Skip to main content

Computing with Integrated Photonic Reservoirs

  • Chapter
  • First Online:
Reservoir Computing

Abstract

The idea of using photonic systems as reservoirs to perform general-purpose computing was first introduced in 2008. Since then, a wide range of systems using either discrete or integrated optical components has been explored. In this chapter, we summarise a decade of research into integrated coherent photonic reservoirs. In these systems, information is carried by the intensity and the phase of light waves. Computations emerge from the way the light propagates inside the system, and the ways in which light that travels along different paths is mixed and transformed. We discuss the computational capabilities of these reservoirs and the trade-offs that can be made to optimise them. We also discuss the technological constraints that are encountered in building such systems and the ways these reflect on their design and training. Finally, we give an overview of recent approaches to combining multiple such reservoirs into larger and computationally more powerful systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although edge of chaos is the common term in dynamical systems theory, the term edge of stability has always felt like a more appropriate term in this context.

References

  • S. Abel, T. Stferle, C. Marchiori, C. Rossel, M. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. Offrein, J. Fompeyrine, A strong electro-optically active lead-free ferroelectric integrated on silicon. Nat. Commun. 4, 1671 (2013)

    Article  Google Scholar 

  • D. Brunner, M.C Soriano, C.R. Mirasso, I. Fischer, Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2013)

    Google Scholar 

  • M. Courbariaux, Y. Bengio, J.-P. David, Binaryconnect: Training deep neural networks with binary weights during propagations, in Advances in Neural Information Processing Systems (2015), pp. 3123–3131

    Google Scholar 

  • I. Djordjevic, W. Ryan, B. Vasic, Coding for Optical Channels (Springer, US, 2010)

    Book  Google Scholar 

  • M.A.A. Fiers, T. Van Vaerenbergh, F. Wyffels, D. Verstraeten, B. Schrauwen, J. Dambre, P. Bienstman, Nanophotonic reservoir computing with photonic crystal cavities to generate periodic patterns. IEEE Trans. Neural Netw. Learn. Syst. 25(2), 344–355 (2014)

    Article  Google Scholar 

  • M. Freiberger, A. Katumba, P. Bienstman, J. Dambre, On-chip passive photonic reservoir computing with integrated optical readout, in 2017 IEEE International Conference on Rebooting Computing (ICRC) (2017)

    Google Scholar 

  • M. Freiberger, A. Katumba, P. Bienstman, J. Dambre, Training passive photonic reservoirs with integrated optical readout. IEEE Trans. Neural Netw. Learn. Syst. 1–11 (2018)

    Google Scholar 

  • J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learning, Springer Series in Statistics, vol. 1. (Springer, New York, 2001)

    MATH  Google Scholar 

  • C. Gallicchio, A. Micheli, Deep echo state network (deepesn): a brief survey (2017), arXiv:1712.04323

  • C. Gallicchio, A. Micheli, L. Pedrelli, Design of deep echo state networks. Neural Netw. 108, 33–47 (2018)

    Article  Google Scholar 

  • S. Gupta, A. Agrawal, K. Gopalakrishnan, P. Narayanan, Deep learning with limited numerical precision, in Proceedings of the 32Nd International Conference on International Conference on Machine Learning, ICML’15, vol. 37 (2015), pp. 1737–1746, JMLR.org

    Google Scholar 

  • M. Hermans, M.C. Soriano, J. Dambre, P. Bienstman, I. Fischer, Photonic delay systems as machine learning implementations. J. Mach. Learn. Res. 16, 2081–2097 (2015)

    MathSciNet  MATH  Google Scholar 

  • A. Hoerl, R. Kennard, Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  Google Scholar 

  • H. Jaeger, The echo state approach to analysing and training recurrent neural networks–with an Erratum note 1. Technical report, GMD148, Bonn, Germany: German (2001), pp. 1–47

    Google Scholar 

  • A. Katumba, M. Freiberger, P. Bienstman, J. Dambre, A multiple-input strategy to efficient integrated photonic reservoir computing. Cogn. Comput. 4, 1–8 (2017)

    Google Scholar 

  • A. Katumba, J. Heyvaert, B. Schneider, S. Uvin, J. Dambre, P. Bienstman, Low-loss photonic reservoir computing with multimode photonic integrated circuits. Sci. Rep. 8(1) (2018a)

    Google Scholar 

  • A. Katumba, M. Freiberger, F. Laporte, A. Lugnan, S. Sackesyn, C. Ma, J. Dambre, P. Bienstman, Neuromorphic computing based on silicon photonics and reservoir computing. IEEE J. Sel. Top. Quantum Electron. 24, 6 (2018b)

    Google Scholar 

  • A. Katumba, X. Yin, J. Dambre, P. Bienstman, A neuromorphic silicon photonics nonlinear equalizer for optical communications with intensity modulation and direct detection. J. Light. Technol. (2019)

    Google Scholar 

  • L. Keuninckx, Electronic systems as an experimental testbed to study nonlinear delay dynamics. PhD thesis, Vrije Universiteit Brussel (2016)

    Google Scholar 

  • F. Laporte, A. Katumba, J. Dambre, P. Bienstman, Numerical demonstration of neuromorphic computing with photonic crystal cavities. Opt. Express 26(7), 7955–7964 (2018)

    Article  Google Scholar 

  • L. Larger, M.C. Soriano, D. Brunner, L. Appeltant, J.M. Gutiérrez, L. Pesquera, C.R. Mirasso, I. Fischer, Photonic information processing beyond turing: an optoelectronic implementation of reservoir computing. Opt. Express 20(3), 3241–3249 (2012)

    Google Scholar 

  • L. Larger, A. Baylón-Fuentes, R. Martinenghi, V.S. Udaltsov, Y.K. Chembo, M. Jacquot, High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys. Rev. X 7(1), 011015 (2017)

    Google Scholar 

  • H. Li, S. De, X. Zheng, C. Studer, H. Samet, T. Goldstein, Training quantized nets: A deeper understanding, in NIPS (2017)

    Google Scholar 

  • C. Liu, R.E.C. Van Der Wel, N. Rotenberg, L. Kuipers, T.F. Krauss, A. Di Falco, A. Fratalocchi, Triggering extreme events at the nanoscale in photonic seas. Nat. Phys. 11(4), 358–363 (2015)

    Google Scholar 

  • W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 2560, 2531–2560 (2002)

    Google Scholar 

  • C. Mesaritakis, V. Papataxiarhis, D. Syvridis, Micro ring resonators as building blocks for an all-optical high-speed reservoir-computing bit-pattern-recognition system, in JOSA B, October 2013 (2013)

    Google Scholar 

  • C. Mesaritakis, A. Kapsalis, D. Syvridis, All-optical reservoir computing system based on InGaAsP ring resonators for high-speed identification and optical routing in optical networks, vol. 9370, 2 (2015), p. 937033

    Google Scholar 

  • S. Nichele, A. Molund, Deep reservoir computing using cellular automata (2017), arXiv:1703.02806

  • Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, Optoelectronic reservoir computing. Sci. Rep. 2, 287, 2 (2012)

    Google Scholar 

  • M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: Imagenet classification using binary convolutional neural networks, in European Conference on Computer Vision (Springer, 2016), pp. 525–542

    Google Scholar 

  • C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. Wright, H. Bhaskaran, W. Pernice, Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 9(11), 725–732 (2015)

    Article  Google Scholar 

  • S. Sackesyn, C. Ma, J. Dambre, P. Bienstman, An enhanced architecture for silicon photonic reservoir computing, in Cognitive Computing 2018 - Merging Concepts with Hardware (2018), pp. 1–2

    Google Scholar 

  • M. Sieber, U. Smilansky, S.C. Creagh, R.G. Littlejohn, Non-generic spectral statistics in the quantized stadium billiard. J. Phys. A: Math. Gen. 26(22), 6217 (1993)

    Article  Google Scholar 

  • H.-J. Stöckmann, J. Stein, Quantum chaos in billiards studied by microwave absorption. Phys. Rev. Lett. 64, 2215–2218 (1990)

    Article  Google Scholar 

  • D. Sussillo, L.F. Abbott, Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557, 8 (2009)

    Google Scholar 

  • B. Van Bilzen, P. Homm, L. Dillemans, C. Su, M. Menghini, M. Sousa, C. Marchiori, L. Zhang, J. Seo, J. Locquet, Production of vo 2 thin films through post-deposition annealing of v 2 o 3 and vo x films. Thin Solid Films 591, 143–148 (2015)

    Article  Google Scholar 

  • K. Vandoorne, Photonic reservoir computing with a network of coupled semiconductor optical amplifiers. PhD thesis, Ghent University (2011)

    Google Scholar 

  • K. Vandoorne, P. Bienstman, A photonic implementation of reservoir computing, in 2007 IEEE/LEOS Symposium Benelux Chapter Proceedings (2007), pp. 195–198

    Google Scholar 

  • K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten, R. Baets, P. Bienstman, J. Van Campenhout, Toward optical signal processing using photonic reservoir computing. Opt. Express 16(15), 11182–11192 (2008)

    Article  Google Scholar 

  • K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, P. Bienstman, Parallel reservoir computing using optical amplifiers. IEEE Trans. Neural Netw. 22(9), 1469–1481, 9 (2011)

    Google Scholar 

  • K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. Bienstman, Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Communi. 5, 3541, 1 (2014)

    Google Scholar 

  • D. Verstraeten, Reservoir computing: computation with dynamical systems. PhD thesis, Ghent University (2009)

    Google Scholar 

  • A.S. Weigend, N.A. Gershenfeld, Results of the time series prediction competition at the santa fe institute, in IEEE International Conference on Neural Networks (IEEE, 1993), pp. 1786–1793

    Google Scholar 

  • H. Zhang, X. Feng, B. Li, Y. Wang, K. Cui, F. Liu, W. Dou, Integrated photonic reservoir computing based on hierarchical time-multiplexing structure. Opt. Express 22(25), 31356–31370, 12 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joni Dambre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dambre, J. et al. (2021). Computing with Integrated Photonic Reservoirs. In: Nakajima, K., Fischer, I. (eds) Reservoir Computing. Natural Computing Series. Springer, Singapore. https://doi.org/10.1007/978-981-13-1687-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1687-6_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1686-9

  • Online ISBN: 978-981-13-1687-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics