Skip to main content

Preparation of Endohedral Metallofullerenes

  • Living reference work entry
  • First Online:
Handbook of Fullerene Science and Technology
  • 161 Accesses

Abstract

Endohedral metallofullerenes (EMFs) have been extensively studied due to their unique structural characteristics and physiochemical properties. Over the past three decades, researchers have developed different methods for the synthesis of endohedral metallofullerenes, including the Krätschmer-Huffman DC arc-discharge, laser ablation, radio frequency furnace, ion bombardment, and hot-atom chemistry method et al. Among them, DC arc-discharge method is the most popular technique used to date, since it enables the macroscopic synthesis of fullerenes species in a relatively simple and cost-effective way. With the application and modification of this method, metallofullerenes and endohedral clusterfullerenes with variable clusters encapsulated inside different cages have been synthesized and isolated. Besides, the laser ablation method still plays an important role on the investigation of endohedral fullerene formation mechanism. Separation methods also play key role in the preparation of novel endohedral fullerenes, as the soot extract obtained from DC arc-discharge method often contains a large variety of different fullerene species. High-performance liquid chromatography (HPLC) is widely used for the separation and purification of EMFs as it can yield highly purified EMFs with variable HPLC columns and recycling techniques applied. However, it is also known for its time-consuming procedures and is only suitable for samples on milligram scale. Thus, various nonchromatographic strategies have been developed for simpler and more efficient separation procedure, such as chemical and electrochemical methods. This chapter provides a detailed and comprehensive overview of the synthetic methods of EMFs and highlights the recent development in this field, followed by a summarization of different separation and purification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Heath JR et al (1985) Lanthanum complexes of spheroidal carbon shells. J Am Chem Soc 107:7779–7780

    Article  CAS  Google Scholar 

  2. Funasaka H et al (1993) Preparation of fullerene derivatives by resistive heating with graphite crucible. Fuller Sci Technol 1:437–448

    Article  CAS  Google Scholar 

  3. Jansen M, Peters G, Wagner N (1995) Zur Bildung von Fullerenen und endohedralen metallofullerenen: Darstellung im Hochfrequenzofen. Z Anorg Allg Chem 621:689–693

    Article  CAS  Google Scholar 

  4. Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358

    Article  Google Scholar 

  5. Dunk PW et al (2012) Closed network growth of fullerenes. Nat Commun 3:855

    Article  PubMed  CAS  Google Scholar 

  6. Mulet-Gas M et al (2017) Transformation of doped graphite into cluster-encapsulated fullerene cages. Nat Commun 8:1222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Liu F et al (2013) A series of inorganic solid nitrogen sources for the synthesis of metal nitride clusterfullerenes: the dependence of production yield on the oxidation state of nitrogen and counter ion. Inorg Chem 52:3814–3822

    Article  CAS  PubMed  Google Scholar 

  8. Takata M et al (1995) Confirmation by X-ray diffraction of the endohedral nature of the metallofullerene Y@C82. Nature 377:46–49

    Article  CAS  Google Scholar 

  9. Xu W et al (2013) An experimentally observed Trimetallofullerene Sm3@Ih-C80: encapsulation of three metal atoms in a cage without a nonmetallic mediator. J Am Chem Soc 135:4187–4190

    Article  CAS  PubMed  Google Scholar 

  10. Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113:5989–6113

    Article  CAS  PubMed  Google Scholar 

  11. Lu X, Feng L, Akasaka T, Nagase S (2012) Current status and future developments of endohedral metallofullerenes. Chem Soc Rev 41:7723–7760

    Article  PubMed  Google Scholar 

  12. Stevenson S et al (1994) Automated HPLC separation of endohedral metallofullerene Sc@C2n and Y@C2n fractions. Anal Chem 66:2675–2679

    Article  CAS  Google Scholar 

  13. Stevenson S et al (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401:55–57

    Article  CAS  Google Scholar 

  14. Guo M et al (2021) A non-isolated pentagon rule C82 cage stabilized by a stretched Sc3N cluster. Chem Commun 57:4150–4153

    Article  CAS  Google Scholar 

  15. Olmstead MM et al (2003) Sc3N@C68: folded pentalene coordination in an endohedral fullerene that does not obey the isolated pentagon rule. Angew Chem Int Ed 42:900–903

    Article  CAS  Google Scholar 

  16. Yang S, Kalbac M, Popov A, Dunsch L (2006) A facile route to the non-IPR fullerene Sc3N@C68: synthesis, spectroscopic characterization, and density functional theory computations (IPR = isolated pentagon rule). Chem Eur J 12:7856–7863

    Article  CAS  PubMed  Google Scholar 

  17. Yang S, Popov AA, Dunsch L (2007) Violating the isolated pentagon rule (IPR): the endohedral non-IPR C70 cage of Sc3N@C70. Angew Chem Int Ed 46:1256–1259

    Article  CAS  Google Scholar 

  18. Olmstead MM et al (2001) Isolation and structural characterization of the endohedral fullerene Sc3N@C78. Angew Chem Int Ed 40:1223–1225

    Article  CAS  Google Scholar 

  19. Duchamp JC et al (2003) An isomer of the endohedral metallofullerene Sc3N@C80 with D5h symmetry. Chem Phys Lett 375:655–659

    Article  CAS  Google Scholar 

  20. Wei T et al (2015) Capturing the long-sought small-bandgap endohedral fullerene Sc3N@C82 with low kinetic stability. J Am Chem Soc 137:3119–3123

    Article  CAS  PubMed  Google Scholar 

  21. Ma Y et al (2011) Size effect of endohedral cluster on fullerene cage: preparation and structural studies of Y3N@C78-C2. Nanoscale 3:4955–4957

    Article  CAS  PubMed  Google Scholar 

  22. Fu W et al (2009) 89Y and 13C NMR cluster and carbon cage studies of an yttrium metallofullerene family, Y3N@C2n (n = 40−43). J Am Chem Soc 131:11762–11769

    Article  CAS  PubMed  Google Scholar 

  23. Burke BG et al (2010) Investigation of Gd3N@C2n (40 ≤ n ≤ 44) family by Raman and inelastic electron tunneling spectroscopy. Phys Rev B 81:115423

    Article  CAS  Google Scholar 

  24. Beavers CM, Chaur MN, Olmstead MM, Echegoyen L, Balch AL (2009) Large metal ions in a relatively small fullerene cage: the structure of Gd3N@C2(22010)-C78 departs from the isolated pentagon rule. J Am Chem Soc 131:11519–11524

    Article  CAS  PubMed  Google Scholar 

  25. Stevenson S et al (2004) Pyramidalization of Gd3N inside a C80 cage. The synthesis and structure of Gd3N@C80. Chem Commun 2004:2814–2815

    Google Scholar 

  26. Mercado BQ et al (2008) Is the isolated pentagon rule merely a suggestion for endohedral fullerenes? The structure of a second egg-shaped endohedral fullerene—Gd3N@Cs(39663)-C82. J Am Chem Soc 130:7854–7855

    Article  CAS  PubMed  Google Scholar 

  27. Zuo T et al (2008) New egg-shaped fullerenes: non-isolated pentagon structures of Tm3N@Cs(51365)-C84 and Gd3N@Cs(51365)-C84. Chem Commun 2008:1067–1069

    Google Scholar 

  28. Chaur MN et al (2010) Structural and electrochemical property correlations of metallic nitride endohedral metallofullerenes. J Phys Chem C 114:13003–13009

    Article  CAS  Google Scholar 

  29. Zuo T et al (2007) Isolation and structural characterization of a family of endohedral fullerenes including the large, chiral cage fullerenes Tb3N@C88 and Tb3N@C86 as well as the Ih and D5h isomers of Tb3N@C80. J Am Chem Soc 129:2035–2043

    Article  CAS  PubMed  Google Scholar 

  30. Beavers CM et al (2006) Tb3N@C84: an improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. J Am Chem Soc 128:11352–11353

    Article  CAS  PubMed  Google Scholar 

  31. Krause M, Wong J, Dunsch L (2005) Expanding the world of endohedral fullerenes – the Tm3N@C2n (39 ≤ n ≤ 43) Clusterfullerene family. Chem Eur J 11:706–711

    Article  CAS  PubMed  Google Scholar 

  32. Zuo T et al (2008) Preparation and structural characterization of the Ih and the D5h isomers of the endohedral fullerenes Tm3N@C80: icosahedral C80 cage encapsulation of a Trimetallic nitride magnetic cluster with three uncoupled Tm3+ ions. Inorg Chem 47:5234–5244

    Article  CAS  PubMed  Google Scholar 

  33. Wang X et al (2006) Preparation and structure of CeSc2N@C80: an icosahedral carbon cage enclosing an acentric CeSc2N unit with buried f Electron spin. J Am Chem Soc 128:8884–8889

    Article  CAS  PubMed  Google Scholar 

  34. Svitova AL, Popov AA, Dunsch L (2013) Gd–Sc-based mixed-metal nitride cluster fullerenes: mutual influence of the cage and cluster size and the role of scandium in the electronic structure. Inorg Chem 52:3368–3380

    Article  CAS  PubMed  Google Scholar 

  35. Stevenson S, Chancellor CJ, Lee HM, Olmstead MM, Balch AL (2008) Internal and external factors in the structural organization in cocrystals of the mixed-metal endohedrals (GdSc2N@Ih-C80, Gd2ScN@Ih-C80, and TbSc2N@Ih-C80) and nickel(II) octaethylporphyrin. Inorg Chem 47:1420–1427

    Article  CAS  PubMed  Google Scholar 

  36. Yang S, Kalbac M, Popov A, Dunsch L (2006) Gadolinium-based mixed-metal nitride clusterfullerenes GdxSc3−xN@C80 (x = 1, 2). Chem Phys Chem 7:1990–1995

    Article  CAS  PubMed  Google Scholar 

  37. Yang S, Popov A, Kalbac M, Dunsch L (2008) The isomers of gadolinium scandium nitride clusterfullerenes GdxSc3−xN@C80 (x = 1, 2) and their influence on cluster structure. Chem Eur J 14:2084–2092

    Article  CAS  PubMed  Google Scholar 

  38. Wei T et al (2016) Entrapping a group-VB transition metal, vanadium, within an endohedral Metallofullerene: VxSc3–xN@Ih-C80 (x = 1, 2). J Am Chem Soc 138:207–214

    Article  CAS  PubMed  Google Scholar 

  39. Chen N, Zhang E-Y, Wang C-R (2006) C80 encaging four different atoms: the synthesis, isolation, and characterizations of ScYErN@C80. J Phys Chem B 110:13322–13325

    Article  CAS  PubMed  Google Scholar 

  40. Dunsch L, Krause M, Noack J, Georgi P (2004) Endohedral nitride cluster fullerenes: formation and spectroscopic analysis of L3−xMxN@C2n (0 ≤ x ≤ 3; N = 39,40). J Phys Chem Solids 65:309–315

    Article  CAS  Google Scholar 

  41. Yang S, Dunsch L (2005) A large family of dysprosium-based trimetallic nitride endohedral fullerenes: Dy3N@C2n (39 ≤ n ≤ 44). J Phys Chem B 109:12320–12328

    Article  CAS  PubMed  Google Scholar 

  42. Stevenson S et al (2007) Effect of copper metal on the yield of Sc3N@C80 metallofullerenes. Chem Commun 2007:4263–4265

    Google Scholar 

  43. Stevenson S et al (2007) Chemically adjusting plasma temperature, energy, and reactivity (CAPTEAR) method using NOx and combustion for selective synthesis of Sc3N@C80 metallic nitride fullerenes. J Am Chem Soc 129:16257–16262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stevenson S et al (2012) Selective synthesis, isolation, and crystallographic characterization of LaSc2N@Ih-C80. Inorg Chem 51:13096–13102

    Article  CAS  PubMed  Google Scholar 

  45. Yang S, Zhang L, Zhang W, Dunsch L (2010) A facile route to metal nitride clusterfullerenes by using Guanidinium salts: a selective organic solid as the nitrogen source. Chem Eur J 16:12398–12405

    Article  CAS  PubMed  Google Scholar 

  46. Jiao M et al (2012) Urea as a new and cheap nitrogen source for the synthesis of metal nitride clusterfullerenes: the role of decomposed products on the selectivity of fullerenes. Chem Eur J 18:2666–2673

    Article  CAS  PubMed  Google Scholar 

  47. Svitova A, Braun K, Popov AA, Dunsch L (2012) A platform for specific delivery of lanthanide–scandium mixed-metal cluster fullerenes into target cells. ChemistryOpen 1:207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang S, Wei T, Jin F (2017) When metal clusters meet carbon cages: endohedral clusterfullerenes. Chem Soc Rev 46:5005–5058

    Article  CAS  PubMed  Google Scholar 

  49. Shinohara H (2000) Endohedral metallofullerenes. Rep Prog Phys 63:843–892

    Article  CAS  Google Scholar 

  50. Liu F, Guan J, Wei T, Wang S, Yang S (2013) Synthesis and isolation of endohedral fullerenes-a general review. In Endohedral fullerenes. WORID SCIENTIFIC, pp19–60

    Google Scholar 

  51. Wang C-R et al (2001) A scandium carbide endohedral metallofullerene: (Sc2C2)@C84. Angew Chem Int Ed 40:397–399

    Article  CAS  Google Scholar 

  52. Shi Z-Q, Wu X, Wang C-R, Lu X, Shinohara H (2006) Isolation and characterization of Sc2C2@C68: a metal-carbide endofullerene with a non-IPR carbon cage. Angew Chem Int Ed 45:2107–2111

    Article  CAS  Google Scholar 

  53. Lu X et al (2011) Structural elucidation and regioselective functionalization of an unexplored carbide cluster metallofullerene Sc2C2@Cs(6)-C82. J Am Chem Soc 133:19553–19558

    Article  CAS  PubMed  Google Scholar 

  54. Kurihara H et al (2012) X-ray structures of Sc2C2@C2n (n = 40-42): in-depth understanding of the core-shell interplay in carbide cluster metallofullerenes. Inorg Chem 51:746–750

    Article  CAS  PubMed  Google Scholar 

  55. Kurihara H et al (2011) Sc2C2@C80 rather than Sc2@C82: templated formation of unexpected C2v(5)-C80 and temperature-dependent dynamic motion of internal Sc2C2 cluster. J Am Chem Soc 133:2382–2385

    Article  CAS  PubMed  Google Scholar 

  56. Kurihara H et al (2012) Chemical understanding of carbide cluster metallofullerenes: a case study on Sc2C2@C2v(5)-C80 with complete X-ray crystallographic characterizations. J Am Chem Soc 134:3139–3144

    Article  CAS  PubMed  Google Scholar 

  57. Iiduka Y et al (2007) Experimental and theoretical studies of the scandium carbide endohedral Metallofullerene Sc2C2@C82 and its Carbene derivative. Angew Chem Int Ed 46:5562–5564

    Article  CAS  Google Scholar 

  58. Yamazaki Y et al (2008) Observation of 13C NMR chemical shifts of metal carbides encapsulated in fullerenes: Sc2C2@C82, Sc2C2@C84, and Sc3C2@C80. Angew Chem Int Ed 47:7905–7908

    Article  CAS  Google Scholar 

  59. Chen CH et al (2015) Beyond the butterfly: Sc2C2@C2v(9)-C86, an endohedral fullerene containing a planar, twisted Sc2C2 unit with remarkable crystalline order in an unprecedented carbon cage. J Am Chem Soc 137:10116–10119

    Article  CAS  PubMed  Google Scholar 

  60. Chen CH et al (2016) Zigzag Sc2C2 carbide cluster inside a [88]fullerene cage with one heptagon, Sc2C2@Cs(hept)-C88: a kinetically trapped fullerene formed by C2 insertion? J Am Chem Soc 138:13030–13037

    Article  CAS  PubMed  Google Scholar 

  61. Iiduka Y et al (2005) Structural determination of metallofullerene Sc3C82 revisited: a surprising finding. J Am Chem Soc 127:12500–12501

    Article  CAS  PubMed  Google Scholar 

  62. Nishibori E et al (2006) High-resolution analysis of (Sc3C2)@C80 metallofullerene by third generation synchrotron radiation X-ray powder diffraction. J Phys Chem B 110:19215–19219

    Article  CAS  PubMed  Google Scholar 

  63. Pan C et al (2019) Crystallographic characterization of Y2C2n (2n = 82, 88–94): direct Y–Y bonding and cage-dependent cluster evolution. Chem Sci 10:4707–4713

    Article  CAS  Google Scholar 

  64. Inoue T, Tomiyama T, Sugai T, Shinohara H (2003) Spectroscopic and structural study of Y2C2 carbide encapsulating endohedral metallofullerene: (Y2C2)@C82. Chem Phys Lett 382:226–231

    Article  CAS  Google Scholar 

  65. Inoue T et al (2004) Trapping a C2 radical in endohedral metallofullerenes: synthesis and structures of (Y2C2)@C82 (Isomers I, II, and III). J Phys Chem B 108:7573–7579

    Article  CAS  Google Scholar 

  66. Nishibori E et al (2006) A C2 molecule entrapped in the pentagonal-dodecahedral Y2 cage in Y2C2@C82(III). ChemPhysChem 7:345–348

    Article  CAS  PubMed  Google Scholar 

  67. Cai W et al (2015) Anomalous compression of D5(450)-C100 by encapsulating La2C2 cluster instead of La2. J Am Chem Soc 137:10292–10296

    Article  CAS  PubMed  Google Scholar 

  68. Cai W, Li FF, Bao L, Xie Y, Lu X (2016) Isolation and crystallographic characterization of La2C2@Cs(574)-C102 and La2C2@C2(816)-C104: evidence for the top-down formation mechanism of fullerenes. J Am Chem Soc 138:6670–6675

    Article  CAS  PubMed  Google Scholar 

  69. Zhao S et al (2017) Stabilization of Giant fullerenes C2(41)-C90, D3(85)-C92, C1(132)-C94, C2(157)-C96, and C1(175)-C98 by encapsulation of a large La2C2 cluster: the importance of cluster-cage matching. J Am Chem Soc 139:4724–4728

    Article  CAS  PubMed  Google Scholar 

  70. Yang H et al (2008) Detection of a family of gadolinium-containing endohedral fullerenes and the isolation and crystallographic characterization of one member as a metal−carbide encapsulated inside a large fullerene cage. J Am Chem Soc 130:17296–17300

    Article  CAS  PubMed  Google Scholar 

  71. Sado Y et al (2014) Structure of Tm2 and Tm2C2 encapsulated in low-symmetry C82(Cs(6)) fullerene cage by single crystal X-ray diffraction. Chem Phys Lett 600:38–42

    Article  CAS  Google Scholar 

  72. Cao B et al (2001) EELS and 13C NMR characterization of pure Ti2@C80 metallofullerene. J Am Chem Soc 123:9679–9680

    Article  CAS  PubMed  Google Scholar 

  73. Tan K, Lu X (2005) Ti2C80 is more likely a titanium carbide endohedral metallofullerene (Ti2C2)@C78. Chem Commun 2005:4444–4446

    Google Scholar 

  74. Yumura T, Sato Y, Suenaga K, Iijima S (2005) Which do endohedral Ti2C80 Metallofullerenes prefer energetically: Ti2@C80 or Ti2C2@C78? A theoretical study. J Phys Chem B 109:20251–20255

    Article  CAS  PubMed  Google Scholar 

  75. Sato Y et al (2006) Direct imaging of intracage structure in titanium-carbide endohedral metallofullerene. Phys Rev B 73:193401

    Article  CAS  Google Scholar 

  76. Tagmatarchis N, Shinohara H (2000) Production, separation, isolation, and spectroscopic study of dysprosium endohedral Metallofullerenes. Chem Mater 12:3222–3226

    Article  CAS  Google Scholar 

  77. Ito Y et al (2007) Enhanced 1520 nm photoluminescence from Er3+ ions in Di-erbium-carbide Metallofullerenes (Er2C2)@C82 (Isomers I, II, and III). ACS Nano 1:456–462

    Article  CAS  PubMed  Google Scholar 

  78. Stevenson S et al (2018) Identifying a needle in a haystack: isolation and structural characterization of Er2C94 as the carbide Er2C2@D3(85)-C92. Chem Eur J 24:13479–13484

    Article  CAS  PubMed  Google Scholar 

  79. Xu W et al (2011) Entrapped planar Trimetallic carbide in a fullerene cage: synthesis, isolation, and spectroscopic studies of Lu3C2@C88. J Phys Chem C 115:402–405

    Article  CAS  Google Scholar 

  80. Okimoto H et al (2008) Element-specific magnetic properties of Di-erbium Er2@C82 and Er2C2@C82 metallofullerenes: a synchrotron soft X-ray magnetic circular dichroism study. J Phys Chem C 112:6103–6109

    Article  CAS  Google Scholar 

  81. Wang T-S et al (2009) Russian-doll-type metal carbide endofullerene: synthesis, isolation, and characterization of Sc4C2@C80. J Am Chem Soc 131:16646–16647

    Article  CAS  PubMed  Google Scholar 

  82. Feng Y et al (2013) Structural and electronic studies of metal carbide clusterfullerene Sc2C2@Cs-C72. Nanoscale 5:6704–6707

    Article  CAS  PubMed  Google Scholar 

  83. Zhang J et al (2013) A missing link in the transformation from asymmetric to symmetric metallofullerene cages implies a top-down fullerene formation mechanism. Nat Chem 5:880

    Article  CAS  PubMed  Google Scholar 

  84. Zhang J et al (2012) Nanoscale fullerene compression of an yttrium carbide cluster. J Am Chem Soc 134:8487–8493

    Article  CAS  PubMed  Google Scholar 

  85. Yu P et al (2019) Trapping an unprecedented Ti3C3 unit inside the icosahedral C80 fullerene: a crystallographic survey. Chem Sci 10:10925–10930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Svitova AL et al (2014) Endohedral fullerene with μ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage. Nat Commun 5:3568

    Article  CAS  PubMed  Google Scholar 

  87. Junghans K et al (2015) Methane as a selectivity booster in the arc-discharge synthesis of endohedral fullerenes: selective synthesis of the single-molecule magnet Dy2TiC@C80 and its congener Dy2TiC2@C80. Angew Chem Int Ed Engl 54:13411–13415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Junghans K et al (2016) Synthesis and isolation of the Titanium-Scandium endohedral fullerenes-Sc2tic@Ih-C80, Sc2 TiC@D5h-C80 and Sc2TiC2@Ih-C80: metal size tuning of the Ti(IV) /Ti(III) redox potentials. Chem Eur J 22:13098–13107

    Article  CAS  PubMed  Google Scholar 

  89. Stevenson S et al (2008) A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. Synthesis, isolation, and structural characterization of Sc43-O)2@Ih-C80. J Am Chem Soc 130:11844–11845

    Article  CAS  PubMed  Google Scholar 

  90. Mercado BQ et al (2010) A seven atom cluster in a carbon cage, the crystallographically determined structure of Sc43-O)3@Ih-C80. Chem Commun 46:279–281

    Article  CAS  Google Scholar 

  91. Mercado BQ et al (2010) Sc22-O) trapped in a fullerene cage: the isolation and structural characterization of Sc22-O)@Cs(6)-C82 and the relevance of the thermal and entropic effects in fullerene isomer selection. J Am Chem Soc 132:12098–12105

    Article  CAS  PubMed  Google Scholar 

  92. Zhang M et al (2014) Facile synthesis of an extensive family of Sc2O@C2n (n = 35–47) and chemical insight into the smallest member of Sc2O@C2(7892)–C70. J Phys Chem C 118:28883–28889

    Article  CAS  Google Scholar 

  93. Feng L et al (2016) Endohedrally stabilized C70 isomer with fused pentagons characterized by crystallography. Dalton Trans 45:8142–8148

    Article  CAS  PubMed  Google Scholar 

  94. Yang T et al (2015) Sc2O@Td(19151)-C76: hindered cluster motion inside a tetrahedral carbon cage probed by crystallographic and computational studies. Chem Eur J 21:11110–11117

    Article  CAS  PubMed  Google Scholar 

  95. Tang Q et al (2016) Sc2O@C3v(8)-C82: a missing isomer of Sc2O@C82. Inorg Chem 55:1926–1933

    Article  CAS  PubMed  Google Scholar 

  96. Tang Q et al (2015) Sc2O@C2v(5)-C80: dimetallic oxide cluster inside a C80 fullerene cage. Inorg Chem 54:9845–9852

    Article  CAS  PubMed  Google Scholar 

  97. Abella L et al (2016) Sc3O@Ih(7)-C80: a trimetallic oxide clusterfullerene abundant in the raw soot. J Phys Chem C 120:26159–26167

    Article  CAS  Google Scholar 

  98. Liu A et al (2019) Ho2O@C74: Ho2O cluster expands within a small non-IPR fullerene cage of C2(13333)-C74. Inorg Chem 58:4774–4781

    Article  CAS  PubMed  Google Scholar 

  99. Cong H et al (2019) Ho2O@C84: crystallographic evidence showing linear metallic oxide cluster encapsulated in IPR fullerene cage of D2d(51591)-C84. Inorg Chem 58:10905–10911

    Article  CAS  PubMed  Google Scholar 

  100. Yang W et al (2019) Single molecule magnetism with strong magnetic anisotropy and enhanced Dy∙∙∙Dy coupling in three isomers of Dy-oxide Clusterfullerene Dy2O@C82. Adv Sci 6:1901352

    Article  CAS  Google Scholar 

  101. Yang W et al (2018) Mixed dimetallic cluster fullerenes: ScGdO@C3v(8)-C82 and ScGdC2@C2v(9)-C82. Inorg Chem 57:11597–11605

    Article  CAS  PubMed  Google Scholar 

  102. Dunsch L et al (2010) Metal sulfide in a C82 fullerene cage: a new form of endohedral clusterfullerenes. J Am Chem Soc 132:5413–5421

    Article  CAS  PubMed  Google Scholar 

  103. Chen N et al (2010) Synthesis of a new endohedral fullerene family, Sc2S@C2n (n = 40–50) by the introduction of SO2. Chem Commun 46:4818–4820

    Article  CAS  Google Scholar 

  104. Chen N et al (2013) Sc2S@C2(7892)–C70: a metallic sulfide cluster inside a non-IPR C70 cage. Chem Sci 4:180–186

    Article  Google Scholar 

  105. Chen N et al (2012) Sc2S@Cs(10528)-C72: a dimetallic sulfide endohedral fullerene with a non isolated pentagon rule cage. J Am Chem Soc 134:7851–7860

    Article  CAS  PubMed  Google Scholar 

  106. Li F-F et al (2013) Ti2S@D3h(24109)-C78: a sulfide cluster metallofullerene containing only transition metals inside the cage. Chem Sci 4:3404

    Article  CAS  Google Scholar 

  107. Yang S et al (2013) An improbable monometallic cluster entrapped in a popular fullerene cage: YCN@Cs(6)-C82. Sci Rep 3:1487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Liu F et al (2014) Putting a terbium-monometallic cyanide cluster into the C82 fullerene cage: TbCN@C2(5)-C82. Inorg Chem 53:5201–5205

    Article  CAS  PubMed  Google Scholar 

  109. Liu F et al (2016) Triangular monometallic cyanide cluster entrapped in carbon cage with geometry-dependent molecular magnetism. J Am Chem Soc 138:14764–14771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu F et al (2017) Mononuclear clusterfullerene single-molecule magnet containing strained fused-pentagons stabilized by a nearly linear metal cyanide cluster. Angew Chem 129:1856–1860

    Article  Google Scholar 

  111. Jin F, Wang S, Tamm NB, Yang S, Troyanov SI (2017) Synthesis, isolation, and trifluoromethylation of two isomers of C84 -based monometallic cyanide clusterfullerenes: interplay between the endohedral cluster and the exohedral addends. Angew Chem Int Ed Engl 56:11990–11994

    Article  CAS  PubMed  Google Scholar 

  112. Jin F et al (2016) Trifluoromethyl derivatives of a monometallic cyanide cluster fullerene, YCN@C82(6)(CF3)16/18. Inorg Chem 55:12523–12526

    Article  CAS  PubMed  Google Scholar 

  113. Xin J et al (2021) Ancient pigment to treasure: Prussian blue as a cheap solid cyanide/nitrogen dual-source affording the high-yield syntheses of pricey endohedral clusterfullerenes. Inorg Chem Front 8:1719–1726

    Article  CAS  Google Scholar 

  114. Krause M, Ziegs F, Popov AA, Dunsch L (2007) Entrapped bonded hydrogen in a fullerene: the five-atom cluster Sc3CH in C80. ChemPhysChem 8:537–540

    Article  CAS  PubMed  Google Scholar 

  115. Feng Y et al (2014) Electron-spin excitation by implanting hydrogen into metallofullerene: the synthesis and spectroscopic characterization of Sc4C2H@Ih-C80. Chem Commun 50:12166–12168

    Article  CAS  Google Scholar 

  116. Wang T-S et al (2010) Planar quinary cluster inside a fullerene cage: synthesis and structural characterizations of Sc3NC@C80-Ih. J Am Chem Soc 132:16362–16364

    Article  CAS  PubMed  Google Scholar 

  117. Wu J et al (2011) Synthesis, isolation, characterization, and theoretical studies of Sc3NC@C78-C2. J Phys Chem C 115:23755–23759

    Article  CAS  Google Scholar 

  118. Wang T, Wu J, Feng Y (2014) Scandium carbide/cyanide alloyed cluster inside fullerene cage: synthesis and structural studies of Sc33-C2)(μ3-CN)@Ih-C80. Dalton Trans 43:16270–16274

    Article  CAS  PubMed  Google Scholar 

  119. Guo T et al (1992) Uranium stabilization of C28: a tetravalent fullerene. Science 257:1661

    Article  CAS  PubMed  Google Scholar 

  120. Akiyama K et al (2001) Isolation and characterization of light actinide metallofullerenes. J Am Chem Soc 123:181–182

    Article  CAS  PubMed  Google Scholar 

  121. Akiyama K et al (2003) Production and characterization of actinide metallofullerenes. J Radioanal Nucl Chem 255:155–158

    Article  CAS  Google Scholar 

  122. Dunk PW et al (2012) The smallest stable fullerene, M@C28 (m = Ti, Zr, U): stabilization and growth from carbon vapor. J Am Chem Soc 134:9380–9389

    Article  CAS  PubMed  Google Scholar 

  123. Wang Y et al (2017) Unique four-Electron metal-to-cage charge transfer of Th to a C82 fullerene cage: complete structural characterization of Th@C3v(8)-C82. J Am Chem Soc 139:5110–5116

    Article  CAS  PubMed  Google Scholar 

  124. Cai W, Chen CH, Chen N, Echegoyen L (2019) Fullerenes as Nanocontainers that stabilize unique actinide species inside: structures, formation, and reactivity. Acc Chem Res 52:1824–1833

    Article  CAS  PubMed  Google Scholar 

  125. Cai W et al (2017) Single crystal structures and theoretical calculations of uranium endohedral metallofullerenes (U@C2n , 2n = 74, 82) show cage isomer dependent oxidation states for U. Chem Sci 8:5282–5290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cai W et al (2018) Synthesis and characterization of non-isolated-pentagon-rule actinide endohedral metallofullerenes U@C1(17418)-C76, U@C1(28324)-C80, and Th@C1(28324)-C80: low-symmetry cage selection directed by a tetravalent ion. J Am Chem Soc 140:18039–18050

    Article  CAS  PubMed  Google Scholar 

  127. Wang Y et al (2019) Th@C1(11)-C86: an actinide encapsulated in an unexpected C86 fullerene cage. Chem Commun 55:9271–9274

    Article  CAS  Google Scholar 

  128. Jin M et al (2019) Th@Td(19151)-C76: a highly symmetric fullerene cage stabilized by a tetravalent actinide metal ion. Inorg Chem 58:16722–16726

    Article  CAS  PubMed  Google Scholar 

  129. Zhang X et al (2018) U2@Ih(7)-C80: crystallographic characterization of a long-sought dimetallic actinide endohedral fullerene. J Am Chem Soc 140:3907–3915

    Article  CAS  PubMed  Google Scholar 

  130. Zhuang J et al (2021) Characterization of a strong covalent Th3+-Th3+ bond inside an Ih(7)-C80 fullerene cage. Nat Commun 12:2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang X et al (2018) A diuranium carbide cluster stabilized inside a C80 fullerene cage. Nat Commun 9:2753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Zhuang J et al (2019) Diuranium(IV) Carbide Cluster U2C2 stabilized inside fullerene cages. J Am Chem Soc 141:20249–20260

    Article  CAS  PubMed  Google Scholar 

  133. Fuertes-Espinosa C et al (2018) Purification of uranium-based endohedral metallofullerenes (EMFs) by selective supramolecular encapsulation and release. Angew Chem Int Ed 57:11294–11299

    Article  CAS  Google Scholar 

  134. Li X et al (2021) U2N@Ih(7)-C80: fullerene cage encapsulating an unsymmetrical U(iv)=N=U(v) cluster. Chem Sci 12:282–292

    Article  CAS  Google Scholar 

  135. Akasaka T et al (1995) Exohedral adducts of La@C82. Nature 374:600–601

    Article  CAS  Google Scholar 

  136. Yamada M, Akasaka T, Nagase S (2018) Salvaging reactive fullerenes from Soot by exohedral derivatization. Angew Chem Int Ed 57:13394–13405

    Article  CAS  Google Scholar 

  137. Nikawa H et al (2005) Missing metallofullerene La@C74. J Am Chem Soc 127:9684–9685

    Article  CAS  PubMed  Google Scholar 

  138. Wakahara T et al (2006) La@C72 having a non-IPR carbon cage. J Am Chem Soc 128:14228–14229

    Article  CAS  PubMed  Google Scholar 

  139. Nikawa H et al (2009) Missing metallofullerene with C80 cage. J Am Chem Soc 131:10950–10954

    Article  CAS  PubMed  Google Scholar 

  140. Akasaka T et al (2010) Dichlorophenyl derivatives of La@C3v(7)-C82: endohedral metal induced localization of pyramidalization and spin on a triple-hexagon junction. Angew Chem Int Ed Engl 49:9715–9719

    Article  CAS  PubMed  Google Scholar 

  141. Liu F et al (2017) Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene. Nat Commun 8:16098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang Z et al (2013) Missing small-bandgap metallofullerenes: their isolation and electronic properties. Angew Chem Int Ed Engl 52:11770–11774

    Article  CAS  PubMed  Google Scholar 

  143. Nakagawa A et al (2018) Crystalline functionalized endohedral C60 metallofullerides. Nat Commun 9:3073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Chai Y et al (1991) Fullerenes with metals inside. J Phys Chem 95:7564–7568

    Article  CAS  Google Scholar 

  145. Weaver JH et al (1992) XPS probes of carbon-caged metals. Chem Phys Lett 190:460–464

    Article  CAS  Google Scholar 

  146. Dunk PW et al (2013) Metallofullerene and fullerene formation from condensing carbon gas under conditions of stellar outflows and implication to stardust. Proc Natl Acad Sci 110:18081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Peters G, Jansen M (1992) A new fullerene synthesis. Angew Chem Int Ed Engl 31:223–224

    Article  Google Scholar 

  148. Reich A, Panthöfer M, Modrow H, Wedig U, Jansen M (2004) The structure of Ba@C74. J Am Chem Soc 126:14428–14434

    Article  CAS  PubMed  Google Scholar 

  149. Haufe O, Hecht M, Grupp A, Mehring M, Jansen M (2005) Isolation and spectroscopic characterization of new endohedral fullerenes in the size gap of C74 to C76. Z Anorg Allg Chem 631:126–130

    Article  CAS  Google Scholar 

  150. Bucher K, Epple L, Mende J, Mehring M, Jansen M (2006) Synthesis, isolation and characterization of new endohedral fullerenes M@C72 (M = Eu, Sr, Yb). Phys Status Solidi B 243:3025–3027

    Article  CAS  Google Scholar 

  151. Krokos E (2010) Plasma coupled radio frequency furnace: the synthesis, separation, and elucidation of the elusive Sc4C82 fullerene. J Phys Chem C 114:7626–7630

    Article  CAS  Google Scholar 

  152. Tellgmann R, Krawez N, Lin SH, Hertel IV, Campbell EEB (1996) Endohedral fullerene production. Nature 382:407–408

    Article  CAS  Google Scholar 

  153. Campbell EEB, Tellgmann R, Krawez N, Hertel IV (1997) Production and LDMS characterisation of endohedral alkalifullerene films. J Phys Chem Solids 58:1763–1769

    Article  CAS  Google Scholar 

  154. Aoyagi S et al (2010) A layered ionic crystal of polar Li@C60 superatoms. Nat Chem 2:678–683

    Article  CAS  PubMed  Google Scholar 

  155. Okada H et al (2012) Preparation of endohedral fullerene containing lithium (Li@C60) and isolation as pure hexafluorophosphate salt ([Li+@C60][PF6]). RSC Adv 2:10624

    Article  CAS  Google Scholar 

  156. Kikuchi K et al (1994) Encapsulation of radioactive 159Gd and 161Tb atoms in fullerene cages. J Am Chem Soc 116:9775–9776

    Article  CAS  Google Scholar 

  157. Cagle DW et al (1996) Synthesis, characterization, and neutron activation of holmium metallofullerenes. J Am Chem Soc 118:8043–8047

    Article  CAS  Google Scholar 

  158. Ohtsuki T et al (1996) Insertion of be atoms in C60 fullerene cages: be@C60. Phys Rev Lett 77:3522–3524

    Article  CAS  PubMed  Google Scholar 

  159. Diener MD, Alford JM, Kennel SJ, Mirzadeh S (2007) 212Pb@C60 and its water-soluble derivatives: synthesis, stability, and suitability for radioimmunotherapy. J Am Chem Soc 129:5131–5138

    Article  CAS  PubMed  Google Scholar 

  160. Fuchs D et al (1996) Extraction and chromatographic elution behavior of endohedral metallofullerenes:? Inferences regarding effective dipole moments. J Phys Chem 100:725–729

    Article  CAS  Google Scholar 

  161. Laukhina E et al (1998) Novel proficient method for isolation of endometallofullerenes from fullerene-containing soots by two-stepo-xylene–N, N-dimethylformamide extraction. J Mater Chem 8:893

    Article  CAS  Google Scholar 

  162. Xiao J, Savina MR, Martin GB, Francis AH, Meyerhoff ME (1994) Efficient HPLC purification of endohedral Metallofullerenes on a porphyrin-silica stationary phase. J Am Chem Soc 116:9341–9342

    Article  CAS  Google Scholar 

  163. Ding J, Yang S (1996) Efficient N,N-Dimethylformamide extraction of endohedral metallofullerenes for HPLC purification. Chem Mater 8:2824–2827

    Article  CAS  Google Scholar 

  164. Lian Y, Shi Z, Zhou X, Gu Z (2004) Different extraction behaviors between divalent and trivalent endohedral metallofullerenes. Chem Mater 16:1704–1714

    Article  CAS  Google Scholar 

  165. Liu BB et al (1996) High yield synthesis and extraction of La@C2n. Solid State Commun 97:407–410

    Article  CAS  Google Scholar 

  166. Capp C, Wood TD, Marshall AG, Coe JV (1994) High-pressure toluene extraction of La@Cn for even n from 74 to 90. J Am Chem Soc 116:4987–4988

    Google Scholar 

  167. Tso TSC et al (1996) Solid phase extraction as a simple method for the enrichment of endohedral metallofullerenes. Tetrahedron Lett 37:9294–9252

    Google Scholar 

  168. Stevenson S et al (2009) Selective complexation and reactivity of metallic nitride and oxometallic fullerenes with Lewis acids and use as an effective purification method. Inorg Chem 48:11685–11690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Akiyama K et al (2012) Non-HPLC rapid separation of metallofullerenes and empty cages with TiCl4 Lewis acid. J Am Chem Soc 134:9762–9767

    Article  CAS  PubMed  Google Scholar 

  170. Tsuchiya T et al (2004) Reduction of endohedral metallofullerenes: a convenient method for isolation. Chem Mater 16:4343–4346

    Article  CAS  Google Scholar 

  171. Elliott B, Yu L, Echegoyen L (2005) A simple isomeric separation of D5h and Ih Sc3N@C80 by selective chemical oxidation. J Am Chem Soc 127:10885–10888

    Article  CAS  PubMed  Google Scholar 

  172. Ge Z, Duchamp JC, Cai T, Gibson HW, Dorn HC (2005) Purification of endohedral trimetallic nitride fullerenes in a single, facile step. J Am Chem Soc 127:16292–16298

    Article  CAS  PubMed  Google Scholar 

  173. Stevenson S et al (2006) Nonchromatographic “Stir and Filter Approach” (SAFA) for isolating Sc3N@C80 metallofullerenes. J Am Chem Soc 128:8829–8835

    Article  CAS  PubMed  Google Scholar 

  174. Stevenson S et al (2007) Rapid removal of D5h isomer using the “Stir and Filter Approach” and isolation of large quantities of Isomerically pure Sc3N@C80 metallic nitride fullerenes. J Am Chem Soc 129:6072–6073

    Article  CAS  PubMed  Google Scholar 

  175. Angeli CD et al (2008) Purification of Trimetallic nitride templated endohedral metallofullerenes by a chemical reaction of congeners with eutectic 9-Methylanthracene. Chem Mater 20:4993–4997

    Article  CAS  Google Scholar 

  176. Olah GA et al (1997) Friedel-crafts reactions of buckminsterfullerene. Fuller Sci Technol 5:389–405

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Chen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, N., Zhuang, J., Li, X., Jin, M. (2021). Preparation of Endohedral Metallofullerenes. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3242-5_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3242-5_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3242-5

  • Online ISBN: 978-981-13-3242-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics