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Chapter 4
Apical Cytoskeletons Help Define 
the Barrier Functions of Epithelial Cell 
Sheets in Biological Systems

Sachiko Tsukita, Tomoki Yano, and Elisa Herawati

4.1  �Introduction

Epithelial cells adhere to each other by tight junctions (TJs) to form cell sheets, 
which is a critical step in epithelial barrier creation and the morphogenesis of verte-
brate tissues (Fleming et al. 2000; Tsukita et al. 2001; Anderson et al. 2004; Furuse 
and Moriwaki 2009; Van Itallie and Anderson 2014; Tanaka et al. 2017). The apical 
surface of an epithelial cell sheet faces the outer environment, such as the lumen in 
the intestinal tract or the environment outside the skin surface. In the sheet, the 
cells’ apical membranes are regarded as a continuous, connected surface, in which 
the cell-cell adhesion sites are cemented by TJs. Notably, each epithelial cell exhib-
its basolateral polarity, and therefore the apical surface of an epithelial cell sheet 
differs from the basolateral one, and possesses specific features that relate to its 
roles in a particular biological functional system (Nelson 2009; Apodaca 2017). 
Apical differentiation is a popular topic of study, and includes microvilli, cilia,  
circumferential rings (Nelson 2009; Apodaca 2017), and ratchet structures, which 
have been described in Drosophila but not yet in vertebrates (Martin et al. 2009). 
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Consistent with the critical and varied roles of the apical surface, we recently identi-
fied a 3-layered cytoskeletal network of actin filaments, intermediate filaments, and 
microtubules that exists just below the apical membrane of epithelial cell sheets. 
The apical cytoskeletons are presumably organized under the control of the TJs and 
regulate epithelial morphogenesis and barrier functions in conjunction with TJ for-
mation and TJ-based cell signaling. Thus, we propose to define this set of structures 
as a system called the “TJ-apical complex” (Yano et al. 2017).

A natural question is why this apical cytoskeletal system was not discovered 
until recently. It is a very thin-layered structure mainly composed of actin filaments, 
intermediate filaments, and microtubules, which appear as a continuous structure 
extending horizontally just beneath the apical plasma membrane. We discovered 
this network using an advanced imaging system, including ultrahigh voltage elec-
tron microscopic tomography and confocal super-resolution microscopy, that we 
developed (Kunimoto et al. 2012; Yano et al. 2013; Tateishi et al. 2017). Although 
the molecular mechanisms and physiological roles of the “TJ-apical complex” 
remain to be elucidated, we recently identified four TJMAPs (TJ Microtubule-
associated Proteins; previously called J-MAPs), including cingulin which are 
TJ-associated proteins that bind to the apical cytoskeletons (Yano et  al. 2013). 
During the morphogenesis of epithelial cell sheets, apical constriction and the size 
of the apical area defined by TJs must be kept in balance. Our recent data suggest 
that TJMAPs may constitute a platform on which the apical cytoskeletons and TJs 
associate to organize biological systems, although more study is needed to examine 
this possibility (Fig. 4.1).

Regarding the functions of the “TJ-apical complex,” multiciliated cells represent 
a highly specific case in which the apical microtubules are particularly highly devel-
oped. In tracheal multiciliated cells (MCCs), the apical microtubules have a specific 
role in establishing the regular arrangement of basal bodies (BBs), which generate 
cilia in the apical membranes (Kunimoto et al. 2012; Herawati et al. 2016; Tateishi 

Fig. 4.1  Immunofluorescence image (a) and schematic drawing (b) of the apical microtubule 
network existing beneath the apical membrane of epithelial cells. Microtubules (α-tubulin-
staining), green; Tight junctions (ZO1-staining) red; Nuclei (DAPI-staining), blue. Scale, 10 μm. 
TJ, tight junction. Bar, 10 μm
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et al. 2017). To explore the differentiation mechanism leading to the regular BB 
alignment, we examined tracheal MCCs expressing GFP-centrin, a BB-associated 
protein, using our new long-term, high-resolution, live-imaging system. The 
microtubule-dependent regular arrangement of BBs is critical for the synchronous 
beating and metachronal waves of hundreds of motile cilia on the apical membrane 
of MCCs (Guirao and Joanny 2007; Elgeti and Gompper 2013). Thus, the physio-
logical role of the apical cytoskeleton that we revealed in this case is likely to be 
essential for tissue function (Fig. 4.2).

By comparing the findings for various epithelial cells, both the common and 
unique characteristics of the apical cytoskeletal structures are being revealed. In the 
following sections, we discuss the roles of the apical cytoskeletons, especially micro-
tubules, in epithelial cell sheets that have specific functional relevance (Fig. 4.3).

4.2  �The Apical Cytoskeletons in General Epithelial Cells

In confluent epithelial cell sheets, each cell is highly polarized in the apico-basal 
direction, and the cells’ apical membranes are regarded as a continuous surface con-
nected by TJs. Although the mechanism by which TJs are positioned at the most 
apical part of the lateral membrane is not understood, the TJs determine the edges 

Fig. 4.2  Ultra high-voltage electron-microscopy images (a, b) of basal bodies and schematic 
drawing (c, d) of multi-ciliated epithelial cells. The apical microtubules (green) between basal 
bodies (BBs) in the wild-type mice and Odf2-mutant (Kunimoto et al. 2012). In the Odf2 mutant 
mice, the BB (basal body) alignment was perturbed by the loss of BFs (basal feet: the accessory 
structure of BBs) and of the regular apical microtubule network. Bar, 100 nm
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of each cell’s apical membrane when the cell sheet is viewed from the top (the api-
cal view). Distinct, specific differentiation mechanisms occur in the apical area. 
Well-known classical examples of apical differentiation are the circumferential ring 
at cell-cell boundaries and the terminal web (Leblond et al. 1960; Hull and Staehelin 
1979; Owaribe et al. 1981; Burgess 1982; Keller et al. 1985). In Drosophila epithe-
lial cells, a “ratchet structure” consisting of actin filaments exists in the medial area 
of apical membranes (Martin et al. 2009), although no similar structure has been 
clearly identified in mammalian epithelial cells. By applying our super-resolution 
microscopy system to cultured epithelial cell sheets, we discovered the detailed 
structure of the apical cytoskeleton, which was previously unknown and uniquely 
distributed beneath the apical membrane like a shell (Yano et al. 2013). This loca-
tion led us to propose that the apical cytoskeletal network is associated with TJs, 
which are located at the most apical part of the lateral membrane, and that these 

Fig. 4.3  Immunofluorescence images, circular diagrams, and schematic drawing of basal bodies 
(BBs) and basal feet (BF) during BB pattern development of Floret (a), Scatter (b), Partial 
Alignment (c) and Alignment (d). Orientation of each BB is shown by an arrow connecting the 
center of a BB marker (green) to the center of a BF marker (red) (insets) and by the circular dia-
grams of ciliary orientation (direction of white arrows in the immunofluorescence image). (Bottom) 
Illustration of cilia. Bar, 10 μm
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structures form a system called the “TJ-apical complex.” However, to establish this 
new point of view, we needed to acquire evidence at the molecular level for the 
association of the apical cytoskeleton with the TJs.

We further examined the apical cytoskeleton in detail, by performing ultra-high 
voltage electron microscopy experiments in which the microtubules and intermedi-
ate filaments were tracked. In general epithelial cells in culture, the apical microtu-
bules and intermediate filaments were distributed in the apical plane in rather 
uniformly scattered patterns and partly overlapped each other, without any specific 
patterns in their distribution (Tateishi et al. 2017). In this respect, it is notable that 
we identified four microtubule-associated proteins, which also associate with TJs, 
in our recent findings, TJ-associated microtubule-binding proteins. We believe that 
analyses of the TJ-associated microtubule-binding proteins, which may form the 
platform for associations among the apical cytoskeletons, TJs, and cell signaling 
molecules, represent a unique direction for studying epithelial cell sheets and epi-
thelial barriers.

4.3  �The Apical Cytoskeletons in Multiciliated Cells, 
a Possible Extreme Example of a “TJ-Apical Complex” 
with a Clear Function

MCCs drive fluid transport through coordinated ciliary beating, the direction of 
which is established by the BB orientation of hundreds of cilia on one cell (Salathe 
2007). In airway MCCs, the BBs are uniformly oriented and linearly aligned by an 
unknown mechanism. To explore the mechanism for BB alignment, we observed 
GFP-centrin2-labeled BBs in mouse tracheal MCCs in primary culture using our 
long-term, high-resolution, live-imaging method (Herawati et al. 2016). We found 
that the differentiating BB arrays sequentially adopted four stereotyped patterns: a 
clustering “Floret,” “Scatter,” “Partial alignment,” and linear “Alignment” pattern. 
During this acquisition of regularity, we particularly noted that the patterns and 
densities of microtubules in the apical plane of the MCCs were well correlated with 
the BB patterning. In addition, the BB alignment was perturbed by disrupting the 
apical microtubules with nocodazole or by a basal foot (BF)-depleting Odf2 muta-
tion. Based on these experimental results, we explored the development of BB 
alignment from random to the final well-ordered pattern biotheoretically. We found 
that the self-organization could be explained by applying hydrodynamic theories in 
which the apical cytoskeletons were treated as a two-dimensional viscous fluid that 
underwent a contractile force mediated by cytoskeletal motors and filament polym-
erization (Marchetti et  al. 2013; Prost et  al. 2015; Herawati et  al. 2016). These 
results revealed the functional importance of the cytoskeletal components that exist 
in the apical plane of the epithelial cell sheet in tracheal MCCs. Although the rela-
tionship between the apical cytoskeletons and TJs remains to be elucidated, their 
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locations and binding molecules suggest that they are closely related both physi-
cally and functionally in MCCs. How the apical cytoskeleton is built by the TJ and 
its related signaling is another critical issue that remains to be explored.

4.4  �Perspective

Epithelial cell sheets with a differentiated apical side are formed and organized by 
mechanisms involving apicobasal polarity, the details of which have been well 
addressed in other reviews (Shin et al. 2006; Nelson 2009; Rodriguez-Boulan and 
Macara 2014; Apodaca 2017). In general, to establish the apicobasal polarization in 
epithelial cell sheets, polarity proteins generate asymmetric membrane domains that 
form the basis for establishing the cell–cell adhesive TJs and adherens junctions 
(AJs), which combine to form apical junctional complexes (AJCs). In addition, pla-
nar cell polarity (PCP), which forms in the apical plane of epithelial cell sheets, is 
arranged perpendicular to the basolateral polarity. The actin filaments of the circum-
ferential ring also lie horizontally along the apical membrane at cell boundaries. 
The “TJ-apical complex” expands horizontally below the apical membrane in an 
almost evenly scattered pattern. Since it includes TJs, it is likely to play a role in the 
paracellular barrier. On the other hand, since it is directly or indirectly associated 
with the apical membranes of epithelial cells, it probably also has a role in the tran-
scellular barrier. Thus, the epithelial barrier is created and regulated by the combi-
nation of paracellular and transcellular barriers, which are determined, at least in 
part, by the “TJ-apical complex.” Our continued investigation of the “TJ-apical 
complex” in ciliated and non-ciliated epithelial cells is expected to unveil its physi-
ological significance in a variety of biological epithelial barrier systems.
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