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Abstract In this chapter, a testing model is used to apply statistical probability in
multiple distributions on three maps for a selected sequence to check refined sta-
tionary randomness on quantum sequences. Three random data sequences are col-
lected from two quantum random resources: one fromAustralianNational University
(ANU) and two (initial and secure) from University of Science and Technology of
China (USTC). Multiple results are created on three maps, and measurements of
stationary randomness are illustrated and compared. Three samples show distinct
stationary properties.
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1 Introduction

In advanced social network environment, multimedia signal sequences of big data
streams are composed of time series processes. Quantum experiments in quantum
satellite using quantum key distribution (QKD) systems [1] is themost advanced ICT
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development to establish ultra-secure quantum communications. For a QKD system,
a truly random number generator [2] play a key role. From an analysis viewpoint,
it is necessary to test stationary randomness in time variations. In this section, a list
of relevant schemes: pseudo/truly random sequences, P_value, statistical probability
distribution, optical statistics, stationary properties, and variant maps, are discussed.

1.1 Pseudo/True Random Sequences

1.1.1 Pseudorandom Sequences

Traditional stream ciphers [3] on linear feedback shift register structure (LFSR) are
used as pseudorandom number generators. The LFSR stream ciphers are the core in
classical stream ciphers.

The new generation of stream ciphers has being shifted from LFSR [3] to nonlin-
ear modes: NLFSR, clock control [4] and nonlinear functions, etc. It is difficult to
use nonlinear mathematical theories, recursive models, descriptive tools, and imple-
menting schemes in nonlinear dynamic environments.

1.1.2 True Random Sequences

Differently from pseudorandom sequences generated by stream ciphers, high-quality
stochastic oscillators of truly random sequences are generated from special hardware
devices such as laser photonics [5], nonlinear optics, quantum optics [6], quantum
noises, thermal noise, chaos, and fractal nonlinear dynamics [7].

1.2 Testing Schemes

1.2.1 P_value Schemes

Various statistic testing packages measure randomness properties on a given random
sequence. NIST 800-22 package [8] is a typical representative to provide more than
15 testing schemes. Using the package, it is essential to check whether P_value
>0.01 for the sequence. Since such measuring scheme provides a static condition,
it is difficult to use only P_value parameter to express complex dynamic behaviors
involved in random sequences.

1.2.2 Multiple Statistical Probability Distributions

Measuring random sequences under segment conditions, multiple statistical proba-
bility schemes are useful to create various distributions to illustrate complex spatial
relationships.
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Multivariate normal probability distributions are the most important and powerful
tools to test stochastic characteristics of a random data sequence under the frame-
work of probability, stochastic process and statistics [9] for nonlinear problems. In
this kind of measuring models, when a data sequence is sufficiently long, the high
dimensional probability distribution of the sequence [10] is converged to a contin-
uous Gaussian distribution. Multivariate Gaussian probability distributions support
various schemes to analyze complex stochastic data set of measuring sequences in
continuous conditions.

1.2.3 Photon Statistic in Quantum Optics

Photon statistics is the theoretical and experimental approach on the statistical distri-
butions in photon counting experiments to analyze the statistical nature of photons
in a light source.

Three types of distributions can be obtained by the light source [11]: Poissonian,
super-Poissonian, and sub-Poissonian. The variance and average number of photon
counts are identified for the corresponding distribution. Both Poissonian and super-
Poissonian light are described by a semi-classical theory in which the light source is
modeled as an electromagneticwave and the atom ismodeled by quantummechanics.
In contrast, sub-Poissonian light requires the quantization of the electromagnetic field
for a proper description and is a direct measure of the particle nature of light.

1.2.4 Stationary Properties

In mathematics and statistics, a stationary process is a stochastic process [12] whose
joint probability distribution does not change when shift operations performed. Con-
sequently, parameters such as mean and variance, if they are present, also do not
change over time. Stationarity is an interesting property in time series analysis.

In applied mathematics, the Wiener–Khinchin theorem [13], states that the Auto-
correlation Function (ACF) of a wide-sense stationary process has a spectral decom-
position given by the power spectrum of the process. One of the effective ways for
identifying stationary times series is the ACF plot [14]. For a stationary time series,
the ACF will drop to zero relatively quickly.

1.3 Quantum Random Resources

Quantum random numbers can be generated from a physical quantum source of a
coherent laser light to be splitting a beam of light into two beams and then measuring
the power in each beam. Due to the light intensity in each beam fluctuates about the
mean. Those fluctuations can be converted into a source of random numbers [15–17]
being a stationary Poisson distribution.
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1.3.1 ANU Resource

The ANU Quantum Random Numbers Server is an open website [18] to offer true
random numbers to anyone on the internet. Such random numbers are generated in
real-time bymeasuring the quantum fluctuations of the vacuum. The electromagnetic
field of the vacuum exhibits random fluctuations in phase and amplitude at all fre-
quencies. By carefully measuring these fluctuations, ultra-high bandwidth random
numbers can be generated.

About 1GB data streams are downloaded and 100MB data streams are used for
the testing.

1.3.2 USTC Resource

In the Key Laboratory of Quantum Information, USTC, and CAS, true random
number sequences are generated [16]. This type of true random sequences supports
advanced quantum communication devices of QKD systems [19].

More than 20GB quantum random number sequences are provided by USTC
for random streams testing. Two data sequences are represented as USTC0 (initial)
and USTC (secure), respectively. About 100MB data streams are selected for each
sequence.

1.3.3 Refined Properties

From an analysis viewpoint, a Toeplitz hash algorithm has used to get an initial
sequence USTC0 as input and USTC sequence as output. Checking such refined
variations, this is an interesting property for us to make a detailed identification.

From a random testing viewpoint, initial sequences have some difficulties to pass
NIST tests and secure sequences are ensured to pass NIST tests. Some refined dif-
ferences on random characteristics could be distinguished.

1.4 Variant Framework

Various schemes following the top-down strategy are explored to use multiple mea-
sures to partition special phase spaces from a top state set to multiple bottom states
via multilevels of a hierarchy in combinatorial algorithms [20], image analysis and
processing for many years.

The conjugate classification [21] is proposed to apply seven measures in a hier-
archy to partition the kernels of four regular plane lattices on n = {4, 5, 7, 9} cases
for 2D binary images. For 1D cellular automata sequences, global random behaviors
are visualized in 2D maps.
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For n-tuple bit vectors, the variant logic framework [22] is proposed, various
applications are explored: 3D visual method on random number sequences [23],
variant Pseudorandom Number Generator (PRNG) [24], computational simulation
on quantum interactions [25], noncoding DNA analysis, bat echolocation [26], and
stationary randomness [27].

1.5 Proposed Scheme

For the convenience of testing stationary randomness on random sequences, we
propose a testing system for a stationary random sequence with length N , multiple
segments M are divided from the sequence by a given length m, a 2-tuple pair of
measures can be extracted from a 0-1 segment that are the number of 1 element
and the number of 1 pattern in the segment. All paired measures are composed of a
sequence of M pairs of measures as an ordered measuring set with M elements.

The pairs of the measuring sequence are directly separated as two independent
measuring sequences to keep each parameter in the same order. A total of three
sequences of distinct measures are constructed including two sequences on single
measures and one sequence on 2-tuple measures.

Following this approach, two sets of single measuring sequences are sorted as two
1D numeric arrays as statistical histograms corresponding to 1Dmaps and the 2-tuple
measuring sequence is sorted as a 2D integer array as statistic histograms being a 2D
map. Under the controlling operations on the changes of shift displacement, multiple
results of the three measuring sequences are transformed into 1D statistic histograms
and 2D pseudo-color maps to show effective patterns from the generated sequence
under various positions and conditions on a list of shift operations.

1.6 Organization of the Chapter

This chapter uses a testing system for a stationary random sequence on the system
architecture in Sect. 2. In Sect. 3, test results are provided for two quantum random
sequences. From the results of the visual maps in Sect. 3, result analysis and brief
comparison are described in Sect. 4. And finally in Sect. 5, the main results are sum-
marized.

2 Testing System

To describe the testing system, diagrams are shown in Fig. 1.
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Fig. 1 The architecture of testing stationary random sequences

2.1 System Architecture

This system is composed of five parts: Input, Shifted Transformation (ST), Segment
Measurement (SM), Combinatorial Projection (CP), and Output.

The input of the testing system is a selected 0-1 sequence and its output is com-
posed of three maps, two in 1D and one in 2D for visual distributions, and three
maximals to be processed by ST, SM, and CP modules, respectively.

Further technical details are described in Chapter. Stationary Randomness of
Three Types of Six Random Sequences on Variant Maps of this book.

3 Testing Results

Three quantum random sequences are selected from ANU and USTC resources.
Typical results of testing stationary properties for three sequences in nine maps

are shown in Fig. 2. Three sets of results are shown in Fig. 3a, b. In Fig. 3a, six values
of r = {0, 16, 32, 96, 112, 128} are selected to show three pairs of corresponding
maps: 1DP, 2DPQ, and 1DQ for three sequences on the top part. Nine 2D maps of
maximal curves for r = 0− 128 are shown to illustrate refined properties in sta-
tionary random curves on the bottom column. In Fig. 3b, three maximal curves on
three 2D maps are compared. In Fig. 4a–c, three larger maps on r = {48, 64, 80}
are shown corresponding to (a) 1DP, (b) 2DPQ, and (c) 1DQ for three cases. Three
larger maps of three maximal curves are shown in Fig. 5.

3.1 Quantitative Measurements

For a G map, let Gx be an average variation, ΔGx be a region of variations and
GR

x = ΔGx/Gx be a variation ratio. In convenient in comparison, let {Max, Min}
be the {largest, smallest} value on a maximal curve; Max-Min is its difference and
|ANU −USTC | is an absolute difference between ANU and USTC measures.

http://dx.doi.org/10.1007/978-981-13-2282-2_8
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Fig. 2 ANU, USTC and USTC0 random sequences on 1DP, 2DPQ, and 1DQ maps

Let (Max − Min)/|ANU −USTC | be a relative ratio between (Max-Min) and
|ANU −USTC |.

4 Result Analysis

Nine maps in Fig. 2 are in three columns. Three 1DP maps have similar distribu-
tions in bell shapes to illustrate Poissonian distributions. Three 2DPQ maps are 2D
distributions and there are different symmetric distributions. Maximal elements in
ANU, USTC, and USTC0 maps show stronger vertical oriented features. Three maps
have a symmetry on left/right directions and have a broken symmetry on up/down
directions. Pseudo-color pixels on three maps are shown in 3D shapes. Compared
with three 1DP maps, three 1DQ maps have similar distributions and more narrow
bell shapes to illustrate sub-Poissonian distributions.

Six groups of results on shift r : {0, 16, 32, 96, 112, 128} are shown in Fig. 3a on
the top columns and each group contains nine distributions in three columns. Three
random sequences have stronger stationary randomness that makes all maps in the
similar stylewithminor changes on shift operations. Largermaps on r = {48, 64, 80}
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Fig. 3 ANU, USTC and USTC0 random sequences on three maps and maximals (a), (b); a Three
pairs of nine variant maps in six groups and three pairs of nine maximal maps; b Three 2D maps of
three maximal curves for ANU, USTC, and USTC0

in Fig. 4a–c provide refined visual information to show their variations in details.
Enlarged and larger maximal curves are shown in Figs. 3b and 5 for r : 0− 128 as
nine 2D maps with values of average variation and region of variations. From the
maximal and minimal stationary regions, there are 1–2% variation ratios for 1DP
and 1DQ and 5% variation ratios for 2DPQ observed. Three curves of maximals on
three 2D maps are illustrated in Figs. 3b and 5.
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Fig. 4 ANU, USTC, and USTC0 random sequences random sequences on enlarged maps, r =
{48, 64, 80}; a 1DP; b 2DPQ; c 1DQ
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Fig. 4 (continued)

4.1 Relative Ratios on Differences

Details of three maximal measures are compared in Table 1. Three parameters
{Qx ,ΔQx , QR

x } on 1DQ maps have 1 values on Max-Min and |ANU −USTC |
ratios; there are 81 on Px and 1.6 on PR

x and there are 65 on PQx and 7.9 on PQR
x

observed.
From this set of testing results, two samples of ANU and USTC are showing

similar stationary properties and USTC0 with different stationary properties among
the three sequences. Significant differences of relative ratios are observed from2DPQ
variation measurements.
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Fig. 5 Three enlarged 2D
maps of three maximal
curves for ANU, USTC, and
USTC0

A
N
U
:M

ax
im

al
cu
rv
es

U
ST

C
:M

ax
im

al
cu
rv
es

U
ST

C
0:
M
ax
im

al
cu
rv
es



318 J. Zheng et al.

Table 1 Comparisons on three measures for ANU, USTC, and USTC0 samples

5 Conclusion

It is feasible to evaluate stationary randomness for a random sequence using the
testing system. From three maps {1DP, 1DQ, 2DPQ}, maximals are identified for
shift r : 0− m. Three 2D maps of maximal curves provide refined characteristics to
evaluate stationary randomness. Further explorations and applications are required
to check the testing system on other applications.
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