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Abstract. The growth in amount and species of malicious programs are now
turning into a severe problem that strengthens the demand for development in
detecting and classifying the potential threats automatically. Deep learning is an
acceptable method to process this increment. In this paper, we propose an
innovative method for detecting malware which uses the combined features
(static + dynamic) to classify whether a portable executable (PE) file is mali-
cious or not. A thorough experimental research on a real PE file collection was
executed to make comparisons with the results that was performed in diverse
situations and the performances of different machine learning models. The
experiments prove the effectiveness of our model and show that our method is
able to detect unknown malicious samples well.
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1 Introduction

The amount of malware is growing annually and various types of attacks are more
progressive and complex than before. One issue in computer security is thence to
discover malware, so that it can be blocked before reaching its targets, or at least so that
it can be wiped out in case it has been detected.

However, hackers keep on accelerating the automation of malware construction
applying approaches such as polymorphism at a shocking rate. Obviously, automatic
detection using highly precise intelligent models may be the only selection to fight
against the issue in the future.

In recent years, a convergence of three evolutions have raised the probability for
success in approaches using machine learning, keeping the commitment that these
methods may reach pretty good detection performance at very low error rates without
the trouble of human signature production required by non-automatic approaches.

The growth of commercial threat information feeds is the first of these tendencies
which supplies great volumes of new malware, representing that for the first time,
promptly, labeled malware samples are accessible to the security community. The
second tendency is that computing power is much stronger and cheaper nowadays,
implying that researchers are able to go over malware detection machine learning
models more swiftly and train much more sophisticated and deeper models. Ultimately,
machine learning as a subject has developed, suggesting that investigators have more
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instruments to build models which can reach great performance not only in accuracy
but also in scalability.

We propose an innovative method for detecting malware which uses combined
features (static + dynamic) to classify whether a portable executable file is malicious or
benign in this paper. Our method employs 2 kinds of neural networks to fit distinct
property of respective work pipelines. The first type of neural network we use is
recurrent neural network that is trained for extracting behavioral features of PE file, and
the second type is convolutional neural network that is applied to classify samples. At
the training stage of our method, we firstly extract static information of a PE file and
use sandbox to record system API call sequences as dynamic behaviors. Then we
extract static features based on predefined rules and dynamic features out of the trained
RNN model. Next we combine them and use well design algorithm to create images.
Lastly, we train and validate the concurrent classifier using images created in the
previous steps labeled with 1(malicious) or 0(benign).

2 Related Work

In this section, we present published researches of deep neural network and malware
detection.

2.1 Deep Neural Network

Neural networks (NN) have been studied for over thirty years which imitates the
architecture referring to neuron collections in brain. NN consists of multiple layers.
Deep neural networks (DNN) is a type of NN that comprises a lot of hidden layers.

Deep learning has become prevalent in many areas such as speech recognition [1]
and computer vision [2] in recent times. Hinton et al. put forward an astonishing
method called Dropout that can solve gradient vanishing problem well [3]. This
approach decreases dependencies among neurons through omitting several results of
neurons to prevent overfitting. The omitted neurons are selected stochastically.
Therefore, all training is executed with distinct architectural network which decreases
the dependency between neurons. Krizhevsky et al. use CNN which astonishingly
reduced the false positive rate in the field of computer vision. Gers et al. put forward
LSTM [4] which avoids the error disappearing issue.

2.2 Malware Detection

There are two types of malware detection approaches. The first type is detecting
malicious files before they run to avoid endpoints being infected, and the second type is
detecting endpoints which have been attacked to reduce the outspread of loss to the
smallest possible degree.

Malware classification has been a popular research fields since 1990s. Mathur and
Idika [5] proposed a good overview in this area. Kephart et al. [6] put forward an
innovative method which utilizes neural networks for detecting malicious behaviors.
Dahl et al. [7] made attempt to do malware classification utilizing neural networks and
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random projections on a large scale. Saxe et al. [8] try to do static analysis on samples
by using feed-forward neural networks. Huang et al. [9] concentrated on assessing
multi-task learning ideas and made use of deep feed-forward neural network. Pascanu
et al. [10] built models based on system call sequences and utilized recurrent neural
networks so as to build a “language model” for target files. They took measures to
check performance on gated recurrent units (GRU) and long short-Term memory
(LSTM) and reported good results.

3 Proposed Method

In this section, we propose an innovative method for detecting malware which uses
combined features to classify whether a PE file is malicious or benign. We split the
approaches into 4 stages. The first one extracts static feature information from PE file.
The second stage records the system API sequences using sandbox and processes them
by RNN. At the third stage, we combine the former static and dynamic features and
convert them into fixed feature vectors which are going to be transformed into images.
Finally, we train and classify the images using designed model based on CNN.

3.1 Overview

The overview of our proposal is shown in Fig. 1. For each file, many types of raw
information are collected such as header, byte histogram, import list, etc., and a suit of
application programming interface (API) call events.

Static information does not need thorough or sophisticated configuration for col-
lection and multiplex static features have been raised for feature engineering of PE file:
printable strings [11], opcodes, import tables, informational entropy [12] and byte
n-grams [13]. We extract some basic features using approaches which have been used
in previously published works.

File behaviors are consisted of a variety of activities such as registry operation, file
management and so on which involve various operations. When we use API call
sequences to represent dynamic information, a variety of API calls stand for an activity,
and all of the recorded API calls will be regarded as dynamic features of target file. This
hierarchical structure is the very picture of the composition of writings. A single
writing is made up of multiple sentences which consist of various words. Therefore, we
suppose that we are able to utilize language model like RNN to get the dynamic
features of file.

The feature vectors extracted from static and dynamic information will be con-
catenated and converted into an image. And the generated image will contain combined
information which will be use later. Our classifier is based on CNN since it has been
proved to be very effective in image classification.

The training flow can be divided into four phases as shown in Fig. 1. First, col-
lecting basic static and dynamic information of PE files. Second, the static features are
extracted using predefined extractor and the RNN is trained using file API sequences to
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extract dynamic features. Third, features are combined and converted into feature
images. At last, the neural network classifier will be trained and validated using labeled
generated images.

After training the designed classifiers, we verify the effectiveness of our model. At
the beginning, generating the images of PE files in validate dataset using the former
steps. Finally, these files will be labeled whether 1 or 0 using model depended on the
outputs and predefined threshold.

The specific details of every step are introduced in the following sections.

3.2 Static Features

We predefined some basic features which will be extracted from PE file using methods
employed in previously published works. The following Table 1 gives a summary of
all target static features.

3.3 Dynamic Features

API Call Sequences. Before feeding the system API call sequences to designed
models, we have to preprocess the input data. Dealing with redundant data and turning
inputs into numerical vectors are two of the primary preparations. Firstly, we clean API
sequences in which a single API is duplicate over 2 times. We merge these same API
call sequences through applying maximum 2 successive duplicate system API call
instances in the results. Moreover, we utilize 1-hot encoding method to create a specific
binary vector for each system API call in our dataset. Along these lines, we get a set of
numerical feature vectors rather than a suit of system API call names.

Fig. 1. Overview
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Training LSTM. We employ LSTM which is a type of recurrent neural network to
build our behavior model. Our model is consisted of an input layer X, multiple hidden
layer (1 oridinary + 2 LSTM), and an output layer Y. The structure of our behavior
model is illustrated in Fig. 2.

Feature Extraction. We extract dynamic features of PE file by using trained model
based on RNN. Our trained dynamic feature extractor is able to output the next pre-
dicted action from former sequences of inputs. Furthermore, fractional features are
distilled in layers that near to the head of deep neural networks. And abstracted features
are distilled in layers near to the bottom. Therefore, we are supposed to get behavioral
features in deep layer of trained model.

Table 1. Summary of target static features

Features Description

Byte histogram byte histogram (count + non-normalized) over the entire binary
file

ByteEntropy histogram 2d byte/entropy histogram
Section information section names, sizes and entropy: section_sizes_hashed,

section_entropy_hashed, etc.
Imports information imported libraries and functions from the import address table
Exports information exported functions
General File information general information about the file: size, vsize, has_debug, etc.
Header File information machine, architecture, OS, linker and other information extracted

from header: timestamp, machine, etc.
String extractor extracts strings from raw byte stream: ‘numstrings’, ‘avglength’,

etc.

Fig. 2. RNN training process
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3.4 Feature Selection and Imaging

Once getting static and dynamic features, we transform and concatenate them to build a
combined vector. We design image classifier to receive fixed size of vectors. Thus, we
have to transform the chains of vector to configured length since the sequences of
system API are totally different between PE files.

V ¼
v1
v2. . .
vn

0
B@

1
CA ¼

v11 v12 . . . v1m
v21 v22 . . . v2m

. . .
vn1 vn2 . . . vnm

2
664

3
775 ð1Þ

We transform value of feature matrix to the range of [0,1] through using sigmoid
function. Then we multiply each element in the matrix with 255 to constitute image of
the source file. At last, the matrix V is calculated as feature image with size of n � m.

3.5 Deep Neural Networks

Next, we train a deep feed forward concurrent neural network (CNN) for binary
classification. The network architecture is shown in Fig. 3.

The CNN is consisted of an input layer, 2 convolution layers, 2 pooling layers,
2 fully connected layers, and an output layer. Each pooling layer obtains the result
of the former layer and cut the output size into one half using average-pooling with step
of two. The dimension of the output layer is 2 since we try to proceed binary
classification.

By applying the classifier which has been trained, we compute the value of target
file in the validation phase. When feed our trained classifier with a feature image of the
validation file, it will output a 2 dimensional vector. And elements in the vector stand
for benign and malicious extent. If the malicious value is bigger than the benign value,
we can classify the source file as malicious. The probability value is computed through
employing function below.

p ¼ sigmoid yð Þ ¼ 1=1þ exp �yð Þ ð2Þ

Fig. 3. Structure of CNN classifier
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ReLU. The tanh and sigmoid activation function generally appear the gradient van-
ishing problem making models based on deep neural network difficult to train [14]. To
overcome this trouble, we employ rectified linear unit (ReLU) and its activation
function is as follows:

f xð Þ ¼ max 0; xð Þ ð3Þ

Dropout. Dropout is a regularization method which is designed for the training phase
of DNN. The key operation is that the algorithm makes a choice to update part of the
hidden units randomly when updating hidden layer. The intuition for this method is that
while ignoring units in hidden layers randomly, the network will be coerced to get
multiple different patterns with the same dataset. In our designed classifier, we utilize
Dropout to solve the gradient vanishing problem.

Loss function. Deep neural networks learn various patterns of inputs in different
layers. The bottom layer uses function called softmax to calculate two dimensional
vector which stands for benign and malware. To fine tune our model, we employ the
loss function called cross entropy to assess the quality of our model’s results. The
function is illustrated as

Ln h vð Þð Þ ¼ �
X

n2N gtdn vð Þloghn vð Þ ð4Þ

where v stands for the input vector, n means category, N is the set of predicted
categories, gtd stands for ground truth distribution, and h(x) indicates probability
distribution of classifier.

4 Experiment

4.1 Dataset

We use a published framework [15] to collect samples. Our dataset is consisted of files
collected from 3 major sources: Virus Share [16], Maltrieve [17] and private collec-
tions. These origins offer a wide and multiplex amount of files for validation. Our final
dataset contains 90,000 samples with 72,317 labeled as malicious and 17683 labeled as
benign. We train our model on 60,000 of the collected samples. The test data contain
30,000 samples.

There are a lot of tools which are able to track the execution of files and record
system API call sequences [18, 19]. We use an open source sandbox called Cuckoo
which is very useful and the environment it provides is controllable. For each sample,
we receive a set of system API calls and use them to train a RNN model which is able
to extract dynamic features.
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4.2 Evaluation Method

In the following part, we introduce the method applied to evaluate our experiment
results.

In the evaluation phase, we utilize a type of 3-fold cross-validation. So we choose
2/3 of files as training data in each experiment, while the rest of data is allocated into
the test set. As a matter of fact, in order to get a trustworthy capability estimation, we
averaged the results of 10 cross-validation experiments, carried out with a different
stochastic dataset arrangement each time.

For multi-classification issue, Positive indicates a sample x can be classified as
target class t because of surpassing a predefined threshold. On the contrary, it is
Negative. Since we try to divide the sample into two categories, the issue turns into
binary classification. y is the output of x. Under this circumstance, the confusion matrix
is illustrated in Table 2 and we demonstrate the functions which we will use as follows.

TPR ¼ TP=P ð5Þ

FPR ¼ FP=N ð6Þ

AR ¼ TPþTNð Þ= PþNð Þ ð7Þ

where TPR stands for true positive rate, FPR stands for false positive rate and AR
means accuracy rate.

We assess the quality of our classifier using Area Under the Curve (AUC) that can
be calculated from ROC curve which is a figure showing the relationship between FPR
and TPR within threshold. In our method, samples are classified as benign or malicious
based on output probability p calculated by (2). The value p and threshold both lie in
the range of [0,1]. For each situation, we draw ROC curve through treating TPR as y
axis and FPR as x axis. Furthermore, we evaluate classifier efficiency by comparing the
AUC in each situation.

4.3 Result

In our first experiment, we want to know the performance of only using static features
and the performance of only using dynamic features since we combined the static and
dynamic features. Figure 4 show the ROC curve which illustrates that using combined
features outperforms the other two methods.

Table 2. Confusion matrix

Predicted value
y ¼ t y 6¼ t

Original value x 2 t True Positive (TP) False Negative (FN) P = TP + FN
x 62 t False Positive (FP) True Negative (TN) N = FP + TN

Malware Detection with Neural Network Using Combined Features 103



Then we want to evaluate the effectiveness of our methodology compared with the
other machine learning methods. Thus, we compare the classification result of our
designed neural network architecture with traditional machine learning methods such as
Decision Tree, Random Forest, etc., as well as stat-of-the-art deep learning methods
such as CNN, RNN because these models have been widely employed in researches
which have been published. We show the results in Table 3 which proves the effec-
tiveness of employing our designed method.

5 Conclusion

We propose an innovative method for detecting malware which uses the combined
features (static + dynamic) to classify whether a portable executable (PE) file is
malicious or benign in this paper. Our method discovers malicious software through
classifying the generated images using designed model. We make comparisons with the
results that was performed in diverse situations and the performances of different
machine learning models. The results show that our innovative method acquires the

Fig. 4. ROC curves of different feature engineering methods

Table 3. Accuracy of different models

Methods Models ACC

Traditional machine learning methods Decision Tree [20] 90.7%
Random Forest [21] 95.4%
Hidden Markov Models [22] 87.3%
Support Vector Machine [23] 91.4%
KNN [24] 94.7%

NN methods CNN [25] 94.7%
RNN [26] 95.6%

Our method RNN + CNN 97.3%
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best results in all three situations and outperforms the other models which prove great
effectiveness of the proposal. Our method is able to detect unknown malicious samples
well.
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Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.
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