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Abstract. With the market share of Android system becoming the first in the
world, the security problem of Android system is becoming more and more
serious. How to effectively detect Android malware has become a significant
problem. Permissions and API calls in Android applications can effectively
reflect the behavior patterns of an Android application. Most researchers have
only considered a single permission or API feature, and did not consider
associations and patterns inside the permission or API features. Some scholars
have also tried to find the combination modes inside the permission features in
malwares, but the detection of maliciousness according to this combination
mode is too absolute. This paper proposes a malware detection method, which
combines the advantages of frequent pattern mining and Naive Bayes to effec-
tively identify Android malwares.
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1 Introduction

The Android operating system is based on Linux and is an open source operating
system developed by Google. From the official release of Android 1.0 in 2008 to the
first quarter of 2011, Android market share reached 48% in just three years, and
surpassed Symbian to become the world’s first. As of August 2017, only the Android
system has a market share of over 80% in China. According to the first Smart Phone
Market Report [1] published by market research firm Gartner in 2018, Android’s
market share has reached 85.9%, far exceeding the IOS market share of 14.1%.
Android, which maintains such a huge advantage, benefited from the outstanding
performance of Chinese brands such as Huawei, Xiaomi and OPPO in the worldwide
mobile phone market. However, the rapid development of Android system not only
brought about a rapid expansion of market share, but also made the security problem of
Android system become more serious. The 2017 CVE Details report shows that the
Android system ranked first in the number of product vulnerabilities with 842 vul-
nerabilities, an increase of 61.0% compared with 523 in 2016 [2]. According to a
research report released by China’s largest Internet security company 360 in the first
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half of 2018 [3], as of December 2017, up to 93.94% of Android phones have security
vulnerabilities, and 360 Internet Security Center has intercepted 7.573 million new
malware samples on the Android platform, monitoring 214 million Android users
infected with malware.

On the one hand, because Android is an open source operating system, major
mobile phone manufacturers have deeply customized it, resulting in frequent loopholes;
on the other hand, the security of a large number of third-party software cannot be
effectively guaranteed. Android is based on the Linux kernel, but Android’s third-party
software is quite different from Linux. Linux runs open source software that has been
reviewed by the open source community, and security can be guaranteed. Android runs
third-party closed source software, and because the Android system is too fragmented
and free. In addition to Google Play, there is no authoritative audit platform for
Android third-party software, especially in China. The software is closed source and
there is no effective and reasonable auditing mechanism, that allows malware to run on
Android. As the Android operating system quickly became the smartest operating
system with the highest market share, the number of Android software has also grown
rapidly. A recent report showed [4] that by September 2017, the number of Android
software on Google Play has reached 3.3 million, and in addition to Google Play, there
are many third-party app stores that also offer downloads of Android software. Due to
the openness, open source and relatively simple checking mechanism of Android
system, Android system has attracted many malicious application developers. So
Android has become a main platform for malicious applications.

In order to help identify Android malicious applications effectively, this paper
introduces a android malicious application detection method based on frequent pattern
and weighted Naive Bayes, which performs frequent pattern mining on the extracted
privilege features and API features of Android applications, and then use the frequent
pattern as feature to identify and distinguish Android malicious applications through a
weighted Naive Bayes algorithm. Frequent pattern mining [5] is an effective classifi-
cation method in the field of data mining and machine. It searches for frequently
occurring patterns (item sets, sub-sequences, sub-structures) in the data set, and then
identifies and classifies the samples to be tested based on the frequent patterns of such
in-line associations. But identifying and classifying the malware directly through the
frequent patterns found in the rights and API features tends to have a high false positive
rate. This is because a large number of normal Android applications often have fre-
quent patterns of malicious Android applications. It is generally and irresponsible to
classify malicious applications directly based on frequent patterns. Naive Bayes
algorithm [6] is also an important classification method in the field of supervised
learning, and it is also one of the few classification algorithms based on probability
theory. The Naive Bayes principle is simple and easy to implement, and is mostly used
for text categorization. But it is based on a simple assumption: the attributes are
independent of each other. However, the permissions of the Android application and
the API features are not independent of each other. They cooperate with each other to
make the whole software run normally and have certain correlation. Therefore, it is not
appropriate to simply use the Naive Bayes algorithm for the identification of Android
malicious applications. Therefore, the detection method in the paper combines frequent
pattern mining with Naive Bayes, and uses the characteristics of frequent pattern
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connotation to compensate for the unreasonable assumptions of Naive Bayes, and
compensates for frequent pattern recognition with the probability of Naive Bayes.
Through such improvement on Naïve Bayes, frequent patterns and Naive Bayes can be
well coordinated.

The main contributions of this paper are as follows:
We introduce the approach that performs Android malicious application detection

based on frequent patterns and weighted Naive Bayes. Firstly, filtering the feature
feature and API call feature by the feature differentiation degree defined in the text, and
then mine frequent pattern of malicious application and Benign App based on the
filtered feature. Finally, combine the frequent permission & API call feature and
weighted Naive Bayes method to classify Android apps.

Based on this Android malicious application detection method, we implement a
detection tool that can effectively classify and identify whether an Android application
is a malicious application or not.

2 Related Work

Many scholars have done a lot of work on the identification and detection of Android
malicious applications. The current mainstream detection technologies are static
detection technology, dynamic detection technology and hybrid detection technology.
The static detection mainly analyzes the source code, and identifies the malicious
application by extracting the relevant features of the analysis source code. Although
this method is fast, it has a high false positive rate; the dynamic detection technology is
generally executed in a sandbox environment. The program identifies the malicious
application by extracting the running behavior of the analysis application. This method
can effectively detect the known and unknown malware, but the detection time is slow.
The hybrid detection technology combines the static detection technology and the
dynamic detection technology to identify the malicious application, and use machine
learning methods for classification.

A common method for static detection is to detect malicious applications based on
signature features. Liang et al. [7] proposed to declare the order of permissions in the
Android Manifest file to find out the permissions frequently requested by the malware
but not by the normal software, thus automatically generating a set of rules, using for
malware identification. Yang et al. [8] proposed the detection of malicious applications
based on frequent pattern algorithms. This method relys on finding the combination
modes of the permission features in malicious applications to detect malicious appli-
cations, but this method is too absolute, and combinations or patterns of these per-
missions often appear in normal applications, resulting in a lower accuracy rate-79.6%,
sometimes only 73.8%. There is also a component-based detection method [9, 10],
which decomposes the application and extracts important contents such as permissions,
resources, and byte codes to evaluate the program security. Another mainstream static
detection method, Apposcopy [11], uses static stain tracking, combined with internal
component calls, to generate signatures through semantic extraction. However, their
method is only effective for the detection of several malware families, and it is difficult
to detect malware with new signatures.
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Dynamic monitoring generally detects the behavior characteristics of the applica-
tion during its operation, and has certain requirements for real-time and operating
environment. The more mainstream dynamic monitoring methods are generally based
on behavioral characteristics. TaintDroid [12] combines analysis to track malicious
information by detecting the source of information and sensitive data, but many normal
software also need to access sensitive data. Crowdroid [13] distinguishes between
normal and malicious applications by collecting real-time system calls for individual
applications in conjunction with machine learning. TaitDroid [14] captures malicious
advertisements through sandbox detection attacks. Riskranker [15] studied malicious
code in multiple markets, using risky behavior features such as attack signatures, code
encryption, and sending and receiving data for identification.

Hybrid detection combines static detection and dynamic monitoring to combine the
advantages of both to compensate for the shortcomings of both. AMDetector [16]
applies the attack tree model to organize and develop behavior rules, and uses static
analysis to mark attack tree nodes, filtering out most normal applications, and retaining
them for application. In the dynamic analysis phase, the ability of the application and
the ability to detect the selected behavior are analyzed for maliciousness, and a high
detection accuracy is achieved. Mobile-Sandbox [17] uses static analysis results to
guide dynamic analysis to extend the execution code coverage through the mobile
phone sandbox, record API calls and combine machine learning methods for malicious
application detection.

Since the static features of normal applications and malicious applications have
many similarities, static detection based on the combination mode features such as
permissions, API calls, and components often has a high false positive rate, while
dynamic detection and hybrid detection not only are time-sensitive, but have high
requirements for the operating environment. Therefore, the method proposed in this
paper is based on static detection technology, using Naive Bayes algorithm to make up
for the shortcomings of pattern matching in static detection, and using frequent pattern
mining authority and API correlation to make up for Naive Bayes “features are
independent” The preconditions of idealization. It has not only the advantages of
timeliness of static detection technology, but also low false positive rate and high
accuracy.

3 Our Approach

This paper proposes an Android malware detection method based on frequent patterns
and weighted Naive Bayes, Fig. 1 shows the overall process of our approach, it works
in the following step:

Permission and API extraction, extracting the permission features and API call
features in Android applications, and filtering according to the degree of discrimination
of these features, and selecting the top 40 features with the best discrimination.

Permission & API call frequent pattern mining, based on the top 40 features,
perform frequent pattern mining on the Android application dataset to find the per-
mission & API call modes that frequently appear in malicious samples.
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The weighted Naive Bayes classification is characterized by the frequent permis-
sion & API call mode, and weighted the naïve Bayes by the reliability of the frequent
pattern to establish a detection model.

3.1 Permission and API Extraction

The features used in the detection method of this paper mainly come from the per-
mission information and API call information of Android application, then mining the
frequent pattern based on the permission and API features, and further combines the
weighted Naive Bayes algorithm to classify the Android application. So first step is
extracting the initial features from the permission features and the API call features.
Each Android application is mapped to a set consisting of the permission features and
the API call features. The permission of Android is mainly used to control specific
operations executable by the application. During the developing, all the permissions
should be applied in the file named Manifest.xml. Android has 134 permissions, and
also allowing users to customize permissions. However, among these 134 permissions,
INTERNET, ACCESS_NETWORK_STATE, ACCESS_WIFI_STATE and other permis-
sions are widely used in both benign applications and malware. Such features are often
not good for detect malwares. But the frequency of permissions being requested in
normal and malicious programs is quite different, such as WRITE_EXTERNAL_-
STORAGE, READ_SMS, WRITE_SMS, etc. These features tend to have a better effect
on classification. The API call has the same situation. Runtime; -> exec, DataOut-
putStream; -> writeBytes, ActivityManager; -> getProcessMemoryInfo occur more
frequently in malicious applications.

In this case, all the permissions of Android are represented using a set P. All the
API call sets are represented using a set I, and the set A represents the Android
application data set. Considering that many permissions and API calls do not have an
obviously distinction in frequency between benign applications and malwares. Rep-
resentatively, we do not directly map the Android application dataset A to the collection
P[ I composed by permissions and API calls. Because it not only has a bad classifi-
cation effect, but also causes huge waste of computing resources. so we simplify the set
P[ I to P0 [ I 0 by discrimination, P0 [ I 0�P[ I.

The elements in the set P0 [ I 0 should be frequent occurrences in malwares and have
a less frequency in non-malicious applications, or have a less frequency in malicious
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Fig. 1. Overview of the Android malware detection method based on frequent pattern and
weighted Naive Bayes
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applications and frequently occurring in non-malicious applications. Represent the total
number of malicious application samples to Amalj j, the total sample size of benign
applications is Abenj j, the total number of all the malicious application samples with
feature fi is fi;mal

�� ��, and the total number of all the benign application samples with
feature fi is fi;ben

�� ��, the frequency of the feature fi in the malicious application

Fi;mal ¼ fi;malj j
Amalj j , the frequency that appears in normal applications is Fi;ben ¼ fi;benj j

Abenj j .

Definition 1. Measuring a feature’s discrimination for malicious applications and
normal application by dis fið Þ 2 0; 1½ Þ.

dis fið Þ ¼ 1� min Fi;mal;Fi;ben
� �

max Fi;mal;Fi;ben
� � ð1Þ

When dis fið Þ is 0, it means that the frequency of the feature fi in the normal
application is equal to the malicious application, and has no discriminating; When
dis fið Þ is close to 0, which means that the discrimination in the feature fi is worse;
When dis fið Þ approaches 1 means that the feature fi has a best discrimination.

Calculate the distinguishing degree of each feature in the permissions & API calls
which belong to the set P[ I. We collected 1,000 malicious apps from VirusShare [18]
and 1000 benign apps from Google Store, averaging them into training set and test set.
We calculated the discrimination of the permission and API call features in 500 mal-
wares and 500 benign applications in the training set and sorted these features by
discrimination from big to small. Then added the top 20 permissions with the highest
degree of discrimination in the permission feature to the set P′, and the top 20 with the
highest degree of discrimination in the API calls set I to set I′, which together form the
reduced permissions & API call set P′[ I′. Some elements in set P′[ I′ are shown in
Table 1.

Table 1. Partial high discriminating permission & API

Permission API

WRITE_EXTERNAL_STORAGE Timer;->schedule
READ_SMS NetworkInfo;->toString
WRITE_SMS DataOutputStream;->writeBytes
SEND_SMS Socket;->getSoLinger
RECEIVE_SMS Runtime;->exec
READ_CONTACTS System;->setErr
WRITE_APN_SETTING DexClassLoader;->LoadClass
CALL_PHONE ContextImpl;->getSystemService
READ_PHONE_STATE Intent;->setAction
INSTALL_PACKAGES CoontextWrapper;->registerReceiver
… …
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3.2 Permission and API Call Frequent Pattern Mining

In the previous step, 40 permissions and API calls features were extracted to form a
new feature set P′[ I′ But Naive Bayes classifier is directly applied this feature set for
classification is not appropriate, because the permissions and the API calls requested by
an Android application have a strong correlation, but the significant premise of Naïve
Bayes is that all features are independent of each other. But the situation that using the
permissions and the API calls as the features to recognition Android malicious
application obviously does not meet this precondition. To deal with this problem, we
further perform frequent pattern mining on the feature set P′[ I′. Android’s permissions
and API calls reflect the behavior pattern of the application in a certain extent. Mining
the recognition between permissions and API calls can effectively identify Android
malicious applications. Moreover, the permissions and API call frequent pattern, rather
than directly using the privilege and API calls as features of the Naive Bayes classifier,
can compensate for the problem of non-independence between each permission and
API call. It also overcomes the issue that Naive Bayes’ conditions conflict with clas-
sifying Android malwares.

Definition 2. Feature itemset. The set of features for an Android application repre-
sented by F ¼ f1; f2; . . .fnf g; fi 2 P0 [ I 0.

Definition 3. Transaction database. A collection of transactions, each transaction
formed by an Android application’s feature items set and an identifier (APKID).

Definition 4. Support degree. The availability of the permission & API call pattern
mined by the frequency pattern mining, represents the percentage of Android APK
transactions in the transaction database that contain a feature itemset, expressed by
P(Itemsi).

Definition 5. Minimum support degree threshold, if the support degree of the feature
items set is bigger than the minimum support degree threshold, it is called a frequent
feature itemset.

Definition 6. Maximal frequent feature itemset, if the feature itemset Itemsi is frequent
in the transaction database, and there is no frequent item set Itemsi’ belongs to the
transaction database that Itemsi’ is a superset of Itemsi’.

Based on the above definition, we can use the Apriori algorithm [19] to perform
frequent pattern discovery for the Android application transaction database. The feature
set of each application constitutes the transaction of the application, and all application
transactions constitute the transaction database, and the minimum support degree
threshold is MIN_SUP. Find all frequent permission item sets that satisfy the support
degree not less than MIN_SUP, and finally gets the maximal frequent feature itemsets.
As shown in the Table 2, we use an example to explain how to use the Apriori
algorithm mining the Permission & API call frequent pattern. For easy to understand,
this example assumes that minimum support degree threshold is 2/9, and there are 5
permissions & API call features and 9 transactions in the Android application trans-
action database.
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Then use the Apriori algorithm to find the frequent itemsets in the transaction
database as follows:

(1) Finding all the itemsets in the transaction database formed by only one item to
constitute a set C1, and counting the number of occurrences in the transaction
database that each element belongs to C1;

(2) Determining the set of the frequent 1-items set L1 by the minimum support degree
threshold MIN_SUP equals to 2/9;

(3) Combining the elements in L1 with each other to itemsets formed by two items.
And adding these 2-items itemsets into a set C2. Counting the number of times
each element in C2 appears in the transaction database;

(4) Determining the set L2 of frequent 2-item itemsets L2 by the minimum support
degree threshold;

(5) Combine the elements in L2 into a set C3 of the 3-items itemsets, and simplify C3

according to the Apriori rule: “If the subset of an element in C3 does not belong to
L1 or L2, then remove the element”. For each element in C3, count the number of
occurrences in the transaction database;

(6) Determining the set L3 of frequent 3-item itemsets by the minimum support degree
threshold;

(7) Recursively generating the set L4; L5; . . .; Ln of frequent n-item itemsets until
Ln+1 = ∅ (Fig. 2).

Then, according to the above method, all valuable frequent patterns Itemsi in the
Android malicious application are acquired based on the permission & API calling
feature to form the frequent pattern set D as the naïve Bayes’ features set.

Table 2. Example of frequency permission & API pattern mining

ItemID Permission & API item APKID Permission
& API
feature
itemset

APKID Permission
& API
feature
itemset

F1 WRITE_EXTERNAL_STORAGE APK001 F1, F2, F5 APK006 F2, F3
F2 RECEIVE_BOOT_COMPLETED APK002 F2, F4 APK007 F1, F3
F3 NetworkInfo;->toString APK003 F2, F3 APK008 F1, F2, F3,

F5
F4 ActivityManager;->

getProcessMemoryInfo
APK004 F1, F2, F4 APK009 F1, F2, F3

F5 DataOutputStream;->writeBytes APK005 F1, F3
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3.3 The Weighted Naive Bayes Classification

Next step, we use the frequent permission & API call feature pattern Itemsi as the Naive
Bayes feature to classify malwares. Bayes classification is very suitable for filtering a
large number of application data sets, because it can be trained to perform fast clas-
sification, the computational cost is low. It can be known from the mining process of
frequent patterns that the support degree P(Itemsi) of a frequent feature pattern Itemsi is
the prior probability of the frequent feature pattern, which can be directly applied to the
Naive Bayes algorithm. Thus frequent pattern mining has a good adaptability to Naive
Bayes. However, in the process of frequent pattern mining, we find that the more the
number of items in a frequent pattern Itemsi, the lower its support degree will be, so as
to its class likelihood P(Itemsi|Malware) or class likelihood P(Itemsi|Normalware). But
the more the number of items in a frequent pattern Itemsi, the more accurate and
reliable the judgment which based on it, so we have a weighted improvement on Naïve
Bayes.

For the reliability of frequent itemsets, the more items in a frequent itemset Itemsi,
which belongs to the frequent feature item set D, the more reliable the classification is.

Definition 7. The reliability is represented by reli(Itemsi), and are concentrated. The
number of items in a frequent pattern is represented by |Itemsi|, then:

reli itemsið Þ ¼ Itemsij j
max Itemskj jf g ; Itemsk 2 D ð2Þ

Transaction
Database

{F1}
{F2}
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{F4}
{F5}

6/9
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6/9
2/9
2/9
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Fig. 2. Process of frequency permission & API pattern mining
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At the same time, according to the Naive Bayes algorithm, the probability of each
feature in the training sample set under each category is calculated, which is represented
by the prior probability P DjMalwareð Þ andPðDjBenignwareÞ, that is P Items1jð
BenignwareÞ;P Items2jBenignwareð Þ; . . .;P ItemsnjBenignwareð Þ and P Items1jð
MalwareÞ;P Items2jMalwareð Þ; . . .;P ItemsnjMalwareð Þ. Then calculating the posterior
probability of each application classification according to Bayes’ theorem:

P MalwarejDð Þ ¼ P Malwareð ÞPðDjMalwareÞ
P Dð Þ ð3Þ

P BenignwarejDð Þ ¼ P Benignwareð ÞPðDjBenignwareÞ
P Dð Þ ð4Þ

In formula (3) and (4), P(D) is constant for all categories, so we only need to
consider the numerator P Malwareð ÞPðDjMalwareÞ, P Benignwareð ÞP DjBenignwareð Þ
as the maximum value. The Naive Bayes classification algorithm assumes that the
features are independent to each other. This assumption indicates that the probability
product of P Items1jBenignwareð Þ;P Items2jBenignwareð Þ; . . .;P ItemsnjBenignwareð Þ
for the classification is exactly the probability of the feature PðDjMalwareÞ for the
category, so there are:

P DjMalwareð Þ ¼
Yn

k¼1
PðItemsijMalwareÞ ð5Þ

P DjBenignwareð Þ ¼
Yn

k¼1
PðItemsijBenignwareÞ ð6Þ

Therefore, we substitute formula (5) & (6) into formula (3) & (4) to get formula (7)
& (8):

P MalwarejDð Þ ¼ P Malwareð ÞQn
k¼1 PðItemsijMalwareÞ
P Dð Þ ð7Þ

P BenignwarejDð Þ ¼ P Benignwareð ÞQn
k¼1 PðItemsijBenignwareÞ
P Dð Þ ð8Þ

Since different frequent patterns have different reliability for classification, the
weighted Naive Bayes formula is considered of the reliability in each frequent pattern,
formula (7) & (8) are further changed to formula (9) & (10):

P MalwarejDð Þ ¼ P Malwareð ÞQn
k¼1 P ItemsijMalwareð Þ � reli itemsið Þ½ �

P Dð Þ ð9Þ

P BenignwarejDð Þ ¼ P Benignwareð ÞQn
k¼1½PðItemsijBenignwareÞ � reli itemsið Þ�

P Dð Þ ð10Þ
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Finally, it is classified by comparing the probability that an application is classified
as a malware P MalwarejDð Þ with the probability of a benign application
P BenignwarejDð Þ.

4 Implementation

In this section, we present the implementation details that readers may be interested in.
The malicious application detection tool is mainly divided into two modules, namely
the permission and API call feature extraction module and the Bayes classification
module. The permission and API call feature module decompiles the Android appli-
cation and extracts frequent permission & API call mode information, and the Bayes
classification module classifies the Android application according to the information
acquired by the feature extraction module (Fig. 3).

In this paper, the application’s permission information and sensitive API call
information in the application are used as feature attributes to maliciously detect and
identify the application. The feature extraction module mainly prepare the pre-model of
the tool design, including the extraction of the authority and the sensitive API, and the
feature processing after the extraction. Permission information in the static configu-
ration file (AndroidManifest.xml), in the extracted content after decompressing the
application package, see AndroidManifest.xml contains the name of the Android
application package, Linux user ID, permissions, and the minimum API version
required for this application. Sensitive API calls exist in the application source code.
This article uses androguard, a powerful static analysis tool, which uses the DED
decompile reverse tool to decompile by default. It uses get_permissions and get_apis in
androguard to extract permission lists and sensitive API calls. For the Bayes classifi-
cation module, we call the Naive Bayes algorithm in the scikit-learn library to see if
there is some kind of frequent permission & API invocation pattern as the feature, and
the characteristic attributes of Naive Bayes are attributed to the reliability of the fre-
quent pattern. After weighting, the feature weighted Naive Bayes algorithm is finally
obtained, and the detection model is established.

5 Evaluation

We systematically evaluated the approach and tool in this article to answer the fol-
lowing questions:

What is the effect of screening the initial permissions and API features based on the
degree of discrimination?

After frequent pattern mining, using Naive Bayes for classification, is there any
improvement compared with the direct application of separate permissions and API
features?

Under the premise of applying the frequent permission & API calling mode, does
the weighted Naive Bayes classification effect improve compared to the unweighted
Naive Bayes classification?
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Based on the above three questions, we conducted relevant experiments and
evaluated them based on evaluation criteria such as accuracy, false positive rate, and
running time. We collected 1,000 malicious apps from VirusShare and 1000 benign
apps from Google Store, averaging them into training set and test set, and used the test
set for method test evaluation.

First, for feature attributes, we use the degree of discrimination to filter, remove the
feature attributes with poor discrimination, and reduce the impact of some feature
attributes on the classification results. Therefore, Experiment 1 was used to test the
performance of the feature processing method we used. We first compare the perfor-
mance of the Naive Bayes algorithm without feature filtering and the performance of
the Naive Bayes algorithm after feature filtering (Table 3).

From the above chart, we can see that the detection accuracy of Naive Bayes
algorithm without feature screening is lower than that of feature screening, indicating
that our feature processing method improves the detection performance of Naive Bayes
algorithm to some extent. At the same time, we also deal with the random forest
algorithm and the support vector machine algorithm, and compare the obtained
detection results with the results of the random forest algorithm and the support vector
machine algorithm without feature processing. Through the above vertical and hori-
zontal comparisons of Naïve Bayes algorithm, random forest algorithm and support
vector machine algorithm, it can be seen that the detection accuracy of feature
screening is significantly lower than that of feature screening, and also shows our
feature screening method has nothing to do with the type of algorithm applied, and it
can generally improve the detection performance of the algorithm.

Second, in order to evaluate the performance of the weighted Bayes method based
on frequent patterns, the second experiment is to compare the test results of Naïve
Bayes based on pre-filtering permission & API features, Naïve Bayes based on post-
filtering permission & API features, and Weighted Naive Bayes based on frequent
permission & API patterns.

As can be seen from the Table 4, the accuracy of the method in this paper (88.69%)
is better than the method’s mentioned in Chapter 2 (up to 79.6%), which is based on the

Table 3. Evaluation index table-1

Algorithm Evaluation index Pre-filter Post-filter

Naïve Bayes ACC (%) 72.75 82.34
FP (%) 20.41 16.53
Runtime (s) 143.18 72.83

Random forest ACC (%) 70.59 81.96
FP (%) 23.63 14.23
Runtime (s) 203.69 79.38

SVM ACC (%) 73.02 81.96
FP (%) 18.63 14.23
Runtime (s) 194.18 86.06
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combination mode of the permission features in malicious applications. And the
detection accuracy of Naïve Bayes based on pre-filtering permission & API features
and Naïve Bayes based on post-filtering permission & API features are both lower than
that of weighted Naive Bayes based on frequent permission & API patterns. It shows
that both the frequent pattern feature and the weighted Naive Bayes algorithm have
further improved the detection performance.

6 Conclusion and Future Work

Android-based systems are becoming more and more exclusive in mobile phone sys-
tems, and malicious acts that use malicious applications to illegally obtain users’
information and interests are also increasing. The mainstream technologies for mali-
cious application detection include static analysis detection technology and dynamic
analysis detection technology. However, dynamic analysis detection is more techni-
cally demanding, consumes more resources, and is more demanding in real time. In this
paper, the characteristics of static analysis are applied. The features are classified based
on the degree of discrimination and the frequent feature patterns. The Naive Bayes
algorithm is also used to improve the weighted attributes of frequent pattern reliability.
Finally, this feature processing method and the improved Naive Bayes algorithm
design is combined to implement a Android malicious application detection tool. The
experimental results show that the feature screening method and the frequent feature
pattern mining method can improve the detection performance of the algorithm to a
certain extent. At the same time, for the Naive Bayes algorithm, the weighted property
can be improved after reliability to achieve better results.

There are also some limitations and unfinished work in the approach of this paper.
First of all, although the method considers the association between each permission and
API call, it does not consider the correlation between frequent patterns. Since this
method is still based on static detection technology, the detection effect on unknown
malicious applications may not be ideal for detection of packed malicious applications:
Because the author of malware uses obfuscation and encryption to make the code
difficult to understand, some applications often cannot use this method to check for
maliciousness. The method of this paper will be further developed and improved based
on the above three points in the future.

Table 4. Evaluation index table-2

Evaluation
index

Naïve Bayes based on
pre-filtering
permission & API
features

Naïve Bayes based on
post-filtering
permission & API
features

Weighted Naive Bayes
based on frequent
permission & API
patterns

ACC (%) 72.75 82.34 88.69047619047618
FP (%) 20.41 16.53 12.3
Runtime (s) 143.18 72.83 80.65
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.
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