Skip to main content

Potential of Fullerenes for Photodynamic Therapy Application

  • Living reference work entry
  • First Online:
Handbook of Fullerene Science and Technology

Abstract

Since the initial reports on 1O2 generation from C60 and C70 by Foote in 1991 and photo DNA cleavage activity of water-soluble C60 derivative by Nakamura in 1993, many studies have been reported on the use of fullerenes (C60 and C70) in photodynamic therapy (PDT). The advantages of fullerenes as photosensitizers (PSs) in PDT include high quantum yield in the generation of reactive oxygen species (ROSs) and a relatively long excitation wavelength; but one major disadvantage for medical use is insolubility in water. In this chapter, the important photophysical properties of C60 and C70, the preparation of water-soluble materials, and their application to PDT are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Alvarez MG, Prucca C, Milanesio ME, Durantini EN, Rivarola V (2006) Photodynamic activity of a new sensitizer derived from porphyrin-C60 dyad and its biological consequences in a human carcinoma cell line. Int J Biochem Cell Biol 38(12):2092–2101. https://doi.org/10.1016/j.biocel.2006.05.019

    Article  CAS  PubMed  Google Scholar 

  2. Andersson T, Nilsson K, Sundahl M, Westman G, Wennerstrom O (1992) C-60 embedded in gamma-cyclodextrin – a water-soluble fullerene. J Chem Soc Chem Comm 8:604–606. https://doi.org/10.1039/c39920000604

    Article  Google Scholar 

  3. Arbogast JW, Foote CS (1991) Photophysical properties of C-70. J Am Chem Soc 113(23):8886–8889. https://doi.org/10.1021/ja00023a041

    Article  CAS  Google Scholar 

  4. Arbogast JW, Darmanyan AP, Foote CS, Rubin Y, Diederich FN, Alvarez MM, Anz SJ, Whetten RL (1991) Photophysical properties of C60. J Phys Chem-Us 95(1):11–12. https://doi.org/10.1021/j100154a006

    Article  CAS  Google Scholar 

  5. Arbogast JW, Foote CS, Kao M (1992) Electron-transfer to triplet C-60. J Am Chem Soc 114(6):2277–2279. https://doi.org/10.1021/ja00032a063

    Article  CAS  Google Scholar 

  6. Aroua S, Schweizer WB, Yamakoshi Y (2014) C-60 pyrrolidine bis-carboxylic acid derivative as a versatile precursor for biocompatible fullerenes. Org Lett 16(6):1688–1691. https://doi.org/10.1021/ol500363r

    Article  CAS  PubMed  Google Scholar 

  7. Aroua S, Tiu EGV, Ayer M, Ishikawa T, Yamakoshi Y (2015) RAFT synthesis of poly(vinylpyrrolidone) amine and preparation of a water-soluble C-60-PVP conjugate. Polym Chem-UK 6(14):2616–2619. https://doi.org/10.1039/c4py01333f

    Article  CAS  Google Scholar 

  8. Aroua S, Tiu EGV, Ishikawa T, Yamakoshi Y (2016) Well-defined amphiphilic C-60-PEG conjugates: water-soluble and thermoresponsive materials. Helv Chim Acta 99(10):805–813. https://doi.org/10.1002/hlca.201600171

    Article  CAS  Google Scholar 

  9. Atwood JL, Koutsantonis GA, Raston CL (1994) Purification of C-60 and C-70 by selective complexation with calixarenes. Nature 368(6468):229–231. https://doi.org/10.1038/368229a0

    Article  CAS  Google Scholar 

  10. Baati T, Bourasset F, Gharbi N, Njim L, Abderrabba M, Kerkeni A, Szwarc H, Moussa F (2012) The prolongation of the lifespan of rats by repeated oral administration of [60] fullerene. Biomaterials 33(19):4936–4946. https://doi.org/10.1016/j.biomaterials.2012.03.036

    Article  CAS  PubMed  Google Scholar 

  11. Baskaran R, Lee J, Yang SG (2018) Clinical development of photodynamic agents and therapeutic applications. Biomater Res 22:25. https://doi.org/10.1186/s40824-018-0140-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bingel C (1993) Cyclopropylation of Fullerenes. Chem Ber-Recl 126(8):1957–1959. https://doi.org/10.1002/cber.19931260829

    Article  CAS  Google Scholar 

  13. Bolze F, Jenni S, Sour A, Heitz V (2017) Molecular photosensitisers for two-photon photodynamic therapy. Chem Commun 53(96):12857–12877. https://doi.org/10.1039/c7cc06133a

    Article  CAS  Google Scholar 

  14. Bosi S, Da Ros T, Spalluto G, Balzarini J, Prato M (2003a) Synthesis and anti-HIV properties of new water-soluble bis-functionalized[60]fullerene derivatives. Bioorg Med Chem Lett 13(24):4437–4440. https://doi.org/10.1016/j.bmcl.2003.09.016

    Article  CAS  PubMed  Google Scholar 

  15. Bosi S, Da Ros T, Spalluto G, Prato M (2003b) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38(11-12):913–923. https://doi.org/10.1016/j.ejmech.2003.09.005

    Article  CAS  PubMed  Google Scholar 

  16. Brettreich M, Hirsch A (1998) A highly water-soluble dendro[60]fullerene. Tetrahedron Lett 39(18):2731–2734. https://doi.org/10.1016/S0040-4039(98)00491-2

    Article  CAS  Google Scholar 

  17. Brettreich M, Burghardt S, Bottcher C, Bayerl T, Bayerl S, Hirsch A (2000) Globular amphiphiles: membrane-forming hexaadducts of C-60. Angew Chem Int Edit 39(10):1845. https://doi.org/10.1002/(Sici)1521-3773(20000515)39:10<1845::Aid-Anie1845>3.0.Co;2-Q

    Article  CAS  Google Scholar 

  18. Camps X, Hirsch A (1997) Efficient cyclopropanation of C-60 starting from malonates. J Chem Soc Perk T 1(11):1595–1596. https://doi.org/10.1039/a702055d

    Article  Google Scholar 

  19. Cassell AM, Asplund CL, Tour JM (1999) Self-assembling supramolecular nanostructures from a C(60) derivative: nanorods and vesicles. Angew Chem Int Ed Engl 38(16):2403–2405. https://doi.org/10.1002/(sici)1521-3773(19990816)38:16<2403::aid-anie2403>3.0.co;2-j

    Article  CAS  PubMed  Google Scholar 

  20. Dabrowski JM, Arnaut LG (2015) Photodynamic therapy (PDT) of cancer: from local to systemic treatment. Photoch Photobio Sci 14(10):1765–1780. https://doi.org/10.1039/c5pp00132c

    Article  CAS  Google Scholar 

  21. DaRos T, Prato M, Novello F, Maggini M, Banfi E (1996) Easy access to water-soluble fullerene derivatives via 1,3-dipolar cycloadditions of azomethine ylides to C-60. J Org Chem 61(25):9070–9072. https://doi.org/10.1021/jo961522t

    Article  Google Scholar 

  22. Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60]Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5(12):2578–2585. https://doi.org/10.1021/nl051866b

    Article  CAS  PubMed  Google Scholar 

  23. Guan MR, Qin TX, Ge JC, Zhen MM, Xu W, Chen DQ, Li SM, Wang CR, Su HM, Shu CY (2015) Amphiphilic trismethylpyridylporphyrin-fullerene (C-70) dyad: an efficient photosensitizer under hypoxia conditions. J Mater Chem B 3(5):776–783. https://doi.org/10.1039/c4tb01314j

    Article  CAS  PubMed  Google Scholar 

  24. Guan MR, Ge JC, Wu JY, Zhang GQ, Chen DQ, Zhang W, Zhang Y, Zou TJ, Zhen MM, Wang CR, Chu TW, Hao XJ, Shu CY (2016) Fullerene/photosensitizer nanovesicles as highly efficient and clearable phototheranostics with enhanced tumor accumulation for cancer therapy. Biomaterials 103:75–85. https://doi.org/10.1016/j.biomaterials.2016.06.023

    Article  CAS  PubMed  Google Scholar 

  25. Hamano T, Okuda K, Mashino T, Hirobe M, Arakane K, Ryu A, Mashiko S, Nagano T (1997) Singlet oxygen production from fullerene derivatives: effect of sequential functionalization of the fullerene core. Chem Commun 1:21–22. https://doi.org/10.1039/a606335g

    Article  Google Scholar 

  26. Huang LY, Wang M, Dai TH, Sperandio FF, Huang YY, Xuan Y, Chiang LY, Hamblin MR (2014) Antimicrobial photodynamic therapy with decacationic monoadducts and bisadducts of [70] fullerene: in vitro and in vivo studies. Nanomedicine-Uk 9(2):253–266. https://doi.org/10.2217/nnm.13.22

    Article  CAS  Google Scholar 

  27. Ikeda A, Hatano T, Kawaguchi M, Suenaga H, Shinkai S (1999) Water-soluble [60]fullerene-cationic homooxacalix[3]arene complex which is applicable to the photocleavage of DNA. Chem Commun 15:1403–1404. https://doi.org/10.1039/a903872h

    Article  Google Scholar 

  28. Ikeda A, Sato T, Kitamura K, Nishiguchi K, Sasaki Y, Kikuchi J, Ogawa T, Yogo K, Takeya T (2005) Effcient photocleavage of DNA utilising water-soluble lipid membrane-incorporated [60]fullerenes prepared using a [60]fullerene exchange method. Org Biomol Chem 3(16):2907–2909. https://doi.org/10.1039/b507954c

    Article  CAS  PubMed  Google Scholar 

  29. Ikeda A, Matsumoto M, Akiyama M, Kikuchi J, Ogawa T, Takeya T (2009) Direct and short-time uptake of [70]fullerene into the cell membrane using an exchange reaction from a [70]fullerene-gamma-cyclodextrin complex and the resulting photodynamic activity. Chem Commun 12:1547–1549. https://doi.org/10.1039/b820768b

    Article  CAS  Google Scholar 

  30. Ikeda A, Iizuka T, Maekubo N, Aono R, Kikuchi J, Akiyama M, Konishi T, Ogawa T, Ishida-Kitagawa N, Tatebe H, Shiozaki K (2013) Cyclodextrin complexed [60]fullerene derivatives with high levels of photodynamic activity by long wavelength excitation. Acs Med Chem Lett 4(8):752–756. https://doi.org/10.1021/ml4001535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Illescas BM, Rojo J, Delgado R, Martin N (2017) Multivalent glycosylated nanostructures to inhibit ebola virus infection. J Am Chem Soc 139(17):6018–6025. https://doi.org/10.1021/jacs.7b01683

    Article  CAS  PubMed  Google Scholar 

  32. Iwamoto Y, Yamakoshi Y (2006) A highly water-soluble C-60-NVP copolymer: a potential material for photodynamic therapy. Chem Commun 46:4805–4807. https://doi.org/10.1039/b614305a

    Article  CAS  Google Scholar 

  33. Kai Y, Komazawa Y, Miyajima A, Miyata N, Yamakoshi Y (2003) [60]Fullerene as a novel photoinduced antibiotic. Fuller Nanotub Car N 11(1):79–87. https://doi.org/10.1081/Fst-120018664

    Article  CAS  Google Scholar 

  34. Kasermann F, Kempf C (1997) Photodynamic inactivation of enveloped viruses by buckminsterfullerene. Antivir Res 34(1):65–70. https://doi.org/10.1016/S0166-3542(96)01207-7

    Article  CAS  PubMed  Google Scholar 

  35. Komatsu N, Ohe T, Matsushige K (2004) A highly improved method for purification of fullerenes applicable to large-scale production. Carbon 42(1):163–167. https://doi.org/10.1016/j.carbon.2003.10.009

    Article  CAS  Google Scholar 

  36. Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C-60 – a new form of carbon. Nature 347(6291):354–358. https://doi.org/10.1038/347354a0

    Article  Google Scholar 

  37. Krusic PJ, Wasserman E, Parkinson BA, Malone B, Holler ER, Keizer PN, Morton JR, Preston KF (1991) Electron-spin-resonance study of the radical reactivity of C60. J Am Chem Soc 113(16):6274–6275. https://doi.org/10.1021/ja00016a056

    Article  CAS  Google Scholar 

  38. Lamparth I, Hirsch A (1994) Water-soluble malonic-acid derivatives of C-60 with a defined 3-dimensional structure. J Chem Soc Chem Comm 14:1727–1728. https://doi.org/10.1039/c39940001727

    Article  Google Scholar 

  39. Liu J, Ohta S, Sonoda A, Yamada M, Yamamoto M, Nitta N, Murata K, Tabata Y (2007) Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy. J Control Release 117(1):104–110. https://doi.org/10.1016/j.jconrel.2006.10.008

    Article  CAS  PubMed  Google Scholar 

  40. Liu QL, Guan MR, Xu L, Shu CY, Jin C, Zheng JP, Fang XH, Yang YJ, Wang CR (2012) Structural effect and mechanism of C70-carboxyfullerenes as efficient sensitizers against cancer cells. Small 8(13):2070–2077. https://doi.org/10.1002/smll.201200158

    Article  CAS  PubMed  Google Scholar 

  41. Liu QL, Xu L, Zhang XJ, Li N, Zheng JP, Guan MR, Fang XH, Wang CR, Shu CY (2013) Enhanced photodynamic efficiency of an aptamer-guided fullerene photosensitizer toward tumor cells. Chem-Asian J 8(10):2370–2376. https://doi.org/10.1002/asia.201300039

    Article  CAS  PubMed  Google Scholar 

  42. Lu Q, Schuster DI, Wilson SR (1996) Preparation and characterization of six bis(N-methylpyrrolidine)-C-60 isomers: magnetic deshielding in isomeric bisadducts of C-60. J Org Chem 61(14):4764–4768. https://doi.org/10.1021/jo960466t

    Article  CAS  PubMed  Google Scholar 

  43. Maggini M, Scorrano G, Prato M (1993) Addition of azomethine ylides to C-60 – synthesis, characterization, and functionalization of fullerene pyrrolidines. J Am Chem Soc 115(21):9798–9799. https://doi.org/10.1021/ja00074a056

    Article  CAS  Google Scholar 

  44. Mashino T, Usui N, Okuda K, Hirota T, Mochizuki M (2003) Respiratory chain inhibition by fullerene derivatives: hydrogen peroxide production caused by fullerene derivatives and a respiratory chain system. Bioorg Med Chem 11(7):1433–1438. https://doi.org/10.1016/s0968-0896(02)00610-7

    Article  CAS  PubMed  Google Scholar 

  45. Mizuno K, Zhiyentayev T, Huang L, Khalil S, Nasim F, Tegos GP, Gali H, Jahnke A, Wharton T, Hamblin MR (2011) Antimicrobial photodynamic therapy with functionalized fullerenes: quantitative structure-activity relationships. J Nanomed Nanotechnol 2(2):1–9. https://doi.org/10.4172/2157-7439.1000109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mroz P, Pawlak A, Satti M, Lee H, Wharton T, Gali H, Sarna T, Hamblin MR (2007) Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism. Free Radical Bio Med 43(5):711–719. https://doi.org/10.1016/j.freeradbiomed.2007.05.005

    Article  CAS  Google Scholar 

  47. Mroz P, Xia YM, Asanuma D, Konopko A, Zhiyentayev T, Huang YY, Sharma SK, Dai TH, Khan UJ, Wharton T, Hamblin MR (2011) Intraperitoneal photodynamic therapy mediated by a fullerene in a mouse model of abdominal dissemination of colon adenocarcinoma. Nanomed-Nanotechnol 7(6):965–974. https://doi.org/10.1016/j.nano.2011.04.007

    Article  CAS  Google Scholar 

  48. Nagano T, Arakane K, Ryu A, Masunaga T, Shinmoto K, Mashiko S, Hirobe M (1994) Comparison of singlet oxygen production efficiency of C-60 with other photosensitizers, based on 1268-Nm emission. Chem Pharm Bull 42(11):2291–2294

    Article  CAS  Google Scholar 

  49. Nakamura E, Isobe H (2003) Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Accounts Chem Res 36(11):807–815. https://doi.org/10.1021/ar030027y

    Article  CAS  Google Scholar 

  50. Oriana S, Aroua S, Sollner JO, Ma XJ, Iwamoto Y, Yamakoshi Y (2013) Water-soluble C60- and C70-PVP polymers for biomaterials with efficient (1)O2 generation. Chem Commun (Camb) 49(81):9302–9304. https://doi.org/10.1039/c3cc45501g

    Article  CAS  Google Scholar 

  51. Otake E, Sakuma S, Torii K, Maeda A, Ohi H, Yano S, Morita A (2010) Effect and mechanism of a new photodynamic therapy with glycoconjugated fullerene. Photochem Photobiol 86(6):1356–1363. https://doi.org/10.1111/j.1751-1097.2010.00790.x

    Article  CAS  PubMed  Google Scholar 

  52. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428. https://doi.org/10.1038/nnano.2008.111

    Article  CAS  PubMed  Google Scholar 

  53. Prato M, Suzuki T, Foroudian H, Li Q, Khemani K, Wudl F, Leonetti J, Little RD, White T, Rickborn B, Yamago S, Nakamura E (1993) [3+2] and [4+2] cycloadditions of C60. J Am Chem Soc 115(4):1594–1595. https://doi.org/10.1021/ja00057a065

    Article  CAS  Google Scholar 

  54. Rancan F, Rosan S, Boehm F, Cantrell A, Brellreich M, Schoenberger H, Hirsch A, Moussa F (2002) Cytotoxicity and photocytotoxicity of a dendritic C-60 mono-adduct and a malonic acid C-60 tris-adduct on Jurkat cells. J Photoch Photobio B 67(3):157–162. https://doi.org/10.1016/S1011-1344(02)00320-2

    Article  CAS  Google Scholar 

  55. Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) Solubility of C-60 in a variety of solvents. J Phys Chem-Us 97(13):3379–3383. https://doi.org/10.1021/j100115a049

    Article  CAS  Google Scholar 

  56. Shi JJ, Yu XY, Wang L, Liu Y, Gao J, Zhang J, Ma R, Liu RY, Zhang ZZ (2013) PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomaterials 34(37):9666–9677. https://doi.org/10.1016/j.biomaterials.2013.08.049

    Article  CAS  PubMed  Google Scholar 

  57. Sijbesma R, Srdanov G, Wudl F, Castoro JA, Wilkins C, Friedman SH, Decamp DL, Kenyon GL (1993) Synthesis of a fullerene derivative for the inhibition of HIV enzymes. J Am Chem Soc 115(15):6510–6512. https://doi.org/10.1021/ja00068a006

    Article  CAS  Google Scholar 

  58. Sivaraman N, Dhamodaran R, Kaliappan I, Srinivasan TG, Rao PRV, Mathews CK (1992) Solubility of C-60 in organic-solvents. J Org Chem 57(22):6077–6079. https://doi.org/10.1021/jo00048a056

    Article  CAS  Google Scholar 

  59. Sperandio FF, Sharma SK, Wang M, Jeon S, Huang YY, Dai TH, Nayka S, de Sousa SCOM, Chiang LY, Hamblin MR (2013) Photoinduced electron-transfer mechanisms for radical-enhanced photodynamic therapy mediated by water-soluble decacationic C-70 and C84O2 fullerene derivatives. Nanomed-Nanotechnol 9(4):570–579. https://doi.org/10.1016/j.nano.2012.09.005

    Article  CAS  Google Scholar 

  60. Tabata Y, Murakami Y, Ikada Y (1997) Photodynamic effect of polyethylene glycol-modified fullerene on tumor. Jpn J Cancer Res 88(11):1108–1116. https://doi.org/10.1111/j.1349-7006.1997.tb00336.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Takehara H, Fujiwara M, Arikawa M, Diener MD, Alford JM (2005) Experimental study of industrial scale fullerene production by combustion synthesis. Carbon 43(2):311–319. https://doi.org/10.1016/j.carbon.2004.09.017

    Article  CAS  Google Scholar 

  62. Tokuyama H, Yamago S, Nakamura E, Shiraki T, Sugiura Y (1993) Photoinduced biochemical-activity of fullerene carboxylic-acid. J Am Chem Soc 115(17):7918–7919. https://doi.org/10.1021/ja00070a064

    Article  CAS  Google Scholar 

  63. Wang M, Huang L, Sharma SK, Jeon S, Thota S, Sperandio FF, Nayka S, Chang J, Hamblin MR, Chiang LY (2012) Synthesis and photodynamic effect of new highly photostable decacationically armed [60]- and [70]fullerene decaiodide monoadducts to target pathogenic bacteria and cancer cells. J Med Chem 55(9):4274–4285. https://doi.org/10.1021/jm3000664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang M, Maragani S, Huang LY, Jeon S, Canteenwala T, Hamblin MR, Chiang LY (2013) Synthesis of decacationic [60]fullerene decaiodides giving photoinduced production of superoxide radicals and effective PDT-mediation on antimicrobial photoinactivation. Eur J Med Chem 63:170–184. https://doi.org/10.1016/j.ejmech.2013.01.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wiehe A, O’Brien JM, Senge MO (2019) Trends and targets in antiviral phototherapy. Photoch Photobio Sci 18(11):2565–2612. https://doi.org/10.1039/c9pp00211a

    Article  CAS  Google Scholar 

  66. Witte P, Beuerle F, Hartnagel U, Lebovitz R, Savouchkina A, Sali S, Guldi D, Chronakis N, Hirsch A (2007) Water solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C60 and C70. Org Biomol Chem 5(22):3599–3613. https://doi.org/10.1039/b711912g

    Article  CAS  PubMed  Google Scholar 

  67. Yamago S, Tokuyama H, Nakamura E, Kikuchi K, Kananishi S, Sueki K, Nakahara H, Enomoto S, Ambe F (1995) In-vivo biological behavior of a water-miscible fullerene – C-14 labeling, absorption, distribution, excretion and acute toxicity. Chem Biol 2(6):385–389. https://doi.org/10.1016/1074-5521(95)90219-8

    Article  CAS  PubMed  Google Scholar 

  68. Yamakoshi YN, Yagami T, Fukuhara K, Sueyoshi S, Miyata N (1994) Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests. J Chem Soc Chem Comm 4:517–518. https://doi.org/10.1039/c39940000517

    Article  Google Scholar 

  69. Yamakoshi Y, Sueyoshi S, Fukuhara K, Miyata N (1998) center dot OH and O-2(center dot-) generation in aqueous C-60 and C-70 solutions by photoirradiation: an EPR study. J Am Chem Soc 120(47):12363–12364. https://doi.org/10.1021/ja9823969

    Article  CAS  Google Scholar 

  70. Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, Masumizu T, Nagano T (2003) Active oxygen species generated from photoexcited fullerene (C-60) as potential medicines: O-2(-center dot) versus O-1(2). J Am Chem Soc 125(42):12803–12809. https://doi.org/10.1021/ja0355574

    Article  CAS  PubMed  Google Scholar 

  71. Yamakoshi Y, Aroua S, Nguyen TM, Iwamoto Y, Ohnishi T (2014) Water-soluble fullerene materials for bioapplications: photoinduced reactive oxygen species generation. Faraday Discuss 173:287–296. https://doi.org/10.1039/c4fd00076e

    Article  CAS  PubMed  Google Scholar 

  72. Yoshida ZI, Takekuma H, Takekuma SI, Matsubara Y (1994) Molecular recognition of C-60 with gamma-cyclodextrin. Angew Chem Int Ed Engl 33(15-16):1597–1599. https://doi.org/10.1002/anie.199415971

    Article  Google Scholar 

  73. Zhao B, Bilski PJ, He YY, Feng L, Chignell CF (2008) Photo-induced reactive oxygen species generation by different water-soluble fullerenes (C) and their cytotoxicity in human keratinocytes. Photochem Photobiol 84(5):1215–1223. https://doi.org/10.1111/j.1751-1097.2008.00333.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Yamakoshi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yamakoshi, Y. (2021). Potential of Fullerenes for Photodynamic Therapy Application. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3242-5_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3242-5_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3242-5

  • Online ISBN: 978-981-13-3242-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics