Skip to main content

Structures and Properties of Endohedral Metallofullerenes

  • Living reference work entry
  • First Online:
Handbook of Fullerene Science and Technology

Abstract

Endohedral metallofullerenes (EMFs) are a unique class of fullerenes, featuring encapsulation of metal ions or clusters within hollow fullerene cages. Owing to electron transfer from the inner species to the outer fullerene cage, EMFs exhibit unique electronic, physical, and chemical properties. In this chapter, we focus on the structures and properties of EMFs. Determining molecular structures of EMFs has been fulfilled by single-crystal X-ray diffraction crystallography, which can unambiguously tell both the isomeric structures of the outer carbon cages and the geometrical position of the inner species. The electronic properties of EMFs have been extensively investigated by UV-vis-NIR absorption spectroscopy and electrochemistry, revealing the important role of intramolecular electron transfer on the entire EMF molecule. Moreover, magnetic properties especially single molecular magnetisms resulted from the unique coordination interactions within the encapsulated metal clusters are among the most intriguing physical properties of EMFs, which are inaccessible by empty fullerenes, rendering potential applications of EMFs in quantum computing and high-density storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401(6748):55–57

    Article  CAS  Google Scholar 

  2. Yang S, Wei T, Jin F (2017) When metal clusters meet carbon cages: endohedral clusterfullerenes. Chem Soc Rev 46(16):5005–5058. https://doi.org/10.1039/c6cs00498a

    Article  CAS  PubMed  Google Scholar 

  3. Wang CR, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H (2001) A scandium carbide endohedral metallofullerene: (Sc2C2)@C84. Angew Chem Int Ed 40(2):397–399. https://doi.org/10.1002/1521-3773(20010119)40:2<397::Aid-anie397>3.3.Co;2-3

    Article  CAS  Google Scholar 

  4. Stevenson S, Mackey MA, Stuart MA, Phillips JP, Easterling ML, Chancellor CJ, Olmstead MM, Balch AL (2008) A distorted tetrahedral metal oxide cluster inside an lcosahedral carbon cage. Synthesis, isolation, and structural characterization of Sc4(μ3-O)2@Ih-C80. J Am Chem Soc 130(36):11844–11845. https://doi.org/10.1021/ja803679u

    Article  CAS  PubMed  Google Scholar 

  5. Dunsch L, Yang S, Zhang L, Svitova A, Oswald S, Popov AA (2010) Metal sulfide in a C82 fullerene cage: a new form of endohedral clusterfullerenes. J Am Chem Soc 132(15):5413–5421. https://doi.org/10.1021/ja909580j

    Article  CAS  PubMed  Google Scholar 

  6. Yang S, Chen C, Liu F, Xie Y, Li F, Jiao M, Suzuki M, Wei T, Wang S, Chen Z, Lu X, Akasaka T (2013) An improbable monometallic cluster entrapped in a popular fullerene cage: YCN@Cs(6)-C82. Sci Rep 3. https://doi.org/10.1038/srep01487

  7. Krause M, Ziegs F, Popov AA, Dunsch L (2007) Entrapped bonded hydrogen in a fullerene: the five-atom cluster Sc3CH in C80. ChemPhysChem 8(4):537–540. https://doi.org/10.1002/cphc.200600363

    Article  CAS  PubMed  Google Scholar 

  8. Wang T-S, Feng L, Wu J-Y, Xu W, Xiang J-F, Tan K, Ma Y-H, Zheng J-P, Jiang L, Lu X, Shu C-Y, Wang C-R (2010) Planar quinary cluster inside a fullerene cage: synthesis and structural characterizations of Sc3NC@Ih-C80. J Am Chem Soc 132(46):16362–16364. https://doi.org/10.1021/ja107843b

    Article  CAS  PubMed  Google Scholar 

  9. Yang W, Velkos G, Liu F, Sudarkova SM, Wang Y, Zhuang J, Zhang H, Li X, Zhang X, Buechner B, Avdoshenko SM, Popov AA, Chen N (2019) Single molecule magnetism with strong magnetic anisotropy and enhanced Dy…Dy coupling in three isomers of Dy-Oxide clusterfullerene Dy2O@C82. Adv Sci 6(20). https://doi.org/10.1002/advs.201901352

  10. Westerstroem R, Dreiser J, Piamonteze C, Muntwiler M, Weyeneth S, Brune H, Rusponi S, Nolting F, Popov A, Yang S, Dunsch L, Greber T (2012) An endohedral single-molecule magnet with long relaxation times: DySc2N@C80. J Am Chem Soc 134(24):9840–9843. https://doi.org/10.1021/ja301044p

    Article  CAS  Google Scholar 

  11. Dunsch L, Yang S (2007) Metal nitride cluster fullerenes: their current state and future prospects. Small 3(8):1298–1320. https://doi.org/10.1002/smll.200700036

    Article  CAS  PubMed  Google Scholar 

  12. Yang S, Liu F, Chen C, Jiao M, Wei T (2011) Fullerenes encaging metal clusters-clusterfullerenes. Chem Commun 47(43):11822–11839. https://doi.org/10.1039/c1cc12318a

    Article  CAS  Google Scholar 

  13. Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113(8):5989–6113. https://doi.org/10.1021/cr300297r

    Article  CAS  PubMed  Google Scholar 

  14. Lu X, Feng L, Akasaka T, Nagase S (2012) Current status and future developments of endohedral metallofullerenes. Chem Soc Rev 41(23):7723–7760. https://doi.org/10.1039/c2cs35214a

    Article  PubMed  Google Scholar 

  15. Takata M, Umeda B, Nishibori E, Sakata M, Saito Y, Ohno M, Shinohara H (1995) Confirmation by X-ray-diffraction of the endohedral aature of the metallofullerene Y@C82. Nature 377(6544):46–49. https://doi.org/10.1038/377046a0

    Article  CAS  Google Scholar 

  16. Rodriguez-Fortea A, Balch AL, Poblet JM (2011) Endohedral metallofullerenes: a unique host–guest association. Chem Soc Rev 40(7):3551–3563. https://doi.org/10.1039/c0cs00225a

    Article  CAS  PubMed  Google Scholar 

  17. Xu Y-Y, Tian H-R, Li S-H, Chen Z-C, Yao Y-R, Wang S-S, Zhang X, Zhu Z-Z, Deng S-L, Zhang Q, Yang S, Xie S-Y, Huang R-B, Zheng L-S (2019) Flexible decapyrrylcorannulene hosts. Nat Commun 10. https://doi.org/10.1038/s41467-019-08343-6

  18. Yamada M, Akasaka T, Nagase S (2010) Endohedral metal atoms in pristine and functionalized fullerene cages. Acc Chem Res 43(1):92–102. https://doi.org/10.1021/ar900140n

    Article  CAS  PubMed  Google Scholar 

  19. Lu X, Akasaka T, Nagase S (2011) Chemistry of endohedral metallofullerenes: the role of metals. Chem Commun 47(21):5942–5957. https://doi.org/10.1039/c1cc10123d

    Article  CAS  Google Scholar 

  20. Wang Y, Morales-Martinez R, Zhan X, Yang W, Wang Y, Rodriguez-Fortea A, Poblet JM, Feng L, Wang S, Chen N (2017) Unique four-electron metal-to-cage charge transfer of Th to a C82 fullerene cage: complete structural characterization of Th@C3v(8)-C82. J Am Chem Soc 139(14):5110–5116. https://doi.org/10.1021/jacs.6b13383

    Article  CAS  PubMed  Google Scholar 

  21. Sato S, Nikawa H, Seki S, Wang L, Luo G, Lu J, Haranaka M, Tsuchiya T, Nagase S, Akasaka T (2012) A co-crystal composed of the paramagnetic endohedral metallofullerene La@C82 and a nickel porphyrin with high electron mobility. Angew Chem Int Ed 51(7):1589–1591. https://doi.org/10.1002/anie.201106912

    Article  CAS  Google Scholar 

  22. Suzuki M, Lu X, Sato S, Nikawa H, Mizorogi N, Slanina Z, Tsuchiya T, Nagase S, Akasaka T (2012) Where does the metal cation stay in Gd@C2v(9)-C82? A single-crystal X-ray diffraction study. Inorg Chem 51(9):5270–5273. https://doi.org/10.1021/ic300186y

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki M, Slanina Z, Mizorogi N, Lu X, Nagase S, Olmstead MM, Balch AL, Akasaka T (2012) Single-crystal X-ray diffraction study of three Yb@C82 isomers cocrystallized with Ni-II(octaethylporphyrin). J Am Chem Soc 134(45):18772–18778. https://doi.org/10.1021/ja308706d

    Article  CAS  PubMed  Google Scholar 

  24. Yang H, Jin H, Wang X, Liu Z, Yu M, Zhao F, Mercado BQ, Olmstead MM, Balch AL (2012) X-ray crystallographic characterization of new soluble endohedral fullerenes utilizing the popular C82 bucky cage. Isolation and structural characterization of Sm@C3v(7)-C82, Sm@Cs(6)-C82, and Sm@C2(5)-C82. J Am Chem Soc 134(34):14127–14136. https://doi.org/10.1021/ja304867j

    Article  CAS  PubMed  Google Scholar 

  25. Yang H, Yu M, Jin H, Liu Z, Yao M, Liu B, Olmstead MM, Balch AL (2012) Isolation of three isomers of Sm@C84 and X-ray crystallographic characterization of Sm@D3d(19)-C84 and Sm@C2(13)-C84. J Am Chem Soc 134(11):5331–5338. https://doi.org/10.1021/ja211785u

    Article  CAS  PubMed  Google Scholar 

  26. Yang H, Jin H, Zhen H, Wang Z, Liu Z, Beavers CM, Mercado BQ, Olmstead MM, Balch AL (2011) Isolation and crystallographic identification of four isomers of Sm@C90. J Am Chem Soc 133(16):6299–6306. https://doi.org/10.1021/ja111465n

    Article  CAS  PubMed  Google Scholar 

  27. Jin H, Yang H, Yu M, Liu Z, Beavers CM, Olmstead MM, Balch AL (2012) Single samarium atoms in large fullerene cages. Characterization of two isomers of Sm@C92 and four isomers of Sm@C94 with the X-ray crystallographic identification of Sm@C1(42)-C92, Sm@Cs(24)-C92, and Sm@C3v(134)-C94. J Am Chem Soc 134(26):10933–10941. https://doi.org/10.1021/ja302859r

    Article  CAS  PubMed  Google Scholar 

  28. Wakahara T, Nikawa H, Kikuchi T, Nakahodo T, Rahman GMA, Tsuchiya T, Maeda Y, Akasaka T, Yoza K, Horn E, Yamamoto K, Mizorogi N, Slanina Z, Nagase S (2006) La@C72 having a non-IPR carbon cage. J Am Chem Soc 128(44):14228–14229. https://doi.org/10.1021/ja064751y

    Article  CAS  PubMed  Google Scholar 

  29. Che Y, Yang H, Wang Z, Jin H, Liu Z, Lu C, Zuo T, Dorn HC, Beavers CM, Olmstead MM, Balch AL (2009) Isolation and structural characterization of two very large, and largely empty, endohedral fullerenes: Tm@C3v-C94 and Ca@C3v-C94. Inorg Chem 48(13):6004–6010. https://doi.org/10.1021/ic900322d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jin M, Zhuang J, Wang Y, Yang W, Liu X, Chen N (2019) Th@Td(19151)-C76: a highly symmetric fullerene cage stabilized by a tetravalent actinide metal ion. Inorg Chem 58(24):16722–16726. https://doi.org/10.1021/acs.inorgchem.9b02863

    Article  CAS  PubMed  Google Scholar 

  31. Cai W, Abella L, Zhuang J, Zhang X, Feng L, Wang Y, Morales-Martinez R, Esper R, Boero M, Metta-Magana A, Rodriguez-Fortea A, Poblet JM, Echegoyen L, Chen N (2018) Synthesis and characterization of non-isolated-pentagon-rule actinide endohedral metallofullerenes U@C1(17418)-C76, U@C1(28324)-C80, and Th@C1(28324)-C80: low-symmetry cage selection directed by a tetravalent ion. J Am Chem Soc 140(51):18039–18050. https://doi.org/10.1021/jacs.8b10435

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Morales-Martinez R, Cai W, Zhuang J, Yang W, Echegoyen L, Poblet JM, Rodriguez-Fortea A, Chen N (2019) Th@C1(11)-C86: an actinide encapsulated in an unexpected C86 fullerene cage. Chem Commun 55(63):9271–9274. https://doi.org/10.1039/c9cc04613e

    Article  CAS  Google Scholar 

  33. Cai W, Morales-Martinez R, Zhang X, Najera D, Romero EL, Metta-Magana A, Rodriguez-Fortea A, Fortier S, Chen N, Poblet JM, Echegoyen L (2017) Single crystal structures and theoretical calculations of uranium endohedral metallofullerenes (U@C2n, 2n = 74, 82) show cage isomer dependent oxidation states for U. Chem Sci 8(8):5282–5290. https://doi.org/10.1039/c7sc01711a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Akasaka T, Nagase S, Kobayashi K, Walchli M, Yamamoto K, Funasaka H, Kako M, Hoshino T, Erata T (1997) 13C and 139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral dimetallofullerenes. Angew Chem Int Ed Engl 36(15):1643–1645. https://doi.org/10.1002/anie.199716431

  35. Yamada M, Wakahara T, Tsuchiya T, Maeda Y, Kako M, Akasaka T, Yoza K, Horn E, Mizorogi N, Nagase S (2008) Location of the metal atoms in Ce2@C78 and its bis-silylated derivative. Chem Commun 5:558–560. https://doi.org/10.1039/b712568b

    Article  CAS  Google Scholar 

  36. Yamada M, Wakahara T, Tsuchiya T, Maeda Y, Akasaka T, Mizorogi N, Nagase S (2008) Spectroscopic and theoretical study of endohedral dimetallofullerene having a non-IPR fullerene cage: Ce2@C72. J Phys Chem A 112(33):7627–7631. https://doi.org/10.1021/jp804260d

    Article  CAS  PubMed  Google Scholar 

  37. Yamada M, Mizorogi N, Tsuchiya T, Akasaka T, Nagase S (2009) Synthesis and characterization of the D5h isomer of the endohedral dimetallofullerene Ce2@C80: two-dimensional circulation of encapsulated metal atoms inside a fullerene cage. Chem Eur J 15(37):9486–9493. https://doi.org/10.1002/chem.200900713

    Article  CAS  PubMed  Google Scholar 

  38. Kato H, Taninaka A, Sugai T, Shinohara H (2003) Structure of a missing-caged metallofullerene: La2@C72. J Am Chem Soc 125(26):7782–7783. https://doi.org/10.1021/ja0353255

    Article  CAS  PubMed  Google Scholar 

  39. Cao BP, Wakahara T, Tsuchiya T, Kondo M, Maeda Y, Rahman GMA, Akasaka T, Kobayashi K, Nagase S, Yamamoto K (2004) Isolation, characterization, and theoretical study of La2@C78. J Am Chem Soc 126(30):9164–9165. https://doi.org/10.1021/ja048599g

    Article  CAS  PubMed  Google Scholar 

  40. Yamada M, Nakahodo T, Wakahara T, Tsuchiya T, Maeda Y, Akasaka T, Kako M, Yoza K, Horn E, Mizorogi N, Kobayashi K, Nagase S (2005) Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. J Am Chem Soc 127(42):14570–14571. https://doi.org/10.1021/ja054346r

    Article  CAS  PubMed  Google Scholar 

  41. Beavers CM, Jin H, Yang H, Wang Z, Wang X, Ge H, Liu Z, Mercado BQ, Olmstead MM, Balch AL (2011) Very large, soluble endohedral fullerenes in the series La2C90 to La2C138: isolation and crystallographic characterization of La2@D5(450)-C100. J Am Chem Soc 133(39):15338–15341. https://doi.org/10.1021/ja207090e

    Article  CAS  PubMed  Google Scholar 

  42. Mercado BQ, Jiang A, Yang H, Wang Z, Jin H, Liu Z, Olmstead MM, Balch AL (2009) Isolation and structural characterization of the molecular nanocapsule Sm2@D3d(822)-C104. Angew Chem Int Ed 48(48):9114–9116. https://doi.org/10.1002/anie.200904662

    Article  CAS  Google Scholar 

  43. Mercado BQ, Chen N, Rodriguez-Fortea A, Mackey MA, Stevenson S, Echegoyen L, Poblet JM, Olmstead MM, Balch AL (2011) The shape of the Sc2(μ2-S) unit trapped in C82: crystallographic, computational, and electrochemical studies of the isomers, Sc2(μ2-S)@Cs(6)-C82 and Sc2(μ2-S)@C3v(8)-C82. J Am Chem Soc 133(17):6752–6760. https://doi.org/10.1021/ja200289w

    Article  CAS  PubMed  Google Scholar 

  44. Kurihara H, Lu X, Iiduka Y, Mizorogi N, Slanina Z, Tsuchiya T, Nagase S, Akasaka T (2012) Sc2@C3v(8)-C82 vs. Sc2C2@C3v(8)-C82: drastic effect of C2 capture on the redox properties of scandium metallofullerenes. Chem Commun 48(9):1290–1292. https://doi.org/10.1039/c2cc16422a

    Article  CAS  Google Scholar 

  45. Inoue T, Tomiyama T, Sugai T, Okazaki T, Suematsu T, Fujii N, Utsumi H, Nojima K, Shinohara H (2004) Trapping a C2 radical in endohedral metallofullerenes: synthesis and structures of (Y2C2)@C82 (isomers I, II, and III). J Phys Chem B 108(23):7573–7579. https://doi.org/10.1021/jp049865f

    Article  CAS  Google Scholar 

  46. Olmstead MM, de Bettencourt-Dias A, Stevenson S, Dorn HC, Balch AL (2002) Crystallographic characterization of the structure of the endohedral fullerene {Er2@C82 isomer I} with Cs cage symmetry and multiple sites for erbium along a band of ten contiguous hexagons. J Am Chem Soc 124(16):4172–4173. https://doi.org/10.1021/ja0116019

    Article  CAS  PubMed  Google Scholar 

  47. Olmstead MM, Lee HM, Stevenson S, Dorn HC, Balch AL (2002) Crystallographic characterization of isomer 2 of Er2@C82 and comparison with isomer 1 of Er2@C82. Chem Commun 22:2688–2689. https://doi.org/10.1039/b209270k

    Article  CAS  Google Scholar 

  48. Plant SR, Dantelle G, Ito Y, Ng TC, Ardavan A, Shinohara H, Taylor RA, Briggs GAD, Porfyrakis K (2009) Acuminated fluorescence of Er3+ centres in endohedral fullerenes through the incarceration of a carbide cluster. Chem Phys Lett 476(1–3):41–45. https://doi.org/10.1016/j.cplett.2009.05.042

    Article  CAS  Google Scholar 

  49. Umemoto H, Ohashi K, Inoue T, Fukui N, Sugai T, Shinohara H (2010) Synthesis and UHV-STM observation of the T-d-symmetric Lu metallofullerene: Lu2@Td-C76. Chem Commun 46(31):5653–5655. https://doi.org/10.1039/c0cc00824a

    Article  CAS  Google Scholar 

  50. Zhang X, Wang Y, Morales-Martinez R, Zhong J, de Graaf C, Rodriguez-Fortea A, Poblet JM, Echegoyen L, Feng L, Chen N (2018) U2@Ih(7)-C80: crystallographic characterization of a long-sought dimetallic actinide endohedral fullerene. J Am Chem Soc 140(11):3907–3915. https://doi.org/10.1021/jacs.7b10865

    Article  CAS  PubMed  Google Scholar 

  51. Zuo T, Xu L, Beavers CM, Olmstead MM, Fu W, Crawford D, Balch AL, Dorn HC (2008) M2@C79N (M = Y, Tb): isolation and characterization of stable endohedral metallofullerenes exhibiting M-M bonding interactions inside a C80 fullerene cages. J Am Chem Soc 130(39):12992–12997. https://doi.org/10.1021/ja802417d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tagmatarchis N, Aslanis E, Prassides K, Shinohara H (2001) Mono-, di- and trierbium endohedral metallofullerenes: production, separation, isolation, and spectroscopic study. Chem Mater 13(7):2374–2379. https://doi.org/10.1021/cm000955g

    Article  CAS  Google Scholar 

  53. Lian YF, Shi ZJ, Zhou XH, Gu ZN (2004) Different extraction behaviors between divalent and trivalent endohedral metallofullerenes. Chem Mater 16(9):1704–1714. https://doi.org/10.1021/cm0344156

    Article  CAS  Google Scholar 

  54. Popov AA, Zhang L, Dunsch L (2010) A pseudoatom in a cage: trimetallofullerene Y3@C80 mimics Y3N@C80 with nitrogen substituted by a pseudoatom. ACS Nano 4(2):795–802. https://doi.org/10.1021/nn901422z

    Article  CAS  PubMed  Google Scholar 

  55. Yang SF, Dunsch L (2006) Di- and tridysprosium endohedral metallofullerenes with cages from C94 to C100. Angew Chem Int Ed 45(8):1299–1302. https://doi.org/10.1002/anie.200502417

    Article  CAS  Google Scholar 

  56. Xu W, Feng L, Calvaresi M, Liu J, Liu Y, Niu B, Shi Z, Lian Y, Zerbetto F (2013) An experimentally observed trimetallofullerene Sm3@Ih-C80: encapsulation of three metal atoms in a cage without a nonmetallic mediator. J Am Chem Soc 135(11):4187–4190. https://doi.org/10.1021/ja400490u

    Article  CAS  PubMed  Google Scholar 

  57. Stevenson S, Fowler PW, Heine T, Duchamp JC, Rice G, Glass T, Harich K, Hajdu E, Bible R, Dorn HC (2000) Materials science – a stable non-classical metallofullerene family. Nature 408(6811):427–428. https://doi.org/10.1038/35044199

    Article  CAS  PubMed  Google Scholar 

  58. Olmstead MM, Lee HM, Duchamp JC, Stevenson S, Marciu D, Dorn HC, Balch AL (2003) Sc3N@C68: folded pentalene coordination in an endohedral fullerene that does not obey the isolated pentagon rule. Angew Chem Int Ed 42(8):900. https://doi.org/10.1002/anie.200390237

    Article  CAS  Google Scholar 

  59. Yang S, Popov AA, Dunsch L (2007) Violating the isolated pentagon rule (IPR): the endohedral non-IPR C70 cage of Sc3N@C70. Angew Chem Int Ed Engl 46(8):1256–1259. https://doi.org/10.1002/anie.200603281

    Article  CAS  PubMed  Google Scholar 

  60. Olmstead MM, de Bettencourt-Dias A, Duchamp JC, Stevenson S, Marciu D, Dorn HC, Balch AL (2001) Isolation and structural characterization of the endohedral fullerene Sc3N@C78. Angew Chem Int Ed 40(7):1223. https://doi.org/10.1002/1521-3773(20010401)40:7<1223::Aid-anie1223>3.3.Co;2-2

    Article  CAS  Google Scholar 

  61. Cai T, Xu L, Anderson MR, Ge Z, Zuo T, Wang X, Olmstead MM, Balch AL, Gibson HW, Dorn HC (2006) Structure and enhanced reactivity rates of the D5h Sc3N@C80 and Lu3N@C80 metallofullerene isomers: the importance of the pyracylene motif. J Am Chem Soc 128(26):8581–8589. https://doi.org/10.1021/ja0615573

    Article  CAS  PubMed  Google Scholar 

  62. Wei T, Wang S, Liu F, Tan Y, Zhu X, Xie S, Yang S (2015) Capturing the long-sought small-bandgap endohedral fullerene Sc3N@C82 with low kinetic stability. J Am Chem Soc 137(8):3119–3123. https://doi.org/10.1021/jacs.5b00199

    Article  CAS  PubMed  Google Scholar 

  63. Stevenson S, Lee HM, Olmstead MM, Kozikowski C, Stevenson P, Balch AL (2002) Preparation and crystallographic characterization of a new endohedral, Lu3N@C80·5(o-xylene), and comparison with Sc3N@C80·5 (o-xylene). Chem Eur J 8(19):4528–4535. https://doi.org/10.1002/1521-3765(20021004)8:19<4528::Aid-chem4528>3.0.Co;2-8

    Article  CAS  PubMed  Google Scholar 

  64. Yang S, Troyanov SI, Popov AA, Krause M, Dunsch L (2006) Deviation from the planarity – a large Dy3N cluster encapsulated in an Ih-C80 cage: an X-ray crystallographic and vibrational spectroscopic study. J Am Chem Soc 128(51):16733–16739. https://doi.org/10.1021/ja066814i

    Article  CAS  PubMed  Google Scholar 

  65. Fu W, Xu L, Azurmendi H, Ge J, Fuhrer T, Zuo T, Reid J, Shu C, Harich K, Dorn HC (2009) Y89 and 13C NMR cluster and carbon cage studies of an yttrium metallofullerene family, Y3N@C2n (n = 40–43). J Am Chem Soc 131(33):11762–11769. https://doi.org/10.1021/ja902286v

    Article  CAS  PubMed  Google Scholar 

  66. Zuo T, Beavers CM, Duchamp JC, Campbell A, Dorn HC, Olmstead MM, Balch AL (2007) Isolation and structural characterization of a family of endohedral fullerenes including the large, chiral cage fullerenes Tb3N@C88 and Tb3N@C86 as well as the Ih and D5h isomers of Tb3N@C80. J Am Chem Soc 129(7):2035–2043. https://doi.org/10.1021/ja066437+

    Article  CAS  PubMed  Google Scholar 

  67. Chaur MN, Melin F, Elliott B, Athans AJ, Walker K, Holloway BC, Echegoyen L (2007) Gd3N@C2n (n = 40, 42, and 44): remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd3N@C88. J Am Chem Soc 129(47):14826–14829. https://doi.org/10.1021/ja075930y

    Article  CAS  PubMed  Google Scholar 

  68. Chaur MN, Melin F, Elliott B, Kumbhar A, Athans AJ, Echegoyen L (2008) New M3N@C2n endohedral metallofullerene families (M = Nd, Pr, Ce; n = 40–53): expanding the preferential templating of the C88 cage and approaching the C96 cage. Chemistry 14(15):4594–4599. https://doi.org/10.1002/chem.200800044

    Article  CAS  PubMed  Google Scholar 

  69. Chaur MN, Melin F, Ashby J, Elliott B, Kumbhar A, Rao AM, Echegoyen L (2008) Lanthanum nitride endohedral fullerenes La3N@C2n (43 < or = n < or = 55): preferential formation of La3N@C96. Chemistry 14(27):8213–8219. https://doi.org/10.1002/chem.200800881

    Article  CAS  PubMed  Google Scholar 

  70. Olmstead MM, de Bettencourt-Dias A, Duchamp JC, Stevenson S, Dorn HC, Balch AL (2000) Isolation and crystallographic characterization of ErSc2N@C80: an endohedral fullerene which crystallizes with remarkable internal order. J Am Chem Soc 122(49):12220–12226. https://doi.org/10.1021/ja001984v

    Article  CAS  Google Scholar 

  71. Stevenson S, Chancellor CJ, Lee HM, Olmstead MM, Balch AL (2008) Internal and external factors in the structural organization in cocrystals of the mixed-metal endohedrals (GdSc2N@Ih-C80, Gd2ScN@Ih-C80, and TbSc2N@Ih-C80) and nickel(II) octaethylporphyrin. Inorg Chem 47(5):1420–1427. https://doi.org/10.1021/ic701824q

    Article  CAS  PubMed  Google Scholar 

  72. Wang X, Zuo T, Olmstead MM, Duchamp JC, Glass TE, Cromer F, Balch AL, Dorn HC (2006) Preparation and structure of CeSc2N@C80: an icosahedral carbon cage enclosing an acentric CeSc2N unit with buried f electron spin. J Am Chem Soc 128(27):8884–8889. https://doi.org/10.1021/ja061434i

    Article  CAS  PubMed  Google Scholar 

  73. Chen N, Zhang E-Y, Wang C-R (2006) C80 encaging four different atoms: the synthesis, isolation, and characterizations of ScYErN@C80. J Phys Chem B 110(27):13322–13325. https://doi.org/10.1021/jp062982l

    Article  CAS  PubMed  Google Scholar 

  74. Nie M, Xiong J, Zhao C, Meng H, Zhang K, Han Y, Li J, Wang B, Feng L, Wang C, Wang T (2019) Luminescent single-molecule magnet of metallofullerene DyErScN@Ih-C80. Nano Res 12(7):1727–1731. https://doi.org/10.1007/s12274-019-2429-1

    Article  CAS  Google Scholar 

  75. Yang S, Chen C, Popov AA, Zhang W, Liu F, Dunsch L (2009) An endohedral titanium(III) in a clusterfullerene: putting a non-group-III metal nitride into the C80-Ih fullerene cage. Chem Commun 42:6391–6393. https://doi.org/10.1039/b911267g

    Article  CAS  Google Scholar 

  76. Wei T, Wang S, Lu X, Tan Y, Huang J, Liu F, Li Q, Xie S, Yang S (2016) Entrapping a group-VB transition metal, vanadium, within an endohedral metallofullerene: VxSc3-xN@Ih-C80 (x = 1, 2). J Am Chem Soc 138(1):207–214. https://doi.org/10.1021/jacs.5b10115

    Article  CAS  PubMed  Google Scholar 

  77. Zhang J, Fuhrer T, Fu W, Ge J, Bearden DW, Dallas J, Duchamp J, Walker K, Champion H, Azurmendi H, Harich K, Dorn HC (2012) Nanoscale fullerene compression of an yttrium carbide cluster. J Am Chem Soc 134(20):8487–8493. https://doi.org/10.1021/ja300134x

    Article  CAS  PubMed  Google Scholar 

  78. Feng Y, Wang T, Wu J, Feng L, Xiang J, Ma Y, Zhang Z, Jiang L, Shu C, Wang C (2013) Structural and electronic studies of metal carbide clusterfullerene Sc2C2@Cs-C72. Nanoscale 5(15):6704–6707. https://doi.org/10.1039/c3nr01739g

    Article  CAS  PubMed  Google Scholar 

  79. Wang Y, Tang Q, Feng L, Chen N (2017) Sc2C2@D3h(14246)-C74: a missing piece of the clusterfullerene puzzle. Inorg Chem 56(4):1974–1980. https://doi.org/10.1021/acs.inorgchem.6b02512

    Article  CAS  PubMed  Google Scholar 

  80. Kurihara H, Lu X, Iiduka Y, Mizorogi N, Slanina Z, Tsuchiya T, Akasaka T, Nagase S (2011) Sc2C2@C80 rather than Sc2@C82: templated formation of unexpected C2v(5)-C80 and temperature-dependent dynamic motion of internal Sc2C2 cluster. J Am Chem Soc 133(8):2382–2385. https://doi.org/10.1021/ja1107723

    Article  CAS  PubMed  Google Scholar 

  81. Liu F, Wei T, Wang S, Guan J, Lu X, Yang S (2014) A bent Tb2C2 cluster encaged in a Cs(6)-C82 cage: synthesis, isolation and X-ray crystallographic study. Fullerenes Nanotubes Carbon Nanostruct 22(1–3):215–226. https://doi.org/10.1080/1536383x.2013.801839

    Article  Google Scholar 

  82. Shen W, Bao L, Hu S, Yang L, Jin P, Xie Y, Akasaka T, Lu X (2019) Crystallographic characterization of Lu2C2n (2n = 76–90): cluster selection by cage size. Chem Sci 10(3):829–836. https://doi.org/10.1039/c8sc03886d

    Article  CAS  PubMed  Google Scholar 

  83. Yang H, Lu C, Liu Z, Jin H, Che Y, Olmstead MM, Balch AL (2008) Detection of a family of gadolinium-containing endohedral fullerenes and the isolation and crystallographic characterization of one member as a metal-carbide encapsulated inside a large fullerene cage. J Am Chem Soc 130(51):17296–17300. https://doi.org/10.1021/ja8078303

    Article  CAS  PubMed  Google Scholar 

  84. Slanina Z, Uhlik F, Pan C, Akasaka T, Lu X, Adamowicz L (2018) Computed stabilization for a giant fullerene endohedral: Y2C2@C1(1660)-C108. Chem Phys Lett 710:147–149. https://doi.org/10.1016/j.cplett.2018.08.051

    Article  CAS  Google Scholar 

  85. Chen C-H, Ghiassi KB, Ceron MR, Guerrero-Ayala MA, Echegoyen L, Olmstead MM, Balch AL (2015) Beyond the butterfly: Sc2C2@C2v(9)-C86, an endohedral fullerene containing a planar, twisted Sc2C2 unit with remarkable crystalline order in an unprecedented carbon cage. J Am Chem Soc 137(32):10116–10119. https://doi.org/10.1021/jacs.5b06425

    Article  CAS  PubMed  Google Scholar 

  86. Chen CH, Abella L, Ceron MR, Guerrero-Ayala MA, Rodriguez-Fortea A, Olmstead MM, Powers XB, Balch AL, Poblet JM, Echegoyen L (2016) Zigzag Sc2C2 carbide cluster inside a [88] fullerene cage with one heptagon, Sc2C2@Cs(hept)-C88: a kinetically trapped fullerene formed by C2 insertion? J Am Chem Soc 138(39):13030–13037. https://doi.org/10.1021/jacs.6b07912

    Article  CAS  PubMed  Google Scholar 

  87. Iiduka Y, Wakahara T, Nakahodo T, Tsuchiya T, Sakuraba A, Maeda Y, Akasaka T, Yoza K, Horn E, Kato T, Liu MTH, Mizorogi N, Kobayashi K, Nagase S (2005) Structural determination of metallofuIlerene Sc3C82 revisited: a surprising finding. J Am Chem Soc 127(36):12500–12501. https://doi.org/10.1021/ja054209u

    Article  CAS  PubMed  Google Scholar 

  88. Nishibori E, Terauchi I, Sakata M, Takata M, Ito Y, Sugai T, Shinohara H (2006) High-resolution analysis of (Sc3C2)@C80 metallofullerene by third generation synchrotron radiation X-ray powder diffraction. J Phys Chem B 110(39):19215–19219. https://doi.org/10.1021/jp061740i

    Article  CAS  PubMed  Google Scholar 

  89. Xu W, Wang T-S, Wu J-Y, Ma Y-H, Zheng J-P, Li H, Wang B, Jiang L, Shu C-Y, Wang C-R (2011) Entrapped planar trimetallic carbide in a fullerene cage: synthesis, isolation and spectroscopic studies of Lu3C2@C88. J Phys Chem C 115(2):402–405. https://doi.org/10.1021/jp1087459

    Article  CAS  Google Scholar 

  90. Wang T-S, Chen N, Xiang J-F, Li B, Wu J-Y, Xu W, Jiang L, Tan K, Shu C-Y, Lu X, Wang C-R (2009) Russian-doll-type metal carbide endofullerene: synthesis, isolation, and characterization of Sc4C2@C80. J Am Chem Soc 131(46):16646. https://doi.org/10.1021/ja9077842

    Article  CAS  PubMed  Google Scholar 

  91. Svitova AL, Ghiassi KB, Schlesier C, Junghans K, Zhang Y, Olmstead MM, Balch AL, Dunsch L, Popov AA (2014) Endohedral fullerene with μ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage. Nat Commun 5. https://doi.org/10.1038/ncomms4568

  92. Junghans K, Ghiassi KB, Samoylova NA, Deng Q, Rosenkranz M, Olmstead MM, Balch AL, Popov AA (2016) Synthesis and isolation of the titanium-scandium endohedral fullerenes-Sc2TiC@Ih-C80, Sc2TiC@D5h-C80 and Sc2TiC2@Ih-C80: metal size tuning of the Ti-IV/Ti-III redox potentials. Chem Eur J 22(37):13098–13107. https://doi.org/10.1002/chem.201601655

    Article  CAS  PubMed  Google Scholar 

  93. Yu P, Shen W, Bao L, Pan C, Slanina Z, Lu X (2019) Trapping an unprecedented Ti3C3 unit inside the icosahedral C80 fullerene: a crystallographic survey. Chem Sci 10(47):10925–10930. https://doi.org/10.1039/c9sc04315b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mercado BQ, Olmstead MM, Beavers CM, Easterling ML, Stevenson S, Mackey MA, Coumbe CE, Phillips JD, Phillips JP, Poblet JM, Balch AL (2010) A seven atom cluster in a carbon cage, the crystallographically determined structure of Sc4(μ3-O)3@Ih-C80. Chem Commun 46(2):279–281. https://doi.org/10.1039/b918731f

    Article  CAS  Google Scholar 

  95. Valencia R, Rodriguez-Fortea A, Stevenson S, Balch AL, Poblet JM (2009) Electronic structures of scandium oxide endohedral metallofullerenes, Sc4(μ3-O)n@Ih-C80 (n = 2, 3). Inorg Chem 48(13):5957–5961. https://doi.org/10.1021/ic900686a

    Article  CAS  PubMed  Google Scholar 

  96. Zhang M, Hao Y, Li X, Feng L, Yang T, Wan Y, Chen N, Slanina Z, Uhlík F, Cong H (2014) Facile synthesis of an extensive family of Sc2O@C2n (n = 35–47) and chemical insight into the smallest member of Sc2O@C2(7892)–C70. J Phys Chem C 118(49):28883–28889. https://doi.org/10.1021/jp509975w

    Article  CAS  Google Scholar 

  97. Liu A, Nie M, Hao Y, Yang Y, Wang T, Slanina Z, Cong H, Feng L, Wang C, Uhlik F (2019) Ho2O@C74: Ho2O cluster expands within a small non-IPR fullerene cage of C2(13333)-C74. Inorg Chem 58(8):4774–4781. https://doi.org/10.1021/acs.inorgchem.8b03145

    Article  CAS  PubMed  Google Scholar 

  98. Cong H, Liu A, Hao Y, Feng L, Slanina Z, Uhlik F (2019) Ho2O@C84: crystallographic evidence showing linear metallic oxide cluster encapsulated in IPR fullerene cage of D2d(51591)-C84. Inorg Chem 58(16):10905–10911. https://doi.org/10.1021/acs.inorgchem.9b01318

    Article  CAS  PubMed  Google Scholar 

  99. Yang W, Abella L, Wang Y, Li X, Gu J, Poblet JM, Rodriguez-Fortea A, Chen N (2018) Mixed dimetallic cluster fullerenes: ScGdO@ C3v(8)-C82 and ScGdC2@ C2v(9)-C82. Inorg Chem 57(18):11597–11605. https://doi.org/10.1021/acs.inorgchem.8b01646

    Article  CAS  PubMed  Google Scholar 

  100. Chen N, Chaur MN, Moore C, Pinzon JR, Valencia R, Rodriguez-Fortea A, Poblet JM, Echegoyen L (2010) Synthesis of a new endohedral fullerene family, Sc2S@C2n (n = 40–50) by the introduction of SO2. Chem Commun 46(26):4818–4820. https://doi.org/10.1039/c0cc00835d

    Article  CAS  Google Scholar 

  101. Chen N, Beavers CM, Mulet-Gas M, Rodriguez-Fortea A, Munoz EJ, Li Y-Y, Olmstead MM, Balch AL, Poblet JM, Echegoyen L (2012) Sc2S@Cs(10528)-C72: a dimetallic sulfide endohedral fullerene with a non isolated pentagon rule cage. J Am Chem Soc 134(18):7851–7860. https://doi.org/10.1021/ja300765z

    Article  CAS  PubMed  Google Scholar 

  102. Yang T, Zhao X, Nagase S (2013) Quantum chemical insight of the dimetallic sulfide endohedral fullerene Sc2S@C70: does it possess the conventional D5h cage? Chem Eur J 19(8):2649–2654. https://doi.org/10.1002/chem.201203388

    Article  CAS  PubMed  Google Scholar 

  103. Chen C-H, Krylov DS, Avdoshenko SM, Liu F, Spree L, Yadav R, Alvertis A, Hozoi L, Nenkov K, Kostanyan A, Greber T, Wolter AUB, Popov AA (2017) Selective arc-discharge synthesis of Dy2S-clusterfullerenes and their isomer-dependent single molecule magnetism. Chem Sci 8(9):6451–6465. https://doi.org/10.1039/c7sc02395b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li F-F, Chen N, Mulet-Gas M, Triana V, Murillo J, Rodriguez-Fortea A, Poblet JM, Echegoyen L (2013) Ti2S@D3h(24109)-C78: a sulfide cluster metallofullerene containing only transition metals inside the cage. Chem Sci 4(9):3404–3410. https://doi.org/10.1039/c3sc51124c

    Article  CAS  Google Scholar 

  105. Liu F, Gao CL, Deng Q, Zhu X, Kostanyan A, Westerstrom R, Wang S, Tan YZ, Tao J, Xie SY, Popov AA, Greber T, Yang S (2016) Triangular monometallic cyanide cluster entrapped in carbon cage with geometry-dependent molecular magnetism. J Am Chem Soc 138(44):14764–14771. https://doi.org/10.1021/jacs.6b09329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu F, Wang S, Gao C-L, Deng Q, Zhu X, Kostanyan A, Westerstrom R, Jin F, Xie S-Y, Popov AA, Greber T, Yang S (2017) Mononuclear clusterfullerene single-molecule magnet containing strained fused-pentagons stabilized by a nearly linear metal cyanide cluster. Angew Chem Int Ed 56(7):1830–1834. https://doi.org/10.1002/anie.201611345

    Article  CAS  Google Scholar 

  107. Feng Y, Wang T, Wu J, Zhang Z, Jiang L, Han H, Wang C (2014) Electron-spin excitation by implanting hydrogen into metallofullerene: the synthesis and spectroscopic characterization of Sc4C2H@Ih-C80. Chem Commun 50(81):12166–12168. https://doi.org/10.1039/c4cc05783j

    Article  CAS  Google Scholar 

  108. Wu J, Wang T, Ma Y, Jiang L, Shu C, Wang C (2011) Synthesis, isolation, characterization, and theoretical studies of Sc3NC@C78-C2. J Phys Chem C 115(48):23755–23759. https://doi.org/10.1021/jp2081929

    Article  CAS  Google Scholar 

  109. Wang T, Wu J, Feng Y (2014) Scandium carbide/cyanide alloyed cluster inside fullerene cage: synthesis and structural studies of Sc3(μ3-C2)(μ3-CN)@Ih-C80. Dalton Trans 43(43):16270–16274. https://doi.org/10.1039/c4dt01781a

    Article  CAS  PubMed  Google Scholar 

  110. Shinohara H (2000) Endohedral metallofullerenes. Rep Prog Phys 63(6):843–892. https://doi.org/10.1088/0034-4885/63/6/201

    Article  CAS  Google Scholar 

  111. Wang Z, Izumi N, Nakanishi Y, Koyama T, Sugai T, Tange M, Okazaki T, Shinohara H (2016) Near-infrared photoluminescence properties of endohedral mono- and dithulium metallofullerenes. ACS Nano 10(4):4282–4287. https://doi.org/10.1021/acsnano.5b07780

    Article  CAS  PubMed  Google Scholar 

  112. Sado Y, Aoyagi S, Izumi N, Kitaura R, Kowalczyk T, Wang J, Irle S, Nishibori E, Sugimoto K, Shinohara H (2014) Structure of Tm2 and Tm2C2 encapsulated in low-symmetry C82(Cs(6)) fullerene cage by single crystal X-ray diffraction. Chem Phys Lett 600:38–42. https://doi.org/10.1016/j.cplett.2014.03.047

    Article  CAS  Google Scholar 

  113. Krause M, Dunsch L (2004) Isolation and characterisation of two Sc3N@C80 isomers. ChemPhysChem 5(9):1445–1449. https://doi.org/10.1002/cphc.200400085

    Article  CAS  PubMed  Google Scholar 

  114. Wei T, Liu F, Wang S, Zhu X, Popov AA, Yang S (2015) An expanded family of dysprosium-scandium mixed-metal nitride clusterfullerenes: the role of the lanthanide metal on the carbon cage size distribution. Chemistry 21(15):5750–5759. https://doi.org/10.1002/chem.201406265

    Article  CAS  PubMed  Google Scholar 

  115. Yang SF, Dunsch L (2005) A large family of dysprosium-based trimetallic nitride endohedral fullerenes: Dy3N@C2n (39 <= n <= 44). J Phys Chem B 109(25):12320–12328. https://doi.org/10.1021/jp051597d

    Article  CAS  PubMed  Google Scholar 

  116. Yang S, Popov AA, Dunsch L (2008) Large mixed metal nitride clusters encapsulated in a small cage: the confinement of the C68-based clusterfullerenes. Chem Commun 25:2885–2887. https://doi.org/10.1039/b803200a

    Article  CAS  Google Scholar 

  117. Yang S, Popov AA, Chen C, Dunsch L (2009) Mixed metal nitride clusterfullerenes in cage isomers: LuxSc3-xN@C80 (x = 1, 2) as compared with MxSc3-xN@C80 (M = Er, Dy, Gd, Nd). J Phys Chem C 113(18):7616–7623. https://doi.org/10.1021/jp9005263

    Article  CAS  Google Scholar 

  118. Cao BP, Hasegawa M, Okada K, Tomiyama T, Okazaki T, Suenaga K, Shinohara H (2001) EELS and C13 NMR characterization of pure Ti2@C80 metallofullerene. J Am Chem Soc 123(39):9679–9680. https://doi.org/10.1021/ja016484w

    Article  CAS  PubMed  Google Scholar 

  119. Hu S, Liu T, Shen W, Slanina Z, Akasaka T, Xie Y, Uhlik F, Huang W, Lu X (2019) Isolation and structural characterization of Er@C2v(9)-C82 and Er@Cs(6)-C82: regioselective dimerization of a pristine endohedral metallofullerene induced by cage symmetry. Inorg Chem 58(3):2177–2182. https://doi.org/10.1021/acs.inorgchem.8b03313

    Article  CAS  PubMed  Google Scholar 

  120. Zhang Y, Xu J, Hao C, Shi Z, Gu Z (2006) Synthesis, isolation, spectroscopic and electrochemical characterization of some calcium-containing metallofullerenes. Carbon 44(3):475–479. https://doi.org/10.1016/j.carbon.2005.08.018

    Article  CAS  Google Scholar 

  121. Liu J, Shi Z, Gu Z (2009) The cage and metal effect: spectroscopy and electrochemical survey of a series of Sm-containing high metallofullerenes. Chemistry 4(11):1703–1711. https://doi.org/10.1002/asia.200900234

    Article  CAS  Google Scholar 

  122. Xu J, Li M, Shi Z, Gu Z (2005) Electrochemical survey: the effect of the cage size and structure on the electronic structures of a series of ytterbium metallofullerenes. Chemistry 12(2):562–567. https://doi.org/10.1002/chem.200500210

    Article  CAS  PubMed  Google Scholar 

  123. Lu X, Slanina Z, Akasaka T, Tsuchiya T, Mizorogi N, Nagase S (2010) Yb@C2n (n = 40, 41, 42): new fullerene allotropes with unexplored electrochemical properties. J Am Chem Soc 132(16):5896–5905. https://doi.org/10.1021/ja101131e

    Article  CAS  PubMed  Google Scholar 

  124. Bao L, Chen M, Pan C, Yamaguchi T, Kato T, Olmstead MM, Balch AL, Akasaka T, Lu X (2016) Crystallographic evidence for direct metal-metal bonding in a stable open-shell La2 @Ih-C80 derivative. Angew Chem Int Ed Engl 55(13):4242–4246. https://doi.org/10.1002/anie.201511930

    Article  CAS  PubMed  Google Scholar 

  125. Pan C, Shen W, Yang L, Bao L, Wei Z, Jin P, Fang H, Xie Y, Akasaka T, Lu X (2019) Crystallographic characterization of Y2C2n (2n = 82, 88–94): direct Y–Y bonding and cage-dependent cluster evolution. Chem Sci 10(17):4707–4713. https://doi.org/10.1039/c9sc00941h

    Article  CAS  Google Scholar 

  126. Plonska-Brzezinska ME, Athans AJ, Paige Phillips J, Stevenson S, Echegoyen L (2008) A reinvestigation of the electrochemical behavior of Sc3N@C80. J Electroanal Chem 614(1–2):171–174. https://doi.org/10.1016/j.jelechem.2007.11.013

    Article  CAS  Google Scholar 

  127. Popov AA, Dunsch L (2008) Hindered cluster rotation and 45Sc hyperfine splitting constant in distonoid anion radical SC3N@C80(-), and spatial spin-charge separation as a general principle for anions of endohedral fullerenes with metal-localized lowest unoccupied molecular orbitals. J Am Chem Soc 130(52):17726–17742. https://doi.org/10.1021/ja804226a

    Article  CAS  PubMed  Google Scholar 

  128. Jakes P, Dinse KP (2001) Chemically induced spin transfer to an encased molecular cluster: an EPR study of Sc3N@C80 radical anions. J Am Chem Soc 123(36):8854–8855. https://doi.org/10.1021/ja016047h

    Article  CAS  PubMed  Google Scholar 

  129. Yang S, Zalibera M, Rapta P, Dunsch L (2006) Charge-induced reversible rearrangement of endohedral fullerenes: electrochemistry of tridysprosium nitride clusterfullerenes Dy3N@C2n (2n = 78, 80). Chemistry 12(30):7848–7855. https://doi.org/10.1002/chem.200501578

    Article  CAS  PubMed  Google Scholar 

  130. Valencia R, Rodriguez-Fortea A, Clotet A, de Graaf C, Chaur MN, Echegoyen L, Poblet JM (2009) Electronic structure and redox properties of metal nitride endohedral fullerenes M3N@C2n (M = Sc, Y, La, and Gd; 2n = 80, 84, 88, 92, 96). Chemistry 15(41):10997–11009. https://doi.org/10.1002/chem.200900728

    Article  CAS  PubMed  Google Scholar 

  131. Duchamp JC, Demortier A, Fletcher KR, Dorn D, Iezzi EB, Glass T, Dorn HC (2003) An isomer of the endohedral metallofullerene Sc3N@C80 with D5h symmetry. Chem Phys Lett 375(5–6):655–659. https://doi.org/10.1016/s0009-2614(03)00844-3

    Article  CAS  Google Scholar 

  132. Elliott B, Yu L, Echegoyen L (2005) A simple isomeric separation of D5h and Ih Sc3N@C80 by selective chemical oxidation. J Am Chem Soc 127(31):10885–10888. https://doi.org/10.1021/ja052446r

    Article  CAS  PubMed  Google Scholar 

  133. Hu S, Zhao P, Shen W, Yu P, Huang W, Ehara M, Xie Y, Akasaka T, Lu X (2019) Crystallographic characterization of Er3N@C2n (2n = 80, 82, 84, 88): the importance of a planar Er3N cluster. Nanoscale 11(28):13415–13422. https://doi.org/10.1039/c9nr04330f

    Article  CAS  PubMed  Google Scholar 

  134. Shen WQ, Bao LP, Hu SF, Gao XJ, Xie YP, Gao XF, Huang WH, Lu X (2018) Isolation and crystallographic characterization of Lu3N@C2n (2n = 80–88): cage selection by cluster size. Chemistry 24(62):16692–16698. https://doi.org/10.1002/chem.201804651

    Article  CAS  PubMed  Google Scholar 

  135. Zhang Y, Schiemenz S, Popov AA, Dunsch L (2013) Strain-driven endohedral redox couple Ce-IV/Ce-III in nitride clusterfullerenes CeM2N@C80 (M = Sc, Y, Lu). J Phys Chem Lett 4(15):2404–2409. https://doi.org/10.1021/jz4009773

    Article  CAS  Google Scholar 

  136. Chen C, Liu F, Li S, Wang N, Popov AA, Jiao M, Wei T, Li Q, Dunsch L, Yang S (2012) Titanium/yttrium mixed metal nitride clusterfullerene TiY2N@C80: synthesis, isolation, and effect of the group-III metal. Inorg Chem 51(5):3039–3045. https://doi.org/10.1021/ic202354u

    Article  CAS  PubMed  Google Scholar 

  137. Iiduka Y, Wakahara T, Nakajima K, Nakahodo T, Tsuchiya T, Maeda Y, Akasaka T, Yoza K, Liu MT, Mizorogi N, Nagase S (2007) Experimental and theoretical studies of the scandium carbide endohedral metallofullerene Sc2C2@C82 and its carbene derivative. Angew Chem Int Ed Engl 46(29):5562–5564. https://doi.org/10.1002/anie.200701049

    Article  CAS  PubMed  Google Scholar 

  138. Lu X, Nakajima K, Iiduka Y, Nikawa H, Tsuchiya T, Mizorogi N, Slanina Z, Nagase S, Akasaka T (2012) The long-believed Sc2@C2v(17)-C84 is actually Sc2C2@C2v(9)-C82: unambiguous structure assignment and chemical functionalization. Angew Chem Int Ed Engl 51(24):5889–5892. https://doi.org/10.1002/anie.201201325

    Article  CAS  PubMed  Google Scholar 

  139. Hu S, Shen W, Zhao P, Xu T, Slanina Z, Ehara M, Zhao X, Xie Y, Akasaka T, Lu X (2019) Crystallographic characterization of Er2C2@C2(43)-C90, Er2C2@C2(40)-C90, Er2C2@C2(44)-C90, and Er2C2@C1(21)-C90: the role of cage-shape on cluster configuration. Nanoscale 11(37):17319–17326. https://doi.org/10.1039/c9nr06466d

    Article  CAS  PubMed  Google Scholar 

  140. Tang Q, Abella L, Hao Y, Li X, Wang Y, Rodriguez-Fortea A, Poblet JM, Feng L, Chen N (2016) Sc2O@C3v(8)-C82: a missing isomer of Sc2O@C82. Inorg Chem 55(4):1926–1933. https://doi.org/10.1021/acs.inorgchem.5b02901

    Article  CAS  PubMed  Google Scholar 

  141. Liu F, Wang S, Gao CL, Deng Q, Zhu X, Kostanyan A, Westerstrom R, Jin F, Xie SY, Popov AA, Greber T, Yang S (2017) Mononuclear clusterfullerene single-molecule magnet containing strained fused-pentagons stabilized by a nearly linear metal cyanide cluster. Angew Chem Int Ed Engl 56(7):1830–1834. https://doi.org/10.1002/anie.201611345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Liu F, Wang S, Guan J, Wei T, Zeng M, Yang S (2014) Putting a terbium-monometallic cyanide cluster into the C82 fullerene cage: TbCN@C2(5)-C82. Inorg Chem 53(10):5201–5205. https://doi.org/10.1021/ic500353k

    Article  CAS  PubMed  Google Scholar 

  143. Ding XY, Alford JM, Wright JC (1997) Lanthanide fluorescence from Er3+ in Er2@C82. Chem Phys Lett 269(1–2):72–78. https://doi.org/10.1016/s0009-2614(97)00261-3

    Article  CAS  Google Scholar 

  144. Ito Y, Okazaki T, Okubo S, Akachi M, Ohno Y, Mizutani T, Nakamura T, Kitaura R, Sugai T, Shinohara H (2007) Enhanced 1520 nm photoluminescence from Er3+ ions in di-erbium-carbide metallofullerenes (Er2C2)@C82 (isomers I, II, and III). ACS Nano 1(5):456–462

    Article  CAS  Google Scholar 

  145. Macfarlane RM, Bethune DS, Stevenson S, Dorn HC (2001) Fluorescence spectroscopy and emission lifetimes of Er3+ in ErxSc3-xN@C80 (x = 1–3). Chem Phys Lett 343(3–4):229–234. https://doi.org/10.1016/s0009-2614(01)00701-1

    Article  CAS  Google Scholar 

  146. Gu G, Huang HJ, Yang SH, Yu P, Fu JS, Wong GK, Wan XG, Dong JM, Du YW (1998) The third-order non-linear optical response of the endohedral metallofullerene Dy@C82. Chem Phys Lett 289(1–2):167–173. https://doi.org/10.1016/s0009-2614(98)00381-9

    Article  CAS  Google Scholar 

  147. Xenogiannopoulou E, Couris S, Koudoumas E, Tagmatarchis N, Inoue T, Shinohara H (2004) Nonlinear optical response of some isomerically pure higher fullerenes and their corresponding endohedral metallofullerene derivatives: C82–C2ν, Dy@C82 (I), Dy2@C82 (I), C92–C2 and Er2@C92 (IV). Chem Phys Lett 394(1–3):14–18. https://doi.org/10.1016/j.cplett.2004.06.093

    Article  CAS  Google Scholar 

  148. Jiang Y, Wang D, Xu D, Zhang J, Wang Z (2018) Dimerization of metallofullerenes to obtain materials with enhanced nonlinear optical properties. ChemPhysChem 19(22):2995–3000. https://doi.org/10.1002/cphc.201800797

    Article  CAS  PubMed  Google Scholar 

  149. Westerstroem R, Dreiser J, Piamonteze C, Muntwiler M, Weyeneth S, Kraemer K, Liu S-X, Decurtins S, Popov A, Yang S, Dunsch L, Greber T (2014) Tunneling, remanence, and frustration in dysprosium-based endohedral single-molecule magnets. Phys Rev B 89(6). https://doi.org/10.1103/PhysRevB.89.060406

  150. Kato T, Suzuki S, Kikuchi K, Achiba Y (1993) ESR study of the electronic-structures of metallofullerenes – a comparison between La@C82 and Sc@C82. J Phys Chem 97(51):13425–13428. https://doi.org/10.1021/j100153a001

    Article  CAS  Google Scholar 

  151. Huang HJ, Yang SH, Zhang XX (2000) Magnetic properties of heavy rare-earth metallofullerenes M@C82 (M = Gd, Tb, Dy, Ho, and Er). J Phys Chem B 104(7):1473–1482. https://doi.org/10.1021/jp9933166

    Article  CAS  Google Scholar 

  152. Wolf M, Muller KH, Skourski Y, Eckert D, Georgi P, Krause M, Dunsch L (2005) Magnetic moments of the endohedral cluster fullerenes Ho3N@C80 and Tb3N@C80: the role of ligand fields. Angew Chem Int Ed 44(21):3306–3309. https://doi.org/10.1002/anie.200461500

    Article  CAS  Google Scholar 

  153. Smirnova TI, Smirnov AI, Chadwick TG, Walker KL (2008) Characterization of magnetic and electronic properties of trimetallic nitride endohedral fullerenes by SQUID magnetometry and electron paramagnetic resonance. Chem Phys Lett 453(4–6):233–237. https://doi.org/10.1016/j.cplett.2008.01.036

    Article  CAS  Google Scholar 

  154. Zuo T, Olmstead MM, Beavers CM, Balch AL, Wang G, Yee GT, Shu C, Xu L, Elliott B, Echegoyen L, Duchamp JC, Dorn HC (2008) Preparation and structural characterization of the Ih and the D5h isomers of the endohedral fullerenes Tm3N@C80: icosahedral C80 cage encapsulation of a trimetallic nitride magnetic cluster with three uncoupled Tm3+ ions. Inorg Chem 47(12):5234–5244. https://doi.org/10.1021/ic800227x

    Article  CAS  PubMed  Google Scholar 

  155. Chen L, Carpenter EE, Hellberg CS, Dorn HC, Shultz M, Wernsdorfer W, Chiorescu I (2011) Spin transition in Gd3N@C80, detected by low-temperature on-chip SQUID technique. J Appl Phys 109(7). https://doi.org/10.1063/1.3536514

  156. Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y (2004) Mononuclear lanthanide complexes with a long magnetization relaxation time at high temperatures: a new category of magnets at the single-molecular level. J Phys Chem B 108(31):11265–11271. https://doi.org/10.1021/jp0376065

    Article  CAS  Google Scholar 

  157. Liu F, Krylov DS, Spree L, Avdoshenko SM, Samoylova NA, Rosenkranz M, Kostanyan A, Greber T, Wolter AUB, Buechner B, Popov AA (2017) Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene. Nat Commun 8. https://doi.org/10.1038/ncomms16098

Download references

Acknowledgments

This work was partially supported by the National Basic Research Program of China (2017YFA0402802) and National Natural Science Foundation of China (51925206, U1932214).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muqing Chen or Shangfeng Yang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jiang, X., Chen, M., Yang, S. (2021). Structures and Properties of Endohedral Metallofullerenes. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3242-5_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3242-5_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3242-5

  • Online ISBN: 978-981-13-3242-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics