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Chapter 6
Optogenetic Reconstitution: Light-Induced 
Assembly of Protein Complexes 
and Simultaneous Visualization of Their 
Intracellular Functions

Tomomi Kiyomitsu

6.1  �Introduction

To understand the basis of life, it is critical to visualize the dynamic behaviors of 
molecules within a cell. Since the discovery of green fluorescent protein (GFP) 
(Shimomura 1979), multiple fluorescent proteins or dyes have been developed 
(Rodriguez et  al. 2017), and it has become possible to simultaneously visualize 
intracellular dynamics of multiple proteins in living cells. In addition, by combining 
recently developed genome editing technologies such as clustered regularly inter-
spaced short palindromic repeats (CRISPR) (Ran et al. 2013), it is possible to moni-
tor the dynamic behaviors of endogenous proteins even in animal cells, including 
human cultured cells.

In the last few decades, many genetic approaches, such as mutant screens and 
gene disruption, have been used in combination with live cell imaging to identify 
genes that code key proteins required for cellular functions (Hartwell 1978; Yanagida 
2014; Goshima et  al. 2007; Neumann et  al. 2010). In addition, biochemical and 
proteomic approaches have defined functional protein complexes that underlie com-
plicated cellular functions (Hutchins et  al. 2010; Cheeseman et  al. 2004; Obuse 
et al. 2004). Once key molecules or complexes are identified, biophysical and struc-
tural studies are performed to reveal the detailed molecular properties sufficient for 
their functions (Cheeseman et al. 2006; Dimitrova et al. 2016; Zhang et al. 2017; 
McKenney et al. 2014; Schlager et al. 2014). Furthermore, by combining mathemat-
ical simulations (Kimura and Onami 2005), nanodevices (Thery et al. 2005), and 
synthetic approaches (Good et al. 2013; Laan et al. 2012; Nguyen et al. 2014), novel 
molecular features that underlie complicated dynamic cellular events have been 
uncovered. However, it is still difficult to fully reconstitute macro-molecular 
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complexes, such as the mitotic spindle, which consists of hundreds of proteins 
(Goshima et al. 2007; Sauer et al. 2005), and to manipulate their functions under 
physiological condition.

Recently, several light-induced tools have been developed to manipulate intra-
cellular localization of target proteins with a spatiotemporal precision in living cells 
(Levskaya et al. 2009; Kennedy et al. 2010; Strickland et al. 2012; Guntas et al. 
2015). In combination with other techniques, this optogenetic technology has great 
potential to reconstitute functional protein complexes, which are otherwise difficult 
to reconstitute in vitro, and to directly assess their functions within a cell. Here, I 
have presented an optogenetic reconstitution system to achieve light-induced in cell 
reconstitution of protein complexes coupled with visualization and manipulation of 
their cellular functions.

6.2  �Light-Induced Heterodimerization Tools

Since around 2009, several groups have developed light-induced protein–protein 
interaction tools using photoactivatable proteins/domains such as phytochrome B 
(Phy B) (Levskaya et al. 2009), cryptochrome 2 (CRY2) (Kennedy et al. 2010), and 
light, oxygen, and voltage (LOV) domains (Strickland et  al. 2012; Guntas et  al. 
2015). In response to light, PhyB and CRY2 interact with their binding partners PIF 
and CIB1, respectively (Fig.  6.1). Thus, by tethering one module to appropriate 
sites, such as the plasma membrane, and by fusing the other module to the target 
protein as a tag, these tools work as a light-induced heterodimerization system 
(Fig. 6.1). In contrast, the LOV domain acts as a photoswitch that causes a confor-
mational change in response to blue light and dissociates its C-terminal Jα helix 
from the core domain (Fig. 6.1). When a synthetic peptide is embedded in the Jα 
helix, this peptide is masked in the dark state but is exposed following light illumi-
nation. Thus, by designing the peptide and its binding partner, several light-induced 
dimerization tools have been developed, such as tunable light-controlled interacting 
protein tags (TULIP) (Strickland et  al. 2012) and improved light-induced dimer 
(iLID) (Guntas et al. 2015). In iLID, SsrA peptide (seven residues) is embedded in 
the Jα helix and an SsrA-binding 13-kD protein, SspB, is used as the heterodimer-
ization tag (Fig. 6.2). Although these photoactivatable proteins require cofactors, 
such as flavin mononucleotide, these cofactors exist in most mammalian cells or can 
be supplied externally in the culture medium (Zhang and Cui 2015). In addition to 
these photoactivatable proteins, photo-activated chemicals, such as photocaged 
dimerizer, have been recently developed to manipulate cell signaling with light 
(Fig. 6.1) (Ballister et al. 2014). Similar to GFP, these optogenetic tools are derived 
from plant and bacterial proteins and thus do not affect endogenous cellular func-
tions in mammalian cells.
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These photoactivatable proteins and chemicals exhibit different characters and 
requirement for activation (Fig. 6.1; reviewed in (Zhang and Cui 2015)). Therefore, 
these characters must be considered for the experimental design. For example, to 
locally assemble protein complexes at the plasma membrane, optogenetic dimeriz-
ers with slow dissociation rate of target proteins may diffuse on the membrane fol-
lowing membrane targeting and fail to assemble the protein complexes at the 
specific site on the membrane. In contrast, to stably recruit signaling molecules on 
a specific organelle, such as kinetochore or centrosomes, optogenetic tools with 
slow dissociation rate would be more appropriate to generate robust cell signaling. 
Finally, simultaneous manipulation of two different target proteins is now possible 
by using different light-responsible tools such as blue- and near-infrared light-
driven dimerizers (Kaberniuk et al. 2016).
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Fig. 6.1  Toolkits to visualize and control molecules with light. (Left) Fluorogenic probes/dyes 
and fluorescent proteins are summarized. There are several commercially available SiR-based 
probes and HaloTag STELLA Fluor™. (Right) Light-induced heterodimerization systems. 
Photocaged dimerizer cTMP-Htag, LOV domain-based conformational change, CRY2–CIBN, 
PhyB–PIF, and BphP1–PpsR2 interactions are summarized. ∗ indicates light-sensing proteins con-
taining cofactors

6  Optogenetic Reconstitution: Light-Induced Assembly of Protein Complexes…



58

6.3  �Visualization Tools Compatible with Optogenetic 
Manipulation

For simultaneous visualization of target protein and its downstream targets or events 
in response to light illumination, exciting fluorescent proteins or dyes without acti-
vating light-responsible proteins is required. For instance, when blue light is used to 
activate photoactivatable proteins, red or far-red light must be selected for visualiza-
tion because shorter UV light also activates blue light-responsible elements 
(Fig. 6.2). To monitor the responses of the target protein and its downstream effec-
tors following light illumination, at least two fluorescent proteins or dyes are 
required. Importantly, several far-red or near-infrared fluorescent proteins or cell 
permeable fluoregenic probes/dyes have been recently developed (Fig. 6.1), such as 
near-infrared fluorescent protein (iRFP) (Filonov et al. 2011), infrared fluorescent 
protein mutant (IFP2.0) (Yu et  al. 2014), silicon–rhodamine-based fluorophore 
(SiR)-647 (Lukinavicius et  al. 2014), SiR-700 (Lukinavicius et  al. 2016), and 
HaloTag STELLA Fluor™ (http://www.promega.co.jp/halotag_imaging/). These 
fluoregenic probes/dyes are used in combination with SNAP-tag or HaloTag, or 
these dyes are directly conjugated with chemicals that bind to DNA, tubulin, or 
actin to visualize chromosomes (SiR–DNA) (Lukinavicius et  al. 2015), tubulin 
(SiR–tubulin) (Lukinavicius et al. 2014), and actin cytoskeleton (SiR–actin) (https://
spirochrome.com/). Thus, by combining these novel tools, simultaneous visualiza-
tion of its downstream targets is now possible in parallel with light-induced 
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manipulation of photoactivatable proteins. In contrast, when photocaged chemical 
dimerizer or near-infrared-activated proteins are used, GFP and other red fluores-
cent proteins or dyes can be used for multicolor imaging to visualize its downstream 
events and phenotypes.

6.4  �Light-Induced Assembly/Reconstitution  
of Force-Generating Complexes During Mitosis

Recently, light-induced heterodimerization tools have been used to manipulate cell 
signaling and force-generating processes, such as organelle transport (van Bergeijk 
et al. 2015; Ballister et al. 2015) and cytokinesis (Wagner and Glotzer 2016). In 
these studies, protein complexes, including motor proteins such as dynein and myo-
sin, are locally assembled following light illumination and their cellular functions 
are assessed within a cell. Another good target for optogenetic reconstitution is a 
cortical force-generating machinery (Kiyomitsu and Cheeseman 2012), which links 
the dynamic plus-end of astral microtubules emanating from the mitotic spindle 
with the plasma membrane and generates cortical pulling forces on astral microtu-
bules to control spindle position and orientation during both symmetric and asym-
metric cell division (Fig.  6.3a) (Kiyomitsu 2015; di Pietro et  al. 2016). In most 
animal cells, this cortical machinery consists of evolutionally conserved protein 
complexes, including cytoplasmic dynein complex (Roberts et al. 2013), its binding 
partner dynactin complex, and cortically anchored nuclear mitotic apparatus protein 
(NuMA)–LGN–Gαi complex (Fig.  6.3b) (Kiyomitsu and Cheeseman 2012). 
Intrinsic or extrinsic polarity signals specify the cortical assembly site of the cortical 
machinery and drive the directional movement of the spindle (Fig. 6.3a, b) (Thery 
et al. 2005; Kiyomitsu and Cheeseman 2012). Although cortical microtubule inter-
action between dynein and dynamic microtubule end has been recently reconsti-
tuted in an in vitro system using purified dynein motor domain and micro-fabricated 
barriers (Laan et al. 2012), how functional force-generating machinery assembles in 
response to intrinsic and extrinsic signals (Fig. 6.3b, c) and generates large cortical 
spindle-pulling forces within a cell remains poorly understood.

Whereas dynein, dynactin and NuMA play other key roles in spindle assembly 
(Hueschen et al. 2017), LGN and Gαi specifically localize at the cell cortex and 
have no roles in functional spindle assembly (Kiyomitsu and Cheeseman 2012). 
Thus, depletion of LGN or Gαi by RNAi does not affect the integrity of the mitotic 
spindle and provides an appropriate condition to assemble cortical force-generating 
sub-complexes and directly assess their abilities in spindle positioning (Fig. 6.4a). 
Although the dynein heavy chain (~500 kD) and NuMA (~240 kD) are very large 
proteins, CRISPR-based genome editing enables to insert appropriate tags in their 
endogenous gene loci at either N- or C-terminal region (Natsume et al. 2016). In 
addition, by exogenously expressing truncation fragments, mutants, or siRNA-
resistant proteins, it is also possible to assemble multiple different sub-complexes 
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and analyze their functions in spindle positioning (Fig. 6.4b). Furthermore, HeLa 
cells or other cultured human cell lines divide symmetrically and likely do not 
express polarized factors such as Dishevelled (Fig.  6.3c) (Segalen et  al. 2010), 
which is required for controlling spindle orientation during oriented/asymmetric 
cell division. Thus, by artificially expressing these polarized factors in symmetri-
cally dividing cells and manipulating their localization using light, it is possible to 
dissect their roles in the assembly of cortical force-generating complex and spindle 
orientation.

6.5  �Perspectives

Previous studies have identified key macro-molecular complexes that play critical 
roles in diverse cellular functions (Cheeseman et  al. 2004; Obuse et  al. 2004; 
Kiyomitsu and Cheeseman 2012; Goshima et  al. 2008). Hence, it is definitely 
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important to investigate their precise functions and structures in in vitro reconstitu-
tion systems. However, in many cases, it is difficult to fully reconstitute these 
macro-molecular complexes and their targets in vitro. Recent innovation of optoge-
netic tools has led to the development of in vivo reconstitution systems to under-
stand the functional properties and structure of reconstituted sub-complexes within 
a cell. Light-induced targeting of proteins and their mutants is a powerful method to 
define both sufficiency and requirement of their molecular functions under more 
physiological conditions. Importantly, in cell reconstitution can be also used to 
manipulate cellular dynamics in a spatially and temporally controlled manner. For 
example, temporal reconstitution of force-generating sub-complex at specific corti-
cal region during mitosis can induce spindle orientation or displacement and con-
vert cell division mode from symmetric to asymmetric or vice versa in symmetrically 
or asymmetrically dividing cells. Such manipulation may lead to unexpected pheno-
types and open new directions in the field of cell and developmental biology. 
Because light-based strategies have high penetrance, low toxicity, and high spatial 
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different sub-complexes and understand the sufficiency and requirement of cortical pulling-force 
generation

6  Optogenetic Reconstitution: Light-Induced Assembly of Protein Complexes…



62

and temporal precision, these characters and convenience are great advantages to 
manipulate target molecules in complicated in vivo situations, such as tissues in 
multicellular organisms.
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