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Abstract Stream cipher, DNA cryptography and DNA analysis are the most impor-
tant R&D fields in both Cryptography and Bioinformatics. HC-256 is an emerged
scheme as the new generation of stream ciphers for advanced network security. From
a random sequencing viewpoint, both sequences of HC-256 and real DNA data may
have intrinsic pseudo-random properties respectively. In a recent decade, many DNA
sequencing projects are developed on cells, plants and animals over the world into
huge DNA databases. Researchers notice that mammalian genomes encode thou-
sands of large noncoding RNAs (lncRNAs), interact with chromatin regulatory com-
plexes, and are thought to play a role in localizing these complexes to target loci
across the genome. It is a challenge target using higher dimensional visualization
tools to organize various complex interactive properties as visual maps. The Variant
Map System VMS as an emerging scheme is systematically proposed in this chapter
to apply multiple maps that uses four Meta symbols as same as DNA or RNA rep-
resentations. System architecture of key components and core mechanism on the
VMS are described. Key modules, equations and their I/O parameters are discussed.
Applying the VM System, two sets of real DNA sequences from both sample human
(noncodingDNA) and corn (codingDNA) genomes are collected in comparisonwith
pseudo DNA sequences generated by HC-256 to show their intrinsic properties in
higher levels of similar relationships among relevant DNA sequences on 2D maps.
Sample 2D maps are listed and their characteristics are illustrated under controllable
environment. Visual results are briefly analyzed to explore their intrinsic properties
on selected genome sequences.
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1 Introduction

Stream ciphers [1, 2] play a key role in modern network security [3, 4] especially
in multimedia network environments; its core component—pseudo random number
generation mechanism [5–7]—takes the central position in modern cryptography
[8, 9]. Associated with advanced development of bioinformatics, advanced DNA
sequencing and analyzing techniques [10, 11] have significantly progressed over the
past decade.

1.1 DNA Cryptography

DNA cryptography makes joined research in the field of DNA computing and cryp-
tography. Scholars over the world focused on this field and different results are
published such as simulating DNA evolution [12], DNA pseudorandom number
generator [13–16], DNA cryptography [9, 17, 18] and so on. However in current sit-
uation, DNA cryptography is still at an earlier stage as an emerging area of advanced
cryptography.

In typical results of DNA cryptography on encryption, different coding schemes
could be randomly selected. E.g. the algorithm in paper [17] applies an encoding for-
mula to express the plaintext onDNAsequence: {00→C, 01→T , 10→A, 11→G};
however in paper [18], the same author uses the coding formula {00→A, 01→T ,
10→C, 11→G} for the plaintext on DNA sequence. In encryption environment, all
4!�24 possible encoding methods could be equally used in different applications.

1.2 Stream Cipher HC-256

Stream ciphers are an important class of encryption algorithms. A stream cipher
is a symmetric cipher which operates with a time-varying transformation on indi-
vidual plaintext digits. The ECRYPT Stream Cipher Project (eSTREAM) [1] was
a multi-year effort, running from 2004 to 2008, to promote the design of efficient
and compact stream ciphers suitable for widespread adoption. HC-256 is a stream
cipher designed to provide bulk encryption in software at high speeds while permit-
ting strong confidence in its security. A 128-bit variant was submitted in 2004 as an
eSTREAM cipher candidate; it has been selected as one of the four final contestants
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in the software profile [2, 4] in 2008 as the most advanced scheme for stream cipher
applications in advanced network environment.

1.3 Large Noncoding DNA and RNA

In relation to DNA analysis, visualization methods play a key role in the Human
Genome Project (HGP) [19]. After HGP completed successfully, a public research
consortium—the Encyclopedia of DNA Elements (ENCODE) were launched by the
National Human Genome Research Institute (NHGRI) in 2003 to find all functional
elements in the human genome as one of the most critical projects by NHGRI to
explore genomes after HGP.

In 2012, ENCODE released a coordinated set of 30 papers published in key
Journals ofNature,GenomeBiology andGenomeResearch.These publications show
that approximately 20% of noncoding DNA in the human genome is functional while
an additional 60% is transcribedwith no known function [20].Much of this functional
non-coding DNA is involved in the regulation of the expression of coding genes [10].
Furthermore the expression of each coding gene is controlled by multiple regulatory
sites located both near and distant from the gene. These results demonstrate that
gene regulation is far more complex than was previously believed [11]. Mammalian
genomes encode thousands of large noncoding RNAs (lncRNAs), many of which
regulate gene expression, interact with chromatin regulatory complexes, and are
thought to play a role in localizing these complexes to target loci across the genome
[21]. Associated with different international projects, larger numbers of Genome
Databases are established and mass Genome-wide gene expression measurements
are developed.

Due to huge amount of DNA sample collections and extremely difficulties to
determine their variation properties in wider applications [19, 22–27], it is essential
for us to extend advanced DNA analysis models, methods and tools in further exten-
sions to explore emerging models and concepts to interpret complex interactions
among complicated sets of DNA sequences in real environments.

1.4 DNA Analysis

DNAanalysis plays a key role inmodern genomic application [19]. TheHGP is heav-
ily relevant to advanced DNA sequencing and analysis techniques. DNA sequences
are composed of fourMeta symbols on {A, T, G, C} as basic structure. Classical DNA
double helix structure makes the first level of pair construction of DNA sequences
with A & T and G& C complementary structures as the first level of symmetric rela-
tionships. A typical DNA sequencing result is shown in Fig. 1a. Four Meta symbols
could be separated as four projective sequences.
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Fig. 1 Modern DNA
sequencing and their
correspondences on Variant
Logic; a a sample DNA
sequencing and its four
projection sequences; b four
Meta DNA symbols and
linkages to variant logic

(a) (b)

DNA  
Sequences

Variant 
Logic

G 0-0 : 

A 0-1: 

T 1-0: 

C 1-1: 

In ENCODE, recent Genomic analysis results are indicated that encoded
sequences have only 20% in human genomes and around 80% genomes look like
useless sequences. Under further assumptions, it seems that additional symmetric
properties are required to satisfy the second, third and higher levels of structural
constructions to explore complex interactive properties [10, 11, 19–29].

In current situation, it is necessary for advanced researchers to shift targets in
computational cell biology from directly collecting sequential data tomaking higher-
level interpretation and exploring efficient content-based retrieval mechanism for
genomes. Using higher dimensional visualization tools, their complex interactive
properties could be organized as different visual maps systematically.

1.5 Variant Construction and DNA

Variant construction is a new structure composed of logic, measurement and visual-
izationmodels to analyze 0–1 sequences under variant conditions. The further details
of this construction can be checked on variant logic [30, 31], 2D maps [32, 33], vari-
ant pseudo-random number generator [34], DNAmaps [35] and variant phase spaces
[33]. Since the variant system uses another set of four Meta symbols {⊥,+,−,�} to
describe system, a typical correspondence shown in Fig. 1b may provides a natural
mapping between DNA and variant data sequences.

Since DNA sequences are played an essential role to explore different symmetric
properties based on analysis approaches, in this chapter, measurement and visual
models are proposed systematically to use a fixed segment structure to measure four
Meta symbols distributions in their spectrum construction. Under this construction,
refined symmetric features can be identified from various polarized distributions and
further symmetric properties are visualized.
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1.6 Target of This Chapter

The target of this chapter is to establish the Variant Map System (VMS) as a uni-
fied framework to analyze complex DNA interactions on both artificial and natural
DNA sequences. The VMS has designed to use variant logic schemes [30–35] apply-
ing multiple maps on four Meta symbols as DNA or RNA representations. System
architecture of key components and core mechanism on the VMS are described. Key
modules, equations and their I/O parameters are discussed. Applying the VM Sys-
tem, two sets of real DNA sequences from both human (noncoding DNA) and corn
(coding DNA) genomes are collected in comparison with pseudo DNA sequences
generated artificially by HC-256 to show their intrinsic properties in higher levels of
similar relationships among DNA sequences on 2D maps. Further descriptions and
discussions are provided respectively.

2 System Architecture

In this section, system architecture and their core components are discussed with the
use of diagrams. The refined definitions and equations of this system are described
in the next section—Variant Map System.

2.1 Architecture

The four components of a variant map system are the Binary To DNA (BTD), the
Binary Probability Measurement (BPM), theMapping Position (MP), and the Visual
Map (VM) as shown in Fig. 2.

The architecture is shown in Fig. 2a with the key modules of the four core com-
ponents being shown in Fig. 2b–e respectively.

In the first part of the system, the t-th sequence Y t on either {0, 1} or {A, G, T,
C} are input data to get into the BTD module. The main function of the BTM is to
output a unified sequence Xt either to transfer a 0–1 sequence or to keep a DNA
sequence as a pseudo or pure DNA sequence under a set of controlled parameters.

Using this unified DNA sequence, four vectors of probability measurements are
created from the t-th selected DNA sequence with Nt elements as an input. Multiple
segments are partitioned by a fixed number of n elements for each segment; at least
mt segments can be identified by the BPM component. Next component uses the four
vectors of probability measurements and a given k value as input data, a pair of posi-
tion values are created for each Meta symbol. Four pairs of values are generated by
the MP component. Then, in order to process multiple selected DNA sequences, all
selected sequences are processed by the VM component and each sequence may pro-
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Fig. 2 Variant Map System VMS and key components a Architecture; a BTD component; b BPM
component; c MP component; d VM component

vide a set of pair values to generate relevant variant maps to indicate their distribution
properties respectively.

With eight parameters in an input group, there are three sets of parameters in the
intermediate group and one set of parameters in the output group.



Variant Map System to Simulate Complex … 359

The three groups of parameters are listed as follows.

Input Group:

t An integer indicates the t-th DNA sequence selected, 0 ≤ t < T
r An integer indicates a relationship distance among elements in a binary

sequence, r ≥ 1
mode An integer indicates the mode of elements in a sequence, mode ∈ {0, 1, . . .},

mode�0 for a DNA sequence, mode�1 for a binary sequence
Nt An integer indicates the number of elements in the t-th DNA sequence, Nt 	

r
Y t An input data vector with Nt elements, Y t ∈ {

DNt | mod e�0, BNt | mod e�1
}

n An integer indicates the number of elements in a segment, n > 0
V A symbol is selected from four DNA symbols {A, G, T, C} � D, V ∈ D
k An integer indicates the control parameter for mapping, k > 0.

Intermediate Group:

Xt A unified DNA vector with Nt elements, Xt ∈ DNt
{
ρV
l

}
Four sets of probability measurements with 0 ≤ l < mt , V ∈ D{(

xkV , ykV
)}

Four paired values, k > 0, V ∈ D

Output Group:
{
MapV

}
Four 2D maps, V ∈ D

2.2 BTD Binary to DNA

The BTD component shown in Fig. 2b is composed of one module: BTD itself. Five
parameters are shown as input signals and one unified vector is generated by the
BTD component as the output group.

Input Group:

t An integer indicates the t-th DNA sequence selected, 0 ≤ t < T
r An integer indicates a relationship distance among elements in a binary

sequence, r ≥ 1
mode An integer indicates the mode of elements in a sequence, mode ∈ {0, 1, . . .},

mode�0 for a DNA sequence, mode�1 for a binary sequence
Nt An integer indicates the number of elements in the t-th DNA sequence, Nt 	

r
Y t An input data vector with Nt elements, Y t ∈ {

DNt | mod e�0, BNt | mod e�1
}

Output Group:

Xt A unified data vector with Nt elements, Xt ∈ DNt
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The BTD component uses an input vector on either binary or DNA format as
input, under a set of input parameters to process transformation. The output of the
BTD component is composed of a unified vector of DNA format in a given condition.

2.3 BPM Binary Probability Measurement

The BPM component shown in Fig. 2c is composed of two modules: BM Binary
Measure and PM Probability Measurement. Three parameters are listed as input
signals; four vectors of binary measures are outputted from the BM component as
an intermediate group and four sets of probability measurements are outputted as an
output group.

Input Group:

n An integer indicates the number of elements in a segment, n > 0
V A symbol is selected from four DNA symbols {A,G, T,C} � D, V ∈ D
Xt A DNA vector with Nt elements, Xt ∈ DNt

Intermediate Group:
{
Mt

V

}
Four 0–1 vectors with Nt elements, Mt

V (I ) ∈ {0, 1} � B, Mt
V ∈ BNt , V ∈

D

Output Group:
{
ρV
l

}
Four sets of probability measurements with 0 ≤ l < mt , V ∈ D

The BPM component transforms a selected DNA sequence to generate four 0–1
vectors by BM module for the input DNA sequence. Then four probability vectors
are generated by the PM module as the output of the BPM under a fixed length of
segment condition.

2.4 MP Mapping Position

TheMP component shown in Fig. 2d is composed of three modules: HIS Histogram,
NH Normalized Histogram and PP Pair Position. Two parameters are listed as input
signals; four histograms and four normalized histograms are generated from the HIS
component and the NH component as intermediate groups respectively. Four paired
values are generated by the PP component as the output group.

Input Group:
{
ρV
l

}
Four sets of probability measurements with 0 ≤ l < mt , V ∈ D

k An integer indicates the control parameter for mapping, k > 0
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Intermediate Group:
{
H (ρV )

}
Four histograms for relevant probability measurements, V ∈ D{

PH (ρV )
}

Four normalized histograms for relevant probabilitymeasurements, V ∈
D

Output Group:
{(
xkV , ykV

)}
Four paired values, k > 0, V ∈ D

The MP component uses probability measurements as input, under a given k
condition to generate each relevant histogram and its normalized distribution. The
output of the MP component is composed of four paired values controlled in a given
condition.

2.5 VM Visual Map

The VM component shown in Fig. 2e is composed of one module: VM Visual Map.
Three parameters are input signals. Collected all selected DNA sequences, four 2D
maps are generated by the VM component as the output result.

Input Group:

∀t All DNA sequences are selected, 0 ≤ t < T
Y t An input data vector with Nt elements, Y t ∈{

DNt | mod e�0, BNt | mod e�1
}

{(
xkV , ykV

)}t
Four paired values for the t-th DNA sequence, k > 0, V ∈ D

Output Group:
{
MapV

}
Four 2D maps, V ∈ D

The VM component processes all selected DNA sequences as input to generate
paired values for each sequence. The output of the VM component is composed of
four 2D maps to show the final visual distribution for the system.

3 Variant Map System

In this section, definitions and equations are provided to describe the VMS. In addi-
tion to the initial preparation, seven core modules are involved in the BTD, BM, PM,
HIS, NH, PP and VM components respectively.
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3.1 Initial Preparation

Let r an input parameter make all pairs of elements with r distance in a binary
sequence to be a pseudo DNA vector, mode a controlled parameter indicate various
pairs of operations performed if mode ≥ 1. Denote B � {0, 1} a binary base and
D � {A,G, T,C} a DNA base respectively.

3.2 BTD Module

Let Y an input sequence with N elements,0 ≤ I < N , Y (I ) ∈ {BN | mod e≥1, Y (I ) ∈
DN | mod e�0}. This input vector could be expressed as follows.

Y � (Y (0), . . . ,Y (I ), . . . ,Y (N − 1)), 0 ≤ I < N

Y (I ) ∈ {BN |mode≥1, Y (I ) ∈ DN |mode�0}. (1)

Let X denote a DNA sequence with N elements, D denote a symbol set with four
elements i.e. D � {A,G, T,C}. This type of a DNA sequence can be described by
a four valued vector as follows:

X � (X(0), . . . , X(I ), . . . , X(N − 1)),

0 ≤ I < N , X(I ) ∈ D � {A,G, T,C}, X ∈ DN (2)

From this input and associated parameters, following operations are performed.
If mode�0, for all I , Y (I ) ∈ D, the output vector is equal to the input vector.

∀I, X(I ) � Y (I ), 0 ≤ I < N (3)

If mode�1, for all pairs of I and I +r(modN ) elements of Y , Y (I), Y (I + r) ∈ B,
the I-th output element X(I ) can be determined by the corresponding conditions
shown in Fig. 1b as follows.

X(I) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G, if Y(I) � 0 & Y (I + r) � 0

A, if Y(I) � 0 & Y (I + r) � 1

T, if Y(I) � 1 & Y (I + r) � 0

C, if Y(I) � 1 & Y (I + r) � 1

, (4)

In both conditions, X will be a unified vector with four values as the output of the
BTD shown in Fig. 2b.

E.g. Let a binary sequence Y � 100111001011, N � 12, three pseudo DNA
sequences (r � 1, r � 2, r � 3) can be represented as follows.

Y � 100111001011
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Xr�1 � TGACCTGAT ACC

Xr�2 � T AACT T AGCACT

Xr�3 � CAAT TCGACAT T

Y ∈ B12, X ∈ D12

Selecting a certain r value, a relevant pseudo DNA sequence can be generated
from an input binary sequence.

3.3 BM Module

For a given I-th element, four projective operators can be defined and denoted as
{MA(I ), MG(I ), MT (I ), MC (I )}.

MA(I ) �
{
1, if X(I ) � A;

0, Otherwise;
MG(I ) �

{
1, if X(I ) � G;

0, Otherwise;
MT (I )

�
{
1, if X(I ) � T ;

0, Otherwise;
MC(I ) �

{
1, if X(I ) � C ;

0, Otherwise;
(5)

Applying the four operators to all elements, the DNA sequence X can be reorga-
nized into the four binary sequences of 0–1 values. i.e.

MV : {X(I )}N−1
I�0 → {MA(I ), MG(I ), MT (I ), MC(I ),}N−1

I�0 ;

MV (I ) ∈ B � {0, 1}, V ∈ D (6)

E.g. Let a DNA sequence X � CTGAT T AGCCAT, N � 12, its four binary
sequences can be represented as follows.

X � CTGAT T AGCCAT

MA � 000100100010

MG � 001000010000

MT � 010011000001

MC � 100000001100

It is interesting to notice that the basic relationship between aDNAsequenceX and
its four MV sequences are exactly same as in a modern DNA sequencing procedure
to separate a selected DNA sequence into the four Meta symbol sequences shown in
Fig. 1a. This correspondence could be the key feature to apply the proposed scheme
naturally in simulating complex behaviors for any DNA sequence.

The projection MV provides the essential operation in the BM component as the
first module shown in Fig. 2c.
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3.4 PM Module

For this set of the four binary sequences, it is convenient to partition them into m
segments and each segment contained a fixed number of n elements.

For the l-th segment, let 0 ≤ l < m, 0 ≤ j < n, the I-th position will be
I � l ∗ n + j , four probability measurements {ρA, ρG, ρT , ρC ,} can be defined.

ρV
l �

∑(l+1)∗n−1
I�l∗n MV (I )

n
, V ∈ D, 0 ≤ I < N � n ∗ m (7)

Under this construction, four sets of probability measurements established.

ρV : {MA(I ), MG(I ), MT (I ), MC(I ),}N−1
I�0 → {

ρ A
l , ρG

l , ρT
l , ρC

l ,
}m−1

l�0 (8)

The probability operator ρV generates four probability measurement vectors in
the PM component as the second module shown in Fig. 2c. After the BM and PM
processes, the whole procedure of the BPM component is complete in Fig. 2c.

3.5 HIS Module

Since the BPM generates four sets of probability measurement, it is necessary to
perform further operations in the MP component shown in Fig. 2d as follows.

In the HIS component as the first module in Fig. 2d, each probability sequence{
ρV
l ,

}m−1
l�0 , V ∈ D can be calculated from n positions, at most n +1 distinguished

values identified in a vector. Under this organization, a histogram distribution can be
established.

Let H(.) be a histogram operator, for each position, it satisfies following relation,

H
(
ρV
l

) �
{
1, if ρV

l � i
n , V ∈ D;

0, Otherwise, 0 ≤ i ≤ n.
(9)

Collecting all possible values, a histogram distribution can be established,

H
(
ρV

) �
m−1∑

l�0

H
(
ρV
l

)
(10)

The histogram H
(
ρV

)
is the output of the HIS module. Four histograms are

generated after HIS process. Further normalized process will be performed in the
NH component as the second module in Fig. 2d.
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3.6 NH Module

Under this construction, a normalized histogram can be defined as

PH
(
ρV

) � H
(
ρV

)
/m (11)

After the NH component processed, its output provides the PP component for
further operations as the third module in Fig. 2d.

3.7 PP Module

Relevant probability vectors have (n+1) distinguished values; four sets of normalized
vectors can be organized as a linear order as follows,

pVi �
m−1∑

l�0

H

(
ρV
l |ρV

l � i

n

)
/m, 0 ≤ i ≤ n (12)

Under this condition, four linear sets of probability vectors are established,

PH
(
ρV

) � {
pA
i , pGi , pTi , pCi ,

}n
i�0,

pVi ∈ [0, 1], V ∈ D, 0 ≤ i ≤ n (13)

For four vectors, their components can be normalized respectively,

n∑

i�0

pVi � 1, V ∈ D (14)

Four sets of probability vectors are composed of a complete partition on their
measurements.

Using this set of measurements, two mapping functions can be established to
calculate a pair of values to map analyzed DNA sequence into a 2D map as follows.

Let y � F(P, V, k) and x � F(P, V, 1/k) or
(
xkV , ykV

)
be a pair of values defined

by following equations,

ykV � F(P, V, k) �
(

n∑

i�0

k

√
pVi

)k

&

xkV � F(P, V, 1/k) � k

√√√√
n∑

i�0

(
pVi

)k
, V ∈ D (15)
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Fig. 3 A sample 2D map of
VM on multiple sequences

In the PP component, four paired values are generated and each pair indicates a
specific position on a 2D map for the selected DNA sequence. The core operations
of three key components: BTD, BPM and MP for a selected sequence are performed
in Fig. 2b–d.

3.8 VM Module

Since only one point of a 2D map is determined for a selected DNA sequence, it
is essential to apply relative larger number of DNA sequences as inputs to generate
visible distributions. This type of operations will be performed in the VM component
shown in Fig. 2e.

In a general condition, the VM component processes a selected data set
{
Y t

}T−1
t�0

composed of T sequences, the t-th sequence with Nt elements can be expressed
by Y t � (

Y t (0), . . . ,Y t (I ), . . . ,Y t (Nt − 1)
)
,Y t ∈ Y (I ) ∈ {BNt |mode≥ 1, Y (I ) ∈

DNt |mode�0}. Each sequence can be processed to apply the same procedures of the
BTD, BPMandMP components. Since for each segment, its length nwill be fixed for
all selected sequences, it is essential to make number of segments be mt � �Nt/n

in convention to match each sequence. Under this expression, the last module VM
collects all T pairs of positions on relevant 2D visual maps as follows,

VM :
{
Xt

}T−1
t�0 →

{(
xkV , ykV

)t}T−1

t�0
→ {MAPV }, V ∈ D (16)

A sample 2D map of VM is shown in Fig. 3; this provides an assistant illustration
for this type of visual maps on a case of multiple sequences.

Under this construction, a total number of T DNA sequences are transformed as
T visual points on four 2D visual maps that would be help analyzers to explore their
intrinsic symmetry properties among four binary sequences.
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4 Sample Results on 2D Maps

Two types of data sets are selected for comparison. The first type of data sets are
real DNA data sequences collected from both human and plan genomes to illustrate
their differences on 2D maps. The second type of data set is collected from the
Stream Cipher HC-256 to generate a pseudo random binary sequence under a certain
condition.

4.1 DNA Data Resources

It is important to use some real DNA sequences to illustrate various test results of
the VMS. Two sets of DNA sequences are selected and relevant resource features
are described as follows.

The first data set originally comes from the human genome assembly version
37 and was taken from the reference sequences of 13 anonymous volunteers from
Buffalo, New York. Hi-C technology [5] used to analyze chromatin interaction role
in genome. From a genomic analysis viewpoint, this set of data may contain more
complex secondary or higher level structures. A special structure nearly the GRCh37
DNA sequence has been identified to explore their spatial characteristics. After pos-
itive and negative sequencing, each data file contain 2700 DNA sequences and each
sequence has around 500 elements stored in two files left and right respectively.

The second DNA data set are selected from some plant gene database for com-
parison. One set of DNA sequences of Corn genomes are stored in file 201–500 that
contains 2700 DNA sequences and each sequence has around 200–600 elements. It
may be ordinary single sequences without complex secondary structures.

4.2 Pseudo DNA Data Resources

The Stream Cipher HC-256 has being used to generate a binary sequence on a
total length of 2700 × 500 bits in the file hc256 that has been partitioned as 2700
subsequences and each sub-sequence in 500 bits.

Using the VMS in various parameters, three sets of pseudo DNA sequences are
generated and their 2D maps are illustrated, analyzed and compared in following
subsections.
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4.3 Sample Results

Using the three files of DNA sequences and one pseudo binary sequence in three
parameters, six sets of 2D maps are listed in Figs. 4, 5, 6, 7, 8 and 9 under different
conditions to illustrate their spatial distributions using the VMS in a controllable
environment.

In Fig. 4, three groups of eighteen 2D maps are shown in the range of n � 3 ∼
50, k � 7, N ∼� 200 ∼ 600, T � 2700 for comparison; (a1–a6) six MapA maps
for the file Right; (b1–b6) six MapG maps for the file 201–500; (c1–c6) six MapA
maps for the file hc256 respectively.

In Fig. 5, four groups of sixteen 2Dmaps for the file right are listed in the range of
n � 15, k � {2, 3, 4, 7}, N ∼� 500, T � 2700; (a) group (a1–a4) four MapA maps;
(b) group (b1–b4) four MapT maps; (c) group (c1–c4) four MapG maps; (d) group
(d1–d4) four MapC maps.

In Fig. 6, four groups of sixteen 2D maps for the file hc256 are listed in the range
of n � 12, k � {2, 3, 4, 7}, N ∼� 500, T � 2700, r � 1,mode � 1; (a) group
(a1–a4) four MapA maps; (b) group (b1–b4) four MapT maps; (c) group (c1–c4)
four MapG maps; (d) group (d1–d4) four MapC maps.

In Fig. 7, four groups of sixteen 2Dmaps for the file right are selected in the range
of n � 15, k � {2, 3, 4, 7}, N ∼� 500, T � 2700; (a) group (a1–a4) fourMapA maps;
(b) group (b1–b4) four MapT maps; (c) group (c1–c4) four MapG maps; (d) group
(d1–d4) four MapC maps.

In Fig. 8, three groups of twelve 2D maps for the file hc256 are compared in the
range of n � 12, k � 7, N ∼� 500, T � 2700, r � {1, 2, 3},mode � 1; (a) group
(a1–a4) four MapV maps r �1; (b) group (b1–b4) four MapV maps r �2; (c) group
(c1–c4) four MapV maps r �3.

In Fig. 9, three groups of twelve 2D maps for two files right and hc256 are
compared in the range of k � 7, N ∼� 500, T � 2700; (a) the file right n �15,
mode�0; (b) the file hc256 n �12, mode�1, r �1; (c) the file hc256 n �12,
mode�1, r �3; (a1–c1) MapA maps; (a2–c2) MapT maps; (a3–c3) MapG maps;
(a4–c4) MapC maps.

4.4 Result Analysis of 2D Maps

Six groups of 2D maps contain different information, it is necessary to make a brief
discussion on their important issues as follows.

The first group of results shown in Fig. 4 presents three sets of eighteen 2D maps
from three data files: right, 201–500 and hc256 undertaken various lengths of basic
segment from 3 to 50 to illustrate their variations respectively. Six 2D maps of each
group in Fig. 4 (a1–a6) show significant trace on their visual distributions; the num-
bers of main visible clusters identified are decreased when the length of segment
has being increased e.g. (a3–a6). However lesser length of segment does not pro-
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(a1) k=2        (a2)  k=3 

(a3) k=4    (a4)  k=7 

(a)

(b1) k=2        (b2)  k=3 

(b3) k=4    (b4)  k=7 

(b)

(c1) k=2            (c2)  k=3 

(c3) k=4             (c4)  k=7 

(c)

(d1) k=2              (d2)   k=3 

(d3) k=4              (d4)  k=7 

(d)

Fig. 5 Four groups of sixteen 2D maps in the range of n � 15, k � {2, 3, 4, 7}, N ∼� 500, T �
2700; a group (a1–a4) four MapA maps; b group (b1–b4) four MapT maps; c (c1–c4) four MapG
maps; d (d1–d4) four MapC maps for the file right

vide refined visual distinctions with larger region in fuzzy areas e.g. (a1–a2). From
a structural viewpoint, middle ranged numbers of length provide better clustering
results e.g. (a3–a5) for further analysis targets. To check another six 2D maps of
Fig. 4 (b1–b6) for the file 201–500, significantly different visual distributions can be
observed than (a1–a6); the numbers of main visible clusters identified are decreased
when the length of segment has being increased less significantly e.g. (b4–b6). How-
ever lesser length of segment does not provide refined visual distinctions with wider
regions in fuzzy areas e.g. (b1–b3). In general, middle ranged numbers of length still
provide better clustering effects e.g. (b4–b6) for further analysis purpose. To check
six 2D maps of Fig. 4 (c1–c6) for the file hc256 r=1, similar visual distributions can
be observed than (a1–a6) and significantly differences are observed than (b1–b6);
the numbers of main visible clusters identified are decreased when the length of
segment has being increased less significantly e.g. (c3–c6). However lesser length of
segment does provide refined visual distinctions with regions in fuzzy areas e.g. (b1).
In general, middle ranged numbers of length still provide better clustering effects
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(a1) (a2)  k=3 

(a3)  k=4           (a4)  k=7 

(a)

(b1) k=2              (b2)  k=3 

(b3) k=4          (b4)  k=7 

(b)

(c1) k=2           (c2)  k=3 

(c3) k=4 (c4)  k=7 

(c)

(d1) k=2            (d2)  k=3

(d3) k=4          (d4)  k=7 

(d)

Fig. 6 Four groups of sixteen 2D maps in the range of n � 12, k � {2, 3, 4, 7}, N ∼� 500, T �
2700 for the file hc256, r � 1,mode � 1; a group (a1–a4) four MapA maps; b group (b1–b4) four
MapT maps; c (c1–c4) four MapG maps; d (d1–d4) four MapC maps

e.g. (c2–c4) for further analysis purpose. From their distributions, groups (a) and (c)
have shared much stronger similar properties than group (b).

It is interesting to observe different maps when control parameter k changed.
Four groups of sixteen 2D maps for the file right are shown in Fig. 5 on the range of
n � 15, k � {2, 3, 4, 7}, N ∼� 500, T � 2700; four groups in (a)–(d) provide four
maps to share the same other parameters with different k values. Checking visible
clusters in different maps, it is important to notice nearly same numbers of clusters
identified in the same group, but different groups may contain significantly different
numbers. Lesser k value (e.g. k �2) makes a tighter distribution and larger k value
(e.g. k �7) takes better separation on the maps. Through k �7 maps provide better
separation effects, it is easy to observe their y axis values already in 108 range.

Four groups of sixteen 2Dmaps for the file hc256 are shown in Fig. 6 in the range
of n � 12, k � {2, 3, 4, 7}, N ∼� 500, T � 2700, r � 1. This group of 2D maps
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(a1) (a2)  

(a3) (a4)  

(a) Four maps for the file left

(b1) (b2) 

(b3) (b4) 

(b) Four maps for the file right

Fig. 7 Two groups of eight 2D maps in the range of n � 15, k � 7, N ∼� 200 ∼ 600, T � 2700;
a group (a1–a4) four MapV maps for the file left; (b) group (b1–b4) four MapV maps for the file
right

(a1) (a2)  

(a3) (a4)  

(a) Four maps for the file hc256 r=1 mode=1

(b1) (b2) 

(b3) (b4) 

(b) Four maps for the file hc256 r=2, mode=1

(c1) (c2) 

(c3) (c4) 
(c) Four maps for the file hc256 r=3, mode=1

Fig. 8 Three groups of twelve 2D maps in the range of n=12, k=7, N=500, T=2700 for the file
hc256, r= {1,2,3}, mode=1; a group (a1–a4) four MapV maps r=1; b group (b1–b4) four MapV
maps r=2; c group (c1–c4) four MapV maps r=3

can be compared with 2D maps in Fig. 5. Under the same parameters, similar visible
effects and feature clustering properties could be observed if various k values are
selected.
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Using a set of selected parameters, two groups of eight 2D maps are compared
in Fig. 7 for two files: left, right to explore higher levels of symmetric properties
for secondary or higher levels of structures potentially contained in DNA sequences.
Selected parameters are in the range of n � 15, k � 7, N ∼� 500, T � 2700. Group
(a) provides fourMapV maps (a1–a4) for the file left; group (b) uses fourMapV maps
(b1–b4) for the file right.

In convenient description, let~be a similar operator, for groups (a) and (b), four
pairs of {(a1)~(b1), (a2)~(b2), (a3)~(b3), (a4)~(b4)} maps i.e. (left-A~right-A,
left-T~right-T, left-G~right-G, left-C~right-C) have a stronger similar distribution
between left & right. In addition, only two clustering classes could be significantly
identified as {(a1)~(a2)~(b1)~(b2), (a3)~(a4)~(b3)~(b4)} i.e. (left-A~right-A~left-
T~right-T, left-G~right-G~left-C~right-C) respectively. This type of similar cluster-
ing distributions may strongly indicate eight maps with intrinsically higher levels of
DNA sequences with extra A–T and G–C pairs of symmetric relationships between
two files: left & right.

Using a set of selected parameters, three groups of twelve 2D maps are listed
in Fig. 8 for the file hc256, r= {1,2,3} to explore properties for their higher lev-
els of structures potentially contained in pseudo DNA sequences. Selected param-
eters are in the range of n � 12, k � 7, N ∼� 500, T � 2700. Group (a) pro-
vides four MapV maps (a1–a4) for r=1; group (b) uses four MapV maps (b1–b4)
for r=2 (c) uses four MapV maps (c1–c4) for r=3. Using a similar operator,
for groups (a–c), four pairs of {(a1)~(b1)~(c1), (a2)~(b2)~(c2), (a3)~(b3)~(c3),
(a4)~(b4)~(c4)}maps i.e. (A(r=1)~A(r=2)~A(r=3),…,C(r=1)~C(r=2)~C(r=3))
have a stronger similar distribution among r= {1,2,3}. In addition, only two clus-
tering classes could be significantly identified as {(a1)~(a2)~(b1)~(b2)~(c1)~(c2),
(a3)~(a4)~(b3)~(b4)~(c3~c4)} i.e. threemaps are shown in (A~T,G~C) respectively.

In a convenient comparison, using a set of selected parameters, three groups of
twelve 2D maps are compared in Fig. 9 for the files: right and hc256, r= {1,3} to
check their distribution properties contained in both DNA and created pseudo DNA
sequences. Group (a) provides four MapV maps (a1–a4) for the file right; groups (b)
and (c) provide four MapV maps (b1–b4) for hc256, r=1 (c) and (c1–c4) for hc256,
r=3.

Using a weak similar operator�, for groups (a–c), four pairs of {(a1)�(b1)~(c1),
(a2)�(b2)~(c2), (a3)∼(b3)~(c3), (a4)∼(b4)~(c4)} maps have a stronger simi-
lar distribution between r= {1,3} and a weak similar distribution on A and T
cases. In addition, only two clustering classes could be significantly identified as
{(a1)~(a2)�(b1)~(b2)~(c1)~(c2), (a3)~(a4)~(b3)~(b4)~(c3)~(c4)} i.e. three maps
are strongly shown in relationships among (A~|�T, G~C) for different cases respec-
tively.

In addition, this set of results illustrates directly visual comparisons with stronger
similarity between DNA and pseudo DNA on VMS maps, their similarly clustering
distributions may indicate those maps with comparable mechanism to express real
DNA sequences with extra A–T and G–C pairs of symmetric relationships in their
higher levels of relationships applying the Stream Cipher mechanism.
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5 Conclusion

This chapter proposes architecture to support theVariantMap System.Using a binary
random sequence as input, a set of special pseudo DNA sequences can be generated.
Under variant measures, probability measurement and normalized histogram, a pair
of values can be determined by a series of controlled parameters. Collecting relevant
pairs on multiple DNA sequences, four 2D maps can be generated.

The main results of this chapter provide the VMS architecture description in
diagrams, main components, modules, expressions and important equations for the
VMS. Core models and diagrams, sample results are illustrated to apply two types
of data sets selected from real DNA sequences and generated from the pseudo ran-
dom sequences from the Stream Cipher HC-256 for comparison under the VMS
testing. After proper set of parameters selected, suitable visual distributions could
be observed using the VMS. Results in Figs. 4, 5, 6, 7, 8 and 9 provide useful evi-
dences systematically to support proposed VMS useful in checking higher levels of
symmetric/similar properties among complex DNA sequences in both natural and
artificial environment.

This construction could provide useful insights to spatial information on complex
DNA expressions especially on large encoding RNA/DNA construction via 2Dmaps
to explore higher levels of complex interactive environments in near future.
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