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Chapter 29
Imaging and Therapy Against Hypoxic 
Tumors with 64Cu-ATSM

Yasuhisa Fujibayashi, Yukie Yoshii, Takako Furukawa, 
Mitsuyoshi Yoshimoto, Hiroki Matsumoto, and Tsuneo Saga

29.1  �Radiolabeled Cu-ATSM as a Hypoxia Imaging Agent 
for PET

In tumors, hypoxia frequently occurs due to poor vascularization and tight packing 
of cancer cells. Tumor hypoxia is associated with adverse prognosis due to failures 
in radiotherapy and chemotherapy and to tumor metastasis (Brown 1999). It is thus 
important to develop methods for diagnosis and therapy of hypoxic tumors. 
Noninvasive methods to detect hypoxic tumor have been intensively developed 
(Padhani et al. 2007).
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We have developed a novel positron emission tomography (PET) imaging agent, 
Cu-diacetyl-bis (N4-methylthiosemicarbazone) (Cu-ATSM), which can target tumor 
hypoxia with over-reduced conditions. Cu-ATSM can be labeled with several Cu 
radioisotopes, such as 60Cu, 62Cu and 64Cu (Dehdashti et al. 2008; Fujibayashi et al. 
1997, 1999; Lewis et al. 2001; Obata et al. 2001, 2005; Yoshii et al. 2012). Cu-ATSM 
is reported to accumulate in hypoxic environments in many kinds of tumor cells in 
vitro (Obata et al. 2005; Lewis et al. 1999; Burgman et al. 2005). Distribution of 
Cu-ATSM in tumor tissues differs from that of 18F-fluorodeoxyglucose (18FDG), a 
commonly used PET imaging tracer of glucose uptake (Obata et al. 2003; Tanaka 
et  al. 2006). Cu-ATSM shows its high uptake in regions that are hypovascular, 
undergoing cell cycle arrest but little necrosis, while 18FDG accumulates regions of 
hypervascularity and cell proliferation going to necrosis (Obata et al. 2003; Tanaka 
et  al. 2006). The mechanism of Cu-ATSM accumulation in hypoxic regions has 
been reported (Fujibayashi et  al. 1997; Obata et  al. 2001; Burgman et  al. 2005; 
Dearling et al. 2002; Holland et al. 2009). Cu-ATSM, a rigid complex of Cu(II) and 
ATSM, is easily divided by reduction of Cu(II) to Cu(I) and trapped into the cells 
under highly reduced intracellular conditions such as hypoxia (Fujibayashi et al. 
1997; Obata et al. 2001; Burgman et al. 2005; Dearling et al. 2002). Cu-ATSM rap-
idly diffuses into cells and tissues even in low perfusion areas and is trapped within 
cells under highly reduced conditions such as hypoxia (Fujibayashi et  al. 1997, 
1999; Obata et al. 2001; Yoshii et al. 2012; Holland et al. 2009; Bowen et al. 2011). 
Preclinical studies have revealed that Cu-ATSM uptake increases with higher intra-
cellular levels of the biological reductant NAD(P)H, which is associated with 
hypoxia and mitochondrial dysfunction, and activity of NAD(P)H-dependent reduc-
tive enzymes, rather than oxygenic conditions (Obata et al. 2001; Yoshii et al. 2012; 
Holland et al. 2009; Bowen et al. 2011).

In recent years, clinical PET studies using radiolabeled Cu-ATSM have been 
conducted for many types of cancers throughout the world. In Japan, our institute 
produced a generator system of 62Cu and multicenter clinical studies of 62Cu-ATSM 
PET have been conducted using our system. These clinical studies have shown that 
Cu-ATSM uptake is associated with therapeutic resistance, metastatic potential, and 
poor prognosis in several types of cancer (Dehdashti et al. 2008; Dietz et al. 2008; 
Lewis et al. 2008; Sato et al. 2014; Tateishi et al. 2013). Cu-ATSM uptake is cor-
related with high HIF-1α expression in patients’ glioma (Tateishi et al. 2013). These 
clinical studies have demonstrated that tumor hypoxia assessed by Cu-ATSM uptake 
is associated with the tumors’ malignant behaviors (Dehdashti et al. 2003, 2008; 
Dietz et al. 2008; Grigsby et al. 2007).

29.2  �64Cu-ATSM as a Theranostic Agent

64Cu-ATSM can be used as a “theranostic” agent. Namely, this agent can be applied 
not only as a PET imaging agent but also as an internal radiotherapy agent against 
tumors, since 64Cu shows β+ decay (0.653  MeV, 17.4%) as well as β− decay 
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(0.574  MeV, 40%) and electron capture (42.6%). The photons from electron-
positron annihilation can be detected by PET, while the β− particles and Auger 
electrons emitted from this nuclide can damage tumor cells (Lewis et  al. 2001; 
Obata et al. 2005; Yoshii et al. 2011; Yoshii et al. 2016). In addition, the half-life of 
64Cu (t1/2 = 12.7 h) is appropriate for both diagnostic and therapeutic use. 64Cu is a 
practical nuclide for the use of both diagnosis and therapy, because it can be readily 
produced with an in-hospital small cyclotron. The therapeutic effect of 64Cu-ATSM 
has been demonstrated in both in vitro (Obata et al. 2005) and in vivo studies (Lewis 
et al. 2001; Aft et al. 2003). 64Cu-ATSM reduces the clonogenic survival of tumor 
cells under hypoxia by inducing post-mitotic apoptosis (Obata et al. 2005). This is 
caused by heavy damage to DNA via high-linear energy transfer (LET) Auger 
electrons emitted from 64Cu (McMillan et al. 2015). An in vivo study using tumor-
bearing hamsters demonstrated that 64Cu-ATSM treatment increased survival time 
without severe toxicity (Lewis et al. 2001). These previous studies supported the 
feasibility of 64Cu-ATSM treatment against hypoxic tumors with high-LET radiation.

29.3  �64Cu-ATSM Theranostics for Cancer Stem Cells

We have demonstrated that 64Cu-ATSM preferentially localizes in intratumoral 
regions with a high density of CD133+ cells, which show characteristics of cancer 
stem cells or cancer stem cell-like cells (CSCs) and showed therapeutic effect 
against CSCs in a mouse colon carcinoma (Colon-26) and human colon carcinoma 
(HT-29) models (Yoshii et al. 2011; Yoshii et al. 2016; Yoshii et al. 2010). In these 
studies, 64Cu-ATSM treatment inhibited tumor growth, and the percentage of 
CD133+ cells and metastatic ability in 64Cu-ATSM treated tumors were decreased 
compared to that in non-treated control tumors. 64Cu-ATSM accumulated in the 
cells under hypoxic conditions and incorporation of 64Cu-ATSM under hypoxia 
caused cell death in both CD133+ and CD133− cells. We have demonstrated that the 
intratumoral 64Cu-ATSM high-uptake regions exhibited upregulation of DNA repair, 
which results in therapeutic resistance. 64Cu-ATSM high-uptake regions showed 
upregulation of pathways related to DNA repair along with nucleic acid incorpora-
tion (bromodeoxyuridine uptake). In addition, combination use of nucleic acid anti-
metabolites, such as a pyrimidine analog 5-fluorouracil, a purine analog 
6-thioguanine, and a folate analog pemetrexed, enhanced the efficacy of 64Cu-ATSM 
internal radiotherapy by inhibiting DNA repair and effectively reduced %CD133+ 
CSCs. Therefore, our study suggested that co-administration of 64Cu-ATSM and 
nucleic acid antimetabolites could have a potential to cure tumor malignant environ-
ment and CSCs.
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29.4  �Biodistribution and Dosimetry of 64Cu-ATSM

We have examined biodistribution of 64Cu-ATSM using mice and performed dosim-
etry analysis. Relatively high accumulation of 64Cu was observed in the liver, small 
intestine, and large intestine among normal organs. 64Cu were mainly excreted in the 
feces, but little urinary excretion was observed. Our dosimetry analysis demon-
strated that the liver, ovaries, and red marrow should be considered as dose-limiting 
organs in 64Cu-ATSM internal radiotherapy. For clinical applications, we have 
developed a strategy to reduce radiation doses to these critical organs while preserv-
ing tumor radiation doses by the appropriately scheduled administration of copper 
chelator penicillamine during 64Cu-ATSM internal radiotherapy (Yoshii et al. 2014). 
In this method, penicillamine was orally administered at 1 h after 64Cu-ATSM injec-
tion, when radioactivity was almost cleared from the blood and tumor uptake had 
plateaued. Using this method, penicillamine decreased 64Cu accumulation in the 
critical organs, while maintaining tumor uptake.

29.5  �This Project

Anti-VEGF antibody bevacizumab is an antiangiogenic agent in widespread clini-
cal use for cancer. Despite the initial positive effect of this treatment, continued use 
of bevacizumab induces hypoxia and makes tumors malignant. Thus, additional 
strategies to treat the hypoxia during bevacizumab therapy are needed. In this proj-
ect, we are developing a method to detect and treat tumors that became malignant 
by acquiring decreased vascularity and hypoxia, during antiangiogenic bevaci-
zumab treatment, with 64Cu-ATSM.

29.6  �Development of a Method to Detect Vascularity 
and Hypoxia In Vivo

Recently, an imaging technology with single-photon emission computed tomogra-
phy/positron emission tomography/computed tomography (SPECT/PET/CT) to 
obtain simultaneous images using two different tracers labeled with SPECT and 
PET nuclides with CT has been developed. By applying the SPECT/PET/CT tech-
nology, we developed a method to simultaneously visualize vascularity and hypoxia 
with 99mTc-labeled human serum albumin (99mTc-HSA) to detect blood pool, and 
64Cu-ATSM to detect hypoxia (Adachi et  al. 2016). In this study, we performed 
in  vivo imaging experiments using the VECTor SPECT/PET/CT small-animal 
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scanner (MILabs) with HT-29 tumor-bearing mice. 64Cu-ATSM (37  MBq) and 
99mTc-HSA (18.5 MBq) were intravenously injected into a mouse at 1 h and 10 min, 
respectively, before scanning for 20 min. The 99mTc/64Cu dual-isotope SPECT/PET/
CT images were then obtained. In vivo SPECT/PET/CT imaging with 64Cu-ATSM 
and 99mTc-HSA visualized distribution of each probe and showed that 64Cu-ATSM 
high-uptake regions barely overlapped with 99mTc-HSA high-uptake regions within 
non-treated HT-29 tumors (Fig. 29.1).

To obtain a bevacizumab-treated tumor model, HT-29 tumor-bearing mice were 
treated with bevacizumab (5 mg/kg twice a week) for 3 weeks. Using this model, 
dual-isotope SPECT/PET/CT imaging with 99mTc-HSA and 64Cu-ATSM was per-
formed to check tumor vascularity and hypoxia. For comparison, un-treated tumors 
that showed similar size to bevacizumab-treated tumor model, were used. From 
imaging study, bevacizumab-treated tumors showed reduced vascularity and 
increased proportion of hypoxic areas within tumors.

29.7  �64Cu-ATSM Therapy

For treatment study, 64Cu-ATSM (37 MBq) or saline was intravenously injected into 
mice with bevacizumab-treated mice (bevacizumab+64Cu-ATSM or bevacizumab 
group). For comparison, a group without bevacizumab-treatment (64Cu-ATSM 
alone) and un-treated control were also examined. Bevacizumab+64Cu-ATSM group 
showed the greater inhibition of tumor growth, compared with bevacizumab group, 
64Cu-ATSM alone group, and un-treated control, without side effect. Therefore, our 
data demonstrated that 64Cu-ATSM therapy effectively inhibited tumor growth in 
bevacizumab-treated HT-29 tumors. 64Cu-ATSM therapy could be a novel approach 
as an add-on to antiangiogenic therapy with bevacizumab (Fig. 29.2).

Fig. 29.1  In vivo SPECT/PET/CT imaging with 64Cu-ATSM and 99mTc-HSA
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29.8  �Conclusion

We have seen that 64Cu-ATSM is a promising theranostic agent targeting tumor 
hypoxia, which is related to tumor malignant behaviors, such as therapy resistance, 
metastatic potential, existence of cancer stem cells. 64Cu-ATSM has unique charac-
teristics to target tumor malignant behaviors. Therefore, 64Cu-ATSM would be use-
ful to cure malignant tumors due to hypoxia.
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