Skip to main content

Functionalization of Fullerenes: Addition Reactions

  • Living reference work entry
  • First Online:
Handbook of Fullerene Science and Technology

Abstract

This chapter begins with the nucleophilic reactions of fullerenes, in which Grignard reagents, alkyllithium, and other carbon nucleophiles, as well as silicon and phosphorous nucleophiles, have been employed for the synthesis of a variety of fullerene adducts. In some cases, multiple adducts have been synthesized regioselectively. The second part deals with electrophilic reactions, although reported examples of these reactions are still limited. The third part is devoted to addition–elimination reactions, which have been recognized as one of the most powerful methodologies to construct methanofullerenes. Other types of cycloadducts can also be obtained by modifying the substrates. Carbenes and silylenes are also reactive toward fullerenes; this reactivity is described in the fourth part. A variety of 1,3-dipolar cycloadditions, including the well-known Prato reactions, are summarized in the fifth part. The sixth part deals with nitrene additions, as these are relevant to 1,3-dipolar cycloadditions. The seventh part is devoted to phosphine-mediated reactions. Notably, azafulleroids and azamethanofullerenes have also been prepared via 1,3-dipolar cycloadditions followed by N2 extrusion. Several examples of [2 + 2] cycloadditions are described in the eighth part. Finally, a variety of Diels–Alder reactions are summarized in the final part. Noteworthily, some Diels–Alder cycloadducts obtained from the reactions of fullerenes with nitrogen-containing aromatic compounds provide useful precursors for the preparation of open-cage fullerenes and endohedral fullerenes. In addition, the reversibility of the Diels–Alder reaction of C60 with 9,10-dimethylanthracene has been applied to achieve the regioselective synthesis of hexaadducts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hirsch A, Grösser T, Skiebe A, Soi A (1993) Synthesis of isomerically pure organodihydrofullerenes. Chem Ber 126(4):1061–1067

    Article  CAS  Google Scholar 

  2. Fagan PJ, Krusic PJ, Evans DH, Lerke SA, Johnston E (1992) Synthesis, chemistry, and properties of a monoalkylated buckminsterfullerene derivative, t-BuC60 anion. J Am Chem Soc 114(24):9697–9699

    Article  CAS  Google Scholar 

  3. Morton JR, Preston KF, Krusic PJ, Hil A, Wasserman E (1992) The dimerization of RC60 radicals. J Am Chem Soc 114(13):5454–5455

    Article  CAS  Google Scholar 

  4. Hirsch A, Soi A, Karfunkel HR (1992) Titration of C60: a method for the synthesis of organofullerenes. Angew Chem, Int Ed Engl 31(6):766–768

    Article  Google Scholar 

  5. Fukuzumi S, Suenobu T, Hirasaka T, Arakawa R, Kadish KM (1998) Formation of C60 adducts with two different alkyl groups via combination of electron transfer and SN2 reactions. J Am Chem Soc 120(36):9220–9227

    Article  CAS  Google Scholar 

  6. Nagashima H, Terasaki H, Kimura E, Nakajima K, Itoh K (1994)

    Google Scholar 

  7. Nagashima H, Terasaki H, Saito Y, Jinno K, Itoh K (1995) Chlorosilanes and silyl triflates containing C60 as a partial structure. A versatile synthetic entry linking the C60 moieties with alcohols, phenols, and silica. J Org Chem 60(16):4966–4967

    Article  CAS  Google Scholar 

  8. Matsuo Y, Nakamura E (2006) Synthesis of trialkyl[60]fullerene C60(CH2SiMe3)3H and its potassium and rhodium(I) complexes. Inorg. Chim. Acta 359(6):1979–1982

    Article  CAS  Google Scholar 

  9. Matsuo Y, Iwashita A, Abe Y, Li C-Z, Matsuo K, Hashiguchi M, Nakamura E (2008) Regioselective synthesis of 1,4-di(organo)[60]fullerenes through DMF-assisted monoaddition of silylmethyl Grignard reagents and subsequent alkylation reaction. J Am Chem Soc 130(46):15429–15436

    Article  CAS  PubMed  Google Scholar 

  10. Komatsu K, Murata Y, Takimoto N, Mori S, Sugita N, Wan TSM (1994) Synthesis and properties of the first acetylene derivatives of C60. J Org Chem 59(20):6101–6102

    Article  CAS  Google Scholar 

  11. Anderson HL, Faust R, Rubin Y, Diederich F (1994) Fullerene–acetylene hybrids: on the way to synthetic molecular carbon allotropes. Angew Chem, Int Ed Engl 33(13):1366–1368

    Article  Google Scholar 

  12. Timmerman P, Anderson HL, Faust R, Nierengarten J-F, Habicher T, Seiler P, Diederich F (1996) Fullerene-acetylene hybrids: towards a novel class of molecular carbon allotropes. Tetrahedron 52(14):4925–4947

    Article  CAS  Google Scholar 

  13. Murata Y, Motoyama K, Komatsu K, Wan TSM (1996) Synthesis, properties, and reactions of a stable carbanion derived from alkynyldihydrofullerene: 1-Octynyl-C60 carbanion. Tetrahedron 52(14):5077–5090

    Article  CAS  Google Scholar 

  14. Keshavarz-K M, Knight B, Srdanov G, Wudl F (1995) Cyanodihydrofullerenes and dicyanodihydrofullerene: the first polar solid based on C60. J Am Chem Soc 117(45):11371–11372

    Article  CAS  Google Scholar 

  15. Murata Y, Komatsu K, Wan TSM (1996) The reaction of [60]fullerene with lithium fluorenide: Formation of a novel 1,4-adduct of [60]fullerene. Tetrahedron Lett 37(39):7061–7064

    Article  CAS  Google Scholar 

  16. Murata Y, Shiro M, Komatsu K (1997) Synthesis, X-ray structure, and properties of the first tetrakisadduct of fullerene C60 having a fulvene-type π-system on the spherical surface. J Am Chem Soc 119(34):8117–8118

    Article  CAS  Google Scholar 

  17. Sawamura M, Iikura H, Nakamura E (1996) The first pentahaptofullerene metal complexes. J Am Chem Soc 118(50):12850–12851

    Article  CAS  Google Scholar 

  18. Matsuo Y, Tahara K, Morita K, Matsuo K, Nakamura E (2007) Regioselective eightfold and tenfold additions of a pyridine-modified organocopper reagent to [60]fullerene. Angew Chem Int Ed 46(16):2844–2847

    Article  CAS  Google Scholar 

  19. Li D, Li Z-J, He F-G, Geng C, Gao X (2019) Synthesizing 1,23-C60 adducts with improved efficiency: a type of stable and highly soluble C60 derivatives. J Org Chem 84(22):14679–14687

    Article  CAS  PubMed  Google Scholar 

  20. Kusukawa T, Ando W (1996) Reactions of silyllithium with C60: isolation and X-ray crystallographic characterization of an unusual bissilylated-C60 adduct. Angew Chem, Int Ed Engl 35(12):1315–1317

    Article  CAS  Google Scholar 

  21. Kusukawa T, Ando W (1998) Substituents effects on the addition of silyllithium and germyllithium to C60. J Organomet Chem 561:109–120

    Article  CAS  Google Scholar 

  22. Yamago S, Yanagawa M, Nakamura E (1994) Tertiary phosphines and P-chiral phosphinites bearing a fullerene substituent. J Chem Soc, Chem Commun 18:2093–2094

    Article  Google Scholar 

  23. Kitagawa T, Sakamoto H, Takeuchi K (1999) Electrophilic addition of polychloroalkanes to C60: direct observation of aklylfullerenyl cation intermediates. J Am Chem Soc 121(17):4298–4299

    Article  CAS  Google Scholar 

  24. Kitagawa T, Lee Y, Hanamura M, Sakamoto H, Konno H, Takeuchi K, Komatsu K (2002) Nucleophilic substitution of alkylchlorodihydro[60]fullerenes: thermodynamic stabilities of alkylated C60 cation intermediates. Chem Comm 24:3062–3063

    Article  Google Scholar 

  25. Matsuo Y, Yu Y, Yang X-Y, Ueno H, Okada H, Shibuya H, Choi YS, Jin YW (2019) Synthesis of benzothieno[60]fullerenes through fullerenyl cation intermediates. J Org Chem 84(10):6270–6277

    Article  CAS  PubMed  Google Scholar 

  26. Lin H-S, Matsuo Y (2018) Functionalization of [60]fullerene through fullerene cation intermediates. Chem Commun 54(80):11244–11259

    Article  CAS  Google Scholar 

  27. Biglova YN, Mustafin AG (2019) Nucleophilic cyclopropanation of [60]fullerene by the addition–elimination mechanism. RSC Adv 9(39):22428–22498

    Article  CAS  Google Scholar 

  28. Bingel C (1993) Cyclopropanierung von fullerenen. Chem Ber 126(8):1957–1959

    Article  CAS  Google Scholar 

  29. Hirsch A, Lamparth, Karfunkel HR (1994) Fullerene chemistry in three dimensions: Isolation of seven regioisomeric bisadducts and chiral trisadducts of C60 and di(ethoxycarbonyl)methylene. Angew Chem, Int Ed Engl 33(4):437–438

    Article  Google Scholar 

  30. Camps X, Hirsch A (1997) Efficient cyclopropanation of C60 starting from malonates. J Chem Soc, Perkin Trans 1(11):1595–1596

    Article  Google Scholar 

  31. Nierengarten J-F, Herrmann A, Tykwinski RR, Rüttimann M, Diederich F (1997) Methanofullerene molecular scaffolding: towards C60-substituted poly(triacetylenes) and expanded radialenes, preparation of C60–C70 hybrid derivative, and a novel macrocyclization reaction. Helv Chim Acta 80(1):293–316

    Article  CAS  Google Scholar 

  32. Feng L, Nakahodo T, Wakahara T, Tsuchiya T, Maeda Y, Akasaka T, Kato T, Horn E, Yoza K, Mizorogi N, Nagase S (2005) A singly bonded derivative of endohedral metallofullerene: La@C82CBr(COOC2H5)2. J Am Chem Soc 127(49):17136–17137

    Article  CAS  PubMed  Google Scholar 

  33. Anderson HL, Faust R, Rubin Y, Diederich F (1994) Fullerene–acetylene hybrids: On the way to synthetic molecular carbon allotropes. Angew Chem, Int Ed Engl 33(13):1366–1368

    Article  Google Scholar 

  34. Wang Y, Cao J, Schuster DI, Wilson SR (1995) A superior synthesis of [6,6]-methanofullerenes: The reaction of sulfonium ylides with C60. Tetrahedron Lett 36(38):6843–6846

    Article  CAS  Google Scholar 

  35. Wang G-W, Li J-X, Xu Y (2008) Synthesis of C60-fused tetrahydrothiophene derivatives via nucleophilic cycloaddition of thiocyanates. Org Biomol Chem 6(16):2995–2999

    Article  CAS  PubMed  Google Scholar 

  36. Ball GE, Burley GA, Chaker L, Hawkins BC, Williams JR, Keller PA, Pyne SG (2005) Structural reassignment of the mono- and bis-addition products from the addition reactions of N-(diphenylmethylene)glycinate esters to [60]fullerene under Bingel conditions. J Org Chem 70(21):8572–8574

    Article  CAS  PubMed  Google Scholar 

  37. Tsuda M, Ishida T, Nogami T, Kurono S, Ohashi M (1993) C61Cl2. Synthesis and characterization of dichlorocarbene adducts of C60. Tetrahedron Lett 34(43):6911–6912

    Article  CAS  Google Scholar 

  38. Benito AM, Darwish AD, Kroto HW, Meidine MF, Taylor R, Walton DRM (1996) Synthesis and characterization of the methanofullerenes, C60(CHCN) and C60(CBr2). Tetrahedron Lett 37(7):1085–1086

    Article  CAS  Google Scholar 

  39. Osterodt J, Vögtle V (1996) C61Br2: a new synthesis of dibromomethanofullerene and mass spectrometric evidence of the carbon allotropes C121 and C122. Chem Comm 4:547–548

    Article  Google Scholar 

  40. Yinghuai Z, Bahnmueller S, Chibun C, Carpenter K, Hosmane NS, Maguire JA (2003) An effective system to synthesize methanofullerenes: substrate–ionic liquid–ultrasonic irradiation. Tetrahedron Lett 44(29):5473–5476

    Article  Google Scholar 

  41. Gao X, Ishimura K, Nagase S, Chen Z (2009) Dichlorocarbene addition to C60 from the trichloromethyl anion: carbene mechanism of Bingel mechanism? J Phys Chem A 113(15):3673–3676

    Article  CAS  PubMed  Google Scholar 

  42. Tokuyama H, Nakamura M, Nakamura E (1993) [1 + 2] and [3 + 2] Cycloaddition reactions of vinylcarbenes with C60. Tetrahedron Lett 34(46):7429–7432

    Article  CAS  Google Scholar 

  43. Tokuyama H, Isobe H, Nakamura E (1995) Methano- and propanofullerenes by [1 + 2] and [3 + 2] cycloadditions of vinylcarbene species. Bull Chem Soc Jpn 68(3):935–941

    Article  CAS  Google Scholar 

  44. Isobe H, Tokuyama H, Sawamura M, Nakamura E (1997) Synthetic and computational studies on symmetry-defined double cycloaddition of a new tris-annulating reagent to C60. J Org Chem 62(15):5034–5041

    Article  CAS  Google Scholar 

  45. Suzuki T, Maruyama Y, Akasaka T, Ando W, Kobayashi K, Nagase S (1994) Redox properties of organofullerenes. J Am Chem Soc 116(4):1359–1363

    Article  CAS  Google Scholar 

  46. Romanova IP, Bogdanov AV, Mironov VF, Shaikhutdinova GR, Larionova OA, Latypov SK, Balandina AA, Yakhvarov DG, Gubaidullin AT, Saifina AF, Sinyashin OG (2011) Deoxygenation of some α-dicarbonyl compounds by tris(diethylamino)phosphine in the presence of fullerene C60. J Org Chem 76(8):2548–2557

    Article  CAS  PubMed  Google Scholar 

  47. Nikawa H, Nakahodo T, Tsuchiya T, Wakahara T, Rahman GMA, Akasaka T, Maeda Y, Liu MTH, Meguro A, Kyushin S, Matsumoto H, Mizorogi N, Nagase S (2005) S-Heterocyclic carbene with a disilane backbone. Angew Chem Int Ed 44(46):7567–7570

    Article  CAS  Google Scholar 

  48. Kako M, Arikawa Y, Kanzawa S, Yamada M, Maeda Y, Furukawa M, Akasaka T (2019) Addition of S-heterocyclic carbenes to fullerenes: Formation and characterization of dithiomethano-bridged derivatives. Helv Chim Acta 102:e1900064

    Article  Google Scholar 

  49. Li H, Risko C, Seo JH, Campbell C, Wu G, Brédas J-L, Bazan GC (2011) Fullerene–carbene Lewis acid–base adducts. J Am Chem Soc 133(32):12410–12413

    Article  CAS  PubMed  Google Scholar 

  50. Chen M, Bao L, Ai M, Shen W, Lu X (2016) Sc3N@Ih-C80 as a novel Lewis acid to trap abnormal N-heterocyclic carbenes: the unprecedented formation of a singly bonded [6,6,6]-adduct. Chem Sci 7(3):2331–2334

    Article  CAS  PubMed  Google Scholar 

  51. Komatsu K, Kagayama A, Murata Y, Sugita N, Kobayashi K, Nagase S, Wan TSM (1993) Reaction of C60 with chlorophenyldiazirine. Chem Lett 22(12):2163–2166

    Article  Google Scholar 

  52. Yamada M, Akasaka T, Nagase S (2013) Carbene additions to fullerenes. Chem Rev 113(9):7209–7264

    Article  CAS  PubMed  Google Scholar 

  53. Akasaka T, Ando W, Kobayashi K, Nagase S (1993) Reaction of C60 with silylene, the first fullerene silirane derivative. J Am Chem Soc 115(4):1605–1606

    Article  CAS  Google Scholar 

  54. Akasaka T, Mitsuhida E, Ando W, Kobayashi K, Nagase S (1995) Regioselective addition of silylene on to [70]fullerene. J Chem Soc, Chem Commun 15:1529–1530

    Article  Google Scholar 

  55. Maggini M, Scorrano G, Prato M (1993) Addition of azomethine ylides to C60: synthesis, characterization, and functionalization of fullerene pyrrolidienes. J Am Chem Soc 115(21):9798–9799

    Article  CAS  Google Scholar 

  56. Prato M, Maggini M (1998) Fulleropyrrolidines: a family of full-fledged fullerene derivatives. Acc Chem Res 31(9):519–526

    Article  CAS  Google Scholar 

  57. Izquierdo M, Osuna S, Filippone S, Martín-Domenech Á, Solá M, Martín N (2009) H-Bond-assisted regioselective (cis-1) intramolecular nucleophilic addition of the hydroxyl group to [60]fullerene. J Org Chem 74(4):1480–1487

    Article  CAS  PubMed  Google Scholar 

  58. Izquierdo M, Osuna S, Filippone S, Martín-Domenech Á, Solá M, Martín N (2009) Regioselective intramolecular nucleophilic addition of alcohols to C60: one-step formation of a cis-1 bicyclic-fused fullerene. J Org Chem 74(16):6253–6259

    Article  CAS  PubMed  Google Scholar 

  59. Izquierdo M, Osuna S, Filippone S, Martín-Domenech Á, Solá M, Martín N (2009) On the regioselective intramolecular nucleophilic addition of thiols to C60. Eur J Org Chem 35:6231–6238

    Article  Google Scholar 

  60. Martín N, Altable M, Filippone F, Marín-Domenech Á, Güell M, Solá M (2006) Thermal [2 + 2] Intramolecular cycloadditions of fuller-1,6-enynes. Angew Chem Int Ed 45(9):1439–1442

    Article  Google Scholar 

  61. Altable M, Filippone S, Martín-Domenech Á, Güell M, Solá M, Martín N (2006) Intramolecular ene reaction of 1,6-fullerenynes: a new synthesis of allenes. Org Lett 8(26):5959–5962

    Article  CAS  PubMed  Google Scholar 

  62. Martín N, Altable M, Filippone S, Martín-Domenech Á (2004) Highly efficient Pauson–Khand reaction with C60: regioselective synthesis of unprecedented cis-1 biscycloadducts. Chem Commun 11:1338–1339

    Article  Google Scholar 

  63. Martin N, Altable M, Filippone S, Martin-Domeneck A, Poater A, Sola M (2005) Regioselective intramolecular Pauson–Khand reactions of C60: an electrochemical study and theoretical underpinning. Chem Eur J 11(9):2716–2729

    Article  CAS  PubMed  Google Scholar 

  64. Ito S, Tokimaru Y, Nozaki K (2015) Isoquinolino[4,3,2-de]phenanthridine: synthesis and its use in 1,3-dipolar cycloadditions to form nitrogen-containing polyaromatic hydrocarbons. Chem Commun 51(1):221–224

    Article  CAS  Google Scholar 

  65. Jagerovic N, Elguero J, Aubagnac J-L (1996) Cycloaddition of tetracyanoethene oxide with [60]fullerene. J Chem Soc, Perkin Trans 1(6):499

    Article  Google Scholar 

  66. Meier MS, Poplawska M (1993) Addition of nitrile oxides to C60: formation of isooxazoline derivatives of fullerenes. J Org Chem 58(17):4524–4525

    Article  CAS  Google Scholar 

  67. Meier MS, Poplawska M (1996) The addition of nitrile oxides to C60. Tetrahedron 52(14):5043–5042

    Article  CAS  Google Scholar 

  68. Da Ros T, Prato M, Novello F, Maggini M, De Amici M, De Micheli C (1997) Cycloaddition of nitrile oxides to [60]fullerene. Chem Commun 1:59–60

    Article  Google Scholar 

  69. Illescas BM, Martín N (2000) [60]Fullerene adducts with improved electron acceptor properties. J Org Chem 65(19):5986–5995

    Article  CAS  PubMed  Google Scholar 

  70. Matsubara Y, Tada H, Nagase S, Yoshida Z (1995) Intramolecular charge transfer interaction in 1,3-diphenyl-2-pyrazoline ring-fused C60. J Org Chem 60(17):5372–5373

    Article  CAS  Google Scholar 

  71. Delgado JL, de la Cruz P, Lopez-Arza V, Langa F, Gan Z, Araki Y, Ito O (2005) Synthesis and photoinduced intermolecular electronic acceptor ability of pyrazolo[60]fullerenes vs tetrathiafulvalene. Bull Chem Soc Jpn 78(8):1500–1507

    Article  CAS  Google Scholar 

  72. Ishida H, Itoh K, Ohno M (2001) 1,3-Dipolar cycloaddition reaction of [60]fullerene with thiocarbonyl ylide and synthetic application of the cycloadduct. Tetrahedron 57(9):1737–1747

    Article  CAS  Google Scholar 

  73. Prato M, Suzuki T, Foroudian H, Li Q, Khemani K, Wudl F, Leonetti J, Little RD, White T, Rickborn B, Yamago S, Nakamura E (1993) [3 + 2] and [4 + 2] Cycloadditions of C60. J Am Chem Soc 115(4):1594–1595

    Article  CAS  Google Scholar 

  74. Suzuki T, Li Q, Khemani KC, Wudl F, Almarsson Ö (1991) Systematic inflation of buckminsterfullerene C60: synthesis of diphenyl fulleroids C61 to C66. Science 254(5035):1186–1188

    Article  CAS  PubMed  Google Scholar 

  75. Suzuki T, Li Q, Khemani KC, Wudl F, Almarsson Ö (1992) Synthesis of m-phenylene- and p-phenylenebis(phenylfulleroids): two-pearl sections of pearl necklace polymers. J Am Chem Soc 114(18):7300–7301

    Article  CAS  Google Scholar 

  76. Wudl F (1992) The chemical properties of buckminsterfullerene (C60) and the birth and infancy of fulleroids. Acc Chem Res 25(3):157–161

    Article  CAS  Google Scholar 

  77. Suzuki T, Li Q, Khemani KC, Wudl F (1992) Dihydrofulleroid H2C61: synthesis and properties of the parent fulleroid. J Am Chem Soc 114(18):7301–7302

    Article  CAS  Google Scholar 

  78. Smith AB III, Strongin RM, Brard L, Furst GT, Romanow WJ, Owens KG, King RC (1993) 1,2-Methanobuckminsterfullerene (C61H2), the parent fullerene cyclopropane: synthesis and structure. J Am Chem Soc 115(13):5829–5830

    Article  CAS  Google Scholar 

  79. Hummelen JC, Knight BW, LePeq F, Wudl F (1995) Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 60(3):532–538

    Article  CAS  Google Scholar 

  80. Heymann D, Bachilo SM, Weisman RB, Cataldo F, Fokkens RH, Nibbering NMM, Vis RD, Chibante LPF (2000) C60O3, A fullerene ozonide: synthesis and dissociation to C60O and O2. J Am Chem Soc 122(46):11473–11479

    Article  CAS  Google Scholar 

  81. Weisman RB, Heymann D, Bachilo SM (2001) Synthesis and characterization of the “missing” oxide of C60: [5,6]-Open C60O. J Am Chem Soc 123(39):9720–9721

    Article  CAS  PubMed  Google Scholar 

  82. Prato M, Li QC, Wudl F, Lucchini V (1993) Addition of azides to C60: synthesis of azafulleroids. J Am Chem Soc 115(3):1148–1150

    Article  CAS  Google Scholar 

  83. Grösser T, Prato M, Lucchini V, Hirsch A, Wudl F (1995) Ring expansion of the fullerene core by highly regioselective formation of diazafulleroids. Angew Chem, Int Ed Engl 34(12):1343–1345

    Article  Google Scholar 

  84. Ulmer L, Mattay J (2003) Preparation and characterization of sulfonyl-azafulleroid and sulfonylaziridino-fullerene derivatives. Eur J Org Chem 15:2933–2940

    Article  Google Scholar 

  85. Nakahodo T, Okada M, Morita H, Yoshimura T, Ishitsuka MO, Tsuchiya T, Maeda Y, Fujiwara H, Akasaka T, Gao X, Nagase S (2008) [2+1] Cycloaddition of nitrene onto C60 revisited: Interconversion between an aziridinofullerene and an azafulleroid. Angew Chem Int Ed 47(7):1298–1300

    Article  CAS  Google Scholar 

  86. Okada M, Nakahodo T, Ishitsuka MO, Nikawa H, Tsuchiya T, Akasaka T, Fujie T, Yoshimura T, Slanina Z, Nagase S (2011) Highly regioselective synthesis of bis-aziridino[60]fullerene with sulfilimine. Chem Asian J 6(2):416–423

    Article  CAS  PubMed  Google Scholar 

  87. Yamaguchi H, Murata S, Akasaka T, Suzuki T (1997) Preparation and structure of a novel methano[60]fullerene containing a stable P-ylid. Tetrahedron Lett 38(20):3529–3530

    Article  CAS  Google Scholar 

  88. Chen S-Y, Cheng R-L, Tseng C-K, Venkatachalam RK, Chen Y-C, Cheng C-H, Chuang S-C (2009) Fullerene derivatives incorporating phosphoramidous ylide and phosphoramidate: synthesis and Property. J Org Chem 74(13):4866–4869

    Article  CAS  PubMed  Google Scholar 

  89. Liou K-F, Cheng C-H (1995) Phosphine-mediated [2 + 2] cycloaddition of internal alk-2-ynoate and alk-2-ynone to [60]fullerene. J Chem Soc, Chem Commun 24:2473–2474

    Article  Google Scholar 

  90. Hsiao T-Y, Chidambareswaran SK, Cheng C-H (1998) Novel bismethanofullerenes and ethenofullerene from the reaction of propiolates with C60 in the presence of triphenylphosphine. J Org Chem 63(23):8617–8620

    Article  CAS  Google Scholar 

  91. Shu L-H, Sun W-Q, Zhang D-W, Wu S-H, Wu H-M, Xu J-F, Lao X-F (1997) Phosphine-catalyzed [3 + 2] cycloadditions of buta-2,3-dienoates with [60]fullerene. J Chem Soc, Chem Commun 1:79–80

    Article  Google Scholar 

  92. Tseng P-Y, Chuang S-C (2013) Chemo-, regio- and stereoselective tricyclohexylphosphine-catalyzed [3 + 2] cycloaddition of enynes with [60]fullerene initiated by 1,4-Michael addition: Synthesis of cyclopenteno[60]fullerenes and their electrochemical properties. Adv Synth Cat 355(11-12):2165–2171

    Article  CAS  Google Scholar 

  93. Wu A-J, Tseng P-Y, Hsu W-H, Chuang S-C (2016) Tricyclohexylphosphine-catalyzed cycloaddition of enynoates with [60]fullerene and the application of cyclopentenofullerenes as n-type materials in organic photovoltaics. Org Lett 18(2):224–227

    Article  CAS  PubMed  Google Scholar 

  94. Bildstein B, Schweiger M, Angleitner H, Kopacka H, Wurst K, Ongania K-H, Fontani M, Zanello P (1999) Tetraferrocenyl[5]cumulene, (Fc)2C=C=C=C=C=C(Fc)2: Synthesis, electrochemistry, and reactivity, including nickel(0)-promoted [3]ferrocenophane formation and [2+2] cycloaddition with fullerene C60. Organometallics 18(21):4286–4295

    Article  CAS  Google Scholar 

  95. Yamago S, Takeichi A, Nakamura E (1994) Synthesis and [2 + 2] cycloaddition of dimethyleneketene acetals. Reaction with C60 and facile hydrolysis of the C–C bond connected to C60. J Am Chem Soc 116(3):1123–1124

    Article  CAS  Google Scholar 

  96. Hoke SH II, Molstad J, Dilettato D, Jay DJ, Carlson D, Kahr B, Cooks RG (1992) Reaction of fullerenes and benzyne. J Org Chem 57(19):5069–5071

    Article  CAS  Google Scholar 

  97. Ishida T, Shinozuka K, Nogami T, Sasaki S, Iyoda M (1995) First X-ray structural determination of fullerene [2+2] cycloadduct. Chem Lett 24(4):317–318

    Article  Google Scholar 

  98. Nakamura Y, Takano N, Nishimura T, Yashima E, Sato M, Kudo T, Nishimura J (2001) First isolation and characterization of eight regioisomers for [60]fullerene–benzyne bisadducts. Org Lett 3(8):1193–1196

    Article  CAS  PubMed  Google Scholar 

  99. Meier MS, Wang G-W, Haddon RC, Brock CP, Lloyd MA, Selegue JP (1998) Benzyne adds across a closed 5–6 ring fusion in C70: evidence for bond delocalization in fullerenes. J Am Chem Soc 120(10):2337–2342

    Article  CAS  Google Scholar 

  100. Lu X, Nikawa H, Tsuchiya T, Akasaka T, Toki M, Sawa H, Mizorogi N, Nagase S (2010) Nitrated benzyne derivatives of La@C82: addition of NO2 and its positional directing effect on the subsequent addition of benzynes. Angew Chem, Int Ed 49(3):594–597

    Article  CAS  Google Scholar 

  101. Li FF, Pinzón JR, Mercado BQ, Olmstead MM, Balch AL, Echegoyen L (2011) [2 + 2] Cycloaddition reaction to Sc3N@Ih-C80. The formation of very stable [5,6]- and [6,6]-adducts. J Am Chem Soc 133(5):1563–1571

    Article  CAS  PubMed  Google Scholar 

  102. Ueda M, Sakaguchi T, Hayama M, Nakagawa T, Matsuo Y, Munechika A, Yoshida S, Yasuda H, Ryu I (2016) Regio- and stereo-selective intermolecular [2 + 2] cycloaddition of allenol esters with C60 leading to alkylidenecyclobutane-annulated fullerenes. Chem Comm 52(89):13175–13178

    Article  CAS  PubMed  Google Scholar 

  103. Yamada M, Ochi R, Yamamoto Y, Okada S, Maeda Y (2017) Tansition-metal-catalyzed divergent functionalization of [60]fullerene with propargylic esters. Org Biomol Chem 15(40):8499–8503

    Article  CAS  PubMed  Google Scholar 

  104. Tsuda M, Ishida T, Nogami T, Kurono S, Ohashi M (1993) Isolation and characterization of Diels–Alder adducts of C60 with anthracene and cyclopentadiene. J Chem Soc, Chem Commun 16:1296–1298

    Article  Google Scholar 

  105. Pang LSK, Wilson MA (1993) Reactions of C60 and C70 with cyxlopentadiene. J Phys Chem 97(26):6761–6763

    Article  CAS  Google Scholar 

  106. Kräutler B, Maynollo J (1996) Diels–Alder reactions of the [60]fullerene functionalizing a carbon sphere with flexibly and with rigidly bound addends. Tetrahedron 52(14):5033–5042

    Article  Google Scholar 

  107. Illescas B, Martín N, Seoane C, de la Cruz P, Langa F, Wudl F (1995) A facile formation of electroactive fullerene adducts from sultines via a Diels–Alder reaction. Tetrahedron Lett 36(45):8307–8310

    Article  CAS  Google Scholar 

  108. Zhang X, Foote CS (1994) Reaction of C60 with benzocyclobutenol: expeditious route to fullerene adducts. J Org Chem 59(18):5235–5238

    Article  CAS  Google Scholar 

  109. Belik P, Gügel A, Spickerman J, Müllen K (1993) Reaction of buckminsterfullerene with ortho-quinodimethane: a new access to stable C60 derivatives. Angew Chem, Int Ed Engl 32(1):78–80

    Article  Google Scholar 

  110. Rubin Y, Khan S, Freedberg DI, Yeretzian C (1993) Synthesis and X-ray structure of a Diels–Alder adduct of C60. J Am Chem Soc 115(1):344–345

    Article  CAS  Google Scholar 

  111. Markoulides MS, Ioannou GI, Manos MJ, Chronakis N (2013) One-pot thermally chemocontrolled double Diels–Alder strategies. A route to [4 + 2] functionalization/[4 + 2] derivatization of C60. RSC Adv 3(14):4750–4756

    Article  CAS  Google Scholar 

  112. Ohno M, Azuma T, Kojima S, Shirakawa Y, Eguchi S (1996) An efficient functionalization of [60]fullerene. Diels–Alder reaction using 1,3-butadienes substituted with electron-withdrawing and electron-donating (silyloxy) groups. Tetrahedron 52(14):4983–4994

    Article  CAS  Google Scholar 

  113. Mikami K, Matsumoto S, Okubo Y, Fujitsuka M, Ito O, Suenobu T, Fukuzumi S (2000) Stepwise bond formation in photochemical and thermal Diels–Alder reactions of C60 with Danishefsky’s dienes. J Am Chem Soc 122(10):2236–2243

    Article  CAS  Google Scholar 

  114. Arce MJ, Viado AL, An Y-Z, Khan SI, Rubin Y (1996) Triple scission of a six-membered ring on the surface of C60 via consecutive pericyclic reactions and oxidative cobalt insertion. J Am Chem Soc 118(15):3775–3776

    Article  CAS  Google Scholar 

  115. Martín N, Martinez-Grau A, Sanchez L, Seoane C, Torres M (1998) The first hetero-Diels–Alder reaction of C60 with 1-azadienes. Synthesis of tetrahydro[2’,3’:1,2][60]fullerene derivatives. J Org Chem 63(22):8074–8076

    Article  Google Scholar 

  116. Ohno M, Azuma T, Eguchi S (1993) Buckminsterfullerene C60o-quinone methide cycloadduct. Chem Lett 22(11):1833–1834

    Article  Google Scholar 

  117. Ohno M, Kojima S, Shirakawa Y, Eguchi S (1995) Hetero-diels-alder reaction of fullerene: Synthesis of thiochroman-fused C60 with o-thioquinone methide and oxidation to its S-oxides. Tetrahedron Lett 36(38):6899–6902

    Article  CAS  Google Scholar 

  118. Miller GP, Tetreau MC (2000) Facile, completely regioselective 1,4-hydrogenations of C60-diaryltetrazine monoadducts. Org Lett 2(20):3091–3094

    Article  CAS  PubMed  Google Scholar 

  119. Miller GP, Tetreau MC, Olmstead MM, Lord PA, Balch AL (2001) Addition of diprotic nucleophiles to a C60-tetrazine monoadduct: structural reassignment and correction of a novel rearrangement. Chem Comm:1758–1759

    Google Scholar 

  120. Qian W, Chuang S-C, Amador RB, Jarrosson T, Sander M, Pieniazek S, Khan SI, Rubin Y (2003) Synthesis of stable derivatives of C62: the first nonclassical fullerene incorporating a four-membered ring. J Am Chem Soc 125(8):2066–2067

    Article  CAS  PubMed  Google Scholar 

  121. Murata Y, Kato N, Komatsu K (2001) The reaction of fullerene C60 with phthalazine: The mechanochemical solid-state reaction yielding a new C60 dimer versus the liquid-phase reaction affording an open-cage fullerene. J Org Chem 66(22):7235–7239

    Article  CAS  PubMed  Google Scholar 

  122. Murata Y, Murata M, Komatsu K (2001) The reaction of fullerene C60 with 4,6-dimethyl-1,2,3-triazine: Formation of an open-cage fullerene derivative. J Org Chem 66(24):8187–8191

    Article  CAS  PubMed  Google Scholar 

  123. Murata Y, Murata M, Komatsu K (2003) Synthesis, structure, and properties of novel open-cage fullerenes having heteroatom(s) on the rim of the orifice. Chem Eur J 9(7):1600–1609

    Article  CAS  PubMed  Google Scholar 

  124. Lamparth I, Maichle-Mössmer C, Hirsch A (1994) Reversible template-directed activation of equatorial double bonds of the fullerene framework: Regioselective direct synthesis, crystal structure, and aromatic properties of Th-C66(COOEt)12. Angew Chem Int Ed Engl 34(15):1607–1609

    Article  Google Scholar 

  125. Hirsch A, Vostrowsky O (2001) C60 Hexakisadducts with an octahedral addition pattern – A new structure motif in organic chemistry. Eur J Org Chem:829–848

    Google Scholar 

  126. Castro E, Azmani K, Garcia AH, Aghabali A, Liu S, Metta-Magana AJ, Olmstead MM, Rodríguez-Fortea A, Poblet JM, Echegoyen L (2017) Unusual C2h-synnteric trans-1-(bis-pyrrolidine)-tetra-malonate hexa-adducts of C60: The unexpected regio- and stereocontrol mediated by malonate–pyrrolidine interaction. Chem Eur J 23(63):15937–15944

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Akasaka .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yamada, M., Nagase, S., Akasaka, T. (2021). Functionalization of Fullerenes: Addition Reactions. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3242-5_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3242-5_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3242-5

  • Online ISBN: 978-981-13-3242-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics