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15.1 Introduction

Coronaviruses are remarkably large, positive-stranded RNA viruses that are
enveloped with the nucleocapsid having helical symmetry. The corona in coronavi-
rus is a Latin word that means a “crown”, and it indicates to the typical presentation
of virions underneath electron microscopy with a periphery of hefty, globular surface
projections similar to that of a crown. Coronavirus is a pathogen associated with
severe respiratory symptoms and was first identified from the nasal cavities of
sufferers with the common cold in the early 1960s (de Groot et al. 2013; Brown
et al. 2012). These were named human coronavirus OC43 and human coronavirus
229E. A total of 40 sequenced genomes of different strains of coronavirus are
accessible from National Center for Biotechnology Information (NCBI), out of
which 7 are pathogenic to humans. A coronavirus, i.e. SARS-CoV, was responsible
for outbreak of severe acute respiratory syndrome (SARS) in the year 2003, whereas
Middle East respiratory syndrome coronavirus (MERS-CoV) caused the most recent
outbreak in 2012 causing acute respiratory disease in affected people with signs of
fever, cough and difficulty in breathing. After first reported from Saudi Arabia in
2012, this novel virus has also dispersed to other countries like the United States and
was known to have high death rate. MERS-CoV infections are highly communica-
ble, and no explicit antiviral cure has been designed for it till date (Azhar et al. 2017).
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It compelled us to apply the well-known reverse vaccinology (RV) approach on
available proteome of coronavirus. RV approach has been successfully applied on
many prokaryotes, but there are very few known applications on eukaryotes and
viruses. So, it is worthwhile to explore the potential of this approach to identify
potential vaccine candidates for coronavirus. RV basically does the in silico exami-
nation of the viral proteome to hunt antigenic and surface-exposed proteins. This
approach was initially applied successfully to Neisseria meningitidis serogroup B
(Kelly and Rappuoli 2005) against which none of the prevailing techniques could
develop a vaccine. The present book chapter is intended to explore the potential of
RV approach to select the probable vaccine candidates against coronavirus and
validate the results using docking studies.

15.2 The Elementary Concept of Reverse Vaccinology

Undoubtedly, the traditional approaches for vaccine development are fortunate
enough to efficiently resist the alarming pathogenic diseases of its time. However,
the traditional approach suffers from certain limitations like it is very time-
consuming, the pathogens which can’t be cultivated in the lab conditions are out
of reach, and certain non-abundant proteins are not accessible using this approach
(Rappuoli 2000). Consequently, a number of pathogenic diseases are left without
any vaccine against them. All these limitations are conquered by reverse
vaccinology approach utilizing genome sequence information which ultimately is
translated into proteins. Hence all the proteins expressed by the genome are accessi-
ble irrespective of their abundance, conditions in which they expressed. The credit of
fame of reverse vaccinology should go to the advancements in the sequencing
strategies worldwide. Accordingly, improvement in the sequencing technologies
has flooded the genome databases with huge amount of data which can be computa-
tionally undertaken to reveal the various crucial aspects of the virulence factors of
the concerned pathogen. Reverse vaccinology is based on same approach of com-
putationally analysing the genome of pathogen and proceeds step by step to ulti-
mately identify the highly antigenic, secreted proteins with high epitope densities.
The best epitopes are selected as potential vaccine candidates (Pizza et al. 2000).
This approach has brought the unapproachable pathogens of interest in spotlight and
is evolving as the most reassuring tool for precise selection of vaccine candidates and
brought the use of peptide vaccines in trend (Sette and Rappuoli 2010;
Kanampalliwar et al. 2013).

15.3 Successful Applications of Reverse Vaccinology

Bexsero is the first universal serogroup B meningococcal vaccine developed using
RV, and it has currently earned positive judgement from the European Medicines
Agency (Gabutti 2014). Whether it is discovery of pili in gram-positive pathogens
which were thought to not have any pili or the sighting of factor G-binding protein in
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meningococcus (Alessandro and Rino 2010), the reverse vaccinology steals all the
credits from other conventional approaches. Most of the applications of RV are
against prokaryotes and very few against eukaryotes and viruses because of com-
plexity of their genome. Corynebacterium urealyticum (Guimardes et al. 2015),
Mpycobacterium tuberculosis (Monterrubio-Lépez et al. 2015), H. pylori (Naz et al.
2015), Acinetobacter baumannii (Chiang et al. 2015), Rickettsia prowazekii (Caro-
Gomez et al. 2014), Neospora caninum (Goodswen et al. 2014) and Brucella
melitensis (Vishnu et al. 2017) are the examples of some pathogens that are recently
approached using this in silico technique in order to spot some epitopes having
potential of being a vaccine candidate. Herpesviridae (Bruno et al. 2015) and
hepatitis C virus (HCV) (Kolesanova et al. 2015) are the examples of the viruses
that are addressed using this approach.

15.4 Workflow of Reverse Vaccinology (with Example
of Coronavirus)

15.4.1 Retrieval of Proteome of Different Strains of Coronavirus
from NCBI

The proteome of different strains of the coronavirus of interest was downloaded from
NCBI's ftp site (ftp:/ftp.ncbi.nlm.nih.gov/genomes/Viruses/; NCBI Resource
Coordinators 2017). The proteome information is available for download in many
formats including FASTA format for different sequenced viruses. Strains pathogenic
to humans were selected for further analysis. Among them a single strain was
selected as the seed genome on the basis of literature. Sequence similarity searches
using Blastp (http://blast.ncbi.nlm.nih.gov/blast, http://ugene.unipro.ru/) were
performed to reveal the orthologs in different strains (Altschul et al. 1990;
Okonechnikov et al. 2012; Golosova et al. 2014). Multiple sequence alignment
(MSA) was done via ClustalW, and the phylogenetic tree was constructed using
NJ method from Unipro UGENE 1.16.1 bioinformatics toolkit (Okonechnikov et al.
2012).

15.4.2 Analysis of Secondary Structure of Proteins from Seed
Genome

Analysis of secondary structure of the proteins of seed genome was done by means
of ExPASy portal. The aim is to forecast the solvent accessibility, instability index,
theoretical pl, molecular weight, grand average of hydropathicity (GRAVY), ali-
phatic index, number of charged residues, extinction coefficient etc. (http://web.
expasy.org/protparam/; Gasteiger et al. 2005).
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15.4.3 Subcellular Localization Predictions and Count
of Transmembrane Helices

Virus-mPLoc was used to identify the localization of proteins of virus in the infected
cells of host (http://www.csbio.sjtu.edu.cn/bioinf/virus-multi/; Hong-Bin Shen and
Kuo-Chin Chou 2010). This information is important to understand the destructive
role and mechanism of the viral proteins in causing the disease. In total six different
subcellular locations, namely, host cytoplasm, viral capsid, host plasma membrane,
host nucleus, host endoplasmic reticulum and secreted proteins, were covered. These
predictions could help in formulation of better therapeutic options against the virus.
As per the protocol of RV, secreted and membrane proteins are of special interest,
therefore, filtered for further analysis. To predict the number of transmembrane
helices TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/servicess TMHMM/; Krogh
et al. 2001) was used.

15.4.4 Signal Peptides

Signal peptides are known to impact the immune responses and possess high epitope
densities. Moreover, most of the known vaccine candidates also possess signal
peptides. Hence, it is worthwhile to predict signal peptides in proteins prior to
epitope predictions. Signal-BLAST web server is used to predict the signal peptides
without any false predictions (http://sigpep.services.came.sbg.ac.at/signalblast.html;
Frank and Sippl 2008). The prediction options include best sensitivity, balanced
prediction, best specificity and detect cleavage site only. We choose to make the
predictions using each option, and the proteins predicted as signal peptide by all the
four options were preferred for further investigation.

15.4.5 Adhesion Probability

The most appropriate targets as vaccine candidates are those which possess the
adhesion-like properties because they not only mediate the adhesion of pathogen’s
proteins with cells of host but also facilitate transmission of virus. Adhesions are
known to be crucial for virulence and are located on surface which makes them
promptly approachable to antibodies. The stand-alone SPAAN with a sensitivity of
89% and specificity of 100% was used to carry out the adhesion probability
predictions, and the proteins with having adhesion probabilities higher than or
equal to 0.4 were selected (Sachdeva et al. 2004).

15.4.6 BetaWrap Motifs

BetaWrap motifs are dominant in virulence factors of the pathogens. If the proteins
are predicted to possess such motifs, then they are appropriate to be taken under


http://www.csbio.sjtu.edu.cn/bioinf/virus-multi/
http://www.cbs.dtu.dk/services/TMHMM/
http://sigpep.services.came.sbg.ac.at/signalblast.html

15 Advanced In Silico Tools for Designing of Antigenic Epitope as Potential. . . 333

reverse vaccinology studies. BetaWrap server is the only online web server to make
such predictions. The proteins having P-value lower than 0.1 were anticipated to
contain BetaWraps (http://groups.csail.mit.edu/cb/betawrap/betawrap.html; Bradley
et al. 2001).

15.4.7 Antigenicity Predictions

For added identification of the antigenic likely of the proteins, they were subjected to
VaxiJen server version 2.0. It is basically an empirical method to hunt antigenic
proteins. So, if the proteins are not found antigenic using other sequence-based
methods, then they can be identified using this method. This step confirms the
antigenicity of proteins selected using above-mentioned steps (http://www.ddg-
pharmfac.net/vaxijen/VaxiJen/VaxiJen.html; Doytchinova and Flower 2007).

15.4.8 Allergenicity Predictions

For being a probable vaccine candidate, the protein should not exhibit the
characteristics of an allergen as they trigger the type-1 hypersensitivity reactions
causing allergy. Therefore, to escape out such possibilities, the proteins were also
subjected to allergenicity predictions using Allertop (http://www.pharmfac.net/
allertop; Dimitrov et al. 2014) and AlgPred tools (http://www.imtech.res.in/
raghava/algpred/submission.html; Saha and Raghava 2006a, b).

15.4.9 Similarity with Host Proteins

To check whether the filtered proteins possess any similarity to host proteins or not,
the standard Blastp (http://blast.ncbi.nlm.nih.gov/blast) searches were performed. In
case of sequence similarity, there is a feasibility of generation of immune responses
against own cells.

15.4.10 Epitope Mapping

Predicting the epitopes binding to MHC class I is the main decisive phase of the
RV to carry out valid vaccine predictions. The epitopes showing their affinity for
T-cells were first selected via IEDB (http://tools.immuneepitope.org/mhci/),
ProPred-1 (http://www.imtech.res.in/raghava/propred1/; Singh and Raghava
2003), BIMAS (http://www-bimas.cit.nih.gov/molbio/hla_bind/; Parker et al.
1994) and NetCTL tools (http://www.cbs.dtu.dk/services/NetCTL/; Larsen et al.
2005). For the epitope to be included in the hit list, it must be predicted by any


http://groups.csail.mit.edu/cb/betawrap/betawrap.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.pharmfac.net/allertop
http://www.pharmfac.net/allertop
http://www.imtech.res.in/raghava/algpred/submission.html
http://www.imtech.res.in/raghava/algpred/submission.html
http://blast.ncbi.nlm.nih.gov/blast
http://tools.immuneepitope.org/mhci/
http://www.imtech.res.in/raghava/propred1/
http://www-bimas.cit.nih.gov/molbio/hla_bind/
http://www.cbs.dtu.dk/services/NetCTL/

334 M. Dangi et al.

three of these four mentioned tools. For making the predictions of B-cell epitopes,
BepiPred (http://www.cbs.dtu.dk/services/BepiPred/; Larsen et al. 2006) and
ABCPred tools (http://www.imtech.res.in/raghava/abcpred/ABC_submission.
html; Saha and Raghava 2006a, b) were used. The overlapping B-cell and T-cell
epitopes were identified.

15.4.11 Docking of the Predicted Epitopes with HLA-A*0201

The predicted epitopes were docked with receptor that is HLA-A*0201 using
ClusPro (http://cluspro.bu.edu/login.php; Kozakov et al. 2017) that is an automated
protein-protein docking web server. The literature searches provided the information
of conserved residues of the receptor site. The default parameters were used for
docking (Comeau et al. 2004a, b; Kozakov et al. 2006).

15.5 Results and Discussion
15.5.1 Retrieval of Proteome from NCBI

A total of 40 different sequenced strains of coronavirus are available at NCBL
Among them 7 strains are pathogenic to humans. Various information regarding
source, host and collection of these strains are presented in Table 15.1 and 15.2. This
information can be obtained from NCBI's genome database, the Virus Pathogen
Database and Analysis Resource and Genomes OnLine Database (Liolios et al.
2006; Pickett et al. 2012). The MERS strain is taken as seed genome as it is the
most prevalent and disastrous strain among others. Its proteome consists of total
11 proteins as shown in Table 15.3. The results of sequence similarity to reveal
orthologs using Blastp are shown in Table 15.4. The sequences with greater than
30% identity score are considered as homologs. The phylogenetic tree is depicted in
Fig. 15.1 and the MERS-CoV, taken as seed genome, found clustered with different
Bat coronaviruses.

15.5.2 Analysis of Secondary Structure

The results of analysis of secondary structure of the proteome using ExXPASy tools
are shown in the Table 15.5. From the analysis of charge on the residues and pH
values, it is concluded that six of the proteins are basic and positively charged unlike
allergens which are acidic in nature. However, five proteins are acidic and show
negative charge. The negative GRAVY score of five proteins justify them to be of
hydrophilic nature with majority of the residues positioned towards the surface. For
the rest of six proteins, the GRAVY score is positive; it means that these are
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Fig. 15.1 Phylogenetic tree of 40 different strains of coronavirus using whole genome sequences
(Alignment of genome sequences is done using ClustalW, and tree is created using NJ method from
Unipro UGENE 1.15.1 bioinformatics toolkit)

hydrophobic proteins. The proteins with less than 40 value of instability index are
quite stable than those with higher values. All the proteins are having the molecular
weight less than 110 kDa except 3 (YP_009047202.1, YP_009047203.1 and
YP_009047204.1). This exhibits the effectiveness of lightweight proteins as targets
as they can be easily purified because of their low molecular weights. The protein
YP_009047204.1 is reported as a spike glycoprotein. It is acidic with prominent
negative charge, with negative GRAVY score which suggests its hydrophilicity and
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Fig. 15.2 Subcellular localization of seed genome proteins predicted using Virus-mPLoc

presence on surface. However the envelope protein YP_009047209.1 and membrane
protein YP_009047210.1 are basic and hydrophobic.

15.5.3 Subcellular Localization Predictions

Figure 15.2 depicts the subcellular localization of proteins of the seed genome, i.e.
MERS-CoV. Only one protein was predicted to be localized in host cytoplasm,
four in host membrane, two in both host cell membrane and endoplasmic reticu-
lum (ER) while two in only ER, and two are left unrecognized. The known spike
protein is predicted to be localized in host ER. From these results we decided to
pick the proteins which are located in host membrane or were predicted to be
localized in both host membrane and ER. The two are known envelop protein and
membrane protein from bibliographic studies, and along with that, the known
spike protein was also included in the filtered results. Out of the filtered proteins,
only two (YP_009047210.1 and YP_009047208.1) contain more than two trans-
membrane helices, therefore filtered out. The results of transmembrane helices
prediction are tabulated in Table 15.6. Figure 15.3 depicts the subcellular
localization of proteins of all the four selected genomes using Virus-mPLoc
prediction tool.
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Fig. 15.3 Subcellular localization of proteins of all four selected genomes predicted using Virus-
mPLoc

15.5.4 Signal Peptides

The proteins that are predicted to possess the signal peptides by Signal-BLAST web
server are YP_009047204.1 and YP_009047205.1. The results of Signal-BLAST
web server are tabulated in the Table 15.7.

15.5.5 Adhesion Probability

This step takes into account the concept of adhesion-based virulence. Adhesions
cause pathogen recognition and initiation of inflammatory responses by the host.
SPAAN predicted 2 (YP_009047204.1 and YP_009047205.1) out of 11 proteins of
MERS strain as adhesive (Table 15.8).

15.5.6 BetaWrap

Only one protein (YP_009047204.1) was predicted to contain BetaWrap motifs
within it (Table 15.8). Hence, it is considered virulent and might be responsible
for initializing the infection in the host.
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Table 15.7 The signal peptide prediction results for proteins of MERS coronavirus strain

Signal blast Balanced

S.no. | Accession no. (Sensitivity) Specificity | prediction | Cleavage site

1 YP_009047202.1 | No No No Yes

2 YP_009047203.1 | No No No Yes

3 YP_009047204.1 | Yes Yes Yes Yes

4 YP_009047205.1 | Yes Yes Yes Yes

5 YP_009047206.1 | No No No Yes

6 YP_009047207.1 | No No No Yes

7 YP_009047208.1 | No No No Yes

8 YP_009047209.1 | No No No No alignment found,
unable to predict

9 YP_009047210.1 | No No No No alignment found,
unable to predict

10 YP_009047211.1 | No No No Yes

11 YP_009047212.1 | No No No No alignment found,
unable to predict

Table 15.8 Table illustrating the prediction results made for selecting adhesion proteins using
SPAAN, BetaWrap predictions and antigenicity predictions using Vaxijen version 2.0

S.no | Accession no. Adhesion probability | P-value | Vaxijen value | TMHMM
1 YP_009047202.1 |0.439813 No 0.4908 14
2 YP_009047203.1 | 0.442577 No 0.4884 14
3 YP_009047204.1 | 0.634711 0.0046 0.4849 1
4 YP_009047205.1 | 0.635586 No 0.4226 0
5 YP_009047206.1 | 0.44212 No 0.3288 0
6 YP_009047207.1 | 0.269269 No 0.4978 0
7 YP_009047208.1 | 0.237608 No 0.3369 3
8 YP_009047209.1 | 0.389879 No 0.5119 1
9 YP_009047210.1 | 0.461965 No 0.5503 3
10 YP_009047211.1 | 0.690125 No 0.6036 0
11 YP_009047212.1 | 0.342692 No 0.6078 0

The transmembrane prediction results using TMHMM are also tabulated
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15.5.7 VaxiJen 2.0

A total of 9 out of 11 proteins of MERS strain were predicted antigenic (prediction
values greater than 0.4). The protein with accession number YP_009047206.1 and
YP_009047208.1 were among the filtered proteins, however, not predicted
antigenic, therefore filtered out. As a result, only four proteins
(YP_009047204.1, YP_009047205.1, YP_009047207.1 and YP_009047209.1)
were kept for further analyses.

15.5.8 AlgPred and Allertop

None of the 11 proteins of MERS-CoV possessed any clue of allergenicity as per
prediction results from AlgPred and Allertop tools; it means that no vigorous
immune responses will be mounted if the epitopes from these proteins will be
adopted as vaccine candidates.

15.5.9 Similarity with Host Proteome

None of the protein of MERS strain shows similarity with the proteins of host that
demonstrates that the epitopes from these proteins can safely elicit the required
immune response without the hazard of autoimmunity.

15.5.10 Epitope Mapping

In total 12 different 9-mer epitopes with potential to bind to receptors of both B-cell
and T-cell were predicted. The list of the predicted epitopes can be found in the
Table 15.9 and are specific for MERS-CoV strain. All these epitopes displayed no
conservancy with proteins of other human and non-human pathogenic strains.

15.5.11 Docking Analysis

Docking permits to reveal the binding energy or potency of connection among
epitopes and the receptor in appropriate orientation. The ClusPro docking server
was used to dock the predicted 90 epitopes against HLA-A*0201. The structure of
the receptor was available from PDB and was optimized before docking to free it
from the complexed self-peptide (4U6Y, Resolution 1.47 A, Bouvier et al. 1998).
PEPstr (Peptide Tertiary Structure Prediction Server; Kaur et al. 2007) was used to
derive the tertiary structure of the predicted peptides.



M. Dangi et al.

348

€91-IYL ‘SST-UID'66°6S [-IAL ‘€9-N[D ‘£91-d1L, ‘99-sKT L 916— | TIVINDATIL LT
€9°991-n[D
‘COT-IYL ‘LT LY T-dIL ‘6691 T-IAL ‘L6-81V ‘OF1°99-SAT 1 L1S6— |  ATILIVOAA 1C 1'602L70600” dA v
€9-0[D ‘Ly1-dIL ‘91 [-IAL ‘Ot [‘99-SAT 1 €6v9— | LAQATVHTI L81 1"LOTLY0600™ dA €
LL-dsy
‘€L-IYL ‘6ST-1AL ‘€9-n[D ‘GST-U[D ‘Lp[-dLY, ‘L6-81V ‘99-SAT] 6 6€I8— | TIISSVIAT 81 1'S0ZLP0600™ dA 4
6ST-IAL ‘SST-UID ‘L [-dIL, ‘L6°GL-BIV ‘€L-IYL ‘9P ‘99-SKT I 1'0S9— TAIASANTY SLTI
€9-0[D ‘CST-U[D ‘L6-81V ‘Op[°99-SAT ‘66°6S1°65-1AL ¥1 1'L88— | AJISSNATID 9IL
SSI-uD ‘LL-dSY ‘SST-UD ‘Ly1-dIL, ‘Op[-SKT ‘L6-81V ‘EL-IUL I 9°68.— | "INOAVAAAL 0£9
€9-0[D
‘667IAL ‘LL-dSY ‘L91°Ly1-dIL ‘L6-81V ‘€91°€L-IYL99-SAT €l 9¢h8— | ALSOSVATM €56
LL-ASY “SST-UID ‘66°6ST-IAL ‘L 1-dIL ‘L6-81V ‘Op1°99-sAT o1 T'€rL— AOddLIOSTI 88¢
OL-STH ‘SST-UID ‘€9991-0[D ‘[LT‘6S 1AL ‘L6-81V ‘99-sA] 11 L'6¥8— | LHNJIIONN 091
6ST°66-IAL ‘€9T-1YL ‘991°€9-0[D ‘OL-SIH ‘99-SAT 6 9v9L— |  AAIONVAON 011
¢-dsy ‘co-n[n
‘66°6S 6ST-IAL ‘Ly1-dIL ‘L6-81V ‘€L-TUL ‘0L-SIH ‘Ot ‘99-S4] €l 8'7S8— | ASAIOAJAX 81 ['¥02L¥0600 dA I
Surpuoq-H ur paA[oAuUl sanpisal 10)dedoy |  Surpuoq A310u0 adoyde 1ouwr-¢ uonisod OU UOISSAIIY | Ou 'S
‘H Surpurg Sunmeg

surajoid paray[y 1noy 1oy suonoipaid adondos [[90-g pue [[29-], Surdde[10A0 Jo synsa1 oyl 6°SL d|geL



15 Advanced In Silico Tools for Designing of Antigenic Epitope as Potential. . . 349

Fig. 15.4 3D structure of
receptor site of HLA-A*0201
visualized using Swiss PDB
viewer 4.10. The residues
shown in globular structure
are known to be conserved
and form hydrogen bonds
with the binding peptides

Figure 15.4 depicts the quaternary structure of the receptor HLA-A*0201 with its
conserved active site known to form complex with the peptides (Bouvier et al. 1998).
The binding energy results obtained after performing docking analysis are listed in
Table 15.9.

The 9-mer epitope VVCAITLLYV at site 21 of protein YP_009047209.1 docked
to the receptor with smallest amount of binding energy (—951.7) and 12 hydrogen
bonds. The next epitope in the list was also from the same protein
YP_009047209.1 at site 27, i.e. TLLVCMAFL. The predicted structure of the top
5 potent epitopes on the basis of docking energy and the snapshots of docking results
are displayed in Figs. 15.5, 15.6, 15.7, 15.8 and 15.9.

The most chief restriction for developing a safe and sound vaccine against any of
the virus is to identify the protective antigens. The present study is an effort of
application of reverse vaccinology approach to investigate a choice of coronavirus
proteomes to identify possible vaccine targets. This technique has demonstrated to
be a competent way to forecast 12 different epitopes from the selected seed genome.
These epitopes are from spike glycoprotein, NS3 protein, NS4B protein and enve-
lope protein. Unfortunately none of the epitope is found conserved in other strains,
and all are specific to MERS-CoV. The docking analysis studies revealed perfect
binding between HLA-A*0201 receptor and epitopes. The conserved residues of the
receptor site are also involved in H-bonding with epitope residues. Further, the
selected antigenic epitopes must be validated using in vitro and in vivo studies to
confirm their potential as vaccine candidates.
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Fig. 15.5 (a) 3D Structure of
the 9-mer epitope starting
from 21(VVCAITLLV)
position of protein
YP_009047209.1 (b)
Docking results of epitope
“VVCAITLLV” with A chain
of HLA-A*0201 using
ClusPro. (¢) The snapshot
representing the epitope
docked in the pocket of
molecular surface of the
receptor (all the structures are
visualized using Chimera
1.10.1)

M. Dangi et al.
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Fig. 15.6 (a) 3D Structure of g
the 9-mer epitope starting
from 27(TLLVCMAFL)
position of protein
YP_009047209.1. (b)
Docking results of epitope
“TLLVCMAFL” with A
chain of HLA-A*0201 using
ClusPro. (¢) The snapshot
representing the epitope
docked in the pocket of
molecular surface of the
receptor (all the structures are
visualized using Chimera
1.10.1)
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Fig. 15.7 (a) 3D Structure of @
the 9-mer epitope starting
from 716(GLVNSSLFV)
position of protein
YP_009047204.1. (b)
Docking results of epitope
“GLVNSSLFV” with A chain
of HLA-A*0201 using
ClusPro. (¢) The snapshot
representing the epitope
docked in the pocket of
molecular surface of the
receptor (all the structures are
visualized using Chimera
1.10.1)
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Fig. 15.8 (a) 3D Structure of @
the 9-mer epitope starting
from 18(YVDVGPDSV)
position of protein
YP_009047204.1. (b)
Docking results of epitope
“YVDVGPDSV” with A
chain of HLA-A*0201 using
ClusPro. (¢) The snapshot
representing the epitope
docked in the pocket of
molecular surface of the
receptor (all the structures are
visualized using Chimera
1.10.1)
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Fig. 15.9 (a) 3D Structure of
the 9-mer epitope starting
from 160(KMGRFFNHT)
position of protein
YP_009047204.1. (b)
Docking results of epitope
“KMGRFFNHT” with A
chain of HLA-A*0201 using
ClusPro. (¢) The snapshot
representing the epitope
docked in the pocket of
molecular surface of the
receptor (all the structures are
visualized using Chimera
1.10.1)

a

M. Dangi et al.
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