significant association between greater light exposure and 
slower myopia progression was also documented. Collectively, these studies sug-
gest that increased light exposure is associated with slower axial eye growth in the 
human eye.

Increased light exposure may also underlie some of the differences in myopia 
prevalence found in different geographic locations. A recent study compared the 
habitual ambient light exposure (captured with wearable light sensors) of children 
living in Singapore (a country with some of the highest reported levels of childhood 
myopia prevalence [269]) with children living in Australia (where myopia preva-
lence is generally reported to be relatively low [270]) and found substantially lower 
levels of outdoor light exposure in the children living in Singapore (Fig. 4.10) [271].

Duration of Light Exposure and Myopia  Animal studies examining the effects of 
increased light exposure upon myopia development have generally used experimen-
tal paradigms where elevated light levels were applied continuously for the full day. 
Lan et al. [272] examined the influence of different daily durations of bright light 
exposure upon inhibition of myopia in chickens. They found bright light applied for 

Fig. 4.10  Average hourly light exposure of Australian (red lines) and Singaporean (blue lines) chil-
dren assessed during school weekdays using wearable light sensors. Note the substantially greater 
light exposure for the Australian children at a number of periods throughout the day [271]. This lower 
daily exposure to bright outdoor light may be one factor underlying the higher myopia prevalence 
typically observed in Singaporean children. Dashed lines indicate the average school start and finish 
times in Australia (red) and Singapore (blue). Error bars represent the standard error of the mean
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only 1 or 2 h per day did not inhibit myopia, but 5 h of exposure did significantly 
protect against the development of FD myopia. Extending exposure duration further 
to 10 h per day did not appear to offer further protective benefit.

In a large longitudinal study, Jones et al. [249] reported that children who engaged 
in outdoor activities for 14 h per week or more, exhibited the lowest odds of devel-
oping myopia. A number of recent randomized controlled trials have reported that 
interventions that increase children’s outdoor time (by 40–80 min a day) signifi-
cantly reduce the onset of myopia in childhood [268, 273, 274]. In the “Role of out-
door activity in myopia study” [266], children who were habitually exposed to low 
ambient light levels (on average less than 60 min exposure to outdoor light per day) 
had significantly faster axial eye growth compared to children habitually exposed 
to moderate and high light levels. These findings from human studies suggest that 
children who are exposed to less than 60 min a day of bright outdoor light are at an 
increased risk of more rapid eye growth and myopia development, and that approxi-
mately 2 h or more of outdoor exposure each day is required to provide protection 
against myopia development in the human eye.

Spectral Composition of Light and Myopia  Since the spectral characteristics of 
outdoor light are significantly different to typical indoor light, it has been suggested 
that the spectral composition of outdoor light may be an additional factor that 
underlies the protective effects of outdoor activity upon myopia development. 
Although some studies in humans suggest exposure to short-wavelength light may 
protect against myopia [275], there has only been limited work in humans examin-
ing the possible impact of the spectral composition of light on myopia.

Animal studies do suggest that the spectral content of light can influence the 
growth of the eye, since altered eye growth is observed in animals reared under nar-
row band spectral lighting conditions. However, the effects of the spectral content 
of light shows substantial interspecies differences [276–279]. In chickens and guin-
eas pigs, raising animals in short-wavelength light appears to slow eye growth and 
reduce myopia development, whereas long-wavelength light appears to increase eye 
growth and lead to myopia development [276, 279]. Conversely long-wavelength 
light appears to slow eye growth and reduce myopia development in tree shrews and 
rhesus monkeys [277, 278]. Further research is required to understand the mecha-
nisms underlying these effects (and interspecies differences) and to establish the 
impact of the spectral composition of light upon human myopia.

4.6	 �Conclusion

In conclusion, over the last 40 years, remarkable progress has been made in under-
standing the possible mechanisms and pathogenesis of myopia, with a large contri-
bution to this knowledge coming from an extensive body of work in animal models. 
Importantly, laboratory research in animals have shown that the visual environment 
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(i.e., quality and/or focus of the retinal image) influences ocular growth and refrac-
tive development, which has been a key to our current understanding of the process 
of emmetropization in humans. Similarities in features of defocus induced ocular 
changes in humans and experimental models of myopia, such as the eye’s abil-
ity to detect the sign of retinal defocus and make compensatory changes in axial 
length, suggest that mechanisms of visually guided eye growth and refractive error 
development in animal models may be present in human eyes as well. Alongside 
animal research, a large body of clinical and epidemiological research has identi-
fied a number of other visual cues (e.g., aberrations, accommodation, and circadian 
rhythms) and environmental factors (e.g., light exposure, near work, and education) 
that could affect normal ocular growth and lead to the development of refractive 
errors. Experimental models continue to provide valuable information on cellular 
and biochemical mechanisms of eye growth, enabling the identification of potential 
new therapeutic targets for early diagnosis and treatment of myopia.
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