Chapter 12 )
Defining and Assessing Students’ e
Computational Thinking in a Learning

by Modeling Environment

Ningyu Zhang and Gautam Biswas

Abstract Learning sciences researchers have hypothesized the connections between
STEM learning and computational thinking (CT), and this has been supported by
studies that have demonstrated the reciprocal relationships between CT and STEM
subjects. However, not much work has been done to establish the fundamental set of
CT knowledge and practices that need to be taught to enhance STEM and CT learning
in K-12 curricula. Therefore, many important aspects of CT are underrepresented in
K-12 classrooms. We believe that CT concepts and practices are not only important
for computing education but also play an important role in helping students develop
modeling and problem-solving skills in STEM domains. In this chapter, we build on
our existing framework (Sengupta et al in Educ Inf Technol 25(1):127-147,2013) to
promote students’ synergistic learning of science content and CT practices in middle
school classrooms. We discuss the primary STEM and CT concepts and practices
that we have introduced through our curricular units into science classrooms and
discuss how students can learn these practices in CTSiM, a computer-based learning
environment developed in our lab (Basu et al in User Model User-Adapt 27, 2017).
We present results from studies in middle school classrooms with CTSiM and show
that students have strong learning gains in Science and CT concepts. Our assessments
also help characterize and understand students’ learning behaviors and their link to
learning and practicing STEM and CT concepts.
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12.1 Introduction

Recently, Computational Thinking (CT) has been recognized as a framework for
developing computer literacy and computing skills among the K-12 computer sci-
ence (CS) and STEAM (Science, Technology, Engineering, Arts (and Humanities)
and Mathematics) communities (Barr & Stephenson, 2011; Grover & Pea, 2013).
Industry and governments also consider CT to be one of the primary drivers of the
twenty-first--century workforce (Barr, Harrison, & Conery, 2011). In general, CT
encompasses a wide range of abilities and practices, such as problem decomposition
and composition, algorithm development, reasoning at multiple levels of abstraction,
and creating and reusing modular solutions (Wing, 2006). Researchers and practi-
tioners believe that by drawing from the fundamental skills and practices of CT,
students can develop analytical and problem-solving skills and practices. These CT
practices go beyond the learning of CS and benefit students’ understanding of scien-
tific processes, systems design, and human behaviors (Wing, 2006; NRC, 2010; Barr
& Stephenson, 2011; NRC, 2011). In other words, CT can benefit K-12 students’
learning in other domains such as mathematics and science as they solve problems
while thinking like a computer scientist (Wing, 2011; Barr & Stephenson, 2011).

A series of studies have shown that applying CT in STEM domains helps students’
learning (Basu & Biswas, 2016; Basu et al., 2017; Garcia-Pefialvo, Reimann, Tuul,
Rees, & Jormanainen, 2016; Weintrop et al., 2016a). Additionally, CT skills and
practices can transfer to other learning and problem-solving contexts (Basawapatna
et al., 2011; Grover, 2015), as CT requires a deep understanding of problem-solving
when compared againstrote learning (Wing, 2006). Therefore, it provides an essential
framework for preparing students for future learning (Bransford, Brown, & Cocking,
2000). In addition, Brennan and Resnick (2012) point out that CT includes the prac-
tice of designing artifacts (e.g., building models of STEM phenomena), which helps
students develop perspectives of the world around them (e.g., a deeper understand-
ing of the role of vegetation in reducing greenhouse gases). Therefore, CT provides
a synergistic framework for learning of computational and science concepts and
practices (Sengupta et al., 2013; Basu et al., 2017).

The acknowledgment of these potential benefits of CT has led to the inclusion
of CT into the K-12 STEM curricula; for example, the Next Generation Science
Standards (NGSS) in the United States includes CT as a core scientific practice
(The NGSS Lead States, 2013; Barr & Stephenson, 2011). Researchers have also
stressed the urgency of introducing CT into K-12 classrooms. However, there has
been insufficient effort to establish a key set of CT concepts and practices across K-
12 classrooms, and little effort has been made to include CT concepts and practices
into other disciplinary curricula.

In this chapter, we extend our earlier framework (Sengupta et al., 2013; Zhang &
Biswas, 2017) by

1. Introducing CT with an emphasis on STEM practices through an open-ended
learning environment (OELE); and
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2. Evaluating students’ synergistic learning of science content and CT practices in
middle school classrooms.

In Sect. 12.2 of this chapter, we review existing frameworks for CT learning and
assessment. In Sect. 12.3, we introduce our STEM + CT framework, the primary CT
skills and practices, and our OELE to promote the synergistic learning of domain
content and CT. We also discuss how these learning constructs can be assessed in our
STEM + CT framework. Finally, in Sect. 12.4, we use the results from our middle
school classroom studies to discuss the design of assessments that help us analyze
how students develop and exploit the synergy between the STEM and CT concepts.

12.2 Related Work

Wing’s seminal paper describes CT as “solving problems, designing systems, and
understanding human behavior, by drawing on the concepts fundamental to com-
puter science” (Wing, 2006, p. 33). Another popular definition states that CT is a
problem-solving process that includes characteristics such as problem formulation,
data analysis, abstraction, algorithmic automation, solution refinement, and transfer
(ISTE & CSTA, 2011). Given the wide scope of CT, there are different ideas of
what constitutes CT, and how to integrate CT into the K-12 curricula, especially for
STEM topics (NRC, 2010; Brennan & Resnick, 2012). In addition, the close rela-
tionships between CT, mathematics, algorithmic thinking, and problem-solving can
sometimes veil the core ideas in computation that CT encompasses (Garcia-Pefialvo
et al., 2016; Weintrop et al., 2016a). Nevertheless, the various definitions of CT pro-
vide the research community and educational stakeholders with many insights into
how its various concepts and practices can benefit learning.

Some effort has been made to establish operationalizable frameworks for CT.
These frameworks either focus on the constructs that emerge from existing game-
based and media-narrative programming environments, or they emphasize STEM
concepts and practices. The CT frameworks associated with AgentSheets (Repenning
etal., 2000) and Scratch (Brennan & Resnick, 2012) are examples of the former type,
and the CT taxonomies proposed by Weintrop et al. (2016a) are examples of the latter
type.

The CT framework (Basawapatna et al., 2011) in AgentSheets focuses on the
aspects of CT that can be transferred to other learning contexts. In their framework,
CT is defined as the recurring program patterns that students acquire while pro-
gramming games and later reuse in other simulation contexts (Basawapatna et al.,
2011). Brennan and Resnick (2012) defined CT as a framework of three components
related to programming in Scratch: what students should know about programming,
how to program, and the sociocultural aspects of programming. More specifically,
computational concepts of their framework refer to the fundamental knowledge of
computing, such as how loops and conditionals work in a Scratch program. Compu-
tational practices are defined as programming related actions, such as building and
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debugging. Finally, computational perspectives describe the learner’s computation-
related world-view (Brennan & Resnick, 2012).

These frameworks operationalize programming-centered CT constructs in exist-
ing environments, but they do not provide explicit evidence of how CT is linked
to STEM learning. On the other hand, the CT taxonomies proposed in Weintrop
et al. (2016a) emphasize the application of CT in STEM classrooms. Weintrop et al.
proposed key CT practices that are naturally linked to STEM concepts and practices
(NGSS, 2013), including (1) data, (2) modeling and simulation, (3) problem-solving,
and (4) systems thinking. In addition to focusing on what students learn about CT,
these CT practices define how students can learn and apply CT, thus providing a
theoretical foundation for integrating CT in STEM classrooms.

Some CT frameworks also include the assessment of CT. For example, computa-
tional thinking pattern analysis (CTPA) in AgentSheets matches the recurring pro-
gram patterns in game design and science simulation contexts to evaluate students’
understanding of CT (Basawapatna et al., 2011). Additionally, Scratch uses multi-
modal assessments including project analyses and interviews to assess its main CT
constructs (the CT concepts, practices, and perspectives) (Brennan & Resnick, 2012).
These CT frameworks provide important information on students’ understanding of
CT, but they have their shortcomings as well. For example, students’ expression of
CT is demonstrated at the program level, assuming that the student understands CT
if they use a CT pattern. On the other hand, the used = learned assumption poses
peril because a student writing correct programs nevertheless may not have made
the necessary conceptual connections (NRC, 2010). In addition, these analyses of
snapshots of completed programs lose the temporal information and the subtlety to
understand students’ developmental process of CT. As a result, many fundamental
aspects of CT have not received sufficient attention especially in the context of block-
based programming environments, except for a few successful assessments (e.g., the
Fairly Assessment in Alice, Werner, Denner, Campe, & Kawamoto, 2012; Grover &
Pea, 2013). Therefore, more detailed, reliable and formative test instruments need to
be developed to enrich CT assessments.

12.3 The STEM + CT Framework

Studies have shown that CT and STEM subjects shared a reciprocal relationship.
There is evidence in the literature that students improved their understanding of
STEM topics when they are studied in a CT framework (e.g., Basu et al., 2017; Sen-
gupta et al., 2013; Weintrop et al., 2016a, b). Similarly, developing CT concepts and
practices in a science learning framework provides a context and a perspective for the
better understanding of CT. For example, the NRC (2010) report states that CT con-
cepts and practices are best acquired when studying them within domain disciplines.
If students were introduced to CT in programming contexts only, they might not
develop the skills to apply the generalized CT concepts across disciplines because
of the difficulties in the transfer of learning (NRC, 2011). Additionally, learning CT



12 Defining and Assessing Students’ Computational Thinking ... 207

concepts and practices in a STEM modeling and simulation framework provides
students with the real-world perspective (Brennan & Resnick, 2012) they may need
to develop a good understanding of the STEM and CT concepts in context. There-
fore, our CT framework uses an integrated STEM + CT approach to foster students’
synergistic learning of domain content knowledge and CT through computational
modeling and simulation. In the rest of the section, we introduce our STEM + CT
framework, the CTSiM learning environment, and the assessment schemes.

12.3.1 The STEM + CT Framework

Figure 12.1 gives an overview of our STEM + CT framework. Central to the frame-
work is the Practices applied across STEM domains that use CT methods. There
are four types of practices: Systems Thinking, Problem-solving, Modeling and Sim-
ulation, and Data and Inquiry. The STEM + CT practices are the means to support
students’ synergistic learning and understanding of Domain Content and CT con-
cepts. The CT concepts include variables and assignments, sequential execution of
statements, loop structures, conditionals, functions, and events. These CT concepts
are fundamental to most programming environments.

We use Computational Thinking using Simulation and Modeling (CTSiM) as the
Learning Environment in our framework to help students foster the key Domain
and CT concepts and practices. CTSiM (Basu et al., 2017; Sengupta et al., 2013) is
an open-ended learning environment (OELE) that helps students achieve the syner-

STEM Domain Contents CT Concepts

(learning progression of STEM (variables, statements
units, e.g., position, velocity, . .

acceleration, momentum, IOOPS’ conditionals,
energy, diffusion ...) functions, and events)

STEM+CT

Practices*

STEM+CT Learning Assessments

Environment (summative, formative,

(CTSiM) learning analytics)

Fig. 12.1 The STEM + CT framework
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gistic learning of science knowledge and CT practices using a learning by model-
ing approach. Additionally, the CTSiM Learning Environment encapsulates STEM
Domain Content in a progression of units. Finally, the summative and formative
Assessments evaluate students’ improvement in the STEM content and CT concepts,
as well as their model-building and problem-solving behaviors and performance.

In this framework, students can synergistically learn STEM and CT concepts
and practices as they apply them to develop computational (specifically, simulation)
models of the scientific phenomena. Meanwhile, the domain content provides the
learning context for how to apply the CT concepts through opportunities for model
building and simulation of specific scientific phenomena that students can easily
relate to because of their links to real-world phenomena.

Table 12.1 presents the set of STEM + CT practices defined in our framework. It
includes four categories of practices commonly applied in STEM domains and 14
practices instantiated in the CT learning environment. Among the four categories,
Systems Thinking is the overarching practice as the deep understanding of systems
with emergent behaviors is essential for students to prepare for future scientific
endeavors (Cheng et al., 2010). However, students can develop misunderstandings
when they attempt system-level analyses in an agent-based modeling framework
(Wilensky & Resnick, 1999). On the other hand, developing systems understanding

Table 12.1 Related STEM + CT practices

Systems thinking

(ST1) identify the relevant components that make up a system

(ST2) understand component relationships and interactions

(ST3) understand the system at different levels of abstraction, and the behaviors that emerge
from these interactions

Modeling and simulation

(MS1) conceptual modeling (formal and abstract thinking)

(MS2) computational modeling (algorithmic thinking and implementation)

(MS3) simulation and execution of models

(MS4) Interpreting and understanding system behaviors (emergence)

Problem-solving

(PS1) dividing into sub-problems

(PS2) modularity and reuse

(PS3) debugging and error-checking

Data and inquiry

(DI1) acquire information from texts

(DI2) set up and run experiments to collect and analyze data

(DI3) organize and display data (table, graphs)

(DI4) interpret plots and other data representations
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by applying CT practices provides an approach to help students overcome these
problems.

Within our proposed framework, students are expected to study the interactions
among agents and between agents and the environment. They can then translate this
understanding to identify variables and the relations between relevant variables, and,
in this process, study emerging behaviors at different levels. Additional STEM prac-
tices, such as Data collection, Analysis, and Inquiry, Modeling and Simulation, and
Problem-solving, help students develop a deeper understanding of Systems Thinking.
Together, these set of fundamental STEM + CT practices serve as the methodology
to help learners synergistically acquire the required CT and STEM concepts.

12.3.2 The Learning Environment

In CTSiM, students can model scientific phenomena using a block-structured lan-
guage that is framed in an agent-based modeling approach (Sengupta et al., 2013).
Learners can leverage six types of primary learning tasks in CTSiM. More specif-
ically, students can (1) acquire information of the domain content and CT-related
programming concepts from the built-in hypertext resource libraries; (2) represent
their system in terms of agents, their properties, and their behaviors using an abstract
conceptual model representation; (3) construct runnable computational (i.e., simula-
tion) models that define the agents’ behaviors and interactions in the environment; (4)
execute the computational models as NetLogo (Wilensky, 1999) simulations to exam-
ine the agents’ behaviors; (5) compare the behaviors of their computational models
to the behaviors generated by an expert model; and (6) conduct science inquiry to
understand the relationship between components in a system and the behaviors gen-
erated by the components. These learning activities are closely related to and can help
students’ foster STEM + CT practices. For example, reading the hypertext libraries
supports the Data and Inquiry practice of acquiring information from texts. The Data
and Inquiry practice also involves interpreting plots and other data representations.
Similarly, constructing the conceptual and computational models directly relates to
Modeling and Simulation practices. In addition, running the computational models
and comparing their results to ones generated from an expert simulation support
students Problem-solving practices, such as debugging and error-checking. We will
discuss in more detail the affordances of the environment in supporting STEM + CT
concepts and practices in the introduction to the Assessment framework.

The units in CTSiM are developed to complement the middle school STEM cur-
ricula with modeling and simulation activities. CTSiM offers a number of units,
forming a STEM-learning progression from modeling motion of objects using turtle
geometry to investigating complex, emergent systems, such as diffusion of particles
in a liquid medium. The curricular modules of CTSiM include (1) turtle geometry,
(2) kinematics, (3) mechanics, (4) collision and momentum, (5) particle collision and
energy, (6) fish tanks and the carbon cycle, and (7) role of bacteria and the nitrogen
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cycle in fish tanks (Basu et al., 2017; Sengupta et al., 2013; Zhang, Biswas, & Dong,
2017; Zhang & Biswas, 2018).

Figure 12.2 shows the user interface of four primary activities in CTSiM: (1)
reading the science library, (2) editing the conceptual model, (3) building the com-
putational model, and (4) comparing the behaviors generated by the students’ models
to those generated by an expert model. In this example, the student used computa-
tional blocks from a domain-specific block-based modeling language to implement
the update-speed-and-direction behavior of dye molecule agents. When executed,
the animation on the left depicts the motion of the molecules as modeled by the
student. Students can compare the motion of molecules in their simulation to the
motion of molecules in the expert simulation on the right side of the compare tab.
In addition, students can also compare the changes in key simulation variables over
time to the expert model. Note that students cannot see the implementation of the
expert simulation model; they can only observe the behaviors it generates.
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Fig. 12.2 The user interface of CTSiM



12 Defining and Assessing Students’ Computational Thinking ... 211

12.3.3 The Assessment Framework

Assessments provide information about students’ understanding of the content
knowledge in a particular modeling unit, and how well they can apply this knowledge
to other problems. This information, therefore, can help teachers, researchers, and
other stakeholders evaluate the effectiveness of the teaching and learning processes
adopted in the approach (Mislevy, Almond, & Lukas, 2003). The summative and
formative assessments, as well as the analytics measures that we can derive from
students’ models, help us evaluate students’ progressions in the STEM content and
CT concepts, as well as their model-building and problem-solving behaviors and
performance. Students’ improvement of understanding the STEM domain content
and CT concepts are primarily evaluated by the Domain and CT pre- and post-tests.
In addition, the STEM + CT practices are assessed in a summative and forma-
tive way, using a range of modalities that include: (1) evaluating the correctness of
student-generated models and the evolutionary trajectories of these solutions; and
(2) analyzing the sequences of actions students perform in CTSiM.

To formally define students’ behaviors in the learning environment, we use a
hierarchical model to characterize students’ actions in CTSiM. Following the com-
bined theory- and data-driven framework developed from Coherence Analysis (CA)
(Segedy, Kinnebrew, & Biswas, 2015; Kinnebrew et al., 2017), we define three types
of primary sub-tasks in CTSiM: Information Acquisition (IA), Solution Creation
(SC), and Solution Assessment (SA). These primary sub-tasks can be further decom-
posed. Figure 12.3 shows that the lowest level of the hierarchy represents the different
actions that students can perform in the CTSiM environment. For example, SA tasks
consist of running, checking, comparing, and testing models.

The conceptual models of CTSiM provide an abstract representation for defining
agents and the properties of the environment that affect system behaviors. While
constructing the conceptual model, students select the properties and behaviors of
the agents that they believe are required to construct the model. The set of properties
and behaviors that students choose from may include some that are unrelated to the
specific modeling task, and being able to identify and reason about whether or not
to include a particular property or behavior is an important modeling practice. We
have used the “bag of words” (Piech, Sahami, Koller, Cooper, & Blikstein, 2012)
methods to examine the correctness of students’ conceptual model compared to the

()
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Fig. 12.3 The task model of CTSiM
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Fig. 12.4 Following two students model building progression using the TED measure

expert models. Another type of summative assessment is based on students’ model
building performance. We use two measures: (1) model distance, and (2) model
trajectory. We calculate the distance between a student-created model and an expert
model using the minimal tree edit distance (TED, Bille, 2005) metric, where the
models are encoded as abstract syntax trees. In addition, we analyze a student’s
model building trajectory by computing the slope of distance between the student’s
models and the expert model as the student performs a sequence of model building
actions.

A large model distance indicates an incorrect model, whereas a steeper negative
slope indicates faster convergence to the final model. Figure 12.4 shows two students:
A’s (left) and B’s (right) trajectories in building their computational model for the
diffusion unit. Both students started with the same empty computational model that
had a TED score of 65. Figure 12.4 indicates that student A used much fewer edit
actions (~40 edit actions) to build the model compared to student B (~160 edit
actions), in building a final model, and the model also had a much smaller final TED
(~5 compared to ~45). In summary, Table 12.2 lists the performance expectations
and the modality and evidence of the assessment methods for each corresponding
practice.

12.4 Results and Discussion

We use results from a recent classroom study to demonstrate students’ synergistic
learning of STEM and CT concepts and practices with our STEM + CT framework.
In the study, 52 6th-grade students from a middle school in the South-Eastern U.S.
participated over 14 school days. The students worked on the five units of CTSiM:
the two training units, the acceleration unit, the collision unit, and the diffusion unit.
Table 12.3 summarizes the daily schedule during the students’ hour-long science
block. In the rest of the section, we discuss the three types of analyses: (1) the
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Table 12.2 The assessment modality and evidence for the STEM + CT practices

Assessment modality and evidence

ST1 Summative: the correctness of the conceptual models;

ST2 Summative: the domain and CT pre-post questions and the correctness of the
computational models;

ST3 Summative: the domain and CT pre-post questions;
Formative: average computational edit chunk size

MS1 Summative: the correctness of the conceptual models;
Formative: SC-related CA metrics;

MS2 Summative: the correctness of the computational models
Formative: SC-related CA metrics;

MS3 Formative: SA-related CA metrics;

MS4 Formative: CA metrics associated with SA — SC, and SA — IA transitions

PS1 Formative: aggregated IA-, SC- and SA-related CA metrics;

PS2 Formative: computational model evolution and SC-related CA metrics;

PS3 Formative: aggregated SA and SC-related CA metrics; CA metrics associated with SA
— SC (SA actions followed by SC actions) transitions

DIl Formative: IA-related CA metrics (supporting action percentage, duration, etc.);

DI2 Summative: domain and CT pre-post questions;

Formative: inquiry learning activities in the system;

DI3 Summative: domain and CT pre-post questions;
Formative: inquiry learning activities in the system; SA- and SC-related CA metrics

DI4 Summative: answers to the problem-solving inquiry questions;
Formative: inquiry learning activities;

learning gains in the STEM domain content knowledge and key CT concepts; (2) the
synergy between STEM and CT learning; and (3) students’ application of STEM + CT
practices as well as their links to the learning gains and model-building performance.

12.4.1 Overall Learning Gains

The pre-post-test results demonstrate students’ improved understanding of the STEM
domain content and CT concepts. Table 12.4 summarizes the students’ pre- and
post-test scores, and test statistics in the Mechanics unit, Diffusion unit, and CT.
The max scores for the tests were 28, 12 and 34 points, respectively. We ran the
non-parametric Wilcoxon Rank Sum Test to assess the statistical significance of the
post-to-pre learning gains. The results in Table 12.4 show that students had significant
learning gains in domain knowledge (mechanics and diffusion) and CT concepts with
moderate effect sizes.
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Day(s) Description of activities
Domain and CT pre-tests

2 Agent-based modeling mini-lecture, tutorial of the CTSiM user interface

3-4 Training units, build software agents that draw turtle geometry shapes, practice
assigning values and using loops

5-7 Acceleration unit, model the relationship of force, mass, and acceleration of cars,
understand acceleration in the Newtonian physics

8-10 Collision unit, model inelastic collision of spheres, momentum, and conservation of
momentum in a system

11-13 Diffusion unit, model diffusion of microscopic particles, understand how
temperature influences the speed of particles and that diffusion is an emergent
behavior of colliding particles

14 Domain and CT post-test

Table 12.4 Pre-post-test results and aggregated test statistics

Test Pre mean (std) | Post mean (std) | p-value Z-stat Effect size
category

Acceleration | 13.61 (3.40) 15.24 (4.08) 0.003 2.69 0.26
Diffusion 3.81(2.24) 5.88 (2.40) <0.0001 4.27 0.42

CT 14.55 (6.27) 18.11 (6.37) 0.0002 3.52 0.35

12.4.2 The Correlations and Synergies in STEM and CT
Learning

We then computed pairwise correlations between the learning gains in CT, Accel-
eration, and Diffusion units, as well as the accuracy of the students’ computational
models in the Acceleration, Collision, and Diffusion units. Table 12.5 presents the
correlation coefficients (Spearman’s p) between all pairs of performance metrics.
The asterisks (*) indicate statistically significant correlations (p < 0.05).

Students’ learning gains in CT showed moderately high and statistically signifi-
cant correlations with the domain gains in the Acceleration (p = 0.32) and Diffusion
units (p = 0.27), providing some evidence that there was synergistic learning of
STEM content knowledge and CT concepts. The fact that students who improved
more in their understanding of CT also achieved larger learning gains in the STEM
content supports the notion for synergistic learning through the CTSiM intervention.

Table 12.5 also shows that all of the computational model distances were nega-
tively' correlated with the CT gains. Two out of three units (Collision and Diffusion)
had statistically significant correlations with the learning gains (p = —0.34 and p =

A larger model distance from the correct model indicates a more incorrect model. Therefore, the
negative correlations between the model distance and learning gains indicates better model building
ability is related to better performance in the domain and CT learning gains.
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Table 12.5 Correlation analysis

CT gain Acc. gain Diffusion | Acc. Collision Diffusion
gain distance distance distance
CT gain -
Acceleration 0.32%* -
gain
Diffusion | 0.27* 0.18 -
gain
Acc. -0.14 —0.07 —0.10 -
distance
Collision —0.34* —-0.22 —0.13 0.21* -
distance
Diffusion | —0.28* -0.19 —-0.31* 0.33%* 0.32% -
distance

—0.28), respectively. The relation between the acceleration learning gain and accel-
eration test score had a low correlation value and was not significant. In addition,
students’ CT pre-test scores showed low correlations with model-building perfor-
mance, therefore, it is unlikely that students’ prior CT knowledge was a significant
factor in their model building abilities. Overall, the results provide evidence of syner-
gistic learning of STEM domain and CT concepts as students worked on their model
building tasks, and it seemed to improve as students worked through different units.
The students’ computational model building performance was consistent across the
three units, as all computational model distances showed moderate correlation values
(and the correlations were statistically significant).

12.4.3 The Use of STEM + CT Practices

Finally, we show how the Coherence Analysis-derived (Kinnebrew et al., 2017) met-
rics can help characterize students’ application of STEM + CT practices. Coherence
analysis provides a framework for defining a number of metrics related to individual
tasks students perform in the system (e.g., seeking information, building models, and
checking models) (Segedy et al., 2015). An introduction to the CA-derived metrics
was provided in Sect. 12.3.3. In previous work, we have developed a number of these
measures to analyze students’ work in CTSiM (Zhang et al., 2017). In this chapter,
we extend the collection of CA-derived measures to characterize the students’ use of
STEM + CT practices. Due to limited space, we only report the analyses on the Dif-
fusion unit. We first ran a feature selection algorithm to select features that produced
higher percentages of the total variance in the feature space. We assumed these fea-
tures would better distinguish students who used the STEM + CT practices from those
that did not. This approach also helped reduce the dimensions of the feature space for
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clustering. The eight features obtained after feature selection and their descriptions
are summarized in Table 12.6. The features are described as percentages and were
computed with respect to the total number of actions performed by a student. For
example, the feature “Conceptual Model Edit Effort” of a student accounts for the
percentage of computational model edit actions among all her actions in CTSiM.
Table 12.6 also lists the STEM + CT practices aligned with the chosen features.
We then clustered the student data using the Expectation-Maximization (Gaussian
Mixture Model) algorithm to generate probabilistic models corresponding to each
cluster. The Calinski-Harabasz information criteria were applied to select the number
of clusters, and applying this measure produced three clusters (Zhang et al., 2017).
Table 12.7 reports the mean values and the standard deviations of the eight features
for the three clusters. We assumed the feature value probabilities for each cluster
would explain the differences in the use of STEM + CT practices among students.
We also report the results of single-factor analysis of variance (ANOVA) for each

Table 12.6 Selected features for cluster analyses

Feature Description STEM + CT practice

category

Domain read time The total time (in seconds) Data and inquiry (DI1)
spent on reading domain
content

Conceptual model edit effort The percentage of Systems thinking (ST1)
conceptual model edit Modeling and simulation
actions (MS1)

Computational model edit effort | The percentage of Systems thinking (ST2)
computational model edit Modeling and simulation
actions (MS2)

Model test effort The percentage of testing Modeling and Simulation
actions (MS3)

Problem-solving (PS3)

Model comparison effort The percentage of Modeling and simulation
comparison actions (MS3)

Problem-solving (PS3)

Supported comp. model edit The percentage of supported | Problem-solving (PS1)
computational model edits Modeling and simulation

(MS2)

Average computational edit The average number of Modeling and simulation

chunk size consecutive computational (MS2)
edit actions

IA — SC rate The transition probability Data and inquiry (DI1)
from IA actions to SC Modeling and simulation
actions (MS1)

Modeling and simulation
(MS2)
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Table 12.7 Selected features for cluster analyses
Feature Cluster 1 (n = 23) Cluster2 (n =9) Cluster 3 (n = 20) F-score P-value
Domain pre-test 7.14 (4.20) 6.56 (4.28) 5.84 (4.86) 0.42 0.66
CT pre-test 14.57 (3.22) 15.83 (1.05) 13.95 (0.97) 0.27 0.76
Domain gain 1.96 (2.4) 1.89 (2.8) 2.30 (2.8) 0.11 0.9
CT gain 3.39(6.7) 1.50 (4.8) 4.68 (4.7) 0.97 0.38
Final computational | 7.9 (3.21) 2.1(1.05) 3.0(0.97) 4.36 0.01
model distance
Computational —0.50 (0.07) —0.62 (0.05) —0.58 (0.04) 3.37 0.04
modeling distance
slope
Domain read time 291 (454) 182 (124) 163 (141) 0.94 0.39
()
Conceptual 5% (0.01) 6% (0.01) 7% (0.01) 4.00 0.02
modeling editing
effort
Computational 15% (0.04) 14% (0.06) 17% (0.07) 0.91 0.4
modeling editing
effort
Supported 13% (0.07) 12% (0.11) 16% (10) 0.89 0.4
computational
model edits
Average 4.57 (0.8) 6.83 (3.5) 5.01 (1.1) 5.96 0.004
computational edit
chunk size
Model testing effort | 14% (0.04) 10% (0.06) 10% (0.03) 5.02 0.01
Model comparison 27% (0.09) 16% (0.13) 14% (0.05) 9.47 <0.001
effort
IA — SC rate 2% (0.01) 13% (0.13) 3% (0.06) 4.38 0.01

feature in Table 12.7 to investigate if the clusters produced statistically significant
differences between each other in their learning performances and the CA metrics.

We checked to see if students’ prior knowledge in the science domain or CT influ-
enced their learning behaviors. For example, those with higher prior knowledge may
find it easier to generate the correct solutions to problems in the learning environ-
ment. However, our analysis shows that the students in the three clusters had similar
pre-test scores and similar domain and CT learning gains, but there were distinct
differences in their learning behaviors that reflected their application of the STEM
+ CT practices.

Students in Cluster 1 spent the largest amount of time among the three groups
in reading the domain library; however, their IA — SC (performing model building
actions after their read actions) transition rates were among the lowest. This indicates
that although these students read the most, they were not successful in translating
the information acquired (IA) into building models (SC) (the differences between
the groups were statistically significant). This indicates that Cluster 1 did not show
good mastery and use of Data and Inquiry practices. Meanwhile, Cluster 1 students
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had the highest number of testing and comparison (SA) actions (42% of their actions
were SA actions), and their computational model edit chunk sizes were the smallest
(again, the differences between the three groups was statistically significant). The
implication is that students in Group 1 tended to use more trial-and-error Problem-
solving and Modeling and Simulation practices. As shown in our previous work
(e.g., Basu et al., 2017; Segedy et al., 2015; Zhang & Biswas, 2018), these trial-
and-error approaches adversely affect students’ modeling tasks. These students also
had significantly larger computational model distances (mean distance = 7.9) when
compared to the other clusters (mean distance = 2.1 and 3.0, p = 0.01). In summary,
students in Cluster 1 had the least effective model-building behaviors and they did not
achieve high domain learning gains. However, these type of tinkering behaviors were
not necessarily negative. Cluster 1 students remained engaged in their model building
tasks, and their learning gains in CT were quite strong although not significantly
higher than the students in Cluster 2.

Compared to students in Cluster 1, students in Cluster 2 spent less time reading
the domain library, yet their [A — SC transition rates were high compared to the
other groups. Correspondingly, they achieved the best computational model building
performance (mean distance = 2.1 and average computational modeling distance
slope = —0.62) with the lowest percentages of SC and SA actions. The combined
SC (test + comparison) percentages were the lowest (20%), and the combined SA
(conceptual model-building + computational model-building) percentages are also
quite low (26%). This reflects good debugging and error-checking practices because
they did not need excessive SA—actions while debugging because they were able to
pinpoint the issues with their computational models quickly. However, their average
computational edit chunk size was the largest, indicating that they did not frequently
switch from SC to other types of actions. The students in Cluster 2 had the highest
IA — SC rate (13%) while the other two clusters only had (2 or 3%). As a result,
although these students did quite well on the practices related to Data and Inquiry
and Modeling and Simulation, their Problem-solving skills needed improvement.
This was also reflected by the fact that they had the lowest percentages of supported
computational model edit actions.

Students in Cluster 3 had very similar patterns of learning activity to Cluster 2
except in two features (average computational model edit chunk size and IA —
SC Rates). Post hoc Tukey’s Honest Significant Difference Test revealed that the
differences in these two features compared to Cluster 2 were statistically significant
(» =0.02 and 0.03, respectively). The students in this cluster had high learning gains
in the domain and CT tests and were efficient model constructors as seen from the
slopes of their computational model TED values over time (they had small final
computational modeling distances and steep negative slopes similar to cluster 2).
Students in this cluster performed the most computational model edits, and their
average model edit chunk sizes were in between those of Clusters 1 and 2, which
indicates they successfully applied problem-decomposition practices for the larger
model building tasks. They performed the smallest number of SA actions, however,
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the percentage of supported computational model edits were the highest among all
clusters. This reflects the proficient use of debugging and error-checking practices,
which was similar to Cluster 2. However, these students’ had alow IA — SC transition
rate, which implies that they could improve in their Data and Inquiry practices. As
a result, though they showed good learning gains in the STEM and CT concepts,
their computational model building performance was not as good as the students in
Cluster 2.

In summary, the clustering results revealed the differences in the use of STEM +
CT practices by the students. Although not all of the learning performance metrics
and the CA metrics showed significant differences as suggested by the ANOVA
results, analyzing these differences in learning behaviors provided insights and links
to the students’ learning gains and model-building performance.

12.5 Conclusions

In this Chapter, we stressed the benefit and importance of the synergistic learning
of STEM and CT concepts and practices. We extended our previous work on the
use of CT concepts and practices in STEM classrooms and refined the STEM + CT
framework to develop students’ synergistic STEM- and CT- learning. The STEM +
CT framework defines (1) the practices that are frequently applied in both STEM
and CT learning contexts, (2) the STEM domain content knowledge, (3) the set of
key CT concepts required for computational modeling, (4) the open-ended learning
environment, CTSiM, that fosters students’ learning of these STEM and CT concepts
and practices, and (5) the assessment framework that provide summative and forma-
tive measures for evaluating student performance and learning behaviors. We then
used results from a recent CTSiM classroom study in the U.S. to demonstrate how
learning can be defined and analyzed with our STEM + CT framework. The results
show that students’ model-building performances were significantly correlated to
their STEM and CT learning, and students’ distinct model-building and problem-
solving behaviors in CTSiM were indicative of the model-building performance and
learning gains.

In future work, we will refine the set of key STEM + CT practices and the assess-
ment framework such that it will be compatible with other learning modalities, such
as collaborative learning. We will generalize the CTSiM framework and extend it to
different STEM domains, such as the C2STEM learning environment for high school
physics. Our overall goal is to study the feasibility and effectiveness of the CTSiM
learning environment in multiple contexts and domains.
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