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Preface

Microbiome research and microbiome data analysis are one of the fast-growing
areas in biomedical and public health research. It is evidenced and catalyzed by
publications in different relevant fields of studies and methodology development, as
well as large-scale projects, such as the Human Microbiome Project (HMP), the
Integrative Human Microbiome Project, and Metagenomics of the Human Intestinal
Tract (MetaHIT) study. By the end of 2017, HMP investigators have already
published over 650 scientific papers, cited over 70,000 times (https://commonfund.
nih.gov/hmp).

We are now advancing our understanding of how the microbiome impacts
human health and disease, with more and more projects in microbiome funded and
research and statistical methodology papers published. The masses of microbiome
data generated by 16S rRNA sequencing and shotgun metagenomic sequencing via
the bioinformatics pipelines (packages), promote recent major growth spurt of
microbiome study. Data analysis and methodology are integral parts of microbiome
research. Since microbiome data are very complicated, there is a critical need to
develop all kinds of statistical methodologies for microbiome research, ranging
from application to methodology, and to statistical theory.

The habit of human learning starts with the known, then processes to the
unknown. Statistical analysis of microbiome data follows with the similar process.
In the beginning, the researchers and statisticians used the classic statistical methods
and models or borrowed them from other relevant fields, such as ecology and
microarray. Later, they developed their own statistical methods and models that
target one or more unique features of microbiome data. Currently, statistical
methods and analysis tools for analyzing microbiome data are available from classic
statistics, relevant research fields, and new developments, including visualization
and characterization of structure of microbiome data sets.

Statistical tools for performing microbiome data analysis are now available in
different languages and environments across different platforms, either in
web-based or programming-based approaches. Obviously, R system and environ-
ment play a critical role in developing statistical tools for analyzing microbiome
data.

vii



The birth of this book is an excellent example to show how a multidisciplinary
team working together to meet the need of the field. In April 2016, Dr. Jun Sun was
working on a microbiome book on behalf of the American Physiological Society by
Springer. She invited Dr. Yinglin Xia to contribute a book chapter on microbiome
data analysis. Dr. Sun and Dr. Xia have long-time collaborations in biomedical
sciences including microbiome studies. While working on the book chapter, they
thought it would be a good idea to expand a brief book chapter to a comprehensive
book on analyzing microbiome data. They were very happy that Dr. Ding-Geng Chen
was willing to join the team and provide his expertise on statistics and microarray
study. InMay 2016, a book proposal on Statistical Analysis of Microbiome Data with
R was submitted. It was well received by the peer-review and fully supported by the
editors of ICSA Book Series in Statistics.

In this book, we aim to provide the step-by-step procedures to perform data
analysis of microbiome data by way of the R programming language. We provide
some bioinformatic and statistical foundations of data analysis because microbiome
data are complicated and analysis of microbiome data is still very challenging. To
strike a balance, we briefly introduce concepts, backgrounds, statistical method
developments before illustrating the applications in real data.

The book was organized in this way: in the beginning three chapters, we specially
provided overview and introduction of bioinformatics, features of microbiome data,
and statistical analysis of microbiome data. In Chap. 4, we covered some basic skills
in R programming, RStudio, ggplot2, and most often used R packages and tech-
niques for microbiome data management and programming. In Chap. 5, we intro-
duced classic and newly developed methods in application of hypothesis testing and
power analysis of microbiome data. Chapter 6 focused on introduction of commu-
nity alpha and beta measures and calculations. Chapter 7 provided most often used
visualization techniques for exploratory analysis of microbiome data including
graphic summary of data and clustering, ordination. Chapters 8 and 9 focused on
univariate and multivariate community analysis, respectively. Many classic and
newly developed methods are introduced in the application of microbiome studies.
We contributed Chap. 10 to compositional analysis of microbiome data. In this
chapter, we introduced basic concept, fundamental principles, brief history, proce-
dures, and challenges of compositional data analysis. We also summarized several
considerations of microbiome dataset being treated as compositional and illustrated
compositional analysis of microbiome data using real data. Chapters 11 and 12
focused on count-based approaches of modeling over-dispersed and zero-inflated
microbiome data, respectively. Here, we widely covered statistical methods and
models of count data, including negative binomial, zero-inflated, and zero-hurdle
models, and zero-inflated Beta regression model with random-effects in longitudinal
setting. We also discussed the concept adjustment of model application and topics of
model comparisons.

We hope the contents of these chapters and the way of organization provide a
framework of statistical analysis of microbiome data. We expect this book to be
used by (1) statisticians, who are working on microbiome studies, either for their
own research, or for their collaborative research, such as experimental design, grant
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application, and data analysis; (2) researchers from microbiome and biomedical
fields, such as principal investigators, clinicians, research fellows, graduate stu-
dents, who are designing the studies, collecting the data; (3) researchers from other
relevant or similar fields (e.g., bioinformatics, ecology, microarray, economics, etc.)
and common use of statistical methods and R packages. The data and R codes
used in this book are available by requesting to the first author: Yinglin Xia at
yinglin.xia2007@gmail.com.

Chicago, IL, USA Yinglin Xia
Chicago, IL, USA Jun Sun
North Carolina, NC, USA Ding-Geng Chen
Pretoria, South Africa
June, 2018
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Chapter 1
Bioinformatic Analysis of Microbiome
Data

In this chapter, we first introduce microbiome study and DNA sequencing in
Sect. 1.1. Then we cover some basics of phylogenetics in Sect. 1.2. Next we focus
on reviewing 16S rRNA sequencing and shotgun metagenomic sequencing
approaches in Sects. 1.3 and 1.4 respectively. Finally, in Sect. 1.5, we briefly
introduce two tools for bioinformatical analysis of 16S rRNA sequencing data.
Section 1.6 is summary.

1.1 Introduction to Microbiome Study

1.1.1 What Is the Human Microbiome?

“What is it to be human?” is a fundamental topic in metaphysics, since the
beginning of humans appearing on earth; this question has troubled humans until
nowadays. Similarly, “what is the human microbiome?” has troubled researchers
(Ursell et al. 2012) even since Lederberg’s coinage of “microbiome” in 2001
(Lederberg and McCray 2001). Researchers have confused how to exactly define
the human microbiome, as evidenced by interchangeably using terminologies: for
example, “microbiota“ and “microbiome”. The term “microbiota” is referred to the
microbial taxa associated with humans to signify the communities of microorgan-
isms within a specific environment. The term “microbiome” is defined as the col-
lection of the microbial taxa or microbes and their genes (Ursell et al. 2012; Wu
et al. 2013), the entire microbial communities. Thus, if we consider these two terms
differentially, “microbiota” is used to signify the communities of microorganisms,
whereas “microbiome” is to signify the organisms and all of their related genomes
(Wu and Lewis 2013). Depending on their origin, researchers also use specific
terms, such as gut microbiome, oral microbiome, or lung microbiome. In this book,
we use “microbiome” in its widest meaning: the collection of microbes or
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microorganisms that literally share our body space or inhabit an environment,
creating a sort of “mini-ecosystem”(Sun and Dudeja 2018).

Although we still need to confirm whether we are born sterilely (Ley et al. 2006;
Matamoros et al. 2013), it is known that we begin to be colonized with microbes at
birth (Arrieta et al. 2014), or our microbiota development begins well in amniotic fluid
before delivery (DiGiulio et al. 2008; DiGiulio 2012). Actually we adopt the micro-
biota before birth from the uterus (Mackie et al. 1999; Jimenez et al. 2005; Penders
et al. 2006; Jiménez et al. 2008; Madan et al. 2012). Over the first several years of life,
particularly during the first 3 years, our skin surface, oral cavity, and gut are colonized
by a tremendous diversity of bacteria, archaea, fungi, and viruses (Morgan and
Huttenhower 2012; Arrieta et al. 2014), until the microbiota becomes adult-like.

The largest microbial community of the human microbiome is our intestinal tract
harboring up to 100 trillion (1014) microbes, which are 10 times the number of
human cells, and more than a 100 up to 150 times the number of the human genes
(Whitman et al. 1998; Ley et al. 2006; Qin et al. 2010; Matamoros et al. 2013). The
vast majority of microbes reside in colon with a density around 1011 to 1012 cells/ml
(Whitman et al. 1998; Ley et al. 2006). In 2016, Sender et al. reestimated that the
number of bacteria in adult colon is 3.8 x 1013 and the ratio of bacteria to human cells
is coser 1:1 instead of 10 : 1 as previously estimated (Sender et al. 2016).

1.1.2 Microbiome Research and DNA Sequencing

Mammalian microbiome research has a long history (Sanger and Coulson 1975;
Sanger et al. 1977; Goodrich et al. 2014). Historically, microbiology studies were
almost entirely culture-dependent. In order to study an organism, it was necessary
to grow the organism in the lab (Morgan and Huttenhower 2012). However,
culture-based methods rely on the ability to grow viable organisms outside their
natural habitat. It can be very difficult because many species and strains are well
adapted to live in the human body. The suitable environment for microbiome is not
viable in in vitro conditions. In the past, this difficulty has resulted in underesti-
mation of the complexity of the human microbiome.

It was until 2005 with advances in DNA-sequencing technologies, such as Roche/
454 pyrosequencing and Illumina Solexa sequencing, researchers started to analyze
the DNA extracted directly from a sample rather than from individually cultured
microbes (Eckburg et al. 2005). DNA Sequencing has fundamentally shifted away
from classical Sanger automated sequencing to next-generation sequencing (NGS)
for genome analysis (Metzker 2005, 2010; Jünemann et al. 2017).

Early in 1953, Watson and Crick solved the three-dimensional structure of DNA
(Watson and Crick 1953); however, it was until 1965 that Holley et al. (1965)
produced the first whole nucleic acid sequence and Sanger et al. (1965) in parallel
developed a related technique (Heather and Chain 2016). The automated Sanger
method is considered as a ‘first-generation’ technology. Although there was sub-
stantial progress during this era, the sequence reads produced by the first-generation
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DNA sequencing machines are limited. The shotgun sequencing techniques have
been emerged to analyze longer fragments. With the shotgun sequencing, the
overlapping DNA fragments were cloned and sequenced separately, and then
assembled into one long contiguous sequence (or ‘contig’) in silico (Staden 1979;
Anderson 1981).

In 2005, 454 Life Sciences (purchased by Roche in 2007) released the
pyrosequencing method (Margulies et al. 2005). Until this departure, the automated
Sanger method had dominated the DNA sequencing industry for almost two dec-
ades (Metzker 2010) since Sanger developed his ‘chain-termination’ technique
(Sanger et al. 1977) in 1977, which adventured a major breakthrough in DNA
sequencing technology. The features of massively parallel analysis, high through-
put, and lower cost allow a gradual shift from classical Sanger sequencing tech-
nology to NGS (Liu et al. 2012). The NGS platforms include Roche/454, Illumina/
Solexa, Life/APG and Helicos BioSciences, the Polonator instrument, Pacific
Biosciences. Each sequencing platform has advantages and disadvantages. For
example, Roche/454 allowed the massively parallel analysis of sequencing reac-
tions, greatly increasing the amount of DNA that can be sequenced in any one run
(Margulies et al. 2005; Heather and Chain 2016). In addition, the Roche/454
technology produces long enough reads to minimize the loss in annotation
(Wommack et al. 2008), to map to a reference genome easily, and has relatively fast
run times (Metzker 2010). All these advantages have made Roche/454 pyrose-
quencing a popular choice for shotgun-sequencing metagenomics. Thus, Roche/454
platform has been recommended to apply bacterial and genome de novo assemblies,
and other metagenomics applications (Metzker 2010; Liu et al. 2012). However, the
Roche/454 technology has several disadvantages, such as, relatively low through-
put, high reagent cost and high insertion or deletion rates in homo-polymer repeats
(Metzker 2010; Thomas et al. 2012). All these disadvantages may make its tech-
nology become noncompetitive and resulted in 454 technology business shutting
down by Roche in 2013 (Hollmer 2013).

Compared to Roche/454, Illumina/Solexa technology still has the limited read
length, which is not sufficient for functional annotation (Wommack et al. 2008), and
low multiplexing capability of samples (Metzker 2010). In Illumina/Solexa
sequencing, sample loading, random scattering of clusters, sequence quality, are
still technically challenging (van Dijk et al. 2014). However, Illumina/Solexa
technology has several advantages, such as, offering the highest throughput, the
lowest per-base costs, and successful application to metagenomics, and generalizing
draft genomes from complex dataset (Liu et al. 2012; Thomas et al. 2012; van Dijk
et al. 2014), high sequencing accuracy (Jünemann et al. 2017) among others.
Currently, Illumina/Solexa is the most widely used platform in the field of
metagenomics. It was recommended to apply to variant discovery, whole-exome
capture and gene discovery in metagenomics (Metzker 2010).

The third-generation DNA sequencing methods were defined based on whether
the sequencing detects single molecules, occurs in real time and does not require
DNA amplification before sequencing (Schadt et al. 2010; van Dijk et al. 2014;

1.1 Introduction to Microbiome Study 3



Heather and Chain 2016). All these characteristics simply diverge the
third-generation sequencing from previous technologies.

Currently Pacific Biosciences (PacBio) leads the third-generation technology
(van Dijk et al. 2014; Heather and Chain 2016). It developed its first instrument, the
PacBio RS in 2010. This instrument has several advantages, such as, being capable
of generating sufficiently long reads for the completing de novo genome assemblies
(van Dijk et al. 2014; Heather and Chain 2016), providing detectable fluorescence,
producing kinetic data, allowing for detection of modified bases and fast run times
(van Dijk et al. 2014). However, it has high cost, high overall error rates, lowest
throughput of all platforms, which limit its applications (van Dijk et al. 2014).

1.2 Introduction to Phylogenetics

Phylogenetics is the study of the evolutionary history and relationships among
individuals or groups of organisms (e.g., species, or populations). Phylogenetics is
important because it enriches our understanding of how genes, genomes, species
and molecular sequences generally evolve. It provides us a tool that allows
investigators to place their observations within the historical context of descent
within modification and ferret out historical and proximal factors that contributes to
their observations (Wiley and Lieberman 2011). From phylogenetics, we learn not
only how the sequences came to be the way they are today, but also general
principles that enable us to predict how they will change in the future. Thus,
phylogenetic analyses are central themes in studying biodiversity, evolution,
ecology, and genomes.

Human microbiome is very complicated with existing genetic and evolutionary
relationships among species. The field of classification, identification and naming of
biological organisms on the basis of shared characteristics is called taxonomy.
Taxonomy stems from ancient Greek taxis, meaning ‘arrangement’, and nomia,
meaning ‘method’. To understand the complexity of the human microbiome, it is
important to recognize the genetic and evolutionary relationships between species.

The Swedish botanist Carl Linnaeus (1707–1778) was known as the father of
taxonomy, who developed a system for categorization of organisms, known
as Linnaean taxonomy, and binomial nomenclature for naming organisms.
Linnaeus and others ranked all living organisms into seven biological groups or
levels of classification: kingdom, phylum, class, order, family, genus, and species.
There are no domains in these classifications. The classification of domain is a
relatively new grouping, which was first proposed by Woese et al. in 1977 (Woese
and Fox 1977; Woese et al. 1990). They said, a formal or natural system of
organisms should have a new taxon called “domain” above the level of kingdom.
Archaea, Bacteria and Eukarya are the three domains of life.

Currently researchers agreed that all living organisms can be classified into eight
major hierarchical levels, from domain (the most general) to species (the most
specific) (Tyler et al. 2014). Figure 1.1 (modified from Tyler et al. 2014) shows the

4 1 Bioinformatic Analysis of Microbiome Data



hierarchical levels of taxonomy. At each lower level, organisms are classified with
their most similar characteristics. Species-level analysis provides the most precise
information of life; however, higher-level analyses are also valuable, especially
when species identification is challenging.

1.3 16S rRNA Sequencing Approach

Currently, there are two main approaches to sequence the uncultured microbes
(Fig. 1.2): amplicon sequencing (in which only one particular gene, often 16S
rRNA, is amplified and sequenced) and random shotgun sequencing. In this section,
we will introduce the approach of 16S rRNA gene sequencing; in next section, we
will introduce the approach of shotgun metagenomic sequencing.

1.3.1 The Advantages of 16S rRNA Sequencing

The 16S rRNA gene, sometimes called rDNA, is the conservative gene in the
microbes. Lane et al. in 1985 (Lane et al. 1985) first described the use of 16S rRNA
gene to identify and classify uncultured microbes in the environment. Because this
gene has several desirable properties, the 16S rRNA gene sequencing has been the
first metagenomics method and widely accepted. The advanced properties include:

Fig. 1.1 Hierarchical
organization of taxonomic
levels used for classifying
organisms
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(1) The 16S rRNA gene is ubiquitous (Morgan and Huttenhower 2012) and nec-
essary component of ribosomes translating mRNA. It presents in all bacteria
and archaea (Kembel et al. 2012), whereas other commonly used marker genes
are not distributed in all living organisms (Kuczynski et al. 2011). It is rela-
tively unbiased to characterize bacterial and archaeal diversity. Although
Woese and collaborators (Woese and Fox 1977; Woese et al. 1978) defined the
domain Archaea more than 40 years ago, Archaea are still poorly studied with
regards to their abundance and ecological role in nature (Gantner et al. 2011).
Because of the advantage of 16S rRNA gene is its taxonomic coverage
(Kembel et al. 2012), the domain of Archaea can be studied via 16S rRNA
gene.

(2) The 16S rRNA gene contains highly conserved regions suitable for universal
PCR primer design to amplify regions of interests (Schloss et al. 2011; Tyler
et al. 2014). The property of highly conserved indicates that a life tree can be
constructed to link together all known bacteria. It contains nine hypervariable
(V) regions (V1–V9); the high variability is suitable as unique identifiers
(Claesson et al. 2010) for fine level taxonomic classification. Currently, the
segments of V1–V3, V4, and V4–V5 regions are most commonly used because
research showed that each can provide genus-level sequence resolution, with

Fig. 1.2 Summary of bioinformatic methods for 16S rRNA and shotgun metagenomics
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V1–V3 or the V1–V4 regions can provide more accurate estimates than others
(Kim et al. 2011).

(3) Well-studied primer sets are available for amplifying most organisms with high
specificity for bacteria (Lane et al. 1985; Weisburg et al. 1991; Sim et al. 2012).
By choosing appropriate primer set according to the studied microbial com-
munity, the problem of PCR bias can be alleviated (Kuczynski et al. 2011).
Using efficient computational algorithms, the chimeric reads can be readily
detected (Edgar et al. 2011).

(4) Well-curated databases of reference sequences and taxonomies are available
allowing sequence comparison and taxonomic assignment of organisms
(Ashelford et al. 2005; Tyler et al. 2014). These databases include Ribosomal
Database Project (RDP) (Cole et al. 2009), Greengenes (DeSantis et al. 2006),
and SILVA (Pruesse et al. 2007).

(5) The 16S rRNA gene sequencing is also relatively cheap and simple with mature
analysis pipelines.

Taken together, 16S rRNA-based sequencing remains the gold standard for
sequence-based bacterial analyses. Thus, it routinely employed to profile the tax-
onomic content of the community.

1.3.2 Bioinformatic Analysis of 16S rRNA Sequencing Data

1.3.2.1 Processing of Samples, DNA and Library

The bioinformatic analysis of 16S rRNA sequencing starts with preparing biolog-
ical samples and DNA extraction. Although variations exist, several general steps
we should follow. We briefly summarize as below:

Sample Collection
Before the actual collection of the samples, we need to consider at least two things:
what type of samples to be obtained and what methods to be used for collection.
Depending on the specific experimental aims, the samples could be stool or tissue
biopsy. The microbial profiles from these two kinds of samples may have sub-
stantial differences (Stearns et al. 2011). For collection methods, recommendations
include always minimizing the level of invasiveness of the sampling procedure
when designing a human study, considering recruiting barrier, and longitudinal
design to detect the temporal variability of the microbial communities (Kuczynski
et al. 2011). At sample collection period, a power analysis should be conducted to
estimate how many samples are needed to provide sufficient power (e.g., 80%) to
correctly conclude a difference between groups. We also need consider the methods
of sample storage: snap frozen or preservative. DNA extractions on fresh and frozen
samples can influence the structure of the microbiome, e.g., storage of samples at
−80 °C versus immediate extraction of DNA from fresh samples affects the
Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR

1.3 16S rRNA Sequencing Approach 7



analysis (Bahl et al. 2012). Although Human Microbiome Project has a recom-
mendation manual of sample collection (NIH 2010; iHMP 2014), however, there is
still no standard protocol regarding sample collection to guarantee the sample
quality of microbiome data (Wu et al. 2018). We expect that researchers propose
more new sample collection strategies or guidelines. For example, Vázquez-Baeza
et al. recently discuss the guideline for longitudinal sampling in IBD cohorts
(Vázquez-Baeza et al. 2017).

DNA Extraction
A few commercial or non-commercial kits, such as, QIAamp® DNA stool mini kit,
Qiagen, FastDNA® kit, Bio 101; Nucleospin® C + T kit, Macherey-Nagal;
Quantum Prep® Aquapure Genomic DNA isolation kit, Bio-Rad; and guanidium
isothiocyanate/silica matrix method are available. However, which method is more
effective for detecting bacterial DNA and leads to the best profile of the microbial
community is still arguable (McOrist et al. 2002; Kuczynski et al. 2011) and
currently no DNA extraction methods can provide a truly unbiased DNA sample (Ó
Cuív et al. 2011; Yuan et al. 2012).

Library Preparation
To perform 16S rRNA sequencing, we need to prepare genomic libraries in which
(fragments of) DNA or RNA molecules are fused with adapters (van Dijk et al.
2014). Then comparing genomic regions between experimental samples and ref-
erence data can be made to ensure accurately assign sequences to taxonomic
groups. During library preparation, we consider which variable region of the 16S
rRNA gene to be selected for sequencing (Tyler et al. 2014). As we described
above, within the nine hypervariable regions, currently, the segments of V1–V3,
V4, and V4–V5 regions are most commonly used.

1.3.2.2 DNA Sequencing and Quality Checking

DNA Sequencing
After DNA extraction, and library preparation, the next important step is to conduct
DNA sequencing. Several next-generation sequencers are available for 16S rRNA
sequencing. Among them, 454 pyrosequencing (Roche, Indianapolis, IN) and
Illumina sequencing (San Diego, CA) are the commonly used sequencing tech-
nologies in microbiome studies. These two technologies offer different character-
istics in levels of coverage, read length, sequence accuracy, usability, and cost, etc.
(Kuczynski et al. 2011). For example, llumina sequencing can offer more coverage
at a lower cost, whereas 454 pyrosequencing is able to generate longer sequences,
and often increase taxonomic resolution (Tyler et al. 2014).
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Quality Checking
Following sequencing, it is necessary to perform quality checking (QC). QC is
referred to as pre-processing of raw sequencing reads prior to the subsequent
analysis. There are two general purposes for QC: one is to improve the analysis
accuracy (Schirmer et al. 2015; D’Amore et al. 2016) and another is to prevent an
overestimation of the community taxa(e.g., species) diversity(Jünemann et al.
2017). Depending on the data and tools used, typically, QC includes:

(1) Detecting and removing artificial chimeric sequence. Chimeric DNA sequences
often happen during PCR amplification, especially when sequencing single
regions of 16S rRNA gene to estimate diversity or compare populations.
Therefore, it is very critical to detect and remove chimeras to avoid confusing
these undetected chimeras as novel species (Edgar et al. 2011; Edgar 2016).

(2) Filtering low quality sequences and short reads (Modolo and Lerat 2015;
Jünemann et al. 2017).

(3) Denoising to reduce and correct error reads (Reeder and Knight 2010; Edgar
and Flyvbjerg 2015).

Quality filtering and denoising will substantially improve the quality of sequences,
thus minimizing inflation of diversity estimation and reducing spurious inferences
of differences between populations.

1.3.2.3 Cluster 16S rRNA Sequences into OTUs

Two Approaches of Sequence Identification
Following quality filtering and denoising DNA sequences, to obtain datasets suit-
able for downstream statistical analyses, we need identify sequences by assigning
them to taxonomic outcome groups.

Currently, two main approaches are phylotype-based and OTU-based methods
(Schloss and Westcott 2011). As the names indicate, the phylotype-based methods
directly group (i.e., assign) sequences based on their similarity to phylotypes (i.e.,
reference sequences), such as, assign a 16S rRNA gene sequence to the genus
Pseudomonas; whereas OTU-based methods group sequences based on their sim-
ilarity to operational taxonomic units (OTUs) (i.e., other sequences in the
community).

Although phylotype-based methods have several appealing features, including
easily linking a sequence to previously identified microbes, computational effi-
ciency, and stable classification; however, the challenges with phylotype-based
approach are critical: the success of assignment is highly contingent on sequencing
platform and reference database (Tyler et al. 2014). For example, when reference
databases are incomplete, it is impossible to analyze novel sequences detected in an
experiment from previously unidentified taxonomic lineages (Schloss and Westcott
2011; Tyler et al. 2014).
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OTU-based method does overcome most limitations of phylotype-based
approach and has several advantages. However, it also has several limitations,
such as, computationally intensive, relatively slow, and larger memory required,
especially, the difficult choice of linkage method for clustering (Schloss and
Westcott 2011). Currently, most published data in 16S rRNA gene sequences use
OTU-based approach. Below, we will review the definition of OTU and reasons
that this approach has been widely used for 16S rRNA gene sequencing studies.

Defining OTUs
An OTU is conventionally defined as containing sequences that are no more than
3% different from each other. The criterion of 3% is also used to define a species,
while 5 and 20% differences are used to define genus, and phylum, respectively.
Typically assigning the sequences with greater than 97% similarity to the same
species, those with 95% similarity to the same genus, those with 90% similarity to
the same family, and those with 80% similarity to the same phylum, although these
distinctions are disputable (Stackebrandt and Goebel 1994; Bond 1995; Borneman
and Triplett 1997; Hugenholtz et al. 1998; Everett et al. 1999; McCaig et al. 1999;
Sait et al. 2002; Schloss and Handelsman 2004, 2005).

Why We Use OTU as Analysis Unit?
OTU has been considered an analysis unit as species level with the 16S-based
sequence approach. An OTU is defined with more than 97% similarity of
sequences. Thus, OTUs are sometimes considered equivalent to species. However,
whether or not an OTU precisely defines a “unique” sequence remains a bioin-
formatic challenge (Morgan and Huttenhower 2012). There are several related
reasons:

First, these hierarchy cutoff values that are used to define the level of taxonomy
have not been rigorously validated, they are simply from best fitted historical
taxonomy with modern 16S rRNA gene sequencing (Schloss and Handelsman
2005). Second, OTUs are constructed independently from reference data, may
contain species from multiple taxa; therefore they may not match well with true
biological units (true species). Third, sample diversity estimated by OTUs has
potential to be inflated (Schloss et al. 2011; Schloss and Westcott 2011; Tyler et al.
2014).

Recently gut microbiome researches have gone across OTU or species level into
strain-level and try strain-level resolution to study intra-species variation, its
functional role, and its relation to host health and diseases (Greenblum et al. 2015;
Zhang and Zhao 2016; Ercolini 2017; Zhao et al. 2018).

Clustering to Obtain OTUs
The 97% similarity defined an OTU is a phylogenetic distance. In other words,
OTUs are obtained from clustering and not from classification (Schloss and
Westcott 2011). Clustering is a multivariate technique; it is used to group indi-
viduals (e.g., in this case, sequences) according to relationships among the indi-
viduals being grouped. The clustering algorithms commonly used in various

10 1 Bioinformatic Analysis of Microbiome Data



disciplines (e.g., ecology, biology, psychology, sociology, economics) are nearest
(i.e., single-linkage), furthest (i.e., complete linkage), average (i.e., average link-
ages), and weighted neighbor (i.e., using weighted-pair group method) (Everitt et al.
2011; Legendre and Legendre 2012). Same clustering algorithms are used to group
sequences into OTU. Among them, the average neighbor algorithm was shown to
produce more robust OTUs than other three algorithms (Schloss and Westcott
2011). For example, the bioinformatics tools DOTUR and MOTHUR (accelerated
version of DOTUR) provide the capability to cluster sequences using either of the
nearest neighbor, furthest neighbor, or average neighbor algorithms (Schloss and
Handelsman 2005). QIIME uses clustering to obtain OTUs at a user-defined level
of sequence similarity (e.g., 97% to approximate species-level phylotypes) through
either referencing an OTU representative database (e.g., with BLAST), or purely
using sequence similarity (e.g., using uclust, or mothur (Caporaso et al. 2010)). In
such analysis, an OTU is generally thought of present a bacterial species
(Kuczynski et al. 2012). These two OTU-based methods can both generate OTU
tables to perform downstream statistical analyses.

1.3.2.4 Limitations of 16S rRNA Sequencing Approach

The 16S rRNA sequencing approach has numerous advantages, but it also has
numerous disadvantages, including:

(1) Amplicon sequencing rRNA markers via PCR may miss detecting OTUs/taxa
due to various biases associated with PCR, e.g., in priming and amplification
(Sharpton et al. 2011; Logares et al. 2014; Sharpton 2014), which may result in
substantially reducing microbial diversity in a community.

(2) 16S rRNA sequencing overestimates the community diversity or species
abundance (Brown et al. 2015; Oulas et al. 2015) due to artificial sequences
caused by sequencing errors and incorrectly assembled amplicons (i.e., chi-
meras), incorrectly assigning OTU, and the 16S locus being transferred
between distantly related taxa (Acinas et al. 2004; Sharpton 2014), or variation
of 16S copy number across most organisms (Kembel et al. 2012; Tyler et al.
2014). In addition, the overestimation is often difficult to identify (Wylie et al.
2012).

(3) Amplicon sequencing only discerns the taxonomic composition of the micro-
biome community. It cannot directly analyze the biological functions of asso-
ciated taxa (Sharpton 2014).

(4) Amplicon sequencing can only analyze the taxa that taxonomically informative
genetic markers are known and can be amplified. It is difficult to be used for
analyzing novel or highly diverged microbes, especially viruses and fungi
(Sharpton 2014).

(5) 16S rRNA sequencing approach lacks a golden standard for guiding decisions
on quality control, filtering (Kembel et al. 2012), and statistical analysis and
modeling (Xia and Sun 2017).
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1.4 Shotgun Metagenomic Sequencing Approach

1.4.1 Definition of Metagenomics

Shotgun metagenomic sequencing is a powerful alternative to 16S rRNA
sequencing for analyzing complex microbiome communities and avoids some of
these limitations.

Metagenomics has been defined as “the genomic analysis of microorganisms by
direct extraction and cloning of DNA from an assemblage of microorganisms”
(Handelsman 2004) and a metagenome has been defined as “the entire genetic
information of an ensemble of organisms, living in a common habitat” (Huson et al.
2007a, b).

The term “metagenomics is both a set of research techniques, comprising many
related approaches and methods, and a research field.” (National Research Council
2007) (p.13). In Greek, meta means “transcendent.” As a research field, metage-
nomics seeks to aggregately understand biology, go beyond the limits of the
individual organism to “focus on the genes in the community and how genes might
influence each other’s activities in serving collective functions.” Although indi-
vidual organisms remain the research units, with metagenomics, the research will
transcend individuals to focus on individuals and their genomes (National Research
Council 2007) (p.13).

As a rapidly growing field of research, the aim of metagenomics is to understand
the genetic diversity of a metagenome, the true diversity of microbes, their func-
tions, cooperation and evolution with ideally, by identifying the (relative abun-
dances of) species presented (Huson et al. 2007a, b; Huson et al. 2009). Although
many other terms have been used to describe the study, “Metagenomics 2003” was
used as the title of the first international conference held in Darmstadt,Germany
(Riesenfeld et al. 2004).

In its approach, metagenomics refers to “computational methods that maximize
understanding of the genetic composition and activities of communities” (National
Research Council 2007) (p.13). Sometime, both targeted and random sequencing
approaches are collectively called metagenomics (Huson et al. 2007a, b). However,
most metagenomics often refers to whole-metagenome shotgun (WMS) sequencing
of genomic DNA fragments from a community’s metagenome (Handelsman 2001;
Riesenfeld et al. 2004; Chen and Pachter 2005; Morgan and Huttenhower 2012),
which exclude amplicon sequencing approach.

Metagenomic analyses have three basic tasks: taxonomic analysis, functional
analysis and comparative analysis. These questions are also known as the “who are
they?”, “what can they do?”, and “how to compare them?”.
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1.4.2 Advantages of Shotgun Metagenomic Sequencing

There is increasing interest in employing shotgun sequencing, rather than amplicon
sequencing, to analyze microbiome samples. Because shotgun sequencing has
several advantages:

(1) Shotgun metagenomics not only produces analysis data for generating
hypotheses about the microbial community composition, but also provides a
powerful tool to hypothesize microbial functions associated with different
conditions, such as, health and disease, treatment and control, wild type and
knockout. Given the functional profile, researchers can generate hypotheses on
community dynamics and metabolic properties (Kuczynski et al. 2011).
In shotgun metagenomic sequencing, total DNA in a community is extracted
and independently sequenced, which produces huge numbers of DNA reads
that align to various genomic locations in the sample. The large available DNA
reads, including non-microbes, can be sampled from taxonomically informative
genomic loci (e.g., 16S), and from coding sequences (Sharpton 2014), pro-
viding insight into both microbial community structure and the functions
encoded by the genomes of the microbiota (Wu and Lewis 2013). Thus, after
obtaining shotgun metagenomic sequencing data, microbiome researchers can
simultaneously explore two basic tasks of a microbiome study: who are they
(which microorganisms are present within it) and what can they do (what each
of them do)? There is an opportunity to fully characterize a community,
including: (i) community composition/structure, i.e., taxonomic diversity and
species relative abundance; (ii) each community member’s genetic potential,
including number of genes and their functionalities; (iii) intra-species and
intra-population gene heterogeneity (Scholz et al. 2012; Ravin et al. 2015).
Shotgun sequencing data can provide much richer data on both the organismal
composition and the functional potential present in microbial communities, e.g.,
the metabolic potential of the community (Segata et al. 2013; Scholz et al.
2015) and characterize the genomic diversity and function of uncultured bac-
teria (Wrighton et al. 2012).

(2) The shotgun metagenomic sequencing is potentially unbiased (Lewandowska
et al. 2015), so it has more chances to detect rare and novel viruses (Yozwiak
et al. 2012; Bibby 2013; Relman 2013). It can also be used to characterize the
abundance of other communities, such as, taxa and metabolic pathways
(Morgan and Huttenhower 2012), plant microbiota (Vorholt 2012; Bulgarelli
et al. 2013), proteins (Godzik 2011). All these highlight the validity of the
approach to detect biological entities that lack ribosomal genes yet (Wu and
Lewis 2013).

(3) The shotgun metagenomic sequencing approach has ability to discriminate
strains of common species by gene content, which is not possible with 16S
rRNA sequencing approach (Qin et al. 2010; Kuczynski et al. 2011).
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1.4.3 Bioinformatic Analysis of Shotgun Metagenomic Data

Two approaches or strategies for analyzing WMS sequencing data are available:
assembly-based and read-based metagenomics.

In assembly-based metagenomics, separate reads are first de novo assembled to
contigs and then clustered into so-called genome bins during a binning process
(Jünemann et al. 2017). Thereby, it is possible to conduct taxonomical classification
and prediction of the discovered gene functions from a metagenomic sample (Ravin
et al. 2015).

In read-based metagenomics, individual reads are classified with regard to tax-
onomy and function. Thus, it is suitable for analyzing the taxonomical composition,
functions of the metagenome, and metabolic pathways (Scholz et al. 2012;
Jünemann et al. 2017).

1.4.3.1 Processing of Samples, DNA and Library

Sampling
Sample processing is the first and most critical step in shotgun metagenomic
sequencing studies, just like in 16S rRNA sequencing. The first element of sample
processing is to convert the source nucleic acid material into a sequencing library.
Typically, there are several steps:

First, to fragment long DNA or RNA molecules into a suitable size, then, to
perform adapter addition. Next, to perform size selection to further enrich the
desired size and to eliminate free adapters. Last, to perform PCR to select for
molecules containing adapters at both ends and to generate sufficient quantities for
sequencing (van Dijk et al. 2014).

The most challenges of library preparation may be the quantitative biases and the
loss of material occurred during the preparation. To reduce the biases and loss of
material, many algorithms have been developed and steps have been taken. The
technology of direct sequencing of DNA or RNA molecules is available although it
still has many challenges and limitations. In the application of this technology, we
do not need library preparation or sequencing reagents. The interested readers can
reference the review (van Dijk et al. 2014).

DNA Extraction
DNA extraction for metagenomic sequencing is not to target a specific genomic
locus for amplification, instead it is to extract DNA from all cells in a sample
(Sharpton 2014) and the obtained amounts of high-quality nucleic acids must be
sufficient (Thomas et al. 2012). The resulted DNA sequence reads are aligned to
various genomic locations for the myriad genomes present in the sample, including
non-microbes, which can be sampled from 16S, and coding sequences that provide
insight into the biological functions encoded in the genome. As a result, metage-
nomic data provide the opportunity to simultaneously explore two aspects of a
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microbial community: who are there and what can they do? (Sharpton 2014).
Various robust methods for DNA extraction are available and different sample type
requires specific protocols (Thomas et al. 2012).

1.4.3.2 Quality Checking

Quality Checking (QC) is important for whole metagenome shotgun (WMS)
sequencing (Jünemann et al. 2017), although it is a more essential step used in 16S
rRNA gene amplicon sequencing. QC in WMS sequencing shares most steps in 16S
rRNA gene amplicon sequencing except for the steps specially with amplification
related errors and artifacts because WMS sequencing is amplification free
(Jünemann et al. 2017).

1.4.3.3 Assembly

Assembling short reads into longer, contiguous sequences (‘contigs’) (Staden 1979;
Anderson 1981; Kunin et al. 2008) will make downstream bioinformatics analysis
smoothly. There are two kinds of assemblies employed for metagenomics samples:
reference-based assembly (co-assembly) and de novo assembly. Each strategy
prefers to apply to biological purposes, as well as needs different effort, time and
cost. The choice of using which one is based on these considerations.

Reference-based assembly performs well if the closely related reference gen-
omes sequences are available in the metagenomic dataset; it performs poorly if the
sample genome exists a large insertion, deletion, or polymorphisms, which makes
the true genome of the sample different to the reference. Comparing reference-based
assembly, de novo assembly typically requires larger computational resources. For
example, the machines for this assembly require larger memory and run times.

How long the sequencing reads are appropriate for assembling metagenomic
data? In general, long contiguous sequences not only benefits binning and classi-
fication of DNA fragments for phylogenetic or taxonomic assignment, but also
make annotation easy (Thomas et al. 2012).

Many genome assemblers available for performing assembling (Jünemann et al.
2014, 2017); however, due to complexity and diversity of microbial communities,
the current assembly tools have different overall performances. None of them is
bias-free.

First, there are many technical problems, including: no references exist for
comparing the assembling results, the complex population composition (Scholz
et al. 2012), such as, large individual heterogeneity, and consequently, their
genomic differences in the community, or low numbered genomes, either could
challenge efficiently assembly reads into contigs, or assembled contigs only par-
tially or limitedly represent the true genomes (Ravin et al. 2015). Second,
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assemblies are affected by the presence of closely related genomes. Because closely
related genomes may represent genome-sized approximate repeats (Sczyrba et al.
2017). In addition, assemblies are also affected by sequencing depth. Most
assemblers have limited rates of sequencing coverage; they cannot cover
very-high-copy circular elements well (Sczyrba et al. 2017). Thus, the development
of “metagenomic assemblers” is still at an early stage (Thomas et al. 2012).

1.4.3.4 Binning

Binning is defined as the process of sorting DNA sequences (also called reads,
contigs or both) into groups that might represent an individual genome or genomes
from closely related organisms (Kunin et al. 2008; Thomas et al. 2012). Mixtures of
variable-length of sequence fragments originating from various organisms or
individual genomes returned by contig assembly. It is a challenge for assembly to
reconstruct entire genomes (Alneberg et al. 2014; Sczyrba et al. 2017). Thus,
following by assembly, it is necessary to bin genome fragments.

Based on the used information, several binning algorithms have been developed.
The most used ones are compositional-based binning, and purely similarity-based
binning (Thomas et al. 2012). The mixture algorithms also exist, such as using both
composition and similarity binning, e.g., self-organizing maps, and hierarchical
clustering (Thomas et al. 2012), by coverage and composition (Alneberg et al.
2014).

Because organisms or genomes have conserved nucleotide composition, this will
be reflected in sequence fragments of the genomes organisms (Thomas et al. 2012).
Compositional binning algorithms are based on this fact. For example, different
organisms or genomes have a certain GC or the particular abundance distribution of
k-mers (Strous et al. 2012; Alneberg et al. 2014).

Unlike compositional binning, similarity-based binning uses the similarity of the
gene with known genes in a reference database to classify and hence bin the
sequence (Thomas et al. 2012) because the unknown DNA fragment might encode
for a gene.

Both genome and taxonomic binning tools are available. Different tools have
varying performances in recovering individual genome (for genome binning),
sample assignment accuracy, average taxon bin completeness and purity (for tax-
onomic binning), analysis of low-abundance taxa (Sczyrba et al. 2017). Binning
still has many challenges:

First, short reads negatively affect both composition-based and similarity-based
binning. Generally, composition-based binning is not reliable for short reads, as
they do not contain enough information (Thomas et al. 2012). Similarity-based
binning is affected by short sequence reads. Because the short sequence reads could
result in that the query sequence is only distantly related to known reference
genomes (Thomas et al. 2012). If this happens, only genomes at larger taxonomic
distances i.e., a very high level (e.g., phylum) of taxon can be assigned (Thomas
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et al. 2012; Sczyrba et al. 2017), whereas the binning contigs into a low level of
taxa (e.g., species) is very challenge (Alneberg et al. 2014) if it is not possible.
Second, the “chimeric” bins can be produced if the metagenomic dataset contains
two or more genomes that would fall into this high taxon assignment (Thomas et al.
2012). In addition, deconvoluting strain-level diversity is challenge. It requires
large samples for satisfactory performance (Sczyrba et al. 2017).

1.4.3.5 Annotation

Genome and Metagenome Functional Annotations

To gain insights beyond taxonomic composition, the sequences need to be anno-
tated. Depending on the objective of the study, annotation can be performed on
assembled contigs or unassembled reads or short contigs (Thomas et al. 2012). The
former is called genome annotation and the latter is referred to as metagenome
functional annotation. Many tools are available for genome annotation, such as
RAST (Aziz et al. 2008), IMG (Markowitz et al. 2009). To be successfully
annotated, the genome, contigs are required to be long enough.

Gene Prediction and Functional Annotation

Metagenome functional annotation of metagenomic sequences generally has two
non-mutually exclusive steps: gene prediction and annotation (Sharpton 2014).

Gene prediction refers to the procedure of identifying genes of interest, protein
and RNA sequences coded on the sample DNA; i.e., labeling sequences as genes or
genomic elements. Functional annotation of metagenomic datasets, is to assign
putative gene functions and taxonomic neighbors (Kunin et al. 2008; Thomas et al.
2012). It is very similar to genome annotation and relies on comparisons of pre-
dicted genes to existing, previously annotated sequences (Kunin et al. 2008; Scholz
et al. 2012; Thomas et al. 2012).

The metagenome functional annotation targets the entire community. Thus, the
tools for genome annotation have limited usage. There are many specifically
developed tools for metagenome functional annotation (Kunin et al. 2008).

Many tools are available for gene prediction and functional annotation, and some
of them perform well. However, less than half of metagenomic sequences can be
annotated (Gilbert et al. 2010; Thomas et al. 2012) because:

(1) Gene prediction and especially functional annotation rely on comparisons to
existing databases. However, both short length of metagenomic coding
sequences and evolutionary distance result in low similarity to known
sequences. In addition, there is no existing database to compare similarities to
novel genes. Thus, both low similarity and the presence of sequence errors
prevent the identification of homologs. Because novel genes without
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similarities in existing databases, gene prediction and functional annotation will
completely ignore them (Kunin et al. 2008).

(2) Prediction and annotation of proteins are complicated. Proteins are often
fragmented and lack neighborhood context. It is even more complicated to
annotate the proteins created by short-read methods, such as 454/Roche since
most reads contain only fractions of proteins (Kunin et al. 2008).

(3) The biological importance of gene functions cannot be exactly understood if the
gene functions are differentially represented in different communities
(Kuczynski et al. 2011).

1.4.3.6 Challenges of Analyzing Shotgun Metagenomic Data

Despite aforementioned advantages, compared to targeted amplicon studies,
bioinformatic analysis of shotgun metagenomic data still has challenges. First, the
process of shotgun metagenomic data, including assembly, binning, gene prediction
and annotation, has many technical challenges. Second, the data sets generated by
metagenomic sequencing are large and complex, containing unwanted host DNA,
and vulnerable to contamination. These make the bioinformatic analysis very
complicated (Sharpton 2014). For example, the large and complex data make it
difficult to determine the genome from which a read was derived, pose computa-
tional problems, challenge sequence alignment (Schloss and Handelsman 2008;
Sharpton et al. 2011; Sharpton 2014). Thus, the unwanted host DNA needs
developing molecular and bioinformatic methods to filter (Garcia-Garcerà et al.
2013; Sharpton 2014). Identifying and removing the contaminated metagenomic
sequences is especially problematic, and requires particular tools to identify and
filter (Schmieder and Edwards 2011). Third, the large metagenomic data sets pose
even more challenges to identify the significantly different taxa between commu-
nities (Kuczynski et al. 2011). Finally, the cost of whole-genome sequencing is still
high, especially in complex communities or when host DNA greatly outnumbers
microbial DNA(Sharpton 2014).

1.5 Bioinformatics Data Analysis Tools

Many tools for bioinformatics data analysis have been developed to conduct 16S
rRNA sequencing and shotgun metagenomic sequencing analyses. Here we briefly
introduce two analysis tools for 16S rRNA sequencing data.

The widely used software packages are Quantitative Insights Into Microbial
Ecology (QIIME) (Caporaso et al. 2010) (http://www.qiime.org) and mothur
(Schloss et al. 2009) (http://www.mothur.org). Both packages are open source and
have online tutorials and forums. They are all self-contained pipelines that can be
used to analyze 16S rRNA gene sequencing data from raw sequence reads to
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generate OTU/abundance table, enable comparison of multiple samples and employ
the use of the SILVA 16S rRNA gene reference database (Plummer et al. 2015).
Due to their comprehensive features and support documentation, QIIME and
mothur were reviewed as the two outstanding pipelines (Nilakanta et al. 2014).
QIIME 2 was available in 2018; it is a complete redesigned and rewritten ver-
sion of the QIIME microbiome analysis pipeline (https://docs.qiime2.org/2018.6/
about/).

1.5.1 QIIME

QIIME is an open source bioinformatics tool designed to provide a pipeline for the
process of analyzing 16S rRNA data. QIIME was developed by Knight’s lab
(Caporaso et al. 2010). This software is designed for the analysis of microbial
ecological communities, and can be used for bacterial, archaeal, fungal, or viral
sequence data (Kuczynski et al. 2012). QIIME analysis generally starts with raw
sequence data (in FASTA format) from any sequencing technology, such as
Illumina HiSeq, MiSeq, or 454 pyrosequencing (Kuczynski et al. 2012). QIIME
scripts primarily wrap other software packages. It is implemented as a collection of
command-line scripts designed to take users from raw sequence data and sample
metadata through publication-quality graphics and statistics. It can analyze
high-throughput data in a wide variety of ways.

1.5.2 mothur

“mothur“ was initiated by Schloss and his software development team in the
Department of Microbiology of Immunology at the University of Michigan. It is
released in 2009 (Schloss et al. 2009). The same quality control parameters used in
QIIME were used in “mothur”. It is an open source software package, a
command-line computer program for analyzing sequence data from microbial
communities. The package is frequently used in the analysis of DNA from uncu-
lutured microbes and offers the ability to go from raw sequences to the generation
of visualization tools to describe alpha and beta diversity. In any sort of phyloge-
netic or genotype-based community analysis, group (cluster) sequences into col-
lections of related sequences, called genotypes is the first step. Most frequently,
mothur was used to cluster sequences and mothur is capable of processing data
generated from several DNA sequencing methods including 454 pyrosequencing,
Illumina HiSeq and MiSeq, Sanger, PacBio, and IonTorrent. Thus, mothur is one of
the most cited bioinformatics tool for analyzing 16S rRNA gene sequences.
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1.5.3 Analyzing 16S rRNA Sequence Data Using QIIME
and Mothur

In analyzing 16S rRNA gene sequence data, QIIME and mothur share many
capabilities and themes, for example, quality control, clustering, classification or
assigning taxonomy. Mothur has a unique step in which all sequences must be
aligned to a template database and any sequences which do not overlap in the same
space are removed from the analysis. Generally, QIIME and mothur conduct 16S
rRNA gene sequence data analysis using following steps.

Step 1 Quality Control or Quality Filtering.

16S rRNA gene analysis generally begins with data pre-processing to remove or
filter low number of sequences. QIIME and mothur can perform quality control or
quality filtering, which is an essential step of bioinformatical analysis.

Step 2 Pick OTUs and Assign Representative Sequences.

The next step is OTU clustering: to pick OTUs. The most common method in
QIIME is a program called uclust (Werner 2014). The OTUs are grouped based on
a user-defined level of sequence similarity (e.g., 97% to approximate species-level
phylotypes). The uclust and mothur perform OTU clustering purely based on
sequence similarity (Caporaso et al. 2010).

OTU-picking followed by assigning representative OTU sequences into taxo-
nomic levels (de novo OTU picking), such as family, genus, and species, by
changing the sequence similarity threshold. However, to accurately assign
sequences to taxonomic levels, comparison of genomic regions between experi-
mental samples and reference data is required (Tyler et al. 2014), which is known as
reference-based OTU clustering (or picking). A taxonomic identification is made by
comparing the OTUs to a reference database and assigns each OTU a unique
identification number (Edgar 2010; Cole et al. 2014).

Step 3 Build OTU or Taxonomy Table.

OTU or taxonomy table can be obtained via either QIIME or mothur. OTU table is
sample by observation matrix, typically row with OTUs and columns with samples;
taxonomy table typically row with OTUs and columns with taxonomy: domain,
phylum, class, order, family, and genus. The number of OTUs can often be inflated
for a variety of reasons. Thus, to ensure the reported number of OTUs correctly, the
obtained OTU table often need to be filtered (Quince et al. 2011).

Bioinformatic analysis of 16S rRNA gene sequencing data ends with OTU table
and/or Taxonomy Table. However, many tools were developed with the capabilities
not only performing bioinformatic analysis, but also directly conducting basic
statistical analysis. For example, QIIME can also calculate alpha and beta diver-
sities, implement statistical tests, and visualize data (Zhang et al. 2013; Werner
2014).
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1.6 Summary

In this chapter, we first briefly introduced microbiome definition, concept, phylo-
genetics and metagenomics, which provided the basic knowledge of microbiome
study. We then comprehensively reviewed DNA Sequencing, especially the
next-generation sequencing techniques; and focused on introducing both 16S rRNA
sequencing and shotgun metagenomic sequencing approaches. In addition, we
introduced two most commonly used bioinformatics data analysis tools: QIIME and
mothur. After reading this chapter, the readers should have some basic under-
standing on how microbiome study is about, where and how microbiome data come
from. In Chap. 2, we will introduce and describe in details the microbiome dataset
structures and characteristics.
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Chapter 2
What Are Microbiome Data?

In this chapter, we first introduce microbiome data from sources of sequencing in
Sect. 2.1. Then, we describle microbiome data structure and provide several real
data tables to illustrate the data structure in Sect. 2.2. The features of microbiome
data are summarized in Sect. 2.3. Section 2.4 provides a real example to highlight
over-dispersed and zero-inflated features of microbiome data. We describle some
challenges of modeling microbiome data in Sect. 2.5. Section 2.6 is summary.

2.1 Microbiome Data

Microbiome data is generated through 16S rRNA gene sequencing and shotgun
metagenomic sequencing. The bioinformatics tools include the pipeline QIIME and
mothur. For example, after preprocessing the raw sequences, two ways are available
to generate analyzable microbiome data (Chen et al. 2013; Li 2015). The 16S
sequences are either mapped to an existing phylogenetic tree in a taxonomy-
dependent way (Matsen et al. 2010) or clustered into OTUs (operational taxonomic
units) according to similarity in a taxonomic-independent way (Schloss et al. 2009;
Caporaso et al. 2010). The first way uses the existing phylogenetic tree structure to
generate microbiome datasets, whereas the second way clusters sequence reads
based on similarity level and then assigns them to different taxonomic levels. In the
second way, the reads from the amplicons are clustered into OTUs, based on
sequence similarity, and then OTUs are hierarchically assigned to a taxonomic tree
at the kingdom, phylum, class, order, family, genus and species ranks (Liu et al.
2008; Shi and Li 2017) using available methods for accurate taxonomy assign-
ments, including BLAST (Altschul et al. 1990), the online Greengenes (DeSantis
et al. 2006) and RDP (Cole et al. 2003) classifiers, and phylogenetic tree-based and
multimer clustering tree-based methods. Liu et al. compared these methods and
recommended use of Greengenes or RDP classifier (Liu et al. 2008).
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The final data produced by taxonomy assignments are tables of read counts
(bacterial taxa) that are assigned to nodes of a known taxonomic tree. The tables of
read counts or relative abundance quantified from the read counts can be used for
analyzing and modeling the microbiome composition.

2.2 Microbiome Data Structure

2.2.1 Microbiome Data Are Structured as a Phylogenetic
Tree

One unique feature of microbiome data is phylogenetic tree-structured. The bac-
terial taxa in a community are not randomly distributed; they usually not only
depend on each other, but also exist the phylogenetic relationships among bacteria,
which provides insights into the evolutionary relationships among bacterial taxa:
a phylogenetic tree (Chen et al. 2013). A phylogenetic tree has been defined as a
ubiquitous graph in biology that describes the evolutionary relationship between a
set of species (Purdom 2011) or relates all the bacterial species (Xiao et al. 2017). It
consists of many levels.

The phylogenetic tree structure indicates that the relationships of taxa among
diverse microbes are not only taxonomical, but also evolutionary (Koh et al. 2017,
2018). Taxa that are closer on the tree tend to have similar responses to environ-
mental factors or have similar biological functions (Purdom 2011; Chen et al. 2013).

2.2.2 Feature-by-Sample Contingency Table

Depending on the research fields and the bioinformatics tools used to generate the
high-throughput data, microbiome study and genomics generally have a data
structure called feature-by-sample contingency table. The count tables typically
have features as rows, and samples as columns.

In general, “features” refer to any of OTUs, genes, taxonomic levels, sequence
variant, transcripts, variables, etc. “Samples” are also called replicates, subject,
objects, descriptors, etc. In other fields, rows of the data matrix can be subjects,
while columns can be variables. In different research fields, both rows and columns
could have different names; for example, in ecology, the primary data structure is a
site-by-species matrix that contains abundances, relative abundances, or the pres-
ence of species (or other taxonomic units) observed at different sampling sites. In
microbiome literature, researchers often use OTU, taxon, genus, and species to refer
to the features. Thus, the primary data structure in microbiome study is a taxa table
or OTU table. The taxa (or OTU) table has a same data structure as a primary
ecological data, but having multiple phylogenetic levels of bacterial taxa.
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Some statistical programs may prefer data to be in the format sample-by-feature
(taxon/OTU). In such cases, the rows and columns need to be transposed before
analysis.

In this book, we prefer to use taxa-by-sample or sample-by-taxa to refer to
microbiome data structure. However, when the feature-by-sample table is used in
different context, such as in different programs and packages, we also use different
names to label rows and columns. Readers should notice that we use them
exchangeable. We summarize some row and column names of the feature-by-sample
contingency table in Table 2.1.

2.2.3 OTU Table

Table 2.2 shows what an OTU table looks like. This is often what you will get from
the 16s rRNA gene sequencing, after processing OTU picking. The table is
extracted from the data sets used in our published paper (Jin et al. 2015). The table
records the counts of 10 bacterial species in four extracted samples based on 16S
rRNA sequencing. Table 2.3 is another version of OTU table. Each row in the OTU
table corresponds to an OTU with taxa information included in the last column,
while each other column corresponds to a sample.

2.2.4 Taxa Count Table

Table 2.4 is used to illustrate what a taxa count table looks like. The table is
extracted from the same data sets used in the paper (Jin et al. 2015). The table

Table 2.1 Feature-by-sample contingency table used in microbiome, genomics, and other
high-throughput data studies

Rows Columns Comments

Features Samples Used in all RNA-or DNA-sequencing
experiments and contexts

OTUs (or taxa,
i.e., class, genus,
species)

Samples, libraries,
microbiome or
metagenomic samples

A feature is a species or OTU instead of
a gene in the context of microbiome
sequencing, DNA sequencing-based
microbiome study

Genes (or tags or
exons or transcripts,
subsystems)

Samples, libraries A feature is a gene in the RNA-
sequencing context; the total reads per
sample are called library size and
sometimes referred to as depths of
coverage

Observations (cases) Variables (part of a
composition)

Compositional data

Species Sites Ecological data
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records the counts of 10 bacterial at genus level in four extracted samples based on
16S rRNA sequencing. Each row in the table corresponds to a genus while each
column records a count of reads corresponding to a sample. The levels of phylum,
class, family, order, and species have the same data structures.

2.2.5 Taxa Percent Table

Table 2.5 illustrates taxa percent table. As the name suggested, it has the same data
structure and row and column names are same as the names in taxa count table. The
values in each cell are just calculated from dividing the counts of reads in taxa count
table by the total counts of reads of that taxon in the sample.

2.3 Features of Microbiome Data

Microbiome data have several features. Microbiome count data, i.e., OTU counts,
taxa abundance, are naturally constrained, high dimensional, sparse with containing
a large proportion of zero counts in the OTU(Taxa) table, complex covariance and
correlation structures among different OTUs(taxa), and over-dispersed with large
within-group heterogeneities.

Table 2.2 An example of OTU table from 16S rRNA sequencing

Species 5_15_drySt-28F 20_12_CeSt-28F 1_11_drySt-28F 2_12_drySt-28F

Tannerella sp. 474 66 543 569

Lactococcus lactis 326 737 2297 548

Lactobacillus
murinus

11 42 114 28

Lactobacillus
murinus::
Lactococcus lactis

1 12 25 5

Parasutterella
excrementihominis

1 0 1 4

Helicobacter
hepaticus

87 0 0 13

Prevotella sp. 116 5 237 59

Bacteroides sp. 174 31 945 353

Barnesiella
intestinihominis

8 1 0 2

Lactobacillus
murinus::
Lactobacillus sp.

1 9 7 4

32 2 What Are Microbiome Data?



Table 2.3 Another version of OTU table called sequencing OTU table

#OTU
ID

10_25_drySt-28F 11_31_drySt-28F 12_32_drySt-28F

0 0 0 0 Root

1 0 0 0 Root; Bacteria;
Firmicutes; Bacilli;
Lactobacillales;
Streptococcaceae;
Lactococcus;
Lactococcus lactis

2 0 0 0 Root; Bacteria;
Bacteroidetes;
Bacteroidia

3 0 0 0 Root

4 0 0 0 Root; Bacteria;
Firmicutes; Bacilli;
Lactobacillales;
Streptococcaceae;
Lactococcus

5 0 0 0 Root; Bacteria;
Firmicutes; Bacilli;
Lactobacillales;
Streptococcaceae;
Lactococcus;
Lactococcus lactis

6 0 0 0 Root; Bacteria;
Firmicutes; Clostridia;
Clostridiales;
Ruminococcaceae

7 0 0 0 Root; Bacteria;
Bacteroidetes;
Bacteroidia

8 0 0 1 Root; Bacteria;
Firmicutes; Bacilli;
Lactobacillales;
Streptococcaceae;
Lactococcus;
Lactococcus lactis

9 0 0 0 Root; Bacteria;
Firmicutes; Bacilli;
Lactobacillales;
Streptococcaceae;
Lactococcus;
Lactococcus lactis

The table is also extracted from the data sets used in our paper (Jin et al. 2015). The taxa
information in this table is useful (e.g., for downstream analysis)
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2.3.1 Microbiome Data Are Compositional

Microbiome count data (i.e., OTUs or taxa abundance data from 16S rRNA
sequencing) are compositional with two key geometric properties. First, the total
sum of all component values (sometimes called the library size) is an artifact of the
sampling procedure. The library size can be affected by many factors, such as
technical variability or differences in experiment-specific abundance. Second,
compositional data are proportional, i.e., the distance between component values is
only meaningful proportionally. The elements of the composition are non-negative
and sum to unity. In Chap. 10, we will present more details of the compositional
features of microbiome data.

2.3.2 Microbiome Data Are High Dimensional
and Underdetermined

Microbiome sequence data sets are high dimensional with tens of thousands of
different categories. They are underdetermined, having the number of taxa or OTUs
much greater than the number of samples (Kurtz et al. 2015; Tsilimigras and Fodor
2016). For example, in our murine intestinal microbiome dataset (Jin et al. 2015),
there are total 8 samples (5 from VDR lockout and 3 from wild-type mice).
However, there are 248 bacteria at genus rank. The high dimensionality could result
in large p small n problem (Yin and Hilafu 2015), and poses statistical challenge to
analyze microbiome data. In Chap. 3, we review more details of high dimension-
ality issues and strategies of modeling this kind of data.

Table 2.4 An example of taxa table from 16S rRNA sequencing

Name 5_15_drySt-28F 20_12_CeSt-28F 1_11_drySt-28F 2_12_drySt-28F

Tannerella 476 67 549 578

Lactococcus 326 737 2297 548

Lactobacillus 94 597 434 719

Parasutterella 1 0 1 4

Helicobacter 89 0 0 13

Prevotella 121 7 289 99

Bacteroides 273 34 958 377

Barnesiella 9 1 2 2

Odoribacter 1 0 22 7

Eubacterium 52 131 144 238
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2.3.3 Microbiome Data Are Over-Dispersed

Taxa count data, either taxonomy reads or OTU counts from amplicon sequenc-
ing experiments in microbiome studies or differential expression data
from RNA-sequencing experiments are often over-dispersed (Xia and Sun 2017),
which indicates that the variance of the counts of read is larger than what would be
predicted by a pre-assumed typical multinomial regression, i.e., Poisson. The
over-dispersed problem of the microbiome data is due to the facts: (1) the library
sizes of DNA or RNA sequencing are widely different, and (2) OTU (taxa) count
proportions vary more than expected under the posed common multinomial
regression, such as Poisson model (McMurdie and Holmes 2014). In Chap. 11, we
discuss microbiome data with overdispersion and model the over-dispersed
microbiome data with two R packages.

2.3.4 Microbiome Data Are Often Sparse with Many Zeros

In microbiome data, sparsity is seen as the absence of many taxa across samples and
zeros are generated in most experiments. Microbiome taxa abundance, especially
the taxa abundance at lower taxonomic levels or OTU counts often have many
zeros and right skewed (Xia and Sun 2017).

In the count data modeling, two kinds of zeros are often referred based on the
sources of zeros: the sampling zeros due to sampling variability and the structural
zeros above and beyond the expected zero frequency under considered model (Xia
et al. 2012).

Sampling zeros are also called count zeros (Martín-Fernández et al. 2011). A count
is used to record the number of times an event occurs. Count data are categorical data
in which the counts represent the numbers of items falling into each of several
categories (Martín-Fernández et al. 2011). Count zeros present if the event did not
occur on a certain situation, but may occur in another situation. This type of zero is
due to a sampling problem, because components may be unobserved due to the
limited size of the sample or undetectable due to the limit of techniques. In other
words, the zeros are due to insufficiently large samples (Martín-Fernández et al. 2015).
The unobserved positive values may be observed with a larger number of trials or with
a different sampling design. Thus, they are also called the sampling zeros.

A structural zero (Bacon-Shone 2003; van den Boogaart and Tolosana-Delgado
2013; He et al. 2014; Martín-Fernández et al. 2015; Tang et al. 2018), essential zero
(Aitchison and Kay 2003; Martín-Fernández et al. 2011), genuine zeros
(Martín-Fernández et al. 2015), or absolute zero (Martín-Fernández et al. 2015) is
called in a given observation, when the part is not properly defined or simply cannot
exist due to some deterministic reasons (van den Boogaart and Tolosana-Delgado
2013). It means that “a component which is truly zero, not something recorded as
zero simply because the experimental design or the measuring instrument has not
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been sufficiently sensitive to detect a trace of the part” (Aitchison and Kay 2003).
For example, the zeros that truly represent the absence of taxa from a particular
sample belong to structural zeros (Tsilimigras and Fodor 2016).

In microbiome literature, there are rounded zeros, except sampling and structural
zeros. Rounded zeros mostly appear for the continuous variables. It results from
under sampling (Tsilimigras and Fodor 2016). Actually, it is not a true zero, but
rather represents an observed value below a particular maximum possible
rounding-off error or a below the detection value or limit (Martín-Fernández et al.
2011; van den Boogaart and Tolosana-Delgado 2013).

The reasons that many zeros exist in microbiome data may be due to structure
itself and sampling (e.g., biological and technical variability) (Paulson et al. 2013).
The zeros could come from structure itself. The taxa or OTUs abundance is fre-
quently inflated with zeros because the taxa (OTUs) are subject dependent, each
subject has a unique taxa/OTUs composition (Xu et al. 2015). The zero counts of
taxa or OTUs are observed in a sample because the taxa (OTUs) are physically or
biologically absent in the subject (structural zeros). The zero count is due to the true
discovery of low-abundance taxa that are only in a few samples (Tsilimigras and
Fodor 2016). For example, the most taxa (OTUs) in marker-gene studies are rare.
Therefore, they are absent from a large number of samples.

Sampling results in the taxa (OTUs) unobserved or undetected in a given exper-
iment. First, in most experiments, zeros may derive from sequencing artifacts and the
highly variable sequencing depth between samples (Gloor et al. 2010; Poretsky et al.
2014; Tsilimigras and Fodor 2016). Second, zeros also occur when a given compo-
nent is measured. For example, when the affected variable has a low probability of
occurrence and the total number of counts is also relatively low, the component may
be below the detection limit (van den Boogaart and Tolosana-Delgado 2013).

Zeros also occur in data processing. For example, microbiome data are often
converted into a compositional vector of proportions by dividing the observed
counts by the total number of reads. Due to the presence of rare taxa, many count
zero entries may occur in the process of aligning and normalization if the known
reference sequences are different or different normalization methods are used (Li
2015; Chen and Li 2016).

2.4 An Example of Over-Dispersed and Zero-Inflated
Microbiome Data

Table 2.6 is an example of over-dispersed and zero-inflated taxa (OTUs) abundance
data (Romero et al. 2014). The data at species rank come from case–control lon-
gitudinal study of the vaginal microbiota with 32 non-pregnant and 22 pregnant
women who delivered at term (38–42 weeks). The abundance data of species have
many zeros. The lowest percentage of zero is Lactobacillus with 14.44%, the
highest is Streptocongiccus anosus with 73.78% zeros. Average of these 28 species
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gives 58.57% zeros. For each species, the variance is much larger than its mean (see
Table 2.6), indicating overdispersion in the data.

2.5 Challenges of Modeling Microbiome Data

Microbiome data with a phylogenetic tree structure are high dimensional and
underdetermined, over-dispersed and often sparse with many zeros. Modeling these
kinds of feature data poses numerous challenges for traditional statistical tools.
These topics are challenging to microbiome researchers and biostatisticians.

Table 2.6 Distribution of species (OTUs)

Species (OTUs) Zero
(percentage)

Median Mean Variance

Lactobacillus iners 15.11 (138/900) 238 1168 206E4

Lactobacillus crispatus 42.33 (381/900) 1 755.5 205E4

Atopobium vaginae 51.78 (466/900) 0 332.8 404E3

Lactobacillus 14.44 (130/900) 20 168.5 324E3

Lactobacillus jensenii 56.89 (512/900) 0 102.8 128E3

Lactobacillus gasseri 62.33 (561/900) 0 111.3 186E3

Clostridiales 58.56 (527/900) 0 49.8 22,535

Parvimonas micra 71.33 (642/900) 0 45.9 26,298

Leptotrichia amnionii 68.89 (620/900) 0 42.9 27,223

Prevotella genogroup 2 59.11 (532/900) 0 36.2 174,600

Actinomycetales 41.89 (377/900) 1 25.6 11,767

Gardnerella vaginalis 55.89 (503/900) 0 24.9 3322

Streptocongiccus anosus 73.78 (664/900) 0 18.5 30,230

Aerococcus christensenii 65.89 (593/900) 0 18.2 3710

Finegoldia magna 51.56 (464/900) 0 17.9 7606

Peptoniphilus 54.89 (494/900) 0 17.1 4050

Bifidobacteriaceae 61.11 (550/900) 0 16.6 5402

Anaerococcus 60.67 (546/900) 0 15.6 4756

Prevotella bivia 72.67 (654/900) 0 12.5 4131

Prevotella 58.56 (527/900) 0 11.8 1238

Dialister 57.33 (516/900) 0 7.7 557.6

Eggerthella 72.67 (654/900) 0 7.6 778.5

Clostridiales Family XI Incertae Sedis 67.67 (609/900) 0 6.5 682

Bacteria 66.44 (598/900) 0 5.8 553.9

Atopobium 66.33 (597/900) 0 5.8 1206

Anaerococcus vaginalis 69.11 (622/900) 0 5.8 1086

Ureaplasma 69.33 (624/900) 0 3.4 211.9

Lactobacillus vaginalis 73.33 (660/900) 0 2.7 81.3
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The statistical challenges include, but not limited to: (1) how to incorporate the
taxa/OTUs phylogenetic tree information; (2) how to reduce dimensions and solve
large p and small n problem; (3) how to handle rare taxa(OTUs); and (4) how to
model the microbiome data with over-dispersion and zero-inflation. For example,
the abundance of bacteria in the human gut is characterized by an increasing
number of zeros at lower taxonomic levels and right skewed (Xia and Sun 2017).
Zero and small values are one main source of sparsity.

Sparsity is a central challenge in the analysis of 16S rRNA-sequence data
(Tsilimigras and Fodor 2016), and thus the issue of sparsity with many zeros is a
central topic in analysis of microbiome data. First, sparsity with many zeros poses
the critical challenges on parametric models to make accurate estimates of variance
for meaningful inference and even such estimates are essentially impossible on
samples that consist mostly of zeros (Tsilimigras and Fodor 2016). For example,
when the taxa are sparse with many zeros, the distribution of taxa or OTUs
abundance and the distribution of the taxa or OTUs occurrence probability are both
skewed (Chen 2012), which results in zero inflation. Due to zero inflation, the taxa
abundance with excess zeros cannot be correctly analyzed by any standard para-
metric model such as, a normal, binomial, Poisson, negative-binomial, and beta
distributions (Martin et al. 2005). Second, sparsity with many zeros also makes
nonparametric methods invalid. Nonparametric methods are based on ranks, or
medians; thus, generally insensitive or more “robust” to outliers and avoid making
variance estimates that can be skewed by sparse samples (Martín-Fernández et al.
2011). In the situations with many taxa having many zeros and few available
samples, it will lack power to perform inference on the low-abundance taxa by
using the nonparametric methods. Taking together, both traditional parametric
models and nonparametric methods are not suitable for analyzing sparse micro-
biome data with many zeros. Therefore, analysis of sparse microbiome data with
excess zeros is a real challenge. Failure to account for the excess zeros may result in
biased parameter estimation and misleading inference.

2.6 Summary

In this chapter, we described and summarized the structure and features of
microbiome data. We presented the OTU(taxa) tables to provide readers what the
real microbiome structure and distribution look like. Microbiome data are com-
positional, high dimensional, underdetermined, over-dispersed, and often sparse
with excess zeros. These features challenge standard statistical tools, making both
parametric and non-parametric models invalid.
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Chapter 3
Introductory Overview of Statistical
Analysis of Microbiome Data

In this chapter, we first introduce and discuss the themes and statistical hypotheses
in human microbiome studies in Sect. 3.1. Then, we overview the classic statistical
methods and models for microbiome studies in Sect. 3.2. In Sect. 3.3, we introduce
the newly developed multivariate statistical methods. Section 3.4 introduces the
compositional analysis of microbiome data. In Sect. 3.5, we discuss the longitu-
dinal data analysis and causal inference in microbiome studies. In Sect. 3.6, we
introduce some statistical packages for analyzing microbiome data. Finally, we
cover the limitations of existing statistical methods and future development in
Sect. 3.7.

3.1 Research Themes and Statistical Hypotheses
in Human Microbiome Studies

There are mainly two themes in the current microbiome studies: (1) to characterize
the relationship between microbiome features and biological, genetic, clinical or
experimental conditions; and (2) to identify potential biological and environmental
factors that are associated with microbiome composition. The goal of these studies
is to understand mechanisms of host genetic and environmental factors that shape
microbiome. Insights gained from the studies potentially contribute to the devel-
opment of therapeutic strategies in modulating the microbiome composition in
human diseases (Spor et al. 2011; Xia and Sun 2017).

The interactions among environment, microbiome and host are dynamic and
complicated (see Fig. 3.1). To study the interactions, three general research
hypotheses could be developed. Hypothesis 1 is to test the association between
microbiome and host: whether the composition of the microbiome or “dysbiotic”
microbiome is linked to the health or disease of host. For example, in inflammatory
bowel diseases (IBD) research, we hypothesize that dysbiosis is associated with the
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progression of the diseases (Albenberg et al. 2012; Lewis et al. 2015). In vitamin D
receptor (VDR) and microbiome study, we hypothesize that lack of VDR causes
dysbiosis and changes the functions of the murine intestinal microbiome (Jin et al.
2015). The hypothesis also could be on microbiome community and biological
factors, such as, altered bacterial community is associated with the VDR status in
intestinal epithelial cells (Wu et al. 2015).

Hypothesis 2 is to test whether microbiome is associated with environmental or
biological covariates (Chen et al. 2012), whether environmental factors impact
microbiome (Yassour et al. 2016), or whether an intervention has an effect on a
specific microbiome composition (diversity) in health and disease. For example, we
can test whether dietary interventions shape gut microbiota (Albenberg et al. 2012;
Albenberg and Wu 2014), or whether a probiotic intervention impacts the com-
position of the human microbiota (Lahti et al. 2013). We can also hypothesize that
antibiotics and diet affect gut microbial community structure (Lewis et al. 2015),
nutrition influences gut microbiome composition (Backhed et al. 2015), or antibi-
otic treatments affect the diversity of strains of gut bacteria (Yassour et al. 2016).

Hypothesis 3 is to test the association between environment and host. To test this
hypothesis, we can use the standard statistical methods and models commonly used
in other biomedical sciences. For the microbiome studies, the focus is on the
hypotheses 1 and 2.

In general, the null statistical hypothesis could be: there is no difference of
microbiome composition in different experimental groups or genetic conditions
(e.g., health and disease); or there is no difference (change) of microbiome com-
position in different environmental factors or with different interventions.

The core theme of these statistical hypotheses could be the same, i.e., to explore
the impacts of environmental or external factors (e.g., interventions) on microbiome
composition and/or richness of microbiota. However, the research topics are
varying among alpha diversity (species diversity in each individual sample), bac-
terial richness, total number of unique operational taxonomic units (OTUs), phy-
logenetic diversity (the relative amount of diverse phylogenetic lineages), and
species evenness in each sample (Bokulich et al. 2016).

Fig. 3.1 Dynamic
Interactions among
environment, microbiome and
host for the research
hypotheses in microbiome
studies
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The statistical hypothesis could be alpha diversity. For example, for antibiotic
studies, we hypothesize that antibiotic treatment decreases microbial diversity
(Dethlefsen et al. 2008; Jakobsson et al. 2010; Dethlefsen and Relman 2011; Nobel
et al. 2015; Yassour et al. 2016), or does not decrease microbial diversity (Yassour
et al. 2016); therefore, the specifically antibiotic-treated children have a less or same
diverse gut microbiota (Yassour et al. 2016).

The statistical hypothesis could also be beta diversity, such as, Jaccard index of
species or strains (Yassour et al. 2016) or UniFrac phylogenetic distance (Bokulich
et al. 2016).

The statistical hypotheses could even be temporal microbiome community. For
example, we can hypothesize that all strains are similar, the microbiome community
is stable (not change over time), or compared to non-antibiotic users, antibiotic
treatment make the strains less similar and less stable (Yassour et al. 2016).

To prove a scientific hypothesis, we need an appropriate statistical method. In
the following two sections, we review the classical statistical tests, multivariate
statistical tools, and some newly developed models and methods in analyzing
microbiome data.

3.2 Classic Statistical Methods and Models in Microbiome
Studies

3.2.1 Classic Statistical Tests

Many classic statistical tests are available to analyze microbiome. A hypothesis testing
in microbial taxa can be performed by comparing alpha and beta diversity indices (Xia
and Sun 2017). Depending on whether the data are normally or non-normally dis-
tributed, number of experimental groups, or experimental conditions, we can use a
t-test, analysis of variance (ANOVA), or corresponding non-parametric test.

Two-sample t-test and its nonparametric counterpart Wilcoxon rank sum test
were widely used in microbiome studies to comparing continuous variables
between two groups. For example, standard t-test was used to compare alpha
diversity (La Rosa et al. 2015) or population abundance (Rogosa and Sharpe 1960;
Redondo-Lopez et al. 1990; Chen et al. 2012; Kim et al. 2013) between two sets of
relative abundance data. Standard t-test is used even to compare the relative
abundances of different phyla and genera between healthy volunteers and colorectal
cancer (CRC) patients (Hillier et al. 1993; Wang et al. 2012). The non-parametric
analogous Wilcoxon rank sum test (also called Mann-Whitney test) was conducted
to compare alpha diversity (Yin et al. 2013), e.g., Shannon diversity (La Rosa et al.
2015), two clusters as defined by the bacterial taxonomic composition (Lewis et al.
2015). Wilcoxon rank sum test was also used to identify the differences in mi-
crobial taxa or OTUs, other nonparametric measures (Yin et al. 2013), and the
relative abundances of different phyla and genera (Wang et al. 2012).
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When comparing more than two groups, we choose the one-way ANOVA or its
non-parametric equivalent of the Kruskal-Wallis test, depending on whether the
variables are normally distributed. ANOVA was reviewed to analyze taxonomic
diversity data, e.g., beta diversity (Curtis 1997), to compare proportional abundance
(Sewankambo et al. 1997; Stein et al. 2013), to assess the risk model of the gut
microbiome on BMI or lipids (Sewankambo et al. 1997; Kim et al. 2013), and
taxonomic and functional-specific biases (Voigt et al. 2015). ANOVA test was also
used to compare the functional capacity of microbiome among intestinal locations
(Yang et al. 2016). Kruskal-Wallis one-way ANOVA was used to compare nor-
malized z-score of the bacterial and fungal proportions for samples, and unequal
variances of microbiome data (Gorzelak et al. 2015).

A chi-square test is usually used to compare categorical microbiome data. For
example, testing a single a priori specified taxon is present at different rates across
groups (La Rosa et al. 2015).

To detect differentially abundant taxa, White’s research group combined several
classic statistical methods and procedures to propose a statistical method, called
‘Metastats’ (White et al. 2009). First, the raw sequencing count (abundance data)
are normalized or converted to a relative abundance data representing the propor-
tion of each taxon to each of the individuals. Second, a two-sample
non-parametrical t-test is used to analyze the differential abundance across the
two treatment groups by using the Storey and Tibshirani’s permutation method
(Storey and Tibshirani 2003). Third, to control the false discovery rate (FDR) in
multiple hypothesis testing taxa, the q-values are used to assess the significance of a
test (Storey and Tibshirani 2003). Finally, to handle sparse counts, a Fisher’s exact
test is used to compare the differential abundance of sparsely-sampled (rare) taxa.

Metastats showed that it outperforms Student’s t-test, Lu et al.’s log-linear model
(Lu et al. 2005), and negative binomial (NB) model (Robinson and Smyth 2007)
with simulations and real data. Actually, the proposed method is a hybrid method
with combining several classic statistical methods and procedures. The statistical
framework is an extension of two-sample t-test.

3.2.2 Multivariate Statistical Tools

Microbiome communities in an environmental context can be analyzed by multi-
variate statistical methods or models. Many statistical models and methods are
available for analyzing the association of microbiome community composition and
environmental covariates and outcomes. Most multivariate statistical tools used in
microbiome study adopted from ecological research fields and environmental sci-
ences (Xia and Sun 2017).

Due to high dimensionality, non-normality, and phylogenetic structure of the
data, it is difficult to directly test the association of microbiome composition with
potential environmental factors, using OTUs or taxa abundances. Generally, mul-
tivariate analyses first need to choose one distance measure method, and then
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analyze the estimated distances, in which a distance measure is defined between any
of two microbiome samples.

Several tests of among-group differences are available in analyzing microbiome
data: multivariate analysis of variance with permutation (PERMANOVA), and
analysis of group similarities (ANOSIM), multi-response permutation procedures
(MRPP), and Mantel’s test (MANTEL).

PERMANOVA was proposed by Anderson and McArdle to apply the powerful
ANOVA to multivariate ecological datasets (Anderson 2001; McArdle and
Anderson 2001). PERMANOVA is one of most widely used nonparametric
methods to fit multivariate models to microbiome data. It is a multivariate analysis
of variance based on distance matrices and permutation (McArdle and Anderson
2001). Similarly as MRPP, and other multivariate analyses, PERMANOVA is
generally used with one of distance measure method. For example, a
PERMANOVA using unweighted UniFrac distance measure was conducted to
show the composition of the gut microbiota in omnivore versus vegans (Wu et al.
2016), to assess the association with beta diversity measures (Chen et al. 2016), to
test for microbial divergence among populations (Smith et al. 2015), and Bray-
Curtis dissimilarity matrix (Tung et al. 2015; Yan et al. 2016).

ANOSIM is one of most widely used multivariate methods in microbiome
studies. It is used to compare within- and between-group similarity (McCord et al.
2014) through a distance measure, to test the null hypothesis that the average rank
similarity between samples within a group is the same as the average rank similarity
between samples belonging to different groups (Giatsis et al. 2014). For example,
Kelly et al. use weighted and unweighted UniFrac distances to test the strength of
association with microbiome composition between treatments and among time
points within treatments (Kelley et al. 2016).

In microbiome literature, the MRPP on the pairwise weighted UniFrac distance
matrix was conducted to confirm the significance of the clustering (Narrowe et al.
2015), to test the factors influencing microbial communities (Degnan et al. 2012), and
to compare community dissimilarities with Bray-Curtis distances (Yan et al. 2016).

Like a correlation analysis, Mantel’s test was used to test association between
environmental factors and host microbiome. For example, to test whether microbiome
variation explains microbiome variation in host (Smith et al. 2015), the association
between the host genetic distance and the variance in community beta-diversity
(Sanders et al. 2014), donor microbiome and BMI (Ridaura et al. 2013), and even to
identify the predictors of microbiome composition (Tung et al. 2015).

3.2.3 Over-Dispersed and Zero-Inflated Models

Taxa count data in microbiome studies, such as microbiome taxonomy reads or
OTU counts from amplicon sequencing experiments or differential expression data
from RNA-Seq experiments are often overdispersed and have excess zeros. In
metagenomic count data, the gene-specific variability varies substantially between
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genes and overdispersion often occurs and affects identifying differentially abun-
dant genes (Jonsson et al. 2017). Excess zeros also occurred in metagenomics
caused by various factors, such as, the abundance of a gene that is undetectable due
to the biomedical technique limit. The sampling zeros also could happen due to the
large diversity between bacterial communities (Jonsson 2017).

In order to fit the microbiome count data with overdispersion and excess zeros,
we often apply the negative binomial and zero inflated models. For example, a NB
model was fitted to analyze microbiome abundance data (McMurdie and Holmes
2014; Xia and Sun 2017) and gut microbiome in Parkinson’s disease (Yin et al.
2013). A NB model (Alekseyenko et al. 2013) was used to assess differences in
sequence tag abundance and to detect differentially abundant features in clinical
metagenomic samples (Van den Boogaart and Tolosana-Delgado 2013a, b).

The abundance of bacteria in the human gut is characterized by an increasing
number of zeros at lower taxonomic levels and right skewed. In order to capture the
characteristic of excess zeros and model the skewed microbiome data, a
zero-inflated model, such as Zero-Inflated Poisson (ZIP), Zero-Inflated Negative
Binomial (ZINB) or hurdle model, is needed. The appropriateness of using
zero-inflated model in microbiome study was assessed by extensive simulations and
a real human microbiome study (Xu et al. 2015). To capture the excess zeros and
model the skewed microbiome data, Wang’s research group used the hurdle model
with a negative binomial distribution to analyze the species of bacteria (97%
similarity threshold OTUs) (Wang et al. 2016).

In order to identify the environmental or biological covariates that are associated
with different bacterial taxa while accounting for overdispersion and many zeros,
Xia’s research group proposed to apply an additive logistic normal multinomial
regression model to link covariates to bacterial composition (counts) (Xia et al.
2013) and applied the model to analyze the association between diet and stool
microbiome composition (Wu et al. 2011).

3.3 Newly Developed Multivariate Statistical Methods

In order to specifically fit multivariate data, especially microbiome data, recently,
the researchers and statisticians have developed several parametric and
non-parametric models. We noticed following several directions or focuses for the
development of multivariate statistical methods.

3.3.1 Dirichlet-Multinomial Model

Among the parametric probability models, the multinomial and Dirichlet-multinomial
distributions are the most popular ones (Holmes et al. 2012; La Rosa et al. 2012a, b).
Based on Dirichlet multinomial mixtures models (Holmes et al. 2012), La Rosa and
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colleagues further proposed a multivariate statistic method (La Rosa et al. 2012b) for
hypothesis testing and power calculations of taxonomic-based human microbiome
data. The authors reparametrize the Dirichlet multinomial model to the Dirichlet
multinomial mixtures to make it suitable to perform hypothesis testing across groups,
based on difference between location (mean comparison) and scales (variance
comparison/dispersion) (La Rosa et al. 2012a). It is implemented in R statistical
software package “HMP” (La Rosa et al. 2016) using the data from the NIH Human
Microbiome Project (iHMP) (Peterson et al. 2009). Its capability of performing
power calculations is also attractive to researchers and statisticians when they design
microbiome study and prepare for grant applications.

3.3.2 UniFrac Distance Metric Family

To compare microbial communities, multivariate analyses first need to choose one
distance measure method. Numerous distance measures have been proposed
(Kuczynski et al. 2010; Swenson 2011). Among them, phylogenetic distance
measures, which account for the phylogenetic relationship among the taxa, are very
powerful toolboxes, because they exploit the degree of divergence between dif-
ferent sequences.

In order to capture phylogenetic information when computing differences
between microbial communities, Lozupone and Knight proposed the UniFrac dis-
tance metric in 2005. UniFrac measures the phylogenetic distance between sets of
taxa in a phylogenetic tree (Lozupone and Knight 2005). The goal of the UniFrac
distance metric was to enable objective comparison between microbiome samples
from different conditions. In 2007, Lozupone et al. added a proportional weighting
to the original UniFrac and differentiated them as unweighted UniFrac and
weighted UniFrac (Lozupone et al. 2007, 2011). Since then, two versions of
UniFrac are available in the microbiome literature and have been applied in
thousands of research publications covering almost everything from human disease
to general ecology (Lozupone et al. 2011; Smith et al. 2013). Unweighted UniFrac
distance considers only species presence and absence information and counts the
fraction of branch length unique to either community, and weighted UniFrac dis-
tance uses species abundance information and weights the branch length with
abundance difference.

These two UniFrac distances have been become the most widely used phylo-
genetic distance measures. However, they have limitations: evaluated assign too
much weight either to rare lineages (unweighted UniFrac distance) or to most
abundant lineages (weighted UniFrac distances), thus, may not be very powerful in
detecting change in moderately abundant lineages (Chen et al. 2012). Based on a
variance adjusted weighted UniFrac distance (VAWUniFrac) (Chang et al. 2011),
Chen et al. developed generalized UniFrac distances that extend the weighted and
unweighted UniFrac distances for detecting a much wider range of biologically
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relevant changes in microbiome composition (Chen et al. 2012). Now, the UniFrac
toolbox family has been expanded from UniFrac distances to generalized UniFrac
distances. The generalized UniFrac distances were demonstrated in detecting the
microbiome differences by analysis of two real human gut microbiome data sets
related to linking human gut microbiome composition to long-term diet (Wu et al.
2011) and testing upper respiratory tract microbiome differences between smokers
and non-smokers (Charlson et al. 2010) using PERMANOVA. Through incorpo-
rating UniFrac distances and PERMANOVA, generalized UniFrac distance mea-
sure has provided a statistical approach to test the association between microbiome
composition and environmental covariates.

Two newly developed UniFrac tools were added to the UniFrac toolboxes:
micropower R package (Kelly et al. 2015) andUniFrac R programs (Wong et al. 2016).
In the micropower package, Kelly et al. incorporated the measures of unweighted and
weighted UniFrac distances into analyses of pairwise distances and PERMANOVA to
power and sample-size estimation. Under the compositional data analysis setting,
Wong et al. introduced two new weightings: information UniFrac and ratio UniFrac
that are not as sensitive to rarefaction and allow greater separation of outliers than
classic unweighted and weighted UniFrac. The goal is to address the limitations of
unweighted UniFrac’s highly sensitive to rarefaction instance and to sequencing depth
in uniform data sets with no clear structure or separation between groups.

3.3.3 Multivariate Bayesian Models

Multivariate Bayesian Mixed-Effects Model
Grantham et al. proposed a Bayesian mixed-effects model, called MIMIX
(MIcrobiome MIXed model), for analyzing microbial taxa jointly rather than
individually (Grantham et al. 2017). The capabilities of MIMIX include globally
testing experimental treatment effects on microbiome composition, locally testing
and estimating treatment effects on individual taxa; quantifying analysis of the
microbiome heterogeneity, and characterizing the latent structure in the micro-
biome. MIMIX is mixed-effects model based on logistic normal multinomial
(LNM) (Xia et al. 2013). As a Bayesian model, MIMIX uses Bayesian factor
analysis (Rowe 2003) to capture complex dependence patterns among microbial
taxa and uses continuous shrinkage Dirichlet-Laplace priors (Bhattacharya et al.
2015) to identify clusters of microbes that respond similarly to experimental con-
ditions (Grantham et al. 2017). The authors of this model suggested that MIMIX
outperform PERMANOVA with Bray-Curtis dissimilarity in detecting the presence
of a significant signal and estimating sparse treatment effects in simulation study
and real data (Grantham et al. 2017). However, more research studies are needed to
conform the performance of this model.

Similar as Grantham et al.’s approach of jointly modeling microbial taxa
abundance, Ren et al. proposed a Bayesian generalized mixed-effects regression
model to account for correlations across microbial taxa and allow borrowing of
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information across taxa (Ren et al. 2017a). Previous multivariate approaches either
assume multivariate logistic normal distributions (Xia et al. 2013; Grantham et al.
2017) or independent Dirichlet distributions (Chen and Li 2013; Wadsworth et al.
2017). The distinctions of the Bayesian nonparametric model proposed by Ren
et al. lie on: (1) using a marginal Dirichlet process prior and a shrinkage prior on the
latent factors to link microbial compositions and covariates while adjusting a
low-dimensional space (Ren et al. 2017a; Udell and Townsend 2017), and (2) vi-
sualizing the association between covariates and microbial compositions (Ren et al.
2017b).

Multivariate Bayesian Graphical Compositional Regression
In Chap. 2, we described that microbiome composition data have the features:
(a) high dimensionality; (b) sparsity with excess zero counts; (c) complex covari-
ance structure; and (d) over-dispersed. To target the large within-group hetero-
geneities and potential confounders, Mao et al. proposed a Bayesian graphical
regression for compositional microbiome data (Mao et al. 2017), based on a
Dirichlet tree multinomial (DTM) model.
Similar as the Dirichlet-multinomial (DM) distribution, the proposed method used
the DM and incorporated phylogenetic information, but directly used the phylo-
genetic tree as the inference tools (Wang and Zhao 2017; Tang et al. 2018). The
proposed approach incorporated the DTM distribution (Dennis 1991; Wang and
Zhao 2017) and graphical models under the Bayesian testing framework. DTM
extends the traditional DM onto phylogenetic trees and provides more flexibility. In
addition, the developed Bayesian graphical test focuses on effectively comparing
group differences under the Bayesian graphical compositional regression (BGCR)
framework by adjusting covariates (Mao et al. 2017). Comparing BGCR to the
DTM methods (Tang et al. 2018) and to the DM test (La Rosa et al. 2012a), BGCR
outperforms the other methods (Mao et al. 2017).

Bayesian Variable Selection for Multivariate Zero-Inflated Models
Jointly modeling multiple taxa is more powerful than taxon-specific univariate
analysis. However, multivariate analysis of microbiome data, especially
zero-inflated microbiome data with covariates is a challenge. Lee et al. proposed a
Bayesian variable selection method for multivariate zero-inflated high-dimensional
covariate data (Lee et al. 2017). The proposed multivariate zero-inflated Poisson
(MZIP) distribution models do not require specifying the covariance structure,
while incorporating a Bayesian variable selection.

3.3.4 Phylogenetic LASSO and Microbiome

The microbiome data are high-dimensional, and often have very large p and small
n, which indicates that there are few data observations and many taxa, and taxa
even more than data observations. In term of data matrix, p refers to the number of
columns, n refers to the number of rows; then the problem large p and small n
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means that small n samples (data observations) contains large p taxa. Graphically, it
means that there are n samples in a p dimensional space.

Statistically there are many challenges to model the high-dimensionality data
(Donoho 2000; Fan and Li 2006). We need to deal with two not-excluded prob-
lems: to solve the large p and small n problem, and to work on variable section.

Typically, a larger p needs a larger n. To effectively model the high-dimensional
microbiome data with large p and small n, one approach is to reduce the dimension
sufficiently, i.e., reducing the dimension of predictors until the regression rela-
tionship between predictors and the response is still preserved (Li 1991; Cook 1994,
1996). In microbiome study, the covariates are also correlated or associated with
each other, which adds more challenges for variable selection. Thus, a sufficient
variable selection is needed (Cook 2004).

To solve the large p, small n problems, many methods have been proposed to
reduce dimension of predictors (Yin and Hilafu 2015) and for variable selection.
Among the methods of variable selection, several model-based penalization
approaches are very useful (Yin and Hilafu 2015), including the lasso (Tibshirani
1996; Zou 2006; Zhou and Zhu 2010; Huang et al. 2012).

The ‘tree-of-life’ schematic, i.e., bacterial groups at different taxon levels
associated a phylogeny, adds complexity to high-dimensionality data structure. Kim
and his team incorporated the microbiome as a covariate in response to biological or
clinical outcomes via the phylogenetic LASSO (least absolute shrinkage and
selection operator) technique (Rush et al. 2016).

Similar to other variable selection methods, their variable selection method also
incorporates the tree-of-life schema. The phylogenetic LASSO developed by Kim
et al. has a hierarchical penalization scheme with a feasible way of grouping
covariates. For example, a tree or cycles are graphically represented, respectively,
based on whether or not the groupings are nested. Also, the phylogenetic LASSO uses
the convex log-likelihood function (Rush et al. 2016), different from the hierarchical
H-LASSO, which uses the penalized least-squares (Zhou and Zhu 2010). The algo-
rithm of phylogenetic LASSO estimate relies on iterative adaptive reweighting. The
phylogenetic LASSO can be applied to select OTUs, taxa or any other ‘-omic’ data as
covariates and then a logistic regression is used to model the response, such as,
whether or not the covariates predict the fecal microbiota transplantation (FMT).

Kim et al. compared the phylogenetic LASSO to SCAD (the smoothly clipped
absolute deviation) models (Xie and Huang 2009), and OLS (ordinary least
squares) for the oracle model, they concluded that phylogenetic LASSO model
outperformed both SCAD and OLS model based on one real clinical study.

3.4 Compositional Analysis of Microbiome Data

Much earlier in 1897, Pearson already warned that “spurious correlation” may be
formed when use the ratio of two absolute measurements in the measurement of
organs (Pearson 1897). Since the second half of the twentieth century, researchers
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in geology have known that using the standard statistical approaches to analyze
composition data may make the results uninterpretable. Aitchison in the 1980s,
particularly in his 1986 seminal work (Aitchison 1981, 1982, 1983, 1984, 1986),
realized that every statement about a composition can be stated in terms of ratios of
components and developed a set of fundamental principles, a variety of methods,
operations, and tools for compositional data analysis. Of those, the logratio trans-
formation methodology was widely accepted by statisticians and researchers in
geology, ecology and other fields (Aitchison 1982; Pawlowsky-Glahn and
Buccianti 2011; van den Boogaart and Tolosana-Delgado 2013a, b;
Pawlowsky-Glahn et al. 2015) because with logratio transformations, the problem
of a constrained sample space (the simplex) of the compositional data could be
removed, and data are projected into multivariate real space. Therefore, all available
standard multivariate techniques can be used again to analyze compositional data
(Pawlowsky-Glahn et al. 2015). A series of publications have shown that the
existing tools for compositional data analysis in geology, ecology and other fields
are readily adapted and also a valid approach to analyze microbiome
high-throughput sequencing data (Aitchison 1986; Pawlowsky-Glahn and Buccianti
2011; van den Boogaart and Tolosana-Delgado 2013a, b; Pawlowsky-Glahn et al.
2015; Gloor and Reid 2016; Gloor et al. 2016).

The development of methods and tools for microbiome compositional data
analysis are most recent. The developing methods focus on removing the compo-
sitional constraint: all microbial relative abundances within a specimen sum to one.
The constraint results in compositional data residing in a simplex rather than the
Euclidean space (Aitchison 1982, 1986). To compare microbial composition
appropriately, the developing methods draw inferences regarding its relative
abundance of a taxon (OTU) in the ecosystem rather than the total abundance in the
ecosystem from the abundance of taxa (OTUs) in the sample (Mandal et al. 2015).

To avoid “spurious correlation”, Lovell et al. proposed the proportionality
measure for analyzing relative data because proportionality is an appropriate cor-
relation analysis for relative data (Lovell et al. 2015). Erb and Notredame further
proposed partial proportionality, a definition adopted from partial correlations (Erb
and Notredame 2016). To identify proportionally abundant taxa, a statistic for
differential proportionality was proposed by Erb et al. (2017). It is equivalent to
one-way ANOVA for taxon ratios.

The most representative research approaches for comparing microbiome com-
position are ANOVA-like differential expression (ALDEx and ALDEx2)
(Fernandes et al. 2013; Gloor and Reid 2016; Gloor et al. 2016) and ANCOM
(Mandal et al. 2015). Fundamentally, both approaches use the logratio transfor-
mation techniques to convert microbiome data, thus removing the compositional
constraints to make the standard multivariate techniques suitable for analysis.

ANCOM is a statistical framework, which was developed to account for the
compositional constraints to reduce false discoveries in detecting differences in
microbial mean taxa abundance at an ecosystem level. It is based on compositional
log-ratios. The authors compared ANCOM with ZIG and t-test with simulation
studies and real data. They concluded that ANCOM outperforms ZIG method by
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substantially reducing the FDR and increasing power. The ANCOM is attractive
because it makes no distributional assumptions and can be implemented in a linear
model framework to adjust for covariates as well as model longitudinal data.

Compared to ANCOM, ALDEx and ALDEx2 are more comprehensive. They are
applicable to nearly any type of data generated by high- throughput sequencing. They
are suitable for the comparison of many different experimental designs. The statistical
analyses include both two-sample and paired t-test, ANOVA, and non-parametric
test, such as, Welch’s t test, Wilcoxon rank sum test, Kruskal-Wallis test. They also
have option to adjust p-values using Benjamin-Hochberg method.

3.5 Longitudinal Data Analysis and Causal Inference
in Microbiome Studies

The microbiome is inherently dynamic, driven by interactions with the host and the
environment, and varies over time. Thus, longitudinal microbiome data analysis
provides rich information on the profile of microbiome with host and environment
interactions.

The distinguishing feature of longitudinal studies is that the subjects are mea-
sured repeatedly during the study, allowing the direct assessment of changes in
response variable over time (Diggle et al. 2002; Fitzmaurice et al. 2004).
Longitudinal study also captures between-individual differences (heterogeneity
among individuals) and within subject dynamics. It offers the opportunity to study
complex biological, psychological, and behavioral hypotheses, especially those
involving changes over time (Zhang et al. 2011). The advantage of longitudinal
analysis is also suitable for microbiome data. It will enhance our understanding of
short-and long-term trends of microbiome by intervention, such as diet, and the
development and persistence of chronic diseases caused by microbiome.

3.5.1 Standard Longitudinal Models

Longitudinal designs and analyses of microbiome data have been used in various
fields, including: the human infant gut microbiome in development of Type 1
diabetes (Kostic 2015). The generalized estimating equations (GEEs) and gener-
alized linear mixed-effects model (GLMM) are the two most popular paradigms in a
longitudinal setting (Zhang et al. 2011). Thus, GEE and GLMM were most likely
used in microbiome studies. For example, these models were used to analyze the
differences in the microbiome composition and stability between pregnant and
non-pregnant women (Rome et al. 2014); the ZINB mixed-effects model was used
to analyze human microbiota sequence data in esophagitis (Fang et al. 2016).

54 3 Introductory Overview of Statistical Analysis of Microbiome Data



Typically, to account for over-dispersion and zero-inflated features of taxonomic
abundance count data, NB or zero-inflated NB distributions were chosen to model
the count data of each phylotype with random-effects to account for the correlations
under the longitudinal data setting. Importantly, we need to compare the microbial
relative abundance, rather than absolute counts between groups. Through adding an
offset term, i.e., the log of the total number of reads, to the linear predictor function
of the NB component, the absolute counts are converted to the relative abundance
accounting for the variable number of reads per sample (Romero et al. 2014; Fang
et al. 2016).

To treat taxa abundance as a continuous variable and model trends (linear
relationships) between taxa abundance and covariates, a linear mixed-effects model
with an autoregressive within subject covariance structure was used (La Rosa et al.
2014). However, this method does not explicitly handle the zero-inflation and
over-dispersion in the data.

3.5.2 Newly Developed Over-Dispersed and Zero-Inflated
Longitudinal Models

Zero-Inflated Gaussian Mixture Model
To address the zero-inflation and over-dispersion while identifying the bacterial
taxa that are associated with covariates, several statistical models have been pro-
posed. Paulson et al. proposed Zero-inflated Gaussian (ZIG) mixture model
(Paulson et al. 2013a, b). The mixture model was designed to use a cumulative sum
scaling normalization technique to correct the bias in the assessment of differential
abundance introduced by total-sum normalization, and a zero-inflated Gaussian
distribution mixture model to account for biases in differential abundance testing
resulting from under-sampling of the microbial community. The model seeks to
directly estimate the probability that an observed zero is generated from the
detection distribution due to under-sampling or from the count distribution (absence
of the taxonomic feature in the microbial community). ZIG mixture model
log-transforms the read counts for 16S rRNA sequencing data, and then uses an
empirical Bayes procedure to estimate the moderated variances. The moderated
variances account for the biases because of zero counts in samples (Paulson et al.
2013a, b). This ZIG method was applied with a data from a longitudinal micro-
biome study (Turnbaugh et al. 2009; Paulson 2013a, b). It is implemented in the
metagenomeSeq Bioconductor package. The authors used the simulation study and
real data to compare ZIG to existing tools and concluded that ZIG outperforms
other widely used statistical methods in the field, such as, Kruskal-Wallis test, and
ZIG yields a more precise biological interpretation of the data (Paulson et al. 2013a,
b). However, the extension of empirical Bayes method to a longitudinal setting was
reviewed as not clear (Chen and Li 2016).
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Extensions of Negative Binomial Mixed-Effects and Zero-Inflated Negative
Binomial Models
Within the longitudinal setting, the negative binomial mixed-effects models
(NBMMs) are the statistical model for detecting the association between the mi-
crobiome and host environmental/clinical factors for correlated microbiome count
data (Zhang et al. 2017). NBMMs are based on NB model and incorporate
random-effects into the fixed-effects to account for correlation among the samples.
NBMMs handle over-dispersion and vary total reads via the over-dispersion
parameter from NB (Zhang et al. 2017). The difference between standard NB model
and NBMMs is that NBMMs are fitted via IWLS (Iterative Weighted Least
Squares) algorithm. However, the models can not deal with zero-inflation.

To account for both overdispersed and excess zeros, the same authors (Zhang
et al. 2016) proposed a ZINB regression for identifying differentially abundant taxa
between two or more populations. The proposed ZINB uses a two-part mixtures: a
NB component to account for overdispersion, and a logistic regression component
to account for excess zeros. The difference between standard ZINB model and this
ZINB extension lies on IWLS and EM (Expectation Maximization) algorithms
utilized in the latter method. In a simulation study conducted by the authors of this
method, ZINB outperforms DESeq, edgeR, and metagenomeSeq in various sparse
scenarios based on AUC (Area under the Curve) estimates. Real data also suggested
that the results are consistent with previous studies.

Bayesian Semiparametric Generalized Linear Regression Model
Lee and Sison-Mangus proposed a Bayesian semiparametric generalized linear
regression model to investigate the association between the microbial abundance
and succession change and host environmental/clinical factors, i.e., physical and
biological factors (Lee and Sison-Mangus 2018). Based on the generalized linear
regression model, the model uses the Laplace prior, a sparse inducing prior, to
improve estimation of covariate effects on mean abundances of microbial species
represented by OTUs. Similar as Zhang et al.’s NBMMs, the method specifies a NB
distribution and assumes an overdispersion parameter for OTU counts. Comparing
to other approaches, e.g., in Romero et al. (2014) and Zhang et al. (2017), the
proposed method does not normalize OTU counts to adjust differences in sample
total counts before modeling. Instead, it jointly analyzes all OTUs and simultane-
ously performs the normalization and estimation of covariate effects on OTU
abundance.

Zero-Inflated Beta Regression Model with Random-Effects
Under the longitudinal microbiome data setting, Chen and Li proposed a two-part
zero-inflated Beta regression model with random-effects (ZIBR) for testing the
relationship between microbial abundance and clinical covariates (Chen and Li
2016). ZIBR treats microbiome data as compositional. The aims of ZIBR are to
account for three features of microbiome compositional data: highly skewed,
bounded in [0, 1), and often sparse with many zeros while considering correlations
of the observations from the repeated measurements on the same subject. We will
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introduce the details of this method and applied it to a real longitudinal microbiome
data in Chap. 12.

Differential Distribution Analysis Based on Zero-Inflated Negative Binomial
Model
Chen et al. proposed a general framework of differential distribution analysis of
microbiome data based on a ZINB (zero-inflated negative binomial) regression
model (Chen et al. 2018). First, the count-based ZINB model has been tested to be
best fit to zero-inflated and over-dispersed data (Xia et al. 2012). It was suggested
statistically and biologically more appropriate for microbiome data too (Chen et al.
2018). Second, the zero-inflated model is biologically more interpretable because
the assumption of mixture observed zeros, i.e., ‘structural zeros’ and ‘sampling
zeros’, is more consistent with the observed human microbiome data, compared to
the hurdle model (Chen et al. 2018). Previous zero-inflated models treat the dis-
persion as a nuisance and common parameter over all covariates (Chen and Li
2016; Fang et al. 2016; Zhang et al. 2016). In contrast, the proposed method allows
covariate-dependent dispersion: the dispersion to depend on covariates such as
disease condition, and addresses outliers to improve the robustness of zero-inflated
models (Chen et al. 2018). To identify associated microbial taxa, the proposed
method also can conduct an omnibus test of prevalence, abundance and dispersion
parameters.

Mixed-Effects Dirichlet-Tree Multinomial (DTM) Model
Tang and Nicolae proposed a mixed-effect DTM model for allowing easily to use
empirical Bayes shrinkage in enhancing microbial proportions inference (Tang and
Nicolae 2017; Tang et al. 2018). It incorporates covariates and related taxa in
microbiome studies. While considering the covariates, it focuses on prediction
instead of comparison. The proposed mixed-effect DTM model has three features:

First, uses the Dirichlet-tree multinomial distribution with mixed-effects to
improve the detection of phenotype-microbiome associations and prediction
accuracy. By taking DTM advantages of naturally incorporating sequencing depth,
over-dispersion and easily adapted to localized signals. Second, removes the
unwanted covariate effects based on a mixed-effect DTM model and employs
multi-scale empirical Bayes shrinkage to improve estimating microbial proportions.
Third, uses random forest in incorporating shrinkage estimators (explanatory
variables) as prediction tools, such as, to predict weight from microbiome.

3.5.3 Regression-Based Time Series Models

The dynamic microbiome can be analyzed via a regression-based time series model,
i.e., treating the relative abundances of taxa, ecological diversity of the gut
microbiota over time as a series of observations (dependent variables), and a
function of time and other covariates as independent variables. For example, we can
use a regression to evaluate the dependence of the human vaginal microbiome on
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time in the menstrual cycle and other covariates (Gajer et al. 2012; Gerber 2015), an
autoregressive (AR) model to assess the tendency of the different taxonomic groups
of bacteria (Palmer et al. 2007); and an infinite mixture model to treat the micro-
biome counts (Gupta et al. 1998).

Time-Series Clustering Method
Time-series clustering method is to group together OTUs based on similarity of
their temporal profiles. It takes the approach of hypothetical OTU-level analysis,
instead of averaging the OTUs (Gerber et al. 2012; Gerber 2014). For example,
MC-TIMME (Microbiome Counts Trajectories Infinite Mixture Engine) is a
time-series clustering algorithm developed by Gerber (2015) and Gerber et al.
(2012). The non-parametric Bayesian techniques are tailored to automatically infer
the temporal patterns from microbiome data and then assign OTUs in a dataset to
the inferred temporal patterns (Gerber 2015).

Dynamical Systems Theory Model
Several autoregressive models have been proposed on microbial time series. The
most popular ones are Lotka-Volterra (LV) models (Wilson et al. 2003; Stein et al.
2013; Fisher and Mehta 2014; Bucci et al. 2016). Stein et al. applied a dynamical
systems model into microbiome time-series data (Stein et al. 2013). The model is
based on generalized Lotka-Volterra (gLV) non-linear differential equations,
assumes the growth of species in an ecosystem is density-bounded and modulated
by other species in the system either positively or negatively. Autoregressive model
also analyzes the dynamics of relative abundances of OTUs via using the gLV
equations (Marino et al. 2014).

Time-Dependent Generalized Additive Models
Another dynamical systems theory model is the time-dependent generalized addi-
tive models (GAMs). The framework of GAMs is nonparametric and often
preferable using in cases with little a priori information on a system (Hastie and
Tibshirani 1990). GAMs have been used extensively in analyzing data of ecological
time series (Moe et al. 2005; Stenseth et al. 2006; Stige et al. 2006). To capture the
dynamics of the human infant gut microbiota, Trosvik et al. applied the GAMs to
analyze microbiota time-series data (Trosvik et al. 2008, 2010).

Non-autoregressive Microbial Time Series Model
Gibbons and colleagues believe that there are two dynamic regimes in the human
gut microbiome: external environmental fluctuations and internal processes
(Gibbons et al. 2017). The external environmental fluctuations are
non-autoregressive, driven by external factors (e.g., diet). In other words, most
organisms function as a stable, mean-reverting behavior carrying fixed capacities
and abundant taxa across individuals. The autoregressive dynamics happen occa-
sionally when the system recovers from larger shocks. However, the external
non-autoregressive fluctuations denominate the dynamics of human gut micro-
biome. The microbiome is a dynamically stable system, continually buffeted by
internal and external forces, although the gut ecosystem is often disrupted, pushing
the microbiome back to a conserved steady state. Gibbons and colleagues took a
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non-autoregressive approach in gut microbial time series instead of focusing on
autoregressive models (e.g., Lotka-Volterra) (Gibbon et al. 2017). They used vector
autoregressive models to separately model autoregressive and non-autoregressive
components (Wang et al. 2015; Bose et al. 2017). VAR model is flexible and easy
to be used for the analyzing stationary multivariate time series. The model assumes
that the time series process with autocorrelation, cross-correlations, and serially
uncorrelated or independent noise. In addition, they used continuous methods in
characterizing within-host dynamics, instead of taking community state-clustering
approach (Gibbons et al. 2017).

In summary, the time series approaches have been observed increasing appli-
cations in recent years. These approaches specially need be carefully designed and
analyzed by appropriate analytical tools. Otherwise, the results can be extremely
misleading (Gerber 2014). First, we cannot ignore the factor that the microbiome
data are temporal. For example, we cannot treat the time-series data as a static time
point and test them by a simple statistical procedure (e.g., t-test). We cannot treat
the time-points as independent samples, which could overestimate differences
between groups (Wei 2005; Guo et al. 2013; Gerber 2014). Second, we cannot
average the abundances of mixed populations, especially average those abundances
in sequence-based microbiome data analyses. For example, we cannot bin or
aggregate two OTUs or species with opposite population dynamics. The temporal
information could be lost if you aggregate OTUs or species and thus obtaining
wrong microbiome profile.

3.5.4 Detecting Causality: Causal Inference and Mediation
Analysis of Microbiome Data

First, microbiome may have causative effects on host. Both human and animal
studies evidence the following factors: (1) studies in wild type mice (Ley et al.
2005; Samuel and Gordon 2006) and zebrafish (Rawls et al. 2004, 2006) have
found a number of similarities in their microbiotic function and host interactions;
and (2) the microbiota have played a role in maturation of the host immune system
and even anatomical development of the intestine (Ivanov et al. 2009; Ivanov and
Littman 2010).

Second, the bacterial composition (species member and abundance) of the gut
microbiota is personalized (Lozupone et al. 2012; Baxter et al. 2015). Most
microbiomes are strikingly divergent between distinct host species (Ley et al. 2006;
Morgan and Huttenhower 2012). During the lifespan, our microbiome varies sys-
tematically across body habitats and time, can be dramatically altered transiently or
long term by diseases, such as infections (Koenig et al. 2011) or medical inter-
ventions, such as antibiotics (Dethlefsen and Relman 2011; Peterfreund et al. 2012;
Perez-Cobas et al. 2013). Such trends may ultimately reveal how changes of
microbiome cause or prevent diseases (Costello et al. 2009). Reduced species
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diversity has been observed in obese humans (Ley et al. 2005, 2006); the abundance
of phylum Fusobacteria increased significantly in the colon of colorectal cancer
patients (Castellarin et al. 2012; Kostic et al. 2012). Thus, researchers in the
microbiome field need understand not only the association, but also the causative
functions of bacteria in human diseases (Fei and Zhao 2013; Zhao 2013; Sun and
Chang 2014; Zhang and Zhao 2016).

Third, the mutual relationship between microbiome and host suggests a causal
inference model, or mediation analysis and longitudinal analysis may be granted.
Currently, microbiome researchers shift their emphasis from correlation to
causality. However, identifying causation in microbiome studies is still rare, due to
complexity in both microbiome data and statistical models. We should distinct
causality from correlation and cannot directly infer causality from the relation
between two variables because “correlation is neither necessary nor sufficient to
establish causation” (Sugihara et al. 2012).

Mediational analysis provides the researcher with a story about a sequence of
effects that leads to something (MacKinnon et al. 2007; MacKinnon 2008; Xia et al.
2012a, b). It allows us to conduct scientific investigations to explain how something
comes about. Detecting the dynamic causation among microbiome, intervention
and the host is very critical (Segata et al. 2012). However, to our knowledge, there
are limited applications of causal inferences and mediation analysis.

3.5.5 Meta-analysis of Microbiome Data

Similar microbiome studies are often reported with inconsistent effects due to
heterogeneity. Meta-analysis is designed to reduce study bias, ensure robust results,
increase statistical power and improve overall biological understanding of a study
effect such as a clinical trial on similar experimental conditions or treatments. The
meta-analysis of microbiome studies were conducted to test the similar basic
hypotheses on different conditions or treatments, such as, IBD (Walters et al. 2014)
and obesity (Finucane et al. 2014; Walters et al. 2014; Sze and Schloss 2016).

Currently, web-based statistical tools and R package were available for
meta-analysis of microbiome data. For example, the web-based tool
“MicrobiomeAnalyst” has functions for meta-analysis (Dhariwal et al. 2017). The R
package “metamicrobiomeR” was designed to perform meta-analysis across
microbiome studies using random-effects models (Ho and Li 2018). The method-
ology for analysis of microbiome relative abundance data was developed based on
zero-inflated beta GAMLSS (generalized additive models for location, scale and
shape): GAMLSS-BEZI (Rigby and Stasinopoulos 2001, 2005; Stasinopoulos and
Rigby 2007). It uses the GAMLSS-BEZI to estimate log (odds ratio) of relative
abundances between groups and random and fixed-effects meta-analysis models to
pool estimates and their standard errors to evaluate the heterogeneity and overall
effects across microbiome studies.
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Meta-analysis can be implemented using different algorithms or approaches,
such as, combine p-values, effect sizes, rank orders, votes from multiple studies, or
directly merge different raw data sets into a mega-data set and then consider it as a
single data set. The vote approach is the simplest method of meta-analysis. It first
selects differentially expressed genes or abundant taxa based on certain criteria
(e.g., adjusted p < 0.05) for each data set; then counts the total number of detected
differentially expressed genes or abundant taxa across all data sets. The vote
approach should not be used except other methods cannot work out, because it is
considered as statistically inefficient (Xia et al. 2013a, b). The approach of directly
merge different raw data sets usually should be restricted its applications to the
same or similar platform, because it ignores the inherent bias and heterogeneity of
data sets from different sources (Tseng et al. 2012; Xia et al. 2013a, b).

Comparing to studies in other research field, a rigorous statistical meta-analysis
of microbiome data has more challenges because the problems of individual data
quality and the inherent heterogeneity of individual data sets are bigger. We should
follow the guidelines of meta-analyses when design and perform meta-analyses of
microbiome data (Moher et al. 2009; Sze and Schloss 2016). A rigorous statistical
meta-analysis should use an appropriate underlying statistical method and a
fixed-effects model or random-effects model to compare groups on the pooled data
sets, in addition to concerning individual data quality and the inherent heterogeneity
of individual data sets (Chen and Peace 2013). Based on this criterion, most current
meta-analyses of microbiome data are not rigorous enough as the statistical
meta-analysis.

Currently, most current meta-analyses of microbiome data directly merge dif-
ferent raw data sets into a mega-data set, then analyzed the pooled data set using
usual methods i.e., alpha diversity, principal coordinate analysis (PCoA) (Lozupone
et al. 2013; Adams et al. 2015; Bhute et al. 2016; Sze and Schloss 2016; Holman
et al. 2017; Mancabelli et al. 2017). Other studies independently performed uni-
variate tests on relative abundances of taxa for each data set and used a statistic
method (i.e., Kruskal-Wallis test) to compare results across studies and adjust
p-values with a correction method (i.e., the Benjamini-Hochberg false discovery
rate (FDR)) (Duvallet et al. 2017). Currently the functions for meta-analysis in
“MicrobiomeAnalyst” focus on visual exploration or enrichment analysis. The
“MicrobiomeAnalyst” tool lacks appropriate statistical method to conduct group
comparisons. Therefore, it not a rigorous statistical meta-analysis (Dhariwal et al.
2017).

From the perspective of using statistical method and model to examine overall
pooled effects across studies, the approach in the metamicrobiomeR package is a
rigorous statistical meta-analysis. Based on a simulation study, the authors of this
package stated its three advantages: first, GAMLSS-BEZI directly and properly
addresses the distribution of microbiome relative abundance data via a zero-inflated
beta distribution; second, it has better power in term of detecting differential relative
abundances between groups than linear model with arcsin-square root transfor-
mation (Morgan et al. 2012); and third, the estimated log (odds ratio) of relative
abundances between groups are directly comparable across studies.
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3.6 Introduction of Statistical Packages

Bioinformatics pipelines and R packages play a very important role in developing
statistical methods and models for hypothesis testing and statistical analysis.

Bioinformatics Pipelines
QIIME (Caporaso et al. 2010) and mothur (Schloss et al. 2009) are the two popular
bioinformatics pipelines. The capabilities of QIIME and mothur are comprehensive
and supportive documentation, thus they were reviewed as the two outstanding
pipelines (Nilakanta et al. 2014; Plummer et al. 2015). Both QIIME and mothur are
self-contained that can be used to generate microbiome composition data as well as
analyze 16S rRNA gene sequencing data. QIIME and mothur can perform
microbiome composition and statistical analyses, including alpha and beta diver-
sities, ANOVA, paired and two sample t-tests, adonis, ANOSIM, MRPP,
PERMANOVA, PERMDISP, db-RDA, and Mantel’s test (He et al. 2013;
D’Argenio et al. 2014).

R Packages Adopted from Other Fields
In microbiome study, researchers and statisticians use the available standard
methods and models or borrow statistical tools from other related fields to apply to
their studies, especially in the early stages.

Vegan is a very important and most widely used R package (Oksanen et al.
2016), which was initially designed for community ecologists. Vegan is not
self-contained. It depends on many other R packages and must be run under R
statistical environment. However, vegan contains the most popular methods of
multivariate analysis and tools for diversity analysis, and other potentially useful
functions. Therefore, it is commonly used in analyzing ecological communities, and
has been adopted to analyze microbiome data. We use vegan package to calculate
diversities and other measures in Chap. 6.

DESeq (Anders and Huber 2010), DESeq 2 (Love et al. 2014), edgeR (Robinson
et al. 2010) were initially developed for analyzing data of digital gene expression
(Witkin and Ledger 2012) and serial analysis of gene expression (SAGE). They are
useful for hypothesis testing and statistical analysis of over-dispersed count data.
Both DESeq and DESeq 2 use the negative binomial distribution to test for dif-
ferential expression; edgeR package implements original statistical methodology
described in Robinson and Smyth (2007, 2008), Robinson et al. (2010) and
McCarthy et al. (2012). We adopted them for analyzing over-dispersed microbiome
count data in Chap. 11. The limma package was originally developed to detect the
differential abundance of the species (Smyth 2005; Paulson et al. 2013a, b; Praveen
et al. 2015).

Newly Developed R Packages for Microbiome Data
Some R packages were specially developed for microbiome data. In current years,
more R packages were developed along the proposed statistical methods by
microbiome researchers and statisticians. These packages have their specific
capabilities to conduct hypothesis testing and statistical analysis. We will not
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introduce all of them because many packages have been available and new ones are
still under development. Here, we select some for readers’ reference. We will
introduce and implement several R packages in this book.

HMP (La Rosa et al. 2016) and micropower (Kelly et al. 2015) are two R
packages for conducting power and sample size calculations. We implement HMP
in Chap. 5 using real microbiome data.

Among the newly developed R packages, the phyloseq package is more general
statistical tools (McMurdie and Holmes 2013). First, it has integrated other avail-
able statistical packages to perform statistical hypothesis testing and analysis. For
example, it integrated with or extended to DESeq, DESeq 2, edgeR packages to
facilitate taxanomic diversity analysis and statistical modeling. It also contains
general-purpose tools for microarray-based analysis of microbiome profiling data
sets in R. Second, the phyloseq package has equipped with tools to manage mi-
crobiome data sets. For example, it has capability of importing and exporting data
from other packages, even from bioinformatics pipelines, such as QIIME and
mothur. Third, phyloseq has capability to perform various diversity metrics anal-
yses. For example, after importing data into the R, one may easily perform beta
diversity analysis using any or all of over 40 different ecological distance metrics;
implement alpha diversity metrics; perform more sophisticated analyses, such as
k-tables analysis (Thioulouse 2011) and differential analysis of microbiome data.
Last, the phyloseq package has functions and tools to visualize microbiome data via
barplots, boxplots, density plots, heatmaps, motion charts, and networks, and or-
dination and clustering.

The microbiome package conducts statistical analysis based on the phyloseq
class (Lahti and Salojarvi 2014–2016). It contains general-purpose tools for
microarray-based analysis of microbiome profiling data sets in R. It adds extra
functionality for microbiome data sets to perform microbiota composition analysis,
bi-stability analysis, calculate diversity indices and fit linear models with pairwise
comparisons, and association studies. As the phyloseq package, the microbiome
package has functions and tools to visualize microbiome data via barplots, boxplots,
density plots, heatmaps, motion charts, networks, ordination, and clustering.

metagenomeSeq (Paulson et al. 2013a, b) is a mixture model that implements a
zero-inflated Gaussian (ZIG). metagenomeSeq includes a non-parametric permu-
tation test on t-statistics, a non-parametric Kruskal-Wallis test (Paulson 2013a, b).

R code for implementing Bayesian graphical compositional regression (BGCR)
proposed by Mao et al. (2017) is freely available at https://github.com/MaStatLab/
BGCR.

mBvs package implements the Bayesian variable selection method for multi-
variate zero-inflated high-dimensional covariate data proposed by Lee et al. (2017).

ANCOM package implements analysis of composition of microbiomes (Mandal
et al. 2015). ALDEx and ALDEx2 packages implement the methods comparing
microbiome composition (Fernandes et al. 2013; Gloor and Reid 2016; Gloor et al.
2016). We run ALDEx2 with real microbiome data in Chap. 10.

BhGLM package implements both methods of NBMMs and ZINB (Zhang et al.
2016, 2017).
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ZIBR package implements the two-part zero-inflated Beta regression model with
random-effects (Chen and Li 2016). We illustrate its use in Chap. 12.

MicrobiomeDDA implements the general framework of differential distribution
analysis of microbiome data based on a ZINB (zero-inflated negative binomial)
regression model (Chen et al. 2018).

metamicrobiomeR implements analysis of microbiome relative abundance data,
using zero-inflated beta GAMLSS and meta-analysis across studies using random
and fixed-effect models (Ho and Li 2018).

3.7 Limitations of Existing Statistical Methods and Future
Development

In this chapter, we comprehensively reviewed the statistical methods and models
that are currently available or have been used for analysis of microbiome data. The
statistical methods and models aimed to targeting the specific features of micro-
biome data, either in cross-section or longitudinal settings. These methods treat the
microbiome data as relative abundance, use the raw read counts as input data sets,
or develop analysis based on the data structure of phylogenetic trees.

The classical statistical methods are still widely used, while new methods have
been developed over the past few years. Newly developed methods mostly targeted
one or more specific features of microbiome data: high dimensionality,
over-dispersion, sparsity with excess zeros, and complex covariance structure.
However, the existing statistical approaches still have their limitations, including:

(a) Detecting causality and causal inference, mediation analyses are still in the
infant stages. In recent years, the microbiome research has shifted the focus
from correlation to causality. In ecology, how to identify causation has been
discussed and a framework for identifying causation in complex ecosystems
was proposed (Sugihara et al. 2012). However, suitable longitudinal and causal
inference models are very limited in microbiome studies. To meet the needs of
modeling the dynamic and complicated microbiome data, the statistical tools
that are appropriate to analyze the causality and mediational relationship
between hypothesis factors are still needed.

(b) Some studies totally ignore constraint problem or compositional nature of the
microbiome data when use classical statistical methods for analyzing micro-
biome proportional data. For example, Pearson correlation analysis, t-test, and
ANOVA are still widely used for the analysis of microbiome data without
testing the data distribution or transformation.

(c) Currently the compositional data analysis has not solved the problem of zero
values. The compositional data analysis of microbiome data focused on two
efforts: using log-ratio to avoid the constraint problem, and using proportionality
for substituting correlation to solve the “spurious correlation” problem. Both
ways lie on log-ratio transformation. Typically, a small value is added to zero
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read count to make log-ratio transformation definable. However, the algorithm of
adding small values is not granted. Also whether or not the artificial values
change the outcome is difficult to test.

(d) Count-based approaches still need to improve the capabilities of jointly mod-
eling over-dispersion and zero-inflation. Microbiome data has been advised to
treat as count data rather than compositional. The count-based models are
considered as more statistically and biologically appropriate for microbiome
data because this approach targets multivariate high-dimensional data structure,
sparsity, over-dispersion and zero-inflation of microbiome, and it has a good
concept adjustment. In recent years, several count-based models have been
developed either in cross-sectional or longitudinal settings. However, some
methods treat the bacterial taxa as independently and ignore the dependence
among bacterial taxa; some methods have limit capabilities to deal with
over-dispersion and/or zero-inflation, although they jointly model multiple
bacterial taxa.

(e) The approach of phylogenetic trees seems another promise in the sense that
they consider multiple levels of taxa compared to compositional and
count-based approaches. However, the evolution between different levels of
bacterial taxa is more complicated than in other fields (i.e., ecology). We still
lack the appropriate methods or models to jointly fit multiple levels of taxa and
considering the features of microbiome data, such as over-dispersion and/or
zero-inflation.

In recent years, especially after we proposed this book in three years ago, great
progress has been made for statistical analysis of microbiome data, evidenced by
methods and models targeting the specific features of microbiome data in
cross-sectional and longitudinal settings. The progress has been made from
choosing standard statistical methods, borrowing them from other fields to develop
its own unique methods. Some newly developed statistical methods and models are
feasible and well-fitted for microbiome data. However, there are still space in
developing statistical methods and models in microbiome study.

As general guideline, the focuses of new statistical methods could be in the
following areas:

(a) Developing longitudinal and causal models that could enable more accurate
causal inferences to fit the dynamic and complicated association among
microbiome, environments and host. The prospective models should have
powerful statistical tool to link changes in the microbiome to host factors (i.e.,
health or disease) and have capability to adjust for confounding factors to
establish temporal and even causal relationships with response variables.

(b) Continuing to develop appropriate models to jointly fit and effectively account
for the features of microbiome data with multivariate high-dimensional data
structure, over-dispersion and sparsity with excess zeros, including statistical
tools of meta-analysis.
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(c) Taking into account the compositional nature of the microbiome data and fitting
the microbiome data as compositional, while addressing the features of mul-
tivariate high-dimensional data structure, over-dispersion and sparsity with
excess zeros.

(d) Discussing and proposing statistical models fascinating the evolution of bac-
teria taxa under the framework of phylogenetic trees.

These future studies need team effort involving biomedical researchers, physi-
cians, bioinformatics experts, and biostatisticians. More mechanism-driven studies
should be based on appropriate statistical design and perform analysis using the
experimental models, human samples, ‘omic’ technologies, bioinformatic analysis,
and statistic modeling (Xia and Sun 2017).
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Chapter 4
Introduction to R, RStudio and ggplot2

In this chapter, we provide some programming and graphic skills under the envi-
ronments of R, RStudio and ggplot2. In Sect. 4.1, we introduce some basic uses of
R and RStudio. We also provide some useful R functions which are often used in
the programming and management of microbiome data. Section 4.2 introduce the
one useful R package dplyr. We use it often in the remaining chapters. In Sect. 4.3,
we introduce and illustrate the ggplot2 package. This package is getting popular in
recent years; the high quality graphics generated by the ggplot2 are often used in
the publications of microbiome study and other research fields. We briefly sum-
marize this chapter in Sect. 4.4.

4.1 Introduction to R and RStudio

R(R Core Team 2017) is a high-level open-source programming language and
environment for statistical computing and graphics. It is a vehicle for newly
developing methods of interactive data analysis. It has been rapidly developed and
extended by a large collection of packages provided by researchers and volunteers.

RStudio (R Studio Team 2016) is a free and open-source integrated develop-
ment environment (IDE) for R. We can check the most up-to-date citation by typing
citation() at the prompt. To find the appropriate citation in the individual con-
tributed package, type citation (“package name”), e.g., citation (“ALDEx2”). We
also can check the citation from the reference manual for the package that is
available on CRAN (The Comprehensive R Archive Network). To cite RStudio in
publications, we can obtain the latest citation information by typing the command
RStudio.Version() in a recent version of RStudio IDE.
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4.1.1 Installing R, RStudio, and R Packages

R can be downloaded from http://www.r-project.org and be installed on all three
mainstream operating systems (Windows, Mac, Unix/Linux). RStudio can be
downloaded from https://www.rstudio.com/products/rstudio/download3/ and can
be installed on all four supported platforms (Windows, Mac, Ubuntu and Fedora).
The general installation manual and introductory tutorials can be obtained from the
same website. Similar to other statistical software packages, R provides a statistical
framework and terminal-based interface for users to input commands for data
manipulation. As an IDE, all statistical analyses and graphics can be implemented
through RStudio.

R is made up of many user-written packages. The base version of R that is
downloaded allows the user to get started in R, but the capabilities of base R are
limited and further data analyses need to install additional packages. An R package
is a collection of functions, examples, and documentation. The focus of a package is
often its functionality: a special statistical methodology. We begin by illustrating
some basic commands for managing R packages here in this section.

After downloading and installing R and RStudio software, an R or RStudio
terminal can be started to install the required additional packages. Any package that
does not appear in the installed packages matrix must be installed and loaded before
its functions can be used. A package can be installed using install.packages
(“package name”).

> install.packages("ALDEx2")

In R, additional packages can also be installed from the R terminal menu
“Packages” ! “select the CRAN mirror” ! “select repositories”.

In RStudio, you can also click “Packages” ! ‘‘Install” ! type package name
e.g., ALDEx2 in column “Packages” and choose to install from “Repository
(CRAN, CRANextra)” or “Package Archive File(.zip;. tar.gz)” (if you downloaded
R package in your computer) ! click “Install” to install additional packages.

After installing, the packages can be loaded either in R or RStudio by the
following command:

> library(ALDEx2)

Or check this package from User Library in RStudio.
To see what packages are installed, use the installed.packages() command. This

will return a matrix with a row for each package that has been installed. Type
following command display the first 5 R packages installed in your computer.

> installed.packages()[1:5,]
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To see whether or not a specific package (e.g., ALDEx2) has already installed,
type the command:

> a<-installed.packages()

> packages<-a[,1]

> is.element("ALDEx2", packages)

[1] TRUE

4.1.2 Set Working Directory in R

As a very important concept in R, a “working directory” is where you store your
raw data, R codes and output for that specific project. You would create specific
“working directory” for different projects and then you need to let R know where
you like the R to read the data and the associated R programs, so you need to
change your R working directory to that specific project.

In R and RStudio, the working directory of different projects can be changed. To
show the working directory, we can type the getwd() command:

> getwd()

[1] "C:/Users/Yinglin"

This shows our current basic R folder. If we want to change the working
directory to a specific folder for our R scripts, data and to save results in this
specific folder, we can set the working directory to this folder. For example, the
following R codes create a directory and a folder ‘‘Analysis” to store the R codes,
raw and intermediate data files and the analysis results.

> setwd("E:/Home/MicrobiomeStatR/Analysis")

In RStudio, we can also choose “Session” ! “Set Working Directory” ! “To
Source File Location” to set working directory. If we do not want set the working
directory to source file location, we can either set it “To Files Pane Location” or
“Choose Directory” from other folder. Check getwd() function again and we will
find our directory has changed.

> getwd()

[1] "E:/Home/MicrobiomeStatR/Analysis"

By typing the command below, we can set working directory back to file pane
folder:

> setwd("*/")
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In RStudio, we can also choose “Session” ! “Set Working Directory” ! “To
Files Pane Location” to do the same thing.

> getwd()

[1] "C:/Users/Yinglin"

If an R code file (for example, called “Rcodes.R”) stored in the directory, we can
use source (Rcodes.R) to access the file “Rcodes.R” and run the R codes contained
in the file. The file should be a plain text file and saved with the extension. R.

Every time when we open RStudio, it goes to a default directory. We can change
the default to a folder where we want our data files to be, so we do not have to do it
every time. In the menu go to Tools ! Global Options ! Default working
directory ! Browse ! then open a folder we want the data files to be ! Select
Folder.

4.1.3 Data Analysis Through RStudio

4.1.3.1 Basic Features of RStudio

RStudio allows the user to run R in a more user-friendly environment.
RStudio screen usually consists of four main panels: source editor and data

viewer; environment (workspace browser) and history; R console; and files, plots,
packages, help and viewer. Most panels have multiple tables with different func-
tionalities. We briefly introduce each panel and its basic features as below.

Source editor and data viewer

This panel is located in the top left. It is a source editor for editing files and a data
viewer for viewing dataframes. Its intentions and purposes are identical to every
other code editor’s main window. We can write R scripts here. There are several
ways to create a new R script; the convenient one is to go to File ! New ! R
Script. After the bank screen displays, we can type R commands there. To run R
scripts, click on the “Run” button on the top right or leave the cursor anywhere on
the line where the command is and press Ctrl-R. Output will appear in the console
below. The “Source on Save” checkbox means “Load contents of file into my
console’s runtime every time I save the file”. Checking this box makes the
development flow faster by one click.

R console

The R console panel provided by RStudio is in the bottom left; its functionality is
very much like most R consoles, e.g., provided by the basic RGui for Windows,
where we can type commands and see output. Although we can type commands at
the console, it is not really reproducible, and thus not an efficient way to manage
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R scripts. We recommend readers to use source editor to write and manage their R
scripts.

Environment and history

The environment and history tabs are in the top right. The environment tab refers
to the console environment and includes all the active objects. This tab stores any
object, value, function or anything we create during R session. If we click on any
name of the dataset listed under “Data”, the data will display on the data viewer
screen left to “Data”. This is where we can also import datasets manually and make
them instantly available in the console.

The history tab keeps all the console commands we executed since the last
project started. It is saved into a hidden .Rhistory file in project’s folder. The history
won’t be saved if we did not choose to save the environment after a session. It is
helpful for testing. We can save or select the commands and send them to an R
script by clicking on “To Source” button or to R console by clicking on “To
Console” button.

Files, plots, packages, help and viewer

The bottom right panel is the miscellaneous panel containing five separate tabs. The
files tab shows all the files and folders in the default workspace. The plots tab will
show all the graphs during the R session. Here we can zoom, export, configure and
inspect graphs/figures. The most use is probably to export and save graphs.

The graphs can be exported and saved by choosing:

• Export ! Save as Image ! Save plot as Image ! Image format ! choose one
format from: JPEG, PNG, TIFF, BMP, Metafile, SVG, EPS ! Select the
directory and name the graph ! Save.

• Export ! Save as PDF ! Select the directory and name the graph ! Save.
• Export ! Copy to Clipboard ! Copy plot to clipboard ! Copy as: Bitmap or

Metafile ! Copy plot.

The first two options are useful when we want to create publication-quality
figures or use it in a LaTeX document. The third option: copy and paste, probably is
the easiest way to export a graph and is most often used in Word document.

The packages tab shows the list of add-ons packages installed in RStudio. To
load the packages into R, we need to check them. As we introduced previously, we
can also install additional packages by clicking on the “Install Packages” button.
The help tab allows us to search the built-in documentation on R functions,
datasets, and packages. The help tab can be used when we invoked the ? function.
When we enter a question mark followed by the name e.g., ?data.frame in the
console or run it in source editor, the information about the command name(in this
case, Data Frames) will automatically open. Finally, the viewer is essentially
RStudio’s built-in browser. With RStudio, we can develop HTML documents (web
pages) easily by Markdown (created by John Gruber and Aaron Swartz). The
Viewer tab can show us the resulting HTML file created from an R Markdown Knit.
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4.1.3.2 Illustrating Data Analysis with RStudio

In this section, we illustrate how to utilize the RStudio features to create a boxplot. The
dataset hsb2demo we use is publicly available at (https://stats.idre.ucla.edu/sas/
output/regression-analysis/). The data set with SAS data format was collected on 200
high schools students and are scores on various tests, including reading,writing,math,
science, and social studies. The variable female is a dichotomous variable coded 1 if
the student was female and 0 if male. This data set contains 200 rows and 11 variables.

The following are the variables in the columns (in order):

Column name Description

id Subject id

female Gender variable

race Race variable

ses Socioeconomic status

schtyp School types

prog Programs

read Reading score

write Writing score

math Math score

science Science score

socst Social science score

We illustrate how to create a boxplot of reading score by gender using the
following main steps:

First, we download the data set and convert it to CSV format, and save it in
following directory. We also set the working directory to this directory by:

Choose “Session” ! “Set Working Directory” ! “To Source File Location”.

> setwd("E:/Home/MicrobiomeStatR/Analysis")

Next, import data in RStudio. There are several ways to import the data into R/
RStudio, either through R functions or R packages; we will introduce some widely
used ones in next section. Here we use the import dataset feature of RStudio. To
perform this, follow the steps below.

• Click on the “Import Dataset” button in the top-right panel under the environ-
ment tab.

• Click Import Dataset dialog and choose the options (From csv….; From
Excel….; From SPSS….; From SAS….; From Stata….). In this case, we choose
“From csv….”.

• Browse the above folder that stored the dataset hsb2demo
• Click “Open” button ! Set Import Options(e.g., preferences of separator, name

and other parameters) ! Click “Import” button.
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Now the dataset hsb2demo appears in the top-left panel for review. We can
review this dataset by the View() function:

View(hsb2demo) or click the name of hsb2demo from the list of “Data” under
the environment tab if it did not appear.

Then, we create a boxplot of writing scores by gender. A very useful feature of
RStudio is its built-in data visualizer for R. We can create the plots and visualize
them using the R functions, e.g., in this case, the boxplot() function.

> #Boxplot of writing score by gender

> boxplot(write * female,data=hsb2demo, main="High School

Students Data", xlab="Gender", ylab="Writing score by gender")

We copy this plot by clicking Export ! Copy to Clipboard ! Copy plot to
clipboard ! Copy as: Bitmap ! Copy plot, and paste it below:

If we want to create high quality of boxplot, we can use ggplot2 package, which
we will introduce later. To use this package, we need install ggplot2 and load it to
R/RStudio by calling library (ggplot2) or in RStudio, click Packages ! check the
box near to ggplot2.

4.1.4 Data Import and Export

One of critical steps for data analysis is to import data with special formats into R
workspace. The most frequent data formats in microbiome study are comma sep-
arated files, Excel spreadsheets, and files generated by bioinformatics pipelines, and
a variety of website data. R has functions like read.table(), read.csv() and read.csv2
(), read.delim() and other tools to import the data from the files into R workspace.
Here we introduce the most often used functions and tools.

Fig. 4.1 One example of using RStudio to create a plot
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4.1.4.1 Using read.table()

First, we make a note on the argument “stringsAsFactors” before we introduce data
importing functions. This is an argument to the “data.frame()” function in R, which
indicates whether strings in a data frame should be treated as factor variables or as
just plain strings. The argument also appears in “read.table()” and related functions
because of the role these functions play in reading and converting table data to data
frames. By default, “stringsAsFactors” is set to TRUE in the functions like read.
table(), read.csv(), read.csv2() and read.delim() import the columns containing
characters strings into R as factors. The reason for setting strings as factors is to tell
R to treat categorical variables into individual dummy variables for modeling
functions like lm() and glm(). However, in genomics or microbiome study, it
doesn’t make sense to encode the names of the genes or taxa in one column of data
as factors because they are essentially just labels and not to be used in any modeling
function. In this situation, we can change the “stringsAsFactors” argument into
FALSE to change the default setting.

The R function read.table() reads table in a plain text with cells delimitated by
one of the symbols: one or more white spaces (“ ”), tabs, newlines or returns. For
example, when the fields are separated by commas and each row begins a name (a
text format typically created by Excel), we can use the function read.table() to read
the data into R workspace.

> tab <- read.table("genus.csv", header=TRUE,row.names=1, sep=",")

Where, the argument header = TRUE or T indicates that the first entry of the text file
“genus.csv” should be interpreted as variable names. The argument row.names = 1
indicates that the first column should be interpreted as row names but not as a variable,
and the argument sep = “,” indicates that columns are separated by a comma.

> tab <- read.table("genus.txt", header=TRUE,row.names=1, sep="\t")

The argument sep = “\t” tells R that file is tab-delimited (use “ ” to indicate that the
file is space- delimited; use “,” for comma delimited in a .csv file). If a meta table(e.g.,
OTU table fromQIIME) has a line before headers, then skip = 1 is needed to specify. If
the header line starts with #, then use comment.char = “” to read them.

We can also access files in folders outside of the current folder. For example, the
following read.able() link to the location of file on internet:

> raw<-

"https://raw.githubusercontent.com/chvlyl/PLEASE/master/1_Data

/Raw_Data/MetaPhlAn/PLEASE/G_Remove_unclassfied_Renormalized_M

erge_Rel_MetaPhlAn_Result.xls"

> tab <- read.table(raw,sep='\t',header=TRUE,row.names = 1,

check.names=FALSE,stringsAsFactors=FALSE)
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The argument check.names = F has two reasons. One is to tell the function to
ignore the duplicate entries of variables (i.e., species). For example, for microbiome
data, the sample by species table can contain several species of the same name;
another reason is to tell the function not to attempt to modify the names of the
species so that ensure them syntactically correct (otherwise, e.g., the space in the
name would be replaced by a dot).

4.1.4.2 Using read.delim()

The read.delim() function expects that input table is plain text with cells separated
or delimited by tabulators.

> tab <- read.delim("genus.txt", header=T, row.names=1)

opens a tab-delimited file “genus.txt”. Compared with read.delim(), we can see
that read.table() offers more control in the read file type because it can read .txt or
.csv files. It is a specific variant of more general function read.table().

4.1.4.3 Using read.csv() and read.csv2()

The files with *.csv format have different standards in different countries and on
different platforms. In Czech the files with *.csv format have cells delimited by
semicolons “;” and decimals by commas “,”; while in western Europe and else-
where the cells are delimited by commas “,” and decimals are separated by dots “.”.
The read.csv () function reads table delimited by commas“,” with decimals being
dots “.”. The read.csv2 () function reads table delimited by commas “;” with
decimals being commas “,”.

We use function read.csv () to read the csv file with separators being commas
and decimals being dots as below:

> tab <- read.csv('table.csv', head = T, row.names = 1,

sep =',', dec = '.')

If the file “table.csv” has cells delimited by semicolons “;” and decimals sepa-
rated commas “,”, then he function read.csv2() is needed.

> tab <- read.csv2 ('table.csv',head = T, row.names = 1,

sep =';', dec = ',')

This kind of file can also be read using the read.table() function. The argument
sep = ‘;’ sets the delimiter to be semicolon, and dec = ‘,’ sets the decimal separator
to be comma.

> tab <- read.table (file = 'table.csv', head = T, row.names = 1,

sep =';', dec = ',')
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4.1.4.4 Using the gdata Package

The read.xls() function of the gdata package can read spreadsheets. The function
uses a module developed for the scripting language “perl”, and thus requires the
perl to be installed. The package is available for Windows, Mac or Linux platforms.
Usually perl is already installed in Linux and Mac, but on Windows an installation
of perl is required. The read.xls () function first translates the specified sheet to a
comma-separated file, then calls the read.csv() function. Thus, it accepts all options
of the read.csv() function. The three arguments are especially useful: the skip = and
header = arguments are used to avoid misinterpreting headers and notes as data, and
the as.is = TRUE argument can be used to suppress factor conversion.

> install.packages("gdata")

> library(gdata)

> tab <- read.xls("table.xlsx",sheet=1,header=TRUE)

If the perl.exe file has not been installed, then the above R code is not executable
and will give an error message. If this happens, we need to download the perl.exe
file and save it in a folder. In the call to read.xls, specify it as below (this is where
my perl.exe is located, check yours, it might be different).

> tab <- read.xls("table.xlsx", sheet=1,perl="C:/Perl64/bin/perl.exe")

4.1.4.5 Using the XLConnect Package

Sometime, the file was saved as an Excel file. We can import directly from the *.xls
file. Package XLConnect can read, write, and manipulate Microsoft Excel files
from within R. To use this package, we install it first. Both .xls and .xlsx file
formats can be used. The function readWorksheetFromFile() will open the file
specified in argument file and read the sheet specified by the argument sheet. Other
arguments are similar to the read.table() function.

> install.packages ("XLConnect")

> library (XLConnect)

> tab <- readWorksheetFromFile(file = 'table.xlsx', sheet = 1, header = T,

rownames = 1)

Other packages, such as xlsReadWrite, xlsx can also be used for both reading
and writing to Excel files. They work in much the same way.

4.1.4.6 Using write.table() to Export Data

In microbiome study, analysis results are often exported or saved to external file.
The basic tool is the function write.table(). It can write a comma separated file
readable by Excel and a text file readable by Notepad.
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> write.table(genus, file="genus_out.csv", quote=FALSE,

row.names=FALSE,sep="\t")

> write.table(genus, file="genus_out.txt", quote=FALSE,

col.names=TRUE,sep=",")

Where, the only required argument of write.table() is the name of a dataset or
matrix. The second argument file = is used to specify the destination as either a
character string to represent a file or a connection. By default, character strings are
surrounded by quotes. We can use the quote = FALSE or F to suppress it. We can
use the row.names = FALSE or col.names = FALSE arguments to suppress row
names or column names from being written to the out file, respectively. We also
have options to specify a separator other than a blank space. The sep = “\t” is used
for tab-separated, the sep = “,” is used for comma-separated.

Similarly to the functions read.csv() and read.csv2(), the alternative functions of
write.table() are write.csv() and write.csv2(). They have appropriate options to set
to produce comma-or semicolon-separated files.

4.1.5 Basic Data Manipulation

In this section, we briefly introduce some basic data handling and manipulation tech-
niques, which are mostly associated with a data frame. A data frame is a list of vectors
of equal length. Data frame is object that R handles data. It generally refers to “tabular”
data: a data structure with rows representing observations, or measurements (these are
sometimes called cases), and with columns containing the values of different variables
(these are often called fields). In microbiome study, cases could be samples; fields could
be genus, species, OTUs or any taxonomic levels. Data frames usually contain some
metadata in addition to data, e.g., row and column names. The object of class data
frame is the most important data structure for handling tabular statistical data in R.
The default R installation comes with several data sets; here we use the famous iris data
set to illustrate structure of data frame and some basic manipulations with data frame.

The iris data frame gives the measurements in centimeters of the variables sepal
length and width, and petal length and width, respectively, for 50 flowers from each
of 3 species of iris (setosa, versicolor, and virginica). Thus, it has 150 cases (rows)
and 5 variables (columns) named Sepal.Length, Sepal.Width, Petal.Length, Petal.
Width, and Species. For details of the data set, type help (iris) in R or RStudio.

Structure of Data Frame
We can type following R codes in R or RStudio to load the data and first several
lines of data.

> data()
> attach(iris)
> head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa
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Here is a table in the form of a data frame. The top row is called “header”,
contains the column names. Each horizontal row afterward begins with the name of
the row, and then followed by the data. Each row and column of data constructs a
data cell. A data cell can be retrieved by bracket “[]” operator: [position of row,
position of column]. In other words, the coordinates begins with row position, then
followed by a comma, and ends with the column position.

Create Data Frames
We can create data frames using existing data frame. Several techniques can be
used to achieve it.

> #Create data frame using column indices
> df <- iris[,c(1,2,3)]
> head(df)
Sepal.Length Sepal.Width Petal.Length

1          5.1         3.5          1.4
2          4.9         3.0          1.4
3          4.7         3.2          1.3
4       4.6         3.1          1.5
5          5.0         3.6          1.4
6          5.4         3.9          1.7

> # Create data frame using column indices with sequences
> df <- iris[,c(1:2,4:5)]
> head(df)
Sepal.Length Sepal.Width Petal.Width Species

1 5.1         3.5         0.2  setosa
2          4.9         3.0         0.2  setosa
3          4.7         3.2         0.2  setosa
4          4.6         3.1         0.2  setosa
5          5.0         3.6         0.2  setosa
6          5.4        3.9         0.4  setosa

> #Create data frame using subset() and column indices
> df<- subset(iris, select=c(1,2, 4:5))
> head(df)
Sepal.Length Sepal.Width Petal.Width Species

1          5.1         3.5         0.2  setosa
2          4.9         3.0    0.2  setosa
3          4.7         3.2         0.2  setosa
4          4.6         3.1         0.2  setosa
5          5.0         3.6         0.2  setosa
6          5.4         3.9         0.4  setosa

> # Create data frame using subset() and column names
> df <- subset(iris, select=c("Sepal.Width", "Petal.Length", "Petal.Width"))
> head(df)
Sepal.Width Petal.Length Petal.Width

1         3.5          1.4         0.2
2         3.0          1.4         0.2
3         3.2          1.3         0.2
4     3.1          1.5         0.2
5         3.6          1.4         0.2
6         3.9          1.7         0.4

88 4 Introduction to R, RStudio and ggplot2



We can also create data frames using c() and data.frame() manually.

> #Create data frame using c() manually
> Sepal.Width = c(3.5, 3.0, 3.2, 3.1,3.6,3.9) 
> Petal.Length = c(1.4,1.4,1.3,1.5,1.4,1.7) 
> Petal.Width = c(0.2,0.2,0.2,0.2,0.2,0.4) 
> df = data.frame(Sepal.Width,Petal.Length,Petal.Width) 
> df
Sepal.Width Petal.Length Petal.Width

1         3.5          1.4         0.2
2         3.0          1.4         0.2
3         3.2          1.3         0.2
4         3.1          1.5         0.2
5         3.6      1.4         0.2
6         3.9          1.7         0.4

Basic Operations
We already used the head() function to preview data frame.

> head(iris)

By default, R uses a data frame as objects, sometime we need check the data set to
see if it is a data frame. The attributes() print the column names (names), row names
(row.names), and class, which shows whether the data set is or not a data frame.

> attributes(iris)

Alternatively, we can use class() function to check if the data set is data frame:

> class(iris)

[1]"data.frame"

> # Create data frame by selecting  column names
> df <- iris[,c("Sepal.Width", "Petal.Length", "Petal.Width")]
> head(df)
Sepal.Width Petal.Length Petal.Width

1         3.5          1.4         0.2
2         3.0          1.4         0.2
3         3.2          1.3         0.2
4         3.1          1.5         0.2
5         3.6          1.4         0.2
6         3.9          1.7         0.4

> #Create data frame using data.frame()
> df <- data.frame(iris$Sepal.Width, iris$Petal.Length, iris$Petal.Width)
> head(df)
iris.Sepal.Width iris.Petal.Length iris.Petal.Width

1              3.5               1.4              0.2
2              3.0       1.4              0.2
3              3.2               1.3              0.2
4              3.1               1.5              0.2
5              3.6               1.4              0.2
6              3.9               1.7              0.4
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We can check how many rows and columns using the dim() function:

> dim(iris)

[1] 150 5

The numbers of rows and columns can be found using the nrow() and ncol()
functions.

> nrow(iris)

[1] 150

> ncol(iris)

[1] 5

The length of a vector is given by

> length(iris[,"Species"])

[1] 150

The row and column names can be found using the rownames () and colnames ()
functions.

> #check column or row names

> colnames(iris)

> rownames(iris)

The whole data frame can be printed using the print() function:

> print(iris)

If we just want to print the columns of interest instead of whole data frame, we
can use:

> Species <- iris[,"Species"]

> Species

The cell value can be accessed by indices:

> iris[1,3]

[1] 1.4

Alternatively, the row and column names can be used instead of indices:

> iris["1", "Petal.Length"]

[1] 1.4
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In contrast to indexing with positive integers, the cell values can also be accessed
using negative indexing which are not part of the index vector given in brackets.

Check Sparsity of Microbiome Data
Some specific data manipulations are needed in microbiome study. We pick up
several of them here. As we described in Chap. 2, one important feature of
microbiome data is sparsity with many zeros. To check the sparsity in following
table, we use the R codes below:

> tab=read.csv("VdrGenusCounts.csv",row.names=1,check.names=FALSE)

> #Check total zeros in the table

> sum(tab == 0)

[1] 3103

> #Check how many non-zeros in the table

> sum(tab != 0)

[1] 865

Some Functions for Graphics
This book has no intention to introduce R graphics. For introduction to R graphics,
the readers can reference Chang’s R Graphics Cookbook (Chang 2013); for fully
exploration of ggplot2 plotting capabilities, read Teutonico’s ggplot2 Essentials
(Teutonico 2015); for comprehensively use of R capabilities for graphics and anal-
ysis, read Crawley’s R book (Crawley 2013). However, in order to provide a
background for later chapters’ graphics plotting and basic knowledge for R graphics,
we will briefly introduce the concept and basics of ggplot2, and two R functions for
graphics: par () and layout() here.

The par () function can be used to set or query graphical parameters. Many
graphical parameters are available for use; among them, the mar, and mfcol and
mfrow are most often used. The sizes of the margins of the plot are measured in
lines of text. The mar is used to specify the margin sizes in number of lines to plot
the four sides of the plot: c (bottom, left, top, right). Be default the margin is par
(mar = (c(5, 4, 4, 2) + 0.1)).

The parameters mfrow and mfcol are used to control how many graphs on the
same page. To remember the names of these functions, consider them as standing
for “multiple frames in rows” (mfrow) or “multiple frames in columns” (mfcol). We
can obtain multiple graph panels on the same graphics device using par(mfrow), par
(mfcol), par(layout), and par(fig), par(split.screen) but par(mfrow) is much the most

> head(iris[,-c(4:5)])
Sepal.Length Sepal.Width Petal.Length

1          5.1         3.5          1.4
2          4.9         3.0          1.4
3          4.7         3.2          1.3
4          4.6         3.1          1.5
5          5.0         3.6          1.4
6          5.4         3.9          1.7
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frequently used. The mfrow have two arguments: the first is used for specifying the
number of rows of graphs, and second is for number of columns of graphs per row.
The default of one plot per screen is one row, one column: par(mfrow = c(1,1)).

As an alternative of mfrow () or fig (), the layout() function can be used to
configure the multiple plots. By using this function, we can alter both the location
and shape of multiple plotting regions independently. One syntax of the layout
function is given:

layout matrix;widths ¼ w; heights ¼ hð Þ
where matrix is a matrix object specifying the location of the n figures to plot on the
output device, w is a vector of column widths (with length = ncol(matrix)) and h is
a vector of row heights (with length = nrow(matrix)). The function layout.show(n)
plots the outlines of the n figures. For example, in Chap. 10, we use layout() to plot
cluster dendrogram on the top of figures and a stacked bar plot on the bottom and
legend on the right side. The R codes are as below:

> ng <- layout(matrix(c(1,3,2,3),2,2, byrow=TRUE), widths=c(5,2),

height=c(3,4))

We display the location of figures below:

> layout.show(ng)
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where the layout() function defines the location of the three figures: Fig. 10.3 is
the cluster dendrogram, which we want to put on the top of three boxes, Fig. 10.4 is
the stacked bar plot which will be located in the lower left, and Fig. 10.4’s legend is
to be drawn on the right side.

The readers can reference Chap. 10 for the details.

Some Options Settings
Options settings allow us to set and examine global options to tell R how computes
and displays its results. The argument width is used to specify the maximum
number of columns on a line to print with default normally 80; digits is used to
control the number of significant digits to print when printing numeric values. The
valid values are 0…22 with default 7. The two arguments can be used together to
ensure that line breaks in the output correspond to the width of page. It is a better
practice to set the same settings in R sessions, such as, when we start a new R
session, we can set:

> options(width=65,digits=4)

4.1.6 Simple Summary Statistics

The most helpful function for getting an overview about R objects is summary(),
which gives a collection of basic summary statistics. For example, we can use the
summary() function to the iris data set:

> summary(iris)
Sepal.Length   Sepal.Width    Petal.Length   Petal.Width        Species  
Min.   :4.30   Min.   :2.00   Min.   :1.00   Min.   :0.1   setosa    :50  
1st Qu.:5.10   1st Qu.:2.80   1st Qu.:1.60   1st Qu.:0.3   versicolor:50  
Median :5.80   Median :3.00   Median :4.35   Median :1.3   virginica :50  
Mean   :5.84   Mean   :3.06   Mean   :3.76   Mean   :1.2                  
3rd Qu.:6.40   3rd Qu.:3.30 3rd Qu.:5.10   3rd Qu.:1.8                  
Max.   :7.90   Max.   :4.40   Max.   :6.90   Max.   :2.5     

Other functions for simply summary statistics include mean(), median(), min()
and max(). They are often seen combining with the apply() function to obtain
summary statistics for each dimension of a matrix or array. The usage of this
function is apply (DATA, MARGIN, FUN, OPTION). Three arguments are
required: data is data frame, including a matrix on which to perform the operation,
margin is an index telling apply() which dimension to operate on, e.g., 1 for a
matrix indicates rows, 2 indicates columns, c(1,2) indicates rows and columns. The
following R codes are used to obtain the row and column means.
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The apply() and other functions for summary statistics have important applica-
tions in microbiome data. For example, the following codes use the apply() function
to calculate percent abundance of each taxon (OTU) per sample:

> tab_perc <- apply(tab, 2, function(x){x/sum(x)})

Sometimes, the taxon abundance table has a taxon column at the end; in this
situation, we need use −1 index to get rid of it and then calculate the percentage.

> tab_perc <- apply(tab[,1:ncol(tab)-1], 2, function(x){x/sum(x)})

For microbiome data analysis, we often need to filter taxon abundance per
sample before analysis. For example, the following codes use the apply() function
to get rid of the taxa in any sample with percentage less than 1%:

> tab_p1 <- tab[apply(tab_perc, 1, max)>0.01,]

The following codes are used to retain taxa (OTUs) with frequency of >0.01 in
every sample:

> tab_p2 <- tab[apply(tab_perc, 1, min)>0.01,]
> head(tab_p2)

5_15_drySt-28F 20_12_CeSt-28F 1_11_drySt-28F
Lactococcus              326            737           2297
Lactobacillus             94            597            434
Clostridium              130            401            597

2_12_drySt-28F 3_13_drySt-28F 4_14_drySt-28F
Lactococcus              548           2378            471
Lactobacillus       719            322            205
Clostridium              815            203            232

Combining other R functions, the apply() function can also be used to filter taxa
(OTUs). For example, the following codes set up a cutoff value of 1, then discard
taxa (OTUs) with a mean count <=1 across all samples using the apply(), which(),
and mean() functions:

> iris_1 <- (iris[,-5])
> head(apply(iris_1, 1, mean))
[1] 2.550 2.375 2.350 2.350 2.550 2.850
> apply(iris_1, 2, mean)
Sepal.Length  Sepal.Width Petal.Length  Petal.Width 

5.843        3.057        3.758        1.199 
> apply(iris_1, 2, mean,na.rm = TRUE)
Sepal.Length  Sepal.Width Petal.Length  Petal.Width 

5.843        3.057        3.758        1.199 
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> count <- 1

> tab_min <- data.frame(tab[which(apply(tab, 1, function(x){mean(x)})

>count),], check.names=F)

The following codes set up a cutoff value of 0.5, then discard taxa (OTUs) if
there is a zero in half or more of the samples using the apply(), which(), and length()
functions:

> cutoff = .5

> tab_d5 <- data.frame(tab[which(apply(tab, 1, function(x){length(which

(x!= 0))/length(x)}) > cutoff),])

The following codes set up a cutoff value of 500, then discard taxa (OTUs) with
<500 total counts (row sum < 500) using the apply(), which(), and sum() functions:

> count = 500

> tab_c500 <- data.frame(tab[which(apply(tab, 1, function(x){sum(x)})

> count),])

4.1.7 Other Useful R Functions

In this subsection, we review some other useful functions.

Converting Data Frames
To convert the iris data frame, use t() function:

Sorting and Ordering Data Frames
We apply the two functions to the iris data frame and create a new data frame, then
compare them as below:

> #Converting data frames
> iris_t <-t(iris) 
> iris_t[1:5,1:6]

[,1]     [,2]     [,3]     [,4]     [,5]     [,6]    
Sepal.Length "5.1"    "4.9"    "4.7"    "4.6"    "5.0"    "5.4"   
Sepal.Width  "3.5"    "3.0"    "3.2"    "3.1"    "3.6"    "3.9"   
Petal.Length "1.4"    "1.4"    "1.3"    "1.5"    "1.4"    "1.7"   
Petal.Width  "0.2"    "0.2"    "0.2"    "0.2"    "0.2"    "0.4"   
Species      "setosa" "setosa" "setosa" "setosa" "setosa" "setosa"
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The sort() sorted the values of Sepal.Length into ascending order. To sort into
descending order, use the reverse order function rev() like this:

> #Sorting and ordering data frames

> rev_iris <- rev(sort(iris_2$Sepal.Length))

> head(rev_iris)

[1] 7.9 7.7 7.7 7.7 7.7 7.6

The numbers in this column of Sepal.Length are indices between 1 and 150. The
order() returned an integer vector of indices containing the permutation that will
sort the column into ascending order. The best way to understand the order() is to
think that the results of x[order(x)] is identical to those of the sort(x). Thus, the
following two applications of order() are same as sort(iris_2$Sepal.Length)
regarding ordering column of Sepal.Length.

> #Sorting and ordering data frames
> iris_2 <- (iris[,-c(3:5)])
> sorted <- sort(iris_2$Sepal.Length)
> ordered <- order(iris_2$Sepal.Length)
> new_iris<- data.frame(iris_2,sorted,ordered)
> head(new_iris)
Sepal.Length Sepal.Width sorted ordered

1          5.1         3.5    4.3      14
2          4.9         3.0    4.4       9
3          4.7         3.2    4.4      39
4          4.6         3.1    4.4      43
5        5.0         3.6    4.5      42
6          5.4         3.9    4.6       4

> head(iris[order(Sepal.Length),])
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

14          4.3         3.0          1.1         0.1  setosa
9           4.4         2.9          1.4         0.2  setosa
39          4.4         3.0          1.3         0.2  setosa
43          4.4         3.2          1.3         0.2  setosa
42          4.5         2.3          1.3         0.3  setosa
4           4.6         3.1          1.5         0.2  setosa

> head(iris[order(iris[,'Sepal.Length']),])
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

14          4.3         3.0          1.1         0.1  setosa
9           4.4         2.9          1.4         0.2  setosa
39          4.4         3.0      1.3         0.2  setosa
43          4.4         3.2          1.3         0.2  setosa
42          4.5         2.3          1.3         0.3  setosa
4           4.6         3.1          1.5         0.2  setosa
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Recoding Variables Using ifelse()
The ifelse() function is very useful to recode variables based on original values,
which completes two actions: to do one thing if a condition is true and another thing
if the condition is false. The good thing is: while doing this, the function does for
entire vectors and without using loops. For example, suppose we want to create a
group based on the values of Petal.Length: if Petal.Length less than 4, then group =
1, else group = 2. The codes like this:

> group <- ifelse(iris$Petal.Length < 4,1,2)

The function can be nested. Recall, in the iris data set, there are three species:
setosa, versicolor, and virginica. The following R codes create three groups for
these three species:

> group_s <- ifelse(iris$Species %in% "setosa",1,

+ ifelse(iris$Species %in% "versicolor",2,3))

Splitting a Character String Using strsplit()
The strsplit() function splits the elements of a character vector into substrings
according to the chosen substring from character string. One syntax is strsplit
(character string, split). Where, the first argument is a character string or vector of
character strings to split, the split argument is the character substring to split the
character string. If the split is an empty string (“”), then the character string is split
between every character. The strsplit() function outputs a list of each element of the
character string that has been split. For example, one microbiome data example we
used in this book has following format with rows being samples and columns being
taxa. The group information is within the sample string.

> tab_t<-t(tab)
> head(tab_t)[1:3,c("Tannerella", "Lactococcus", "Lactobacillus")]

Tannerella Lactococcus Lactobacillus
5_15_drySt-28F        476         326            94
20_12_CeSt-28F         67         737           597
1_11_drySt-28F        549        2297           434
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We want to split the character string (e.g., 5_15_drySt-28F) by the character
substring “_”. The following codes achieve the goal:

> strsplit<-data.frame(row.names=rownames(tab_t),t(as.data.frame(strsplit
(rownames(tab_t),"_"))))
> head(strsplit

X1 X2        X3
5_15_drySt-28F  5 15 drySt-28F
20_12_CeSt-28F 20 12  CeSt-28F
1_11_drySt-28F  1 11 drySt-28F
2_12_drySt-28F  2 12 drySt-28F
3_13_drySt-28F  3 13 drySt-28F
4_14_drySt-28F  4 14 drySt-28F

String Pattern Matching and Replacement Using grep() and gsub()
R provides several functions for string search (or matching) and replacement based
on regular expressions. The most commonly used ones are grep(), sub(), gsub().
The simple syntaxes are given: grep(pattern, string), sub(pattern, replacement,
string), and gsub(pattern, replacement, string). The grep() searches for matches to
pattern (its first argument) within the character vector (second argument), while
both the sub() and gsub() perform replacement of matches. The argument string is a
character vector. The difference between sub() and gsub() is: with sub(), the first
occurrence of the regular expression is replaced, while with gsub(), all occurrences
are replaced. Here we illustrate gsub() and grep().

It is noted that R treats the first argument(pattern) in sub(), gsub() and grep(), as a
regular expression for effectiveness in string matching, manipulation, and R code
writing and maintenance. A regular expression is to describe a pattern for a function
on what and how to “match” or “match and replace” strings.

In regular expressions, the non-alphanumeric symbols/characters such as “$”,
“*”, “+”, “.”, “?”, “[”, “^”, “{”, “|”, “(”, “\\” are called metacharacters.
Metacharacters are the building blocks of regular expressions. They are specific
meanings in regular expressions (Table 4.1).

To match any metacharacters in R as a regular character, we need to escape or
precede them with a double backslash “\\”, while match a backslash as a regular
character, write four backslashes. For example, to tell the gsub() function to
interpret “$” as a regular character, we precede “$” with a double backslash.

> re <- gsub(pattern = "\\$", replacement = ".",

"metacharacters$uses$in$regular$expressions")

> re

[1] "metacharacters.uses.in.regular.expressions"
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In following, the function gsub() interprets the regular expression \\.+ as: to
match and replace one or more repetitions of a period.

Regular expressions are often seen in microbiome data manipulations. For
example, the public available microbiome data set “tongue_saliva” collected both
tongue and saliva samples. The tongue samples start with td_, and saliva samples
start with sa_.

Table 4.1 Some metacharacters and specific meanings in regular expression

Meta
character

Meaning

“.” Matches any single alphanumeric character or symbol except for the empty
string “” or a newline

“+” Matches the preceding character one or more times

“*” Matches the preceding character zero or more times

“.*” Matches for any character zero or more times

“?” Matches the preceding character optional: zero or one time only

“^” When used in a character class, to match any character but the following ones.
In regular expressions, we can describe a set of characters, and call the set as a
character class and denote it by square brackets

“$” Is the instruction to match empty string at the end of a line

“|” Allows for alternative matches, it operates like the Boolean: OR

“(“, ”)” Brackets for grouping

“[“, ”]” Character class brackets

“[a–z]”
“[0–9]”

Character set, matches at least one of elements from the set, but no more than
one unless otherwise specified
The order of the characters does not matter

“(abc)”
“(123)”

Character group, matches the characters abc or 123 in that exact order

> df = data.frame(how...to...interpret...metacharacters = c(1, 2), 
in...regular...expressions = c(1,2))  
> df
how...to...interpret...metacharacters

1                                     1
2                                     2
in...regular...expressions

1                      1 
2                          2
> names(df) <- gsub(pattern = "\\.+", replacement = ".", x = names(df))
> names(df)
[1] "how.to.interpret.metacharacters"
[2] "in.regular.expressions"
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> tab_ts <- read.table("tongue_saliva.txt", header=T, row.names=1,

sep="\t")

> tab_tts <-t(tab_ts)

> rownames(tab_tts)[1:3]

[1] "td_114221" "td_111445" "td_111580"

> rownames(tab_tts)[201:203]

[1] "sa_106066" "sa_105780" "sa_103488"

To label these two samples with single meaningful names, e.g., “tongue” and
“saliva”, respectively, we can use following R codes:

> rownames(tab_tts) <- gsub("sa_.+", "saliva", rownames(tab_tts))

> rownames(tab_tts) <- gsub("td_.+", "tongue", rownames(tab_tts))

> rownames(tab_tts)[1:3]

[1] "tongue" "tongue" "tongue"

> rownames(tab_tts)[201:203]

[1] "saliva" "saliva" "saliva"

The data set “tongue_saliva” also includes a column “tax.0” presenting taxa
information. We obtain them from the data set. The first lines show that the taxon
names prefixed with a character and “__”.

> tax <- tab_ts$tax.0

> tax[1:3]

[1] Root;p__Proteobacteria;c__Betaproteobacteria;o__Neisseriales;

f__Neisseriaceae;g__Neisseria

[2] Root;p__Bacteroidetes;c__Flavobacteria;o__Flavobacteriales;

f__Flavobacteriaceae;g__Capnocytophaga

[3] Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;

f__Actinomycetaceae;g__Actinomyces

To manipulate the data easily, we want to get rid of them. We can use the gsub()
function to do this job:

> tax_1 <- gsub(".+__", "", tax)

> tax_1[1:3]

[1] "Neisseria" "Capnocytophaga" "Actinomyces"
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In above applications of the gsub() function, we use metacharacters in regular
expressions to match the characters in the given character vector.

The grep() function also accepts a regular expression and a character string or
vector of character strings. By default, it returns the indices of the elements of the
strings matched by the regular expression. If the value = TRUE argument is
specified, then it returns the actual strings matched by the expression.

> grep("[wd]", c("Sepal.Length", "Sepal.Width", "Petal.Length",

"Petal.Width","Species"))

[1] 2 4

> grep("[wd]", c("Sepal.Length", "Sepal.Width", "Petal.Length",

"Petal.Width","Species"), value = TRUE)

[1] "Sepal.Width" "Petal.Width"

If we want a string to be matched as is or to be interpreted literally (i.e., not as a
regular expression), then use the fixed = TRUE argument.

> grep("Width", c("Sepal.Length", "Sepal.Width", "Petal.Length",

"Petal.Width","Species"), value = TRUE,fixed =TRUE)

[1] "Sepal.Width" "Petal.Width"

Using rep() and grep() to Create Group Variables in Microbiome Data
One important use of these functions in microbiome data is to create group variable
based on sample information. If the readers in the beginning feel difficult to fully
understand these codes, it is fine. You will find they are very useful later when
you analyze your microbiome data or read other’s works. We illustrate several
examples below.

Use rep() to create groups

The following codes create the variable group with numerical value of 1 presenting
fecal(drySt) and 2 presenting cecal(CeSt) samples:

> group <- data.frame(c(rep(1,length(grep("drySt", colnames(tab)))),

+ rep(2, length(grep("CeSt", colnames(tab))))))

The following codes create the variable group with character value of fecal
presenting drySt and cecal presenting CeSt samples:

> group_1 <- data.frame(c(rep("fecal",length(grep("drySt",

colnames(tab)))),rep("cecal", length(grep("CeSt", colnames(tab))))))
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Use grep() to create groups

The following R codes use the grep() function to obtain the columns containing the
two groups of fecal and cecal samples. It searches and match strings in the column
headers for samples named with “drySt” or “CeSt”.

> fecal <- grep("drySt", colnames(tab))

> cecal <- grep("CeSt", colnames(tab))

> fecal

[1] 1 3 4 5 6 7 8 9

> cecal

[1] 2 10 11 12 13 14 15 16

The above samples are not ordered in groups or experimental conditions. If the
samples are ordered based on groups or experimental conditions, then we can use
the rep() function to create the group variable as follows:

> conds <- c(rep("fecal", 8), rep("CeSt", 8))
> conds
[1] "fecal" "fecal" "fecal" "fecal" "fecal" "fecal" "fecal"
[8] "fecal" "CeSt"  "CeSt"  "CeSt"  "CeSt"  "CeSt"  "CeSt" 

[15] "CeSt"  "CeSt
> fecal<- colnames(tab)[grep("drySt", colnames(tab))] # fecal samples
> cecal <- colnames(tab)[grep("CeSt", colnames(tab))] # cecal samples
> df_mice <- data.frame(tab[,fecal], tab[,cecal]) # make a data frame
> head(df_mice)

X5_15_drySt.28F X1_11_drySt.28F X2_12_drySt.28F
Tannerella                             476             549             578
Lactococcus                            326            2297             548
Lactobacillus                     94             434             719
Lactobacillus::Lactococcus               1              25               5
Parasutterella                           1               1               4

13Helicobacter                            89               0              13 
                           X3_13_drySt.28F X4_14_drySt.28F X7_22_drySt.28F 
Tannerella                             996             404             319 
Lactococcus                           2378             471             882 
Lactobacillus                          322             205             644 
Lactobacillus::Lactococcus              17               1              13 
Parasutterella                           2               0               0 
Helicobacter                            24              32               3 

4.2 Introduction to the dplyr Package

The dplyr package provides a set of functions for efficiently manipulating datasets
in R. The package dplyr is the next generation of “plyr”, focussing on only data
frames. Thus it is very useful for transforming and summarizing tabular data with
rows and columns, such as for microbiome data set. The dplyr package contains a
set of functions (“verbs”) that perform most common data manipulation tasks such
as selecting specific columns, filtering for rows, re-ordering rows, adding new
columns and summarizing data. The important single dplyr functions include:
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• select() and rename() to select columns(variables) based on their names
• filter() to filter rows(cases) based on their values
• arrange() to re-order or arrange the rows (cases)
• mutate() and transmute() to create new columns, e.g., to add new variables that

are functions of existing variables
• summarise() to summarize values
• group_by() to group observations
• sample_n() and sample_frac() to take random samples.

Also, “dplyr” contains an important function group_by() to perform another
common task which is related to the “split-apply-combine” concept.

In addition, dplyr imported the pipe operator: %>% from the magrittr package.
The pipe operator is very useful when we combine several functions. Generally, in
R if we combine several functions, we nest them each other. The nested functions
are operated from the inside to the outside. For example, in following codes, select()
is nested within head(), the operator starting with selecting columns id, and write to
make a new data frame, then the head() is applied to obtain the first 6 lines of the
new data frame. Here we use the publicly available data set hsb2demo, which we
used in Sect. 4.1.3.2 to illustrate this package.

> setwd("E:/Home/MicrobiomeStatR/Analysis")
> tab <- read.csv("hsb2demo.csv")
> head(tab)

id female race ses schtyp prog read write math science socst
1  70      0    4   1      1    1   57    52   41      47    57
2 121      1    4   2      1    3   68    59   53      63    61
3  86      0    4   3      1    1   44    33   54      58    31
4 141      0    4   3      1    3   63    44   47      53    56
5 172      0    4   2      1    2   47    52   57      53    61
6 113      0    4   2      1    2   44    52   51      63    61

Next, we install and load dplyr.

> install.packages("dplyr")

> library(dplyr)

The pipe operator: %>%, instead of reading functions from the inside to the out-
side, is to read the functions from left to right. In the followingR codes, we pipe the tab
data frame to the select() function to select two columns (id and write), and then pipe
the newdata frame to the head() functionwhich returns the head of the newdata frame.

> tab %>% 
+ select(id,write) %>% 
+ head

id write
1  70    52
2 121    59
3  86    33
4 141    44
5 172    52
6 113    52
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Selecting Columns Using select()
The select() allows us to rapidly subset a set of columns by names using operations
that usually only work on numeric variable positions:

To select a range of columns by name, use the “:” (colon) operator.

> # Select all columns between read and socst (inclusive)
> head(select(tab, read:socst))
read write math science socst

1   57    52  41      47    57
2   68    59   53      63    61
3   44    33   54      58    31
4   63    44   47      53    56
5   47    52   57      53    61
6   44    52   51      63    61

To select all the columns except a specific column or a range of columns, use the
“−” (subtraction) operator (also known as negative indexing).

> # Select all columns except female
> head(select(tab, -female))

id race ses schtyp prog read write math science socst
1  70    4   1      1    1   57    52   41      47    57
2 121    4   2      1    3   68    59   53      63    61
3  86    4   3      1    1   44    33   54      58    31
4 141    4   3      1    3   63    44   47      53    56
5 172    4   2      1    2   47    52   57      53    61
6 113    4   2      1    2   44    52 51      63    61

> # Select all columns except those from female to prog (inclusive)
> head(select(tab, -(female:prog )))

id read write math science socst
1  70   57    52   41      47    57
2 121   68    59   53      63    61
3  86   44    33   54 58    31
4 141   63    44   47      53    56
5 172   47    52   57      53    61
6 113   44    52   51      63    61

There are additional functions to select columns based on a specific criteria using
within select(), such as starts_with(), ends_with(), matches(), contains(), and one_of
(). They can help us quickly match larger blocks of variables that meet some

> # Select columns: id, read, write and math
> head(select(tab, id, read, write, math))

id read write math
1  70   57    52   41
2 121   68    59   53
3  86   44    33   54
4 141   63    44   47
5 172   47    52   57
6 113   44    52   51
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criteria. The starts_with () is used to select all columns that start with the character
string; the ends_with() to select columns that end with a character string; the
matches() to select columns that match a regular expression; the contains() to select
columns that match a literal string.

> # select all columns that start with the character string "s"
> head(select(tab, starts_with("s")))
ses schtyp science socst

1   1      1      47    57
2   2      1      63    61
3   3      1      58    31
4   3      1      53    56
5   2      1      53    61
6   2      1      63    61

Selecting Rows Using filter()
The filter() allows us to select a subset of rows in a data frame. Like all single
functions, the first argument is the name of data frame. The second and subsequent
arguments are the variables of the data frame, selecting rows where the expression
is true.

> #Selecting rows using filter() 
> # Filter the rows for students with reading score greater than or equal 70.
> filter(tab, read >= 70)

id female race ses schtyp prog read write math science socst
1  95      0    4   3      1    2   73    60   71      61    71
2 103      0    4   3      1    2   76    52   64      64    61
3 132      0    4   2      1    2   73    62   73      69    66
4  68      0    4   2      1    2   73    67   71      63    66
5  57      1    4   2      1    2   71    65   72      66    56
6 180      1    4   3      2    2   71    65   69      58    71
7  34      1    1   3      2    2   73    61   57      55    66
8  93      1    4   3      1    2   73    67   62      58    66
9  61      1    4   3      1    2   76    63   60      67    66

> #Filter the rows for students with both reading and math scores greater 
than or equal 70
> filter(tab, read >= 70, math >= 70)

id female race ses schtyp prog read write math science socst
1  95      0    4   3      1    2   73    60   71      61    71
2 132      0    4   2      1    2   73    62   73      69    66
3  68      0    4   2      1    2   73    67   71      63    66
4  57      1    4   2      1    2   71    65   72      66    56
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Re-order Rows Using arrange()
The arrange() works similarly to filter() except that instead of filtering or selecting
rows, it re-orders them.

> #Re-order by read and write
> head(arrange(tab, id, read, write))
id female race ses schtyp prog read write math science socst

1  1      1    1   1      1    3   34    44   40      39    41
2  2      1    1   2      1    3   39    41   33      42    41
3  3      0    1   1      1    2   63    65   48      63    56
4  4      1    1   1      1    2   44    50   41      39    51
5  5      0    1   1      1    2   47    40   43      45    31
6  6      1    1   1      1    2   47    41   46      40    41

> #Use desc() to order a column in descending order
> head(arrange(tab, desc(read)))

id female race ses schtyp prog read write math science socst
1 103      0    4   3      1    2   76    52   64      64    61
2  61      1    4   3    1    2   76    63   60      67    66
3  95      0    4   3      1    2   73    60   71      61    71
4 132      0    4   2      1    2   73    62   73      69    66
5  68      0    4   2      1    2   73    67   71      63    66
6  34      1    1   3    2    2   73    61   57      55    66

The pipe operator: %>% can be used with arrange() together.

> #To re-order rows by a particular column(female)
> tab %>% arrange(female) %>% head

id female race ses schtyp prog read write math science socst
1 70      0    4   1      1    1   57    52   41      47    57
2  86      0    4   3      1    1   44    33   54      58    31
3 141      0    4   3      1    3   63    44   47      53    56
4 172      0    4   2      1    2   47    52   57      53    61
5 113      0    4   2      1    2   44    52   51      63    61
6  50      0    3   2      1    1   50    59   42      53    61
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Create New Columns Using mutate()
Create new columns that are functions of existing columns.

> #Select three columns id, gender, read from tab
> #Arrange the rows by the gender and then by read
> #Then return the head of the final data frame
> tab%>%select(id, female, read) %>%
+           arrange(female, read) %>% 
+           head

id female read
1 164      0   31
2  11      0   34
3  53      0   34
4 108      0   34
5 117      0   34
6 165      0   36

> #Filter the rows for read with score greater or equal to 70
> tab %>% select(id, female, read) %>%
+   arrange(female, read) %>% 
+    filter(read >= 70)

id female read
1  95      0   73
2 132      0   73
3  68      0   73
4 103      0   76
5  57      1   71
6 180  1   71
7  34      1   73
8  93      1   73
9  61      1   76

> #Arrange the rows for read in a descending order
> tab %>% select(id, female, read) %>%
+    arrange(female, desc(read)) %>% 
+    filter(read >= 70)

id female read
1 103      0   76
2 95      0   73
3 132      0   73
4  68      0   73
5  61      1   76
6  34      1   73
7  93      1   73
8  57      1   71
9 180      1   71
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Summarize Values Using summarise()
The summarise() creates summary statistics for a given column in the data frame
combining other summary statistics, such as, mean(), sd(), min(), max(), median(),
sum(), n(), first(), last() and n_distinct(). The following codes are used to find the
mean of read score.

The following codes are used to find the mean and other summary statistics.

> #Create new columns using mutate()
> #Calculate average read and write scores
> head(mutate(tab, avg_read = sum(read)/n()))

id female race ses schtyp prog read write math science socst
1  70      0    4   1      1    1   57    52   41      47    57
2 121      1    4   2      1    3   68    59   53      63    61
3  86      0    4   3      1    1   44    33   54      58    31
4 141      0    4   3      1    3   63    44   47      53    56
5 172      0    4   2      1    2   47    52   57      53    61
6 113      0    4   2      1    2   44    52   51      63    61
avg_read

1    52.23
2    52.23
3    52.23
4    52.23
5    52.23
6    52.23

> #To keep only the new variables, use transmute()
> head(transmute(tab,avg_read = sum(read)/n()))
avg_read

1    52.23
2    52.23
3 52.23
4    52.23
5    52.23
6    52.23

> #Create new columns using mutate() and pipe operator
> tab %>% mutate(avg_read = sum(read/n())) %>%
+   head

id female race ses schtyp prog read write math science socst
1  70      0    4   1      1    1   57    52   41      47    57
2 121      1    4   2      1    3   68    59   53      63    61
3  86      0    4   3      1    1   44    33   54      58    31
4 141      0    4   3      1    3   63    44   47      53    56
5 172      0    4   2      1    2   47    52   57      53    61
6 113      0    4   2      1    2   44    52   51      63    61
avg_read

1    52.23
2    52.23
3    52.23
4    52.23
5    52.23
6    52.23

> #To collapses a data frame to a single row.
> summarise(tab, avg_read = mean(read, na.rm = TRUE))
avg_read

1    52.23
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> #Create summaries of the data frame using summarise() and pipe operator
> tab %>% summarise(avg_read = mean(read), 
+                    min_read = min(read),
+                    max_read = max(read),
+                    n = n())
avg_read min_read max_read   n

1    52.23       28       76 200

Grouping Observations Using group_by()
This function breaks down a dataset into specified groups of rows. It splits the data
frame by some variable, apply a function to the individual data frames and then
combine the output. In following, we first group the total 200 observations by
gender, and then get the summary statistics of reading by gender.

> #First group by gender, and then get the summary statistics of reading by g
ender
> by_gender <- group_by(tab, female)
> read_by_gender <- summarise(by_gender,
+                              n = n(),
+                              avg_read = mean(read, na.rm = TRUE),
+                              min_read = min(read,na.rm = TRUE),
+                              max_read = max(read,na.rm = TRUE))
> read_by_gender
# A tibble: 2 x 5
female     n avg_read min_read max_read
<int> <int>    <dbl>    <dbl>    <dbl>

1      0    91    52.82       31       76
2      1   109    51.73       28       76

The same job can be done via pipe operator.

> #Create summaries of the data frame using summarise() and pipe operator
> tab %>% group_by(female) %>%
+         summarise(n = n(),
+                    avg_read  = mean(read), 
+                    min_read = min(read),
+                    max_read = max(read))
# A tibble: 2 x 5
female     n avg_read min_read max_read
<int> <int>    <dbl>    <dbl>    <dbl>

1      0    91    52.82       31       76
2      1   109    51.73       28       76
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Randomly Sample Rows Using sample_n() and sample_frac()

> #Use sample_n() to sample a fixed number
> sample_n(tab, 5)

id female race ses schtyp prog read write math science socst
183  92      1    4   3      1    1   52    67   57      63    61
156 139      1    4   2    1    2   68    59   61      55    71
184 160      1    4   2      1    2   55    65   55      50    61
47   49      0    3   3      1    3   50    40   39      49    47
85   58      0    4   2      1    3   55    41   40      44    41

> #Use sample_frac() to sample a fixed fraction
> sample_frac(tab, 0.02)

id female race ses schtyp prog read write math science socst
38   80      0    4   3      1    2   65    62   68      66    66
160  39      1    3   3      1    2   66    67   67      61    66
127 105      1    4   2      1    2   50    41   45      44    56
130  45      1    3   1      1    3   34    35   41      29    26

> #Use replace = TRUE to perform a bootstrap sampling
> sample_n(tab, 5,replace = TRUE)

id female race ses schtyp prog read write math science socst
11   75      0    4   2      1    3   60    46   51      53    61
180  63      1    4   1      1    1   52    65   60      56    51
182 193      1    4   2      2    2   44    49   48      39    51
103  47      1    3 1      1    2   47    46   49      33    41
96  173      1    4   1      1    1    50    62   61      63    51

4.3 Introduction to ggplot2

4.3.1 ggplot2 and the Grammar of Graphics

The ggplot2 package was written and maintained by Wickham (2016) to create
elegant graphics for data analysis. Because its versatility, clear and consistent
interface, and provides beautiful, publication-ready graphs, ggplot2 has attracted
many users in the R community, and particularly in some research fields of data
generated by the high-throughput sequencing technologies, such as microbiome
data. This package uses the grid package to provide a series of high-level functions
for creating complete plots, and extends and refines the principles of “The Grammar
of Graphics” (Wilkinson 2005). The basic idea of the grammar of graphics is to
independently specify plot components and combine them to build just about any
kind of graphical display we want.

There are six main components in Wilkinson’s grammar including: data,
transformations, element, scales, guide, and coordinate system. Although the
high-level components of Wickham’s grammar are quite similar to those of
Wilkinson’s grammar; however, Wickham emphasized and named his proposed
grammar of graphics as the layered grammar to differentiate from Wilkinson’s
grammar of graphics. The layered grammar of graphics was based on the idea of
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building up a graphic from multiple layers of data. It defines the components of a
plot as: data, aesthetic mappings, statistical transformations, geometric objects,
position adjustment, scales, coordinate system and faceting, which is shown in
Table 4.2.

The components of Wilkinson’s grammar can be mapped to those of the layered
grammar: a layer of the layered grammar is the equivalent of Wilkinson’s element;
the scale of the layered grammar is equivalent to the SCALE and GUIDE of
Wilkinson’s grammar; the coordinate system and faceting of the layered grammar

Table 4.2 The components of the layered grammar

Layer Descriptions

• Data
• Aesthetic mappings
(Aes)

• Statistical
transformations (Stat)

• Geometric objects
(Geoms)

• Position adjustment
(Position)

The data, mappings, statistical transformation, and geometric object,
position adjustment form a layer and a plot may have multiple layers
Data: are used to construct a concrete graph, consisting variables,
which are stored as columns in a data frame. Data are independent
from the other components and multiple datasets can be applied
Mapping: the purpose of mapping is to convert data properties
(typically numerical or categorical values) to aesthetic or visual
properties; it is used to specify which variables to which aesthetic
attributes (e.g., x-position, y-position, color, shape, size, etc.)
Stat: transforms the data, typically by summarizing them in some
manner (e.g., smooth line, regression line, binning or aggregating,
boxplot, jitter, etc.). A stat can add new variables to the dataset. It is
possible to map aesthetics to these new variables
Geoms: are the geometric objects that are drawn to represent the data;
each geom controls the type of plot that we create. Each geom can
only display certain aesthetics (e.g., bars, lines, and points, etc.)
Every geom has a default statistic, and every statistic has a default
geom
Position adjustment: are used to tweak the position of the geometric
elements on the plot to avoid obscuring each other, e.g., in bar plots,
stack or dodge (place side-by-side) the bars to avoid overlaps. In
scatterplots, randomly jitter the points to reduce over-plotting

Scales Scales: for every aesthetic attribute, there is a function, called a scale;
a scale controls the mapping from data to aesthetic attributes to
ensure the data values are valid for that aesthetic. Additionally,
scaling is performed before statistical transformation.

Coordinate system
(Coord)

Coord: maps the position of objects onto the plane of the plot.
Position is often specified by two coordinates (x, y), but could be any
number of coordinates
Additionally, coordinate transformations occur after statistical
transformation

Faceting Faceting: is known as conditioned or trellis plots in a more general
case of the plots. The faceting describes which variables should be
used to split up the data, and how they should be arranged. Faceting
is a powerful tool to investigate whether patterns are the same or
different across conditions
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are equivalent to Wilkinson’s coordinate system. However, Wilkinson’s transla-
tions has no correspondence in ggplot2 (its role is played by built-in R features).

4.3.2 Simplify Specifications in Creating a Plot Using ggplot()

The algorithm of ggplot2 is simple: you provide the data, tell the ggplot2 how to
map variables to aesthetics, what graphics to use, and it takes care of the details.

In ggplot2, layers are responsible for creating the objects that we perceive on the
plot. A layer is composed of four parts: data and aesthetic mapping, a statistical
transformation (stat), a geometric object (geom), and a position adjustment
(Wickham 2010). A plot may have multiple layers. These layers are combined with
a coordinate system and transformations to generate the final plot. The following is
a plot generation process:

map variables to aesthetics ! facet datasets ! transform scales ! compute aes-
thetics ! train scales ! map scales ! render genoms.

4.3.2.1 Full Steps Without Using Defaults

In this section, we use previously used iris data set to illustrate how to create a
scatterplot with ggplot() function. We start with ggplot() to create a plot object, and
then add the other components. The full ggplot2 specification of the scatterplot of
Sepal.Length versus Sepal.Width is:

> library(ggplot2)

> ggplot() +

+ layer(

+ data = iris, mapping = aes(x = Sepal.Width, y = Sepal.Length),

+ geom = "point", stat = "identity", position = "identity"

+ ) +

+ scale_y_continuous() +

+ scale_x_continuous() +

+ coord_cartesian()

We can see that a single layer specifies the data, mapping, geom, stat, and
position, the two continuous position scales, and a Cartesian coordinate system.

4.3.2.2 To Simplify Specifications by Intelligently Using Defaults

The full specifications are very complicated; especially the layer is the most
complicated. There are two ways to simplify the grammar syntax: one is to intel-
ligently use defaults of the grammar, which we will cover here; another is to use the
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qplot() function, which we will introduce in next subsection. You can intelligently
use following three kinds of defaults to simplify your codes:

(1) each geom has a default stat (and vice versa), so we only need specify either
geom or stat, but not both of them. (2) do not need to specify Cartesian coordinate
system, because it is the default coordinate system. (3) default scales will be added
according to the aesthetic and type of variable. For example, for position, contin-
uous values are transformed with a linear scaling, and categorical values are
mapped to the integers; for color, continuous variables are mapped to a smooth path
in the HCL color space, and discrete variables to evenly spaced hues with equal
luminance and chroma.

Thus, we can reduce above specifications as below:

> ggplot() +

+ layer(

+ data = iris, mapping = aes(x = Sepal.Width, y = Sepal.Length),

+ geom = "point"

+ )

Typically, we can omit data =, and mapping =, instead of specifying a default
dataset and mapping in the ggplot() call, and also use position-based matching in
aes (x-variable, y-variable). We can also omit the layer. So the specifications can be
reduced as below:

> ggplot(iris, aes(Sepal.Width, Sepal.Length)) +

+ geom_point()

When the layer is omitted, the specification for geom = “geometry”will be replaced
as an according geometry function, such as, in this case, geom = “point” is replaced as
geom_point(). Similar, the specification for stat = “statistic” will be replaced as an
according statistic function, such as, stat = “smooth” is replaced as stat_smooth().

Any aesthetics specified in the layer will override the default. Similarly, if a
dataset is specified in the layer, it will override the plot default. The following codes
override the default linear-transformations, which are specified via scale_y_con-
tinuous() and scale_x_continuous(), with log-transformations using scale_x_log10
() and scale_y_log10() functions.

> ggplot(iris, aes(Sepal.Width, Sepal.Length)) +

+ geom_point()

> ggplot(iris, aes(Sepal.Width, Sepal.Length)) +

+ geom_point() +

+ stat_smooth(method = lm) +

+ scale_x_log10() +

+ scale_y_log10()
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If we don’t use the defaults, then the full specifications should be as below:

> ggplot() +

+ layer(

+ data = iris, mapping = aes(x = Sepal.Width, y = Sepal.Length),

+ geom = "point", stat = "identity", position = "identity"

+ ) +

+ layer(

+ data = iris, mapping = aes(x = Sepal.Width, y = Sepal.Length),

+ geom = "smooth", position = "identity",

+ stat = "smooth"""", method = lm

+ ) +

+ scale_y_log10() +

+ scale_x_log10() +

+ coord_cartesian()

The concept of the hierarchy of defaults is explained in his paper (Wickham
2010) and how to build a plot layer by layer in Chap. 5 of book (Wickham 2016).

4.3.2.3 Reduce the Amount of Typing Grammar Syntax by Using
qplot()

In ggplot2, there are two main high-level functions to create a plot: qplot(), short for
quick plot, and ggplot(). With qplot(), a plot is created in a way of all at once; with
ggplot(), a plot is created piece-by-piece and layer functions.

The reason that ggplot2 is supplemented with qplot() is to reduce the amount of
typing needed. Because even we use many defaults, the explicit grammar syntax of
ggplot2 is rather verbose, which makes it difficult to rapidly experiment with dif-
ferent plots. It also mimics the syntax of the plot () function, making ggplot2 easier
to use for who already familiar with base R graphics. For example, if use qplot() for
above plot, the codes are:

> qplot(Sepal.Width, Sepal.Length, data = iris,

+ geom = c("point", "smooth"),

+ method = "lm", log = "xy")

Although qplot() is a quick and convenient for the users who are familiar with
base R graphics, its limitations are obvious: since the qplot() function assumes that
multiple layers will use the same data and aesthetic mappings, the method argument
does not have explicit layer to apply, and the particular data transformations, the
plot layout defining and controlling are also restricted. Thus, in such cases, the more
advanced ggplot() functions is needed.
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4.3.3 Creating a Plot Using ggplot()

4.3.3.1 Creating a Plot Layer by Layer with ggplot()

As we described in Sect. 4.3.1, the first distinct feature of the grammar of ggplot2 is
layered, which means that a plot is created by at least a layer, and enhanced by
adding more players to an existing plot using the ggplot() function. We described in
Table 4.2 and saw in above codes, a layer combines data, aesthetic mapping, a
geom (geometric object), a stat (statistical transformation), and a position adjust-
ment. A layer is completed with a geom (geometric object), so the layers in ggplot2
are also called “geoms”. Thus, in ggplot2, the plot is actually created by a geom
(e.g., geom_point()) and enhanced by more geoms (e.g., geom_smooth(), etc.). One
geom presents one layer of plot.

The second distinct feature of ggplot2 is that it works with a dataframe and not an
individual vector. So before we use the package to create a plot, we need to convert
the data to a dataframe if it is a vector. All the data supplied either to the ggplot()
itself or to respective geoms to create the plot is contained within the dataframe.

In this section, we use previously used iris data set to illustrate how to create a
plot layer by layer using ggplot() function. Assume that we want to create a scat-
terplot of Sepal. Length versus Sepal.Width.

Step 1: To initialize a basic ggplot, we start with ggplot() to create a plot object
containing the data and aesthetic mapping. We name the plot object as p (Fig. 4.2).

Fig. 4.2 A blank ggplot() plot object with created by data and aesthetic mapping

4.3 Introduction to ggplot2 115



> library(ggplot2)

> p <- ggplot(iris, aes(x=Sepal.Width, y=Sepal.Length))

> # Sepal.Width and Sepal.Length are columns in iris dataframe

> p

Any information within the dataframe that needs for the plot should be specified
inside the aes() function. In this case, we implement aesthetic mapping via the aes()
function: specify x, and y variables, respectively. However, only a blank ggplot is
drawn. Because so far we have only told ggplot() what dataset to use and what
columns should be used for x, y axis, and color. But we haven’t explicitly asked it
to draw any points or a line yet. To actually draw a scatterplot or a line chart, we
have to explicitly ask ggplot() by using a geom layer. The object p is an R S3 object
of the class ggplot consisting data and other components containing information
about this plot. We can access the details of information using the summary()
function to keep track of which data was exactly used and how the variables were
mapped.

> summary(p)

data: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width,

Species [150x5]

mapping: x = Sepal.Width, y = Sepal.Length

faceting: <ggproto object: Class FacetNull, Facet>

We can see that the dataframe has 150 rows and 5 columns (variables), of those
2 variables were mapped to x and y axes respectively.

Step 2: To draw a scatterplot, we add points using a geom layer called
geom_point() to the plot object p. A basic plot in ggplot2 is realized using data,
aesthetic mapping and a geometry. We already have the components of data,
aesthetic mapping, the component need to be added is scatterplot geom layer. The
layer can be added using the + operator followed by the function defining the
scatterplot with points: geom_point() (Fig. 4.3).

> #Add scatterplot geom (layer1)

> p1 <- p + geom_point()

Again, we use the summary() function to access the details of the new plot
object:

> summary(p1)

This gives the following output:

data: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width, Species

[150x5]

mapping: x = Sepal.Width, y = Sepal.Length
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faceting: <ggproto object: Class FacetNull, Facet>

-----------------------------------

geom_point: na.rm = FALSE

stat_identity: na.rm = FALSE

position_identity

We can see that the new plot object added the geom and stat details used.
In this plot, we create a plot object and then add a layer by the + operator to

create a new plot object; alternatively we can provide all the codes together. Both
options return the same results.

> ggplot(iris, aes(x=Sepal.Width, y=Sepal.Length)) + geom_point()

Like geom_point(), many other geoms are available in the ggplot2 at website
(http://ggplot2.tidyverse.org/reference/). For example, except for geom_point()
draws points to produce a scatterplot; geom_smooth() fits a smoother to the data
and displays the smooth and its standard error; geom_boxplot() produces a box and
whisker plot to summarize the distribution of a set of points; geom_path() and
geom_line() draw lines between the data points. For continuous variables, geom_
histogram() draws a histogram, geom_freqpoly() creates a frequency polygon, and

Fig. 4.3 A scatterplot created by data and aesthetic mapping and geom_point()
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geom_density() creates a density plot. For discrete variables, geom_bar() draws a
bar chart. Here we want to add a smoothing layer.

Step 3: To draw a scatterplot with smooth curve, we add an additional geome
layer called geom_smooth() to the previous plot object. For this smother plot, we
set the method as lm (short for linear model) to draw the line of best fit (Fig. 4.4).

> #Add smoothing geom (layer2)

> p2 <- p1 + geom_smooth(method="lm")

> p2

> summary(p2)

data: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width,

Species [150x5]

mapping: x = Sepal.Width, y = Sepal.Length

faceting: <ggproto object: Class FacetNull, Facet>

Fig. 4.4 A scatterplot created by data, aesthetic mapping, and geom_point() and geom_smooth()
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-----------------------------------

geom_point: na.rm = FALSE

stat_identity: na.rm = FALSE

position_identity

geom_smooth: na.rm = FALSE

stat_smooth: na.rm = FALSE, method = lm, formula = y * x, se = TRUE

position_identity

The output shows that an additional layer smother with linear model added to the
plot object. The smother curve also has confidence bands. We can set se = FALSE
to turn off the confidence bands.

> #set se = FALSE to turn off confidence bands

> p1 + geom_smooth(method="lm", se = FALSE)

4.3.3.2 Using Scales to Change the Aesthetics of a Geom Layer

The mapping from data to aesthetic attributes is controlled by the scale functions,
such as in Sect. 4.3.2.1, scale_y_continuous() and scale_x_continuous() for the x-y
position in the axes. The scale functions can be used to both continuous and
categorical variable. For example, in continuous case, scales are used to fill his-
tograms or density plots; in discrete case, scales are used for filling histograms or
bar charts, or for scatterplots when mapping for color, size, or shape.

We need to know that the aesthetic attributes used to map to variables depend on
the geom() function used. Thus, we can change the aesthetic attributes via speci-
fying the arguments of the respective geom layer. In this case, we change the color
and size of points and color of line of best fit (Fig. 4.5).

> p3 <- ggplot(iris, aes(x=Sepal.Width, y=Sepal.Length)) +

+ #Add scatterplot geom (layer1)

+ geom_point(col="blue", size=3) +

+ #Add smoothing geom (layer2)

+ geom_smooth(method="lm",col="red",size=2)

> p3

Another important application of changing color is to map different colors to the
different levels of a categorical variable in source dataset. For example, in micro-
biome study, we often use different colors to present the different experimental
groups or conditions. Since the categorical variable is in the source dataset, it must
be specified within the aes() function (Fig. 4.6).
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> p4 <- ggplot(iris, aes(x=Sepal.Width, y=Sepal.Length)) +

+ #Add scatterplot geom (layer1)

+ geom_point(aes(col=Species), size=3) +

+ #Add smoothing geom (layer2)

Fig. 4.5 Change the color and size of points and best fitted line

Fig. 4.6 Map the color of points based on levels of categorical variable. Three kinds of species
are presented by three different colors
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+ geom_smooth(method="lm",col="red",size=2)

> p4

We can see that the points in the scatterplot are presented with different colors
based on species it belongs because of using aes (col = Species). Actually, in
ggplot2, except for color, we can also use size, shape, stroke (thickness of
boundary) and fill (fill color) to discriminate groupings in appropriate plots.

4.3.3.3 Using the Coordinate System to Adjust the Limits
of X and Y Axes

The usage of the coordinate system is to adjust the mapping from coordinates to the
2D plane on the computer screen. Among the different coordinate systems available
in ggplot2, the Cartesian and the polar systems are the most often used. Each
coordinate system has the associated functions. For example, for Cartesian coor-
dinate system, the coordinate functions include: coord_cartesian(xlim, ylim),
coord_flip(), and coord_fixed(ratio, xlim, ylim); for polar coordinates, the function
coord_polar(theta, start, direction) is often used. We can use these functions and
their according arguments to adjust the attributes to display in the plot. Here we
illustrate how to use the arguments xlim and ylim of coord_cartesian() to adjust the
limits of X and Y axes, respectively.

In following codes, we create a new plot object p5, and change the X and Y axis
limits to zoom in to the region of interest using coord_cartesian(). Then we plot this
object (Fig. 4.7).

> p5 <- p4 + coord_cartesian(xlim=c(2.2,4.2), ylim=c(4, 7)) # zooms in

> plot(p5)

4.3.3.4 Adding the Labels Layer to Change the Title and Axis Labels

The plots created by ggplot2 by default do not have any title and with axis labels
corresponding to the variable names used in the plot. However, in some cases, e.g.,
publication, we may want to add the titles to the plot and may also want to change
the X and Y-axis labels. This can be done either using the labs() function in which
we can specify both the axis and the title with title, x and y arguments, or using
specific functions ggtitle() to change the title, and xlab() and ylab() for axis labels.

The following codes use labs() function:

> #Add Title and Labels using labs()

> p6 <- p5 + labs(title="Sepal width vs sepal length", subtitle="Using
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iris dataset", y="Length of Sepal", x="Width of Sepal")

> print(p6)#Or plot(p6)

Or

> plot(p6)

The following codes use ggtitle(), xlab() and ylab() functions:

> #Add Title and Labels using ggtitle(), xlab() and ylab()

> p7 <-p5 + ggtitle("Sepal width vs sepal length", subtitle="Using iris

dataset") + ylab("Length of Sepal") + xlab("Width of Sepal")

> print(p7)

The full scatterplot call is given using following codes:

> library(ggplot2)

> ggplot(iris, aes(x=Sepal.Width, y=Sepal.Length)) +

+ geom_point(aes(col=Species), size=3) +

+ geom_smooth(method="lm",col="red",size=2) +

+ coord_cartesian(xlim=c(2.2,4.2), ylim=c(4, 7)) +

+ labs(title="Sepal width vs sepal length", subtitle="Using iris

dataset",

y="Length of Sepal", x="Width of Sepal")

Fig. 4.7 Adjust the limits of X and Y axes using the coord_cartesian()
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This generated plot is same as Fig. 4.8.

4.3.3.5 Using Faceting to Detect Patterns Across Conditions

Faceting is a powerful tool to investigate whether patterns are the same or different
across conditions. The way of faceting to do so is to draw multiple plots within one
figure. The functionality of faceting is similar to panels in lattice package. It is often
seen in publications on microbiome study. Faceting can be performed via two main
ways in ggplot2: grid faceting and wrap faceting.

Draw multiple plots in a grid using facet_grid(formula)

To create a faceting of plot, the dataset is splitted into subgroups based on two or
more variables, then these subsets of dataset are used to produce subplots. The
function facet_grid() is used to create the grid faceting. The syntax of the function
is: facet_grid(formula).

The formula could be x * y, which indicates to split the plots into one row for
each value of the variable x and one column for each value of the variable y.
Implementing the facet_grid(x * y) function produces a matrix plot with rows and
columns consisting the possible combinations of x and y. The formula could be
x*., which is used to split the plots by rows; implementing the facet_grid(x*.)
function splits plots with orientation by rows. The formula also could be .*y,
which is used to split the plots by columns; implementing the facet_grid(.*y)
function splits plots with orientation by columns. We illustrate facet_grid(x*.) and

Fig. 4.8 Scatterplot with changed titles and axis labels
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facet_grid(.*y) grid faceting using previous scatterplot of sepal width versus sepal
length from iris dataset, respectively.

The scatterplot has the sepal length against the sepal width for the whole dataset.
We can use grid faceting to detect this relationship for different kinds of species
(Figs. 4.9 and 4.10).

> #Spliting plots by rows

> ggplot(iris, aes(x=Sepal.Width, y=Sepal.Length)) +

+ geom_point(aes(col=Species), size=3) +

+ geom_smooth(method="lm",col="red",size=2) +

+ coord_cartesian(xlim=c(2.2,4.2), ylim=c(4, 7)) +

+ # Add Facet Grid

+ facet_grid(Species *.)

> #Spliting plots by columns

> ggplot(iris, aes(x=Sepal.Width, y=Sepal.Length)) +

+ geom_point(aes(col=Species), size=3) +

+ geom_smooth(method="lm",col="red",size=2) +

+ coord_cartesian(xlim=c(2.2,4.2), ylim=c(4, 7)) +

+ # Add Facet Grid

+ facet_grid(.* Species)

Fig. 4.9 Scatterplot with splitting plots by rows
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The margin option of the facet_grid() function is very useful. It is used to create
additional facets containing all the data if specifying margin = TRUE. The fol-
lowing codes create an additional column of all the data presenting the scatterplot
for all three species (Fig. 4.11).

> #Spliting plots by columns

> ggplot(iris, aes(x=Sepal.Width, y=Sepal.Length)) +

+ geom_point(aes(col=Species), size=3) +

+ geom_smooth(method="lm",col="red",size=2) +

+ coord_cartesian(xlim=c(2.2,4.2), ylim=c(4, 7)) +

+ # Add Facet Grid

+ facet_grid(.* Species, margin=TRUE)

If we want to split the plots based on two or more variables, we need to perform
faceting for all these variables. For example, the formula .* y + z(facet_grid(.* y
+ z)) perform faceting for two variables with both by columns, the plots will be
displayed based on one variable side by side along with the levels of another
variable. This kind of visualization makes the comparison of two categorical
variables very efficiently. In this formula, we can see that the additional variable z is
added to y using the + operator.

Break down a large series of plots into multiple small plots using facet_wrap
(formula)

Fig. 4.10 Scatterplot with splitting plots by columns
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Wrap faceting produces a large series of plots into multiple small plots for
individual categories. This feature makes wrap faceting especially useful to facet
combinations of many levels of categorical variables. To perform wrap faceting, we
use the facet_wrap(formula) function. The faceting variables can be listed as argu-
ments in the form of facet_wrap(x* y + z). The variables to the left of* sign form
the rows while those to the right form the columns. The syntax of facet_wrap(x*.) is
used to split the plots only by x in rows and include all other subsets in the plot.

The main difference between wrap faceting and grid faceting is that with wrap
faceting, it is possible to choose the number of rows and columns in the grid. We
can specify them using the nrow and ncol arguments, respectively (Fig. 4.12).

> #Facet Wrap

> #Splitting plots by columns

> ggplot(iris, aes(x=Sepal.Width, y=Sepal.Length)) +

+ geom_point(aes(col=Species), size=3) +

+ geom_smooth(method="lm",col="red",size=2) +

+ coord_cartesian(xlim=c(2.2,4.2), ylim=c(4, 7)) +

+ #Add Facet Wrap

+ facet_wrap(* Species, nrow=2)

Fig. 4.11 Scatterplot with splitting plots by columns containing an additional facet for all the data
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4.4 Summary

In this chapter, we introduced basic features of R, RStudio, and R Packages, as well
as ggplot2. For R, RStudio, we focused on how to analyze data through R/RStudio.
We also introduced some applications of R functions in microbiome data. We
particularly introduced the dplyr package because it is very useful and widely used
in microbiome data management. For ggplot2, we introduced the relationship of
ggplot2 and the grammar of graphics. We focused on its layer feature of ggplot2,
and showed how to create a plot layer by layer with the ggplot(). Overall, this
chapter provides the basic statistical tools for data analysis and plots, as well as
analyzing microbiome data.
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Fig. 4.12 Scatterplot with splitting plots by columns using wrap faceting
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Chapter 5
Power and Sample Size Calculations
for Microbiome Data

In this chapter, we discuss hypothesis testing, power and sample size calculations of
microbiome data with implementation in R. We begin with introduction of statis-
tical hypothesis testing and the prerequisites for power and sample size calculations
in Sect. 5.1. We then present power and sample size calculations of microbiome
diversities using t-test and ANOVA in Sects. 5.2 and 5.3. In Sect. 5.4, we introduce
hypothesis testing, power and sample size calculations of proportional microbiome
data using parametric and nonparametric tests. In Sect. 5.5, we introduce power and
sample size analyses, and effect size calculation based on a Dirichlet-multinomial
model and HMP package. Section 5.6 is summary.

5.1 Hypothesis Testing and Power Analysis

5.1.1 Hypothesis Testing

The main objective of statistics is to make inferences about unknown population
parameters based on the sample information: to reach conclusions on the population
from the observed sample data. Statistical inferences include estimation of popu-
lation parameters and hypothesis testing about population parameters. The
hypothesis testing is a statistical procedure that is designed to test a statistical
hypothesis. It is a major area of statistical inference in developing statistical pro-
cedures that lead to the decision on accepting or rejecting hypotheses, whereas
power and sample size calculations are associated with hypothesis testing.
A statistical hypothesis is an assertion or a theory concerning population, specifi-
cally about the parameters of the population distributions such as location (mean),
scales (variance/dispersion). The objective of this chapter is to introduce hypothesis
testing and associated power and sample size calculations in general, and specifi-
cally in microbiome study.
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5.1.1.1 Elements of a Statistical Test

There are four elements of a statistical test: (i) null hypothesis, H0; (ii) alternative
hypothesis, H1; (iii) test statistics, and (iv) rejection region.

Every hypothesis testing procedure consists of two hypotheses. The first
hypothesis is null hypothesis (denoted by H0), a theory about the specific values of
one or more population parameters. The theory is usually stated as H0: parameter =
specific value, such as H0 : l ¼ 0:25. The hypothesis we wish to test based upon
the information contained in the sample, usually formulated with the hope that it
will be rejected. The second hypothesis is known as the alternative hypothesis
(denoted by Ha), a theory usually presented in a form against the null hypothesis.
Typically, the null hypothesis claims that no difference or no change is achieved,
whereas the alternative hypothesis declares that there is some difference or change
has occurred. As a result, the null hypothesis always states that the population
parameter is exactly equal to the claim value, whereas the alternative hypothesis is
allowed to have several different values of the parameter. For example, in a clinical
trial, if researchers want to know whether the patients with the new drug reduce less
than 0.20 of the average standardized mean score compared with those received
placebo 20 mm. The null hypothesis would be H0 : l� 0:20 and the alternative
hypothesis would be one of the following: Ha : l[ 0:20, where l denotes the
average standardized mean score for the population.

The test statistic is a sample statistic used to decide whether to reject the null
hypothesis. It is a function of the sample observations and some known constants
upon which the statistical decision will be based. The rejection region specifies the
numerical values of the test statistic for which the null hypothesis will be rejected.
Specifically, it is an area of probability that tells us if our theory or hypothesis is
probably true, or probably not true. Then the question is: how to choose rejection
region? Briefly, rejection region is relevant to alpha level. You need to choose the
alpha level you are willing to accept. For example, if you want to be 95% confident
that your results are significant, you will choose a 5% alpha level (100%–95%). The
“5% level” is the rejection region.

5.1.1.2 Steps for Testing Statistical Hypotheses

Statistical hypothesis testing plays a fundamental role from sample statistics to
estimation of the population parameter. You can use two ways to conduct a
hypothesis testing: with a critical value and with a p-value.

With a critical value, the reasoning steps are as follows:

(1) state the relevant null and alternative hypotheses because the initial research
hypothesis is unknown;

(2) make the statistical assumptions of the testing sample, such as statistical
independence or the distributions of the observations;
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(3) choose appropriate test, and specify the relevant test statistic T;
(4) derive the distribution of the test statistic under the null hypothesis from the

assumptions;
(5) select a significance level (critical region) a, typically a small value (e.g., 0.01,

0.05), which is referred to as the level of significance of the test or a probability
threshold below which the null hypothesis will be rejected;

(6) compute the observed value tobs of the test statistic T from the observations;
(7) decide to either reject the null hypothesis in favor of the alternative or accept it.

You can also decide either to reject or accept the null hypothesis with a p-value.
If you want to use the p-value method, you need to calculate the p-value. This is the
probability, under the null hypothesis, of obtaining a result equal to or more
extreme than what was actually observed. If the p-value falls in the rejection region,
it means you have statistically significant results; you therefore can reject the null
hypothesis, and conclude that the alternative hypothesis is true. If the p-value falls
outside the rejection region, it means your results cannot provide enough evidence
to against the null hypothesis.

5.1.1.3 Hypothesis Testing in Microbiome Data

For microbiome community comparison, the general hypothsis tests can be written
as:

(1) H0 : p1 ¼ p0 versus HA : p1 6¼ p0
(2) H0 : p1 ¼ � � � pj ¼ � � � ¼ pJ versus HA : pi 6¼ pj:

The above two hypothesis tests are analogous to a one sample t-test and a two
sample t-test or ANOVA in classical statistics, respectively, which form the basic
statistical hypothesis testing framework in microbiome study to compare:

• mean proportion of taxa to a previously specified microbiome population
• mean proportion of taxa from two sample sets
• mean proportion of taxa from more than two groups
• both mean proportion of taxa and scales cross groups.

The power and sample size calculations in microbiome study are based on the
hypothesis testing framework.

As we reviewed in Chap. 2, microbiome data have unique features, but also
share some common features as other research areas. Thus, the hypothesis testing
and power and sample size calculations have similar setting.

For the common features of microbiome data, depending on how these data values
are distributed and the number of groups to be compared, you can use a standard t-
test, analysis of variance (ANOVA), or corresponding non-parametric test to the
microbiome hypotheses. For the unique features of microbiome data, researchers
have tried to develop appropriate statistical analysis tools including power and size
calculations to better fit the data. For example, given the multivariate nature of the
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microbiome data structure, multivariate analysis tools are developed to take into
accounts the interactions or correlations among the taxa. Among them, the HMP
package uses the parametric approach based on a Dirichlet-Multinomial model of
taxa counts.

5.1.2 Power Analysis and Sample Size Calculation

5.1.2.1 Importance of Power Analysis and Sample Size Calculation

The most common purpose of power analysis is to determine the minimum subjects
needed to reasonably detect an effect of a given size. Additionally, power analysis is
used to determine power, if an effect size and the number of subjects are available.
Power analysis can also be used to compare different statistical testing procedures,
such as, between a parametric and a nonparametric test of the same hypothesis.

For example, when you are planning of a study or designing an experiment for
NIH grant proposal, a common question you ask is “How many subjects do we
need?” The question is important because the sample size should be large enough
that an effect size of scientific interest has a good opportunity to be detected if it
exists.

A study with a small sample is a waste of resources in terms of time and money
because the result will be invariably inconclusive. However, large sample size is
also not recommended. First, it will not be useful because an effect size of scien-
tifically little importance might also be statistically significant. Secondly, deter-
mining the appropriate sample size is important for economic reason. It is a waste of
the limited available resources if an answer can be accurately found from a smaller
sample. Third, in human study or randomized controlled trials, recruiting more
subjects than required can be unethical. The participating patients should not be
misutilized, especially, for the patients in placebo group.

5.1.2.2 Power Analysis

The power is the probability that the test correctly rejects the null hypothesis (H0)
when it is in fact false or the alternative hypothesis (HA) is true. It can be equiv-
alently thought of as the probability of accepting the alternative hypothesis (HA)
when it is true; that is, power is the ability of a test to detect an effect, if the effect
actually exists. Thus, to understand the concept of power, we must understand the
principles of hypothesis testing. The relationships among the four possible decision
outcomes and their related probabilities for a statistical hypothesis test are illus-
trated in Table 5.1.

If the null hypothesis H0ð Þ is really true, there is no significant difference
between (among) groups or no relationship between (among) the variables and it
should not be rejected. If our decision is to retain (or fail to reject) the null
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hypothesis H0ð Þ, we are concluding that there is no significant difference between
(among) groups or no relationship between (among) the variables. We make a
correct decision.

If the null hypothesis H0ð Þ is really false, there is a significant difference between
(among) groups or a relationship between (among) the variables and it should be
rejected. If our decision is to reject the null hypothesis H0ð Þ, we are concluding that
there is a significant difference between (among) groups or a relationship between
(among) the variables. We again make a correct decision.

However, a Type I error (probability = a) occurs when you reject the null
hypothesis when you should not have. A Type II error (probability = b) occurs
when you fail to reject the null hypothesis when you should have rejected it. The
power of the statistical test is defined as 1� b, which is the probability of correctly
detecting the population difference; or the power of a test is generally defined as the
probability of rejecting the null hypothesis when the null hypothesis is really false.
The power is in general a function of the possible distributions, often determined by
a parameter, under the alternative hypothesis.

There are several factors that affect power. We can informally divide these
factors into the parameters that define power and methodological factors. The
parameters that define power increase or decrease power in more “mechanical”
way. For example, for a two-sample t-test, power depends on total sample size, ratio
of group sample sizes, alpha, mean difference or effect size, standard deviation or
variability. Power, effect size, sample size and alpha are four inter-related param-
eters that are related such that each is a function of the other three. In other words, if
three of these values are fixed, the fourth is completely determined (Cohen 1988)
(page 14). Thus, by increasing one, you can decrease (or increase) another: the
higher the alpha is, the higher the power is (holding all the other parameters
constant); the larger the effect size, the fewer subjects need (given the same power
and alpha level). Though sample size calculation may vary based upon the type of
study design, the basic concept remains the same.

The methodological factors include experimental design, groups, statistical
procedure and model, correlation between time points, response variable, and
missing data, etc. Methodological factors also affect power, through more
methodological issues.

For example, repeated measures designs are virtually always more powerful than
cross-sectional designs; more time points of response variable will also increase
power compared to fewer data collections. The two groups with smaller effect size

Table 5.1 Probabilities of outcomes of hypothesis testing

Decision

“Truth” H0: No difference HA: Difference

H0: No difference Pr(Correct negative) =
(1 − a)

Pr(False positive) =
Pr(Type I error) = a

HA: Difference Pr(False negative) =
Pr(Type II error) = b

Pr(Correct positive) =
(1 − b) = Power
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typically need more power to detect than those with larger effect size. Statistical
procedure and model also affect power: nonparametric model may be more pow-
erful than parametric counterpart when the assumptions of model are violated.
Interaction terms often require more power than main effects to detect. Sometime,
correlation between time points also affect power. A log-transformation of response
variable or categorizing a continuous response variable will lead to a loss of power
too because adjusting the model will lose more power than is necessary and logistic
or ordinal logistic regression often requires many more subjects than does ordinary
least squares regression. Finally, in general, missing data reduces power and poor
imputation methods can greatly reduce power. In some statistical programs, case-
wise deletion is the default setting of handling missing data. Casewise deletion is
one of the biggest contributors to lose of power (Graham et al. 2003; Costea et al.
2017). Therefore, when you design your study, you need to do everything possible
to minimize missing data.

5.2 Power Analysis for Testing Differences in Diversity
Using T-Test

5.2.1 Power Formula for Continuous Outcome

In microbiome study, the number and variety of individual taxa within a sample can
be summarized using an index measure, such as the Shannon diversity index
(evenness) and Chao1 index (richness). One of the fundamental objectives is to
compare these species diversity across groups. The question raised by investigators
is: whether there is more diversity in one group than in another. Or do the analysis
results of the a-diversity from the two datasets agree with each other? Under the
statistical hypothesis framework, the question can be presented:

H0: Diversity in group 1 is no different from that of group 2
Ha: Diversity in group 1 is different from that of group 2.

The diversity measures can form the basis of the hypothesis test, power, and
sample size calculations. The hypothesis tests will be presented in Chaps. 7–12.
Here, we focus on power and sample size calculations.

The null hypothesis is H0 : l1 ¼ l2, where l1 and l2 are the true diversity
means for the group 1 and group 2, respectively. The alternative hypothesis is
Ha : l1 6¼ l2. The null and alternative hypotheses may be rewritten as H0 :
l1 � l2 ¼ 0 and Ha : l1 � l2 ¼ d 6¼ 0. The goal of power analysis is to detect
differences of size d with high probability. The general power formula is given by:

Zpower ¼ test statistic
s:e:ðtest statistic) � Za=2 ð5:1Þ
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For continuous endpoints, the testing statistic is mean difference d of two groups,
then

Zpower ¼ d
s:e:ðdÞ � Za=2 ð5:2Þ

Power depends on a, d, r, and n. If r known, use normal distribution in cal-
culations, if r needs to be estimated, use non-central t (or table).

Assume r is known and n1 = n2 = n, then we can use the data to reform the
hypothesis as below:

H0 : �Y1 � �Y2 �Nð0; 2r2=nÞ
Ha : �Y1 � �Y2 �Nðd; 2r2=nÞ

Reject H0 distribution if

Y1 � Y2 [ za=2
ffiffiffiffiffiffiffiffiffiffiffiffi
2r2=n

p
or

Y1 � Y2\� za=2
ffiffiffiffiffiffiffiffiffiffiffiffi
2r2=n

p
The power will be the Pr(Reject when Ha true). It is given below:

P Z[ za=2 � d=
ffiffiffiffiffiffiffiffiffiffiffiffi
2r2=n

p� �
þP Z\� za=2 � d=

ffiffiffiffiffiffiffiffiffiffiffiffi
2r2=n

p� �
ð5:3Þ

The general sample size formula for testing difference in means is as below:

n ¼ 2r2ðZb þZa=2Þ2
d2

ð5:4Þ

where

n Sample size in each group (assumes sizes of two groups are equal)
r Standard deviation of the outcome variable
Zb The z-value at desired power (typically .84 for 80% power)
Za=2 The z-value at desired level of statistical significance (typically 1.96)
d Effect Size (the difference in means).

If r is unknown and needs to be estimated, and assume n1 = n2 = n, then we can
reform the hypothesis as below:

Reject H0 distribution if
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Y1 � Y2 [ t2ðn�1Þ;1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffi
2S2p=n

q

Y1 � Y2\t2ðn�1Þ;a=2
ffiffiffiffiffiffiffiffiffiffiffiffi
2S2p=n

q

where

S2p ¼
ðn1 � 1ÞS21 þðn2 � 1ÞS22

n1 þ n2 � 2
ð5:5Þ

Power will be Pr(reject| Ha):

Y1 � Y2ffiffiffiffiffiffiffiffiffiffiffiffi
2S2p=n

q � t2ðn�1Þðd=2r2=nÞ ð5:6Þ

where d=2r2=n is the noncentrality parameter and the probability of rejection is
computed given noncentral t distribution.

If the sample sizes in each group are imbalanced, n1 6¼ n2, we can derive the
sample size formula as below:

s:e:ðdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

n1
þ r2

n2

s
ð5:7Þ

Let’s r = the ratio of group 2 over group 1, then s:e:ðdiff Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
n1

þ r2
rn1

q
. Replace

it to general power formula, we obtain:

Zpower ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
n1

þ r2
rn1

q � Za=2 ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ 1Þr2

rn1

q � Za=2

rn1d
2 ¼ ðrþ 1Þr2ðZpower þZa=2Þ2

We obtain sample size formula

n1 ¼ ðrþ 1Þ
r

r2ðZpower þZa=2Þ2
d2

ð5:8Þ

If r = 1 (equal sizes of groups), then n1 ¼ 2r2ðZpower þZa=2Þ2
d2

.
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5.2.2 Diversity Data for ALS Study

To illustrate the power analysis for testing differences in diversity using t-test, we
compare the Shannon diversity calculated on G93A transgenic mice from an
Amyotrophic lateral sclerosis (ALS) study on the impact of butyrate treatment on
the fecal microbiome. G93A mice are harbor human ALS–causing SOD1 mutations
that recapitulate the neuron and muscle impairment in patients with ALS. These
mice are extensively used to investigate the pathomechanisms of ALS and trial
therapeutics (Zhang et al. 2017). There are 9 samples in butyrate treatment and 7
G93A mutant without treatment groups. For each of the 16 mice, the Shannon
diversity was calculated.

The distribution in Fig. 5.1 shows that the butyrate-treated group results in
higher diversity because the histogram for this group is shifted to the right (higher
diversity values) compared to the control group without butyrate (note: the vertical
dashed red line labels the mean diversity for each group). In this data, the mean and
standard deviation of Shannon diversity for the butyrate-treated group are 2.504 and
0.170, and for the control group without butyrate are 2.205 and 0.209. For the
continuous variables, the effect size is just the difference of these two means (delta
= 2.504–2.205).

Fig. 5.1 Histograms of the Shannon diversity distributions compared on a genus level of taxa
composition data from the fecal samples of ALS G93A mutant mice treated with butyrate
treatment (BUm3to3.5) (upper panel) and without butyrate treatment (NOBUm3to3.5) (lower
panel)
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Figure 5.1 was generated by following R codes. First, we load the taxa abun-
dance table and transpose the original taxa by sample format table into the sample
by taxa format table.

> ##load abundance table

> abund_table=read.csv("ALSG93AGenus.csv",row.names=1,

check.names=FALSE)

> abund_table_t<-t(abund_table)

Then, we call diversity function from the vegan package to calculate Shannon
diversity.

> library(vegan)

> #use the diversity function (vegan package) to calculate Shannon index

> #make a data frame of Shannon index

> H<-diversity(abund_table_t, "shannon")

> df_H<-data.frame(sample=names(H),value=H,measure=rep("Shannon",

length(H)))

Third, we create the variable “Group” from sample information.

> #Obtain grouping information from sample data
> df_H$Group <- with(df_H,
+ ifelse(as.factor(sample)%in% c("A11-28F","A12-28F","A13-28F","A14-28F","A15
-28F","A16-28F"),c("G93m1"),
+ ifelse(as.factor(sample)%in% c("A21-28F","A22-28F","A23-28F","A24-28F","A25
-28F","A26-28F"),c("WTm1"),   
+ ifelse(as.factor(sample)%in% c("C11-28F","C12-28F","C13-28F"),c("G93m4"),   
+ ifelse(as.factor(sample)%in% c("C21-28F","C22-28F","C23-28F"),c("WTm4"),
+ ifelse(as.factor(sample)%in% c("B11-28F","B12-28F","B13-28F","B14-28F","B15
-28F","D11-28F","D12-28F","D13-28F","D14-28F"),c("BUm3to3.5"),
+ c("NOBUm3to3.5")))))))
> df_H
         sample value measure       Group 
A11-28F A11-28F 2.478 Shannon       G93m1
A12-28F A12-28F 2.162 Shannon       G93m1
A13-28F A13-28F 1.707 Shannon       G93m1
A14-28F A14-28F 2.084 Shannon       G93m1
A15-28F A15-28F 2.660 Shannon       G93m1
A16-28F A16-28F 1.971 Shannon       G93m1
A21-28F A21-28F 1.957 Shannon        WTm1
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A22-28F A22-28F 1.850 Shannon        WTm1
A23-28F A23-28F 2.630 Shannon        WTm1
A24-28F A24-28F 1.768 Shannon        WTm1
A25-28F A25-28F 2.122 Shannon        WTm1
A26-28F A26-28F 1.960 Shannon        WTm1
B11-28F B11-28F 2.393 Shannon   BUm3to3.5
B12-28F B12-28F 2.677 Shannon   BUm3to3.5
B13-28F B13-28F 2.257 Shannon   BUm3to3.5
B14-28F B14-28F 2.700 Shannon   BUm3to3.5
B15-28F B15-28F 2.580 Shannon   BUm3to3.5
B21-28F B21-28F 2.262 Shannon NOBUm3to3.5
B22-28F B22-28F 2.230 Shannon NOBUm3to3.5
B23-28F B23-28F 2.433 Shannon NOBUm3to3.5
B24-28F B24-28F 2.049 Shannon NOBUm3to3.5
B25-28F B25-28F 1.814 Shannon NOBUm3to3.5
C11-28F C11-28F 2.234 Shannon       G93m4
C12-28F C12-28F 2.271 Shannon       G93m4
C13-28F C13-28F 1.993 Shannon       G93m4
C21-28F C21-28F 1.853 Shannon        WTm4
C22-28F C22-28F 2.243 Shannon        WTm4
C23-28F C23-28F 2.195 Shannon        WTm4
D11-28F D11-28F 2.626 Shannon   BUm3to3.5
D12-28F D12-28F 2.334 Shannon   BUm3to3.5
D13-28F D13-28F 2.344 Shannon   BUm3to3.5
D14-28F D14-28F 2.625 Shannon   BUm3to3.5
D21-28F D21-28F 2.333 Shannon NOBUm3to3.5
D22-28F D22-28F 2.312 Shannon NOBUm3to3.5

The whole data set include sample data from months 1, 3, 3.5 and 4. We interest
in comparisons of treatment versus not treatment during 3 to 3.5 months. So we
subset the data from 3 to 3.5 months as below:

> library(dplyr)
> df_H_G6 <- select(df_H, Group,value)
> df_H_G93BUm3  <- filter(df_H_G6,Group=="BUm3to3.5"|Group=="NOBUm3to3.5")
> df_H_G93BUm3

Group value
1    BUm3to3.5 2.393
2    BUm3to3.5 2.677
3    BUm3to3.5 2.257
4    BUm3to3.5 2.700
5    BUm3to3.5 2.580
6  NOBUm3to3.5 2.262
7  NOBUm3to3.5 2.230
8  NOBUm3to3.5 2.433
9  NOBUm3to3.5 2.049
10 NOBUm3to3.5 1.814
11   BUm3to3.5 2.626
12  BUm3to3.5 2.334
13   BUm3to3.5 2.344
14   BUm3to3.5 2.625
15 NOBUm3to3.5 2.333
16 NOBUm3to3.5 2.312

Finally, we generate Fig. 5.1 by following R codes.
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> library(ggplot2)
> #split the plot into multiple panels
> p<-ggplot(df_H_G93BUm3, aes(x=value))+
+   geom_histogram(color="black", fill="black")+
+ facet_grid(Group ~ .)
> #Calculate the mean of each group
> ##calculate the average Shannon diversity of each group using the package
   Plyr
> library(plyr)
> mu <- ddply(df_H_G93BUm3, "Group", summarise, grp.mean=mean(value))
> head(mu)
        Group grp.mean
1   BUm3to3.5    2.504
2 NOBUm3to3.5    2.205

> #add mean lines
> p+geom_vline(data=mu, aes(xintercept=grp.mean, color="red"),
+              linetype="dashed")

5.2.3 Calculating Power or Sample Size Using R Function
power.t.test()

To test the null hypothesis of no difference in the Shannon diversity, a t-test or a
Wilcoxon rank sum test can be used. We leave the hypothsis testing of diversity
until Chap. 7. Here, we focus on illustrating how to calculate the power or sample
size using R software. In R, the function power.t.test() in basic R and the function
pwr.t.test() in the pwr package can be used to conduct power analysis. We use the
power.t.test. The usage of this function is shown below:

power.t.test (n = sample size, delta = effect size, sd = standard deviation, sig.
level = 0.05, power = NULL, type = c(“two.sample”, “one.sample”, “paired”),
alternative = (“two.sided”, “one.sided”))

where, n is the number of sample size per group, delta is true difference in
means, sd is the standard deviation, sig.level is the significance level (Type I error
probability), power is the power of test (1 minus Type II error probability), type is
the type of t test, and alternative is one-or-two sided test.

Since the standard deviation of the mean difference is unknown, it needs to be
estimated using formula in (5.5).

> aggregate(formula = value * Group,

+ data = df_H_G93BUm3,

+ FUN = var)

Group value

1 BUm3to3.5 0.02892

2 NOBUm3to3.5 0.04349
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> n1 <- 9

> n2 <-7

> s1<-sqrt(0.02892)

> s2<-sqrt(0.04349)

> s=sqrt((n1-1)*s1^2+(n2-1)*s2^2)/(n1+n2-2)

> s

[1] 0.05012

Now the power can be obtained from calling the power.t.test() function.

> power.t.test(n=2:10,delta=2.504-2.205,sd=0.05012)

Two-sample t test power calculation

n = 2, 3, 4, 5, 6, 7, 8, 9, 10

delta = 0.299

sd = 0.05012

sig.level = 0.05

power = 0.8324, 0.9994, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,

1.0000, 1.0000

alternative = two.sided

NOTE: n is number in *each* group

> df_P <-data.frame(n,power)

> df_P

n power

1 2 0.8324

2 3 0.9994

3 4 1.0000

4 5 1.0000

5 6 1.0000

6 7 1.0000

7 8 1.0000

8 9 1.0000

9 10 1.0000

From above power analysis, we can see that a size sample of 2 G93A mice per
group, randomly assigned to butyrate treatment or no treatment control, will pro-
vide 83% power to reject the null hypothesis of no difference in the Shannon
diversity in the two groups. If the sample size increases to 3 per group, the power
will increase to more than 99%. We can generate power and sample size graphs to
visualize the power and sample size we need to reject the null hypothesis using
following R codes.
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> n = c(2, 3, 4, 5, 6, 7, 8, 9, 10)

> power = c

(0.8324, 0.9994, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)

> power <- sapply(n, function (x) power.t.test(n=x, delta=2.504-2.205,

sd=0.05012)$power)

> plot(n, power, xlab = "Sample Size per group", ylab = "Power

to reject null",

+ main="Power curve for\n t-test with delta = 0.05",

+ lwd=2, col="red", type="l")

> abline(h = 0.90, col="blue")

Actually, the power and sample size calculations can be done in almost any
statistical software package (e.g., in R we used power.t.test (n = 2:10, delta =
2.504–2.205, sd = 0.05012) to generate the data for Fig. 5.2).

Assume one of compared groups is a previously specified microbiome popula-
tion, then the one-sample t-test is needed to estimate the power or sample size. The
default testing of function power.t.test() is two-sample. You can specify type=“one.
sample” to conduct one-sample power analysis as below.

> power.t.test(n=2:10,delta=2.504-2.205,sd=0.05012, type = "one.sample")

Fig. 5.2 Power of the t-test as a function of the sample size per group for effect size of 0.299
based on average Shannon diversity index of the butyrate treatment and the no treatment groups
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5.3 Power Analysis for Comparing Diversity Across More
than Two Groups Using ANOVA

5.3.1 Hypothesis and Theory of Power for One-Way
ANOVA

For comparisons involving more than two groups, a one-way analysis of variance
(ANOVA) can be used. For example, to compare the diversity in three or more
groups, the hypotheses could be:

H0 : The mean diversity in three groups are equal
Ha : Not all the diversities are equal in these three groups.

The F-tests is used in ANOVA. To calculate power for a global F test in a
completely randomized design with one treatment or condition at k levels, we first
need to understand and define the hypothesis. The fundamental idea for ANOVA is
to partition the overall variance in diversity into a component reflecting variation
among treatment groups or conditions (factor levels) and variation within treatment
groups or conditions [due to measurement error (residual)] (Wu et al. 2011). For a
factor a occurring at i ¼ 1; . . .;K levels, with j ¼ 1; . . .; J observations per level,
the typical one-way ANOVA model may be expressed as

Yij ¼ lþ ai þ eij ð5:9Þ

In term of the statistical hypothesis framework, the hypotheses are defined as,

H0 : l1 ¼ l2 ¼ � � � ¼ lk
Ha : li 6¼ lj for some i,j where i 6¼ j

where, li = mean of group i, k = number of groups, j = experimental units.
The F test for equality of means in a one way ANOVA assumes that the data is

normal with common group variances. Also N � k + 1 and ni � 1, where N is the
total sample size and ni is the sample size of group i. Under the null hypothesis, the
distribution of the F statistic follows a central F distribution, whereas under the
alternative hypothesis the distribution of the F statistic follows a noncentral F
distribution with the noncentrality parameter, k. Thus, when the null hypothesis is
true, it follows a central F distribution; and when it is false, it follows a noncentral F
distribution. Therefore power can be defined as the probability that the F statistic
follows a noncentral distribution.

The exact power is given as,

Power = Pr(F(k� 1; N� k, kÞ� F1�aðk� 1; N� k)) ð5:10Þ

The above power defines two curves of distributions with the two hypotheses.
The F-distribution under the null hypothesis defines a central F distribution,
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whereas the distribution under the alternative hypothesis define same F with a
noncentrality parameter of k.

R uses formula (5.10) to compute power. The noncentrality parameter k is a key
parameter in this formula. How k is defined in R? For the balanced design, let’s n =
sample size of balanced groups, then k is defined as

k ¼ D2nðkÞ ð5:11Þ

where D ¼ rl
r , is the effect size, rl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i¼1
li�lð Þ2
k

r
= between “mean” variation,

and r = error variation. With some algebra, we get D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i¼1
1
k li�lð Þ2

q
r . Replace it

to (5.11), we have

k ¼
Pk

i¼1
1
k li � lð Þ2
r2

nk;

with nk = N, then

k ¼ N

Pk
i¼1

1
k li � lð Þ2
r2

 !
ð5:12Þ

5.3.2 Calculating Power or Sample Size Using R Function
pwr.avova.test()

To illustrate using the pwr.avova.test() to obtain powers with different sample sizes,
we use following procedures. First, we subset data of four groups of months 1 and 4
with treatment and control.

> df_H_G93WTm1N4 <- filter(df_H_G6,Group%in%c("G93m1","WTm1",

"G93m4","WTm4"))

> df_H_G93WTm1N4

Group value

1 G93m1 2.478

2 G93m1 2.162

3 G93m1 1.707

4 G93m1 2.084

5 G93m1 2.660

6 G93m1 1.971

7 WTm1 1.957
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8 WTm1 1.850

9 WTm1 2.630

10 WTm1 1.768

11 WTm1 2.122

12 WTm1 1.960

13 G93m4 2.234

14 G93m4 2.271

15 G93m4 1.993

16 WTm4 1.853

17 WTm4 2.243

18 WTm4 2.195

Then, we get F statistic by fitting linear model.

> fit = lm(formula = value*Group,data=df_H_G93WTm1N4)

> anova (fit)

Analysis of Variance Table

Response: value
          Df Sum Sq Mean Sq F value Pr(>F)
Group      3  0.059  0.0195    0.23   0.88
Residuals 14  1.209  0.0863               

Finally, we call the pwr.anova.test() function from pwr package to calculate
powers.

> library(pwr)

> pwr.anova.test(f= 0.23,k=4,n=45:55,sig.level=0.05)

Balanced one-way analysis of variance power calculation

k = 4

n = 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55

f = 0.23

sig.level = 0.05

power = 0.7276, 0.7383, 0.7486, 0.7586, 0.7683, 0.7777, 0.7868,

0.7956, 0.8041, 0.8123, 0.8202

NOTE: n is number in each group

The results above show that 52 samples are needed for each group to obtain 80%
based on the effect sizes detected in this pilot study using ANOVA test.

5.3 Power Analysis for Comparing Diversity … 145



5.4 Power Analysis for Comparing a Taxon of Interest
Across Groups

5.4.1 Hypothesis and Basic Power and Sample Size
Formulas for Comparing Proportions

In microbiome data sets, 0 indicates a taxon is absent in the sample and 1 means the
taxon presents in the sample. Such binary data can be easily transformed to pro-
portion. If the research is interesting to the abundance of a specific taxon, then a
Chi-square test can be used to compare the proportions across groups. The
hypothesis for comparing a single specified taxon across groups will be:

H0: Percentage of the specified taxon in group 1 is no different from that of group 2
Ha: Percentage of the specified taxon in group 1 is different from that of group 2.

Equation (5.4) can be easily modified to test taxon proportions. When we test
taxon proportions, we are assessing whether the proportion P1 responding to a one
group (e.g., treatment) is different from the proportion P2 responding to another
group (e.g., control). This is equivalent to the null hypothesis H0 : P1 � P2 ¼ 0
versus the alternative hypothesis Ha : P1 � P2 ¼ d 6¼ 0.

Equation (5.13) is modified from Eq. (5.4) to test difference in proportions:

n ¼ 2ð�pÞð1� �pÞðZb þZa=2Þ2
ðp1 � p2Þ2

ð5:13Þ

where

n Sample size in each group (assumes sizes of two groups are equal)
ð�pÞð1� �pÞ A measure of variability (similar to standard deviation)
Zb The z-value at desired power (typically .84 for 80% power)
Za=2 The z-value at desired level of statistical significance (typically 1.96)
p1 � p2 Effect Size (the difference in proportions).

In general, when outcome is binary, the sample size that needs is given as
follows.

n ¼ rþ 1
r

�pð1� �pÞðZb þ Za=2Þ2
ðp1 � p2Þ2

ð5:14Þ

Similarly in continuous cases, the imbalanced sample size formula for two
groups of proportions can be derived. If n1 6¼ n2, then the ratio between the sample
sizes of the two groups is r ¼ n1

n2
. The test statistic is constructed as:
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z ¼ P1 � P2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1ð1�P1Þ

n1
þ P2ð1�P2Þ

n2

q ð5:15Þ

which is asymptotically normally distributed and therefore the r in Eq. (5.4) can be
replaced by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1ð1� P1Þ

n1
þ P2ð1� P2Þ

n2

s

The formulas that are used to compute sample size and power are given below,
respectively:

n1 ¼ rn2 and n2 ¼ P1ð1� P1Þ
r

þP2ð1� P2Þ
� �

z1�a=2 þ z1�b

P1 � P2

� �2

; ð5:16Þ

1� b ¼ Uðz� z1�a=2ÞþUð�z� z1�a=2Þ: ð5:17Þ

where

• r ¼ n1
n2
is the matching ratio

• U is the standard Normal distribution function
• U�1 is the standard Normal quantile function
• a is Type I error
• b is Type II error
• 1 − b is power.

5.4.2 Power Analysis Using R Function power.prop.test()

In our ALS study (Zhang et al. 2017), we find that treatment with oral 2% sodium
butyrate for 2.5 months was associated with significant enhancement of the
abundance of the butyrate-producing bacteria Butyrivibrio fibrisolvens in the spe-
cies level. We are interested to compare whether this taxon is present at different
rates between treatment and control groups. In order to design future study, we want
to calculate sample size to ensure that the study has sufficient power to detect effect
size based on this pilot study.

In this section, we illustrate function power.prop.test() to conduct power analysis
using our ALS G93A mice data, In Sect. 5.4.3, we will illustrate the v2 test and
Fisher’s exact test. We transform the abundance count data of Butyrivibrio
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fibrisolvens into a binary variable to indicate present and absent of species
Butyrivibrio fibrisolvens. We summarize the transformed data in Table 5.2.

The following R codes load abundance table.

abund_table_Spe=read.csv("ALSG93AButyrivibrioSpecies.csv",row.names=1,

check.names=FALSE)

The original abundance data is a count table with species for row and sample for
column. The following transpose function “t()” transposes this species count table
into sample for row and species for column.

> abund_table_Spe<-t(abund_table_Spe)

The grouping information can be obtained from the sample identifiers.

> grouping<-data.frame(row.names=rownames(abund_table_Spe),t(as.data.

frame(strsplit(rownames(abund_table_Spe),"-"))))

The 9 samples labled as “B11”,“B12”,“B13”,“B14”, “B15”,“D11”,“D12”, “D13”,
and “D14” were randomly assigned to butyrate treatment group, other 7 samples
were assigned to control group.

The following R codes are used to create a group variable to present the
grouping information.

> grouping$Group <-

with(grouping,ifelse(as.factor(X1)%in%c("B11","B12","B13","B14",

"B15","D11","D12","D13","D14"),c("Butyrate"), c("Control")))

After the species abundance table and grouping information table are combined
into one data frame, the data are ready to be analyzed.

Table 5.2 Distribution of the rate of Butyrivibrio fibrisolvens between butyrate treatment and
control from ALS G93A mice data set

Group Presence Absence Total

Butyrate 9 (100%) 0 (0%) 9

Control 4 (57%) 3 (43%) 7
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> Butyrivibrio_G <-cbind(abund_table_Spe, grouping)
> rownames(Butyrivibrio_G)<-NULL
> Butyrivibrio_G
   Butyrivibrio  X1  X2    Group
1            14 B11 28F Butyrate
2            39 B12 28F Butyrate
3            18 B13 28F Butyrate
4            41 B14 28F Butyrate
5            19 B15 28F Butyrate
6             0 B21 28F  Control
7            16 B22 28F Control
8             1 B23 28F  Control
9             8 B24 28F  Control
10            0 B25 28F  Control
11           78 D11 28F Butyrate
12            4 D12 28F Butyrate
13           17 D13 28F Butyrate
14           94 D14 28F Butyrate
15            1 D21 28F  Control
16            0 D22 28F  Control

The count of Butyrivibrio fibrisolvens with 0 is coded as “Absent”, otherwise as
“Present”.

The data are summarized as 2 � 2 contingency table.

> library(MASS) # load the MASS package 
> tbl = table(Butyrivibrio_G$Group, Butyrivibrio_G$Present) 
> tbl           # the contingency table 

Absent Present
Butyrate      0       9
Control       3       4

The above table shows the distribution of the proportion–4 (57%) out of 7
control samples had Butyrivibrio fibrisolvens, while 9 (100%) out of 9 Butyrate

> Butyrivibrio_G$Present <- ifelse((Butyrivibrio_G$Butyrivibrio > 0), 
"Present","Absent")
> Butyrivibrio_G

Butyrivibrio  X1  X2    Group Present
1            14 B11 28F Butyrate Present
2            39 B12 28F Butyrate Present
3            18 B13 28F Butyrate Present
4            41 B14 28F Butyrate Present
5            19 B15 28F Butyrate Present
6         0 B21 28F  Control  Absent
7            16 B22 28F  Control Present
8             1 B23 28F  Control Present
9             8 B24 28F  Control Present
10            0 B25 28F  Control  Absent
11           78 D11 28F Butyrate Present
12            4 D12 28F Butyrate Present
13           17 D13 28F Butyrate Present
14           94 D14 28F Butyrate Present
15            1 D21 28F  Control Present
16            0 D22 28F  Control  Absent
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treatment samples did. The following plain R codes are used to implement the
sample size and power calculations using above formulas in (5.16) and (5.17).

> p1=1.0

> p2=0.57

> r=1

> alpha=0.05

> beta=0.20

> (n2=(p1*(1-p1)/r+p2*(1-p2))*((qnorm(1-alpha/2)+qnorm(1-beta))/

(p1-p2))^2)

[1] 10.4

> ceiling(n2)

[1] 11

> z=(p1-p2)/sqrt(p1*(1-p1)/n2/r+p2*(1-p2)/n2)

> (Power=pnorm(z-qnorm(1-alpha/2))+pnorm(-z-qnorm(1-alpha/2)))

[1] 0.8

However, the convenient way is to use following R function power.prop.test.
You can specify multiple samples to test the powers.

> power.prop.test(n=10:20, p1=1, p2=.57, sig.

level=0.05, power=NULL, alternative=c("one.sided"), strict = FALSE)

Two-sample comparison of proportions power calculation

n = 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
p1 = 1
p2 = 0.57

sig.level = 0.05
power = 0.7928, 0.8290, 0.8596, 0.8852, 0.9065, 0.9242, 0.9387, 0.9

506, 0.9603, 0.9682, 0.9746
alternative = one.sided

NOTE: n is number in *each* group

The results show that 11 samples in each group can obtain 83% power to detect
the effect sizes based on our pilot study.

5.4.3 Power Analysis Using v2 Test and Fisher Exact Test

5.4.3.1 Theory of Power for a v2 Test for Comparing Proportions

The hypotheses for testing proportions of microbiome composition can also be
tested by a chi squared statistic. The v2 test statistic is defined as,
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X2 ¼
Xn
i¼1

Ei � Oið Þ2
Ei

ð5:18Þ

where

Oi an observed frequency
Ei an expected (theoretical) frequency, asserted by the null hypothesis
n the number of possible outcomes of each event

Similar as the distribution of the F statistic, the distribution of the v2-statistic
follows a central chi square distribution when the null hypothesis is true. When it’s
false it follows a noncentral chi squared distribution with the noncentrality
parameter, k. Thus essentially power for chi square distribution is the probability
that the data comes from a noncentral chi squared distribution.

Basically, the v2 distribution defines two curves: one follows a central v2 dis-
tribution under null hypothesis; the other follows a noncentral v2 distribution with
the noncentrality parameter, k. The chi square value with a probability of 0.05
under the null hypothesis is represented with a vertical line. If the v2 statistic falls
into the left of the line, then it indicates it came from the null distribution and if it is
on the right of the line, then it came from the alternative distribution. The area under
the alternative hypothesis curve to the right of the line represents the power of the
test. For example, in microbiome study, we assume the proportions from group 1 or
condition 1 follows a central v2 distribution, while group 2 or condition 2 follows a
noncentral v2 distribution.

Chi-Squared Power in R use this expression,

Power ¼ Pr( v2ðdf ; kÞ� v21�aðdf Þ ð5:19Þ

The noncentrality parameter, k, is defined as,

k ¼ D2N

where

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
p1i�p0ið Þ2

p0i

q
effect size

N total sample size

5.4.3.2 Implementing Power Analysis Using the Function pwr.chisq.
test()

To find the sample size required for a specified power, R finds an N that will satisfy
Eq. (5.19).
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In this section, we illustrate power analysis using v2 test and Fisher exact test
using our Butyrivibrio fibrisolvens present/absent data from ALS G93A mice data
set. To conduct power analysis, we first need to estimate the effect size. For con-
tinuous measures, such as in Shannon diversity case, the effect size is just calculated
as the difference in means. With categorical data, there are several measures can be
used as the effect size including Cramer’s V (Phi coefficient u), odds ratio and
relative risk (Cohen 1988). You can choose one based on your interest of study.
Here we use Cramer’s V, which is a measure of association for nominal variables.
Effectively it is the Pearson chi-square statistic rescaled to have values between 0
and 1.

This measure of Cramer’s V is defined as

V ¼
ffiffiffiffiffiffi
u2

t

r
¼

ffiffiffiffiffi
v2

Nt

r
u ð5:20Þ

where v2 is the Pearson chi-square when the null hypothesis is true, N is the total
sample size, t is the smaller of the number of rows minus one or the number of
columns minus one. If r is the number of rows, and c is the number of columns, then
t = minimum (r − 1, c − 1).

For a 2 � 2 contingency table, of course, this is just the square root of chi-square
divided by the number of observations, which is equal to the phi coefficient u. The
Cramer’s V can be estimated by using function cramersV from lsr package.

> library(lsr)

> cramersV(tbl)

[1] 0.3833

Given the Cramer’s V, now we can use the function pwr.chisq.test() from the
pwr package to conduct the power analysis.

> library(pwr)

> pwr.chisq.test(w = 0.3833, N = 45:60, df = 1, sig.

level = 0.05, power = NULL)

Chi squared power calculation

w = 0.3833

N = 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60

df = 1

sig.level = 0.05

power = 0.7295, 0.7388, 0.7479, 0.7567, 0.7652, 0.7735, 0.7815,
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0.7893, 0.7969, 0.8042, 0.8113, 0.8182, 0.8248, 0.8313, 0.8375, 0.8435

NOTE: N is the number of observations

The results show that 54 samples are needed in each group to correctly reject the
null hypothesis with 80% power based on v2 test and using Cramer’s V (Phi
coefficient u) as effect size.

5.4.3.3 Implementing Power Analysis Using the Functions
power.fisher.test() and power.exact.test()

If the cell values are small (<5) in the contingency table, Chi-squared test may be
incorrect, a Fisher exact test is applied. Thus, we illustrate two recently developed R
power functions power.fisher.test() and power.exact.test() from the statmod and
Exact packages, respectively. Compared with pwr.chisq.test(), both versions of
Fisher tests have less flexibility to specify multiple samples in one test. In the
following example, we use same proportions (p1 = 1.0, p2 = 0.57) from contin-
gency table, and 15 samples for each group to estimate the power.

> library(statmod)

> power.fisher.test(1.0,0.57,15,15,alpha=0.05, nsim=1000)

[1] 0.844

The following R codes use the power.exact.test function to calculate power for
unconditional exact test.

> library(Exact)

> power.exact.test(1.0, 0.57, 15, 15, method="Fisher")

$power

[1] 0.8454

$alternative

[1] "two.sided"

$method

[1] "fisher"

The results show that 15 samples are needed in each group to correctly reject the
null hypothesis with 84% power based on the Fisher exact test.
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5.5 Comparing the Frequency of All Taxa Across Groups
Using Dirichlet-Multinomial Model

5.5.1 Multivariate Hypothesis Testing
and Dirichlet-Multinomial Model

The above approach of comparing a taxon of interest is an univariate
‘one-taxon-at-a-time’ analysis. Because microbiome data have multivariate struc-
ture, we often conduct comparison of multiple taxa by comparing the abundances of
each taxon across groups separately and then adjust for multiple comparisons. The
univariate approach is generally less powerful than multivariate approaches because
it does not take into account the interactions that exist between taxa, whereas the
multivariate approaches jointly modeling microbial taxa abundance (La Rosa et al.
2012, 2015; Boyu Ren et al. 2017; Grantham et al. 2017). Microbiome researchers
have made effort to develop statistical methods to conduct multivariate hypotheses
concerning the effects of treatments or experimental factors on whole assemblages
of bacterial taxa, and in estimating sample sizes for such experiments. Under the
multivariate hypothesis testing framework to compare microbiome populations, one
of the null hypotheses can be:

H0: The different treatments or experimental factors have no different effects on
whole community of taxa.
Ha: The different treatments or experimental factors do have different effects on
whole community of taxa.

One of multivariate statistic methods is the Dirichlet-Multinomial distribution; it
has been shown to model for microbiome data well (Holmes et al. 2012). La Rosa
and colleagues reparameterize the Dirichlet multinomial model to make it suitable
to perform hypothesis testing across groups based on difference between location
(mean comparison) as well as scales (variance comparison/dispersion) (La Rosa
et al. 2012). The motheds have capabilities to perform parameter estimation,
multivariate hypothesis testing, power and sample size calculation. In this chapter,
we first introduce reparameterized Dirichlet multinomial model; then focus on
calculating power and sample size using the HMP Package.

Consider a set of microbiome samples measured on P subjects with K distinct
taxa at an arbitrary level (e.g., phylum, class, etc.) identified across all samples. Let
xik; i ¼ 1; . . .;P; k ¼ 1; . . .;K be the number of reads in subject i for taxon k, and
let xi be the taxa count vector obtained from sample i. When taxon k is not in
sample i, then xik is 0. Let Ni: ¼

PK
k¼1 xik be the total number of sequence reads in

sample i, N:k ¼
PP

i¼1 xik be the total number of sequence reads for taxon k across
all samples, and sum of them be the total number of sequences over all samples and
taxa.

The count data with this kind of structure is generally analyzed by a multinomial
distribution. However, its appropriateness of using multinomial distribution
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assumes that the true frequency of each category is the same across all samples (La
Rosa et al. 2012). In addition, the multinomial model can result in an increased
Type I Error when the data present overdispersion. Thus, it is not appropriate to use
the multinomial distribution to model microbiome count data because each taxon in
microbiome data is not the same across all samples due to sample variabilities.

To fit microbiome taxon count data with this data structure, La Rosa et al.
reparameterizated the Dirichlet-multinomial distribution (La Rosa et al. 2012). It is
characterized by two set of parameters: p and h (Tvedebrink 2010):

p ¼ pj; j ¼ 1; . . .;K
� �

; 0� pj � 1; ð5:21Þ

where, pj
� �

= mean proportion of taxa j. That is, is a vector of the expected taxa
frequencies, or the vector of relative abundances,

P
pj ¼ 1. Each element of the

vector could be OTU, species, genus or any other rank in the microbial taxonomy.

P Xi ¼ xi; p; hð Þ ¼ Ni:!

xi1!. . .xik!
¼ PK

j¼1P
xij
r¼1 pjð1� hÞþ ðr � 1Þh� �

PNi:
r¼1ð1� hÞþ ðr � 1Þh ð5:22Þ

where, h is the overdispersion parameter, or the measure of dispersion. It measures
the within-sample excess of variability with respect to a multinomial distribution;
with h� 0 suggesting overdispersion.

Compared to the multinomial distribution, the parameterization of Dirichlet-
multinomial distribution makes it suitable to perform hypothesis testing across
groups based on difference between locations by comparisons of p vectors as well
as scales by comparison of h values. For example, for two-groups of comparisons
(i.e., controls and cases), the null hypothesis: p1 ¼ p2 expresses equality of com-
munity composition. It was proposed to test the null hypothesis using the gener-
alized Wald test of Koehler and Wilson (1986) and La Rosa et al. (2012).

As Dirichlet-multinomial, the reparameted Dirichlet-multinomial model can be
used to analyze both taxa composition and rank abundance distributions
(RAD) data. These two approaches are called “taxa composition data analysis” and
“rank abundance distributions data analysis”, respectively (La Rosa et al. 2012).
Two approaches have different focuses: one is community composition (what
bacteria are there); another is community structure (such as richness and diversity).

5.5.2 Power and Sample Size Calculations Under
Dirichlet-Multinomial Model

In Sect. 5.1, we discussed that several factors affect power including the parameters
that define power and methodological factors. Power and sample size in Dirichlet
multinomial model depend on the probability model parameters, the hypothesis
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being tested, and the effect size. The simulation study conducted by La Rosa et al
(2012) showed that the effect size, overdispersion, and sample size influence power.
The power goes up with increasing the effect size or increasing sample size,
decreasing overdispersion. In some examples the number of reads also impacts
power, with holding effect size, overdispersion, and sample size constant, power
increases as the number of reads increases. In summary, statistical power is
impacted by the number of samples per treatment (sample size or replication level)
and number of sequence reads per sample (sequencing depth) (Kristin et al. 2015),
and overdispersion.

For simplicity, let us consider the problem of comparing microbiome samples of
taxa frequencies between two experimental groups, such as butyrate-treated versus
without butyrate-treated mice. For comparing taxa frequencies to a previously
specified microbiome population, more than two groups, and other hypothesis
testing, the interested readers are encouraged to refer to the original articles (La
Rosa et al. 2012). For comparison of p across two groups, assume that the model
parameters p and h are known for each group, the testing hypothesis is formed as:

H0 : p1 ¼ p2 versus the alternative HA : p1 6¼ p2

The effect size is defined by how far apart the vector of taxa frequencies p1 and
p2 are from each other. As we mentioned in Sect. 5.4.3.2, there are several ways to
measure the effect size. One of them is a Cramer’s V in (5.20). With the micro-
biome data structure in Table 5.3, row r is the number of groups being compared,
and column c is the total number of taxa. From the formula, Cramer’s V depends on
the sample size and number of reads. To reduce the influence of the sample size and
number of reads, La Rosa et al. proposed a modified Cramer’s u criterion(La Rosa
et al. 2012, 2015), which ranges from 0, denoting the taxa frequencies are the same
in both groups, to 1, denoting the taxa frequencies are maximally different.

um ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

v2max
2

s
; ð5:23Þ

where v2max is the Chi-square statistic for the maximum difference between the taxa
frequency means being compared, which is achieved when taxa in each group are

Table 5.3 Power calculations (based on alpha = 0.05) using the Dirichlet-multinomial model to
compare the expected taxa frequencies of the Buty versus the NoButy populations, using as a
reference the taxa frequencies obtained from the 10 samples

Reads

Samples 500 (%) 1000 (%) 2000 (%) 5000 (%) 10,000 (%)

5 3.50 10.99 24.58 43.66 53.95

10 98.8 99.9 99.9 100 100

15 100 100 100 100 100
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non-overlapping across groups. In the case of comparing two groups, and there is
no overdispersion v2max ¼ N, then um reduce to the Cramer’s u criterion.

5.5.3 Power and Size Calculations Using HMP Package

HMP is a R package developed for hypothesis testing and power calculations to
compare metagenomic samples originally from HMP (La Rosa et al. 2016). Power
and sample size calculations can be done either by using the asymptotic distribu-
tions of the statistics or by means of Monte-Carlo simulation implemented via HMP
package. Here, we illustrate power and sample size calculations by Monte-Carlo
simulation using our ALS G93A mice example.

5.5.3.1 Preparing Data Sets for Use of HMP Package

First, install and call HMP package.

> install.packages("HMP",repo="http://cran.r-project.org", dep=TRUE)

> library(HMP)

Then set work directory and load taxa abundance data sets.

> setwd("F:/Home/MicrobiomeStatR/Analysis")

> Buty=read.csv("ALSG93A3.5mButyrateGenus.csv",row.names=1,

check.names=FALSE)

> NOButy=read.csv("ALSG93A3.5mNoButyrateGenus.csv",row.names=1,

check.names=FALSE)

The original data sets have the format of taxa by sample. As shown in Table 5.3,
the reparameterized Dirichlet multinomial model and HMP package need the data
sets to have sample by taxa format. Therefore, we use the t() function to transpose
the original data sets into the data sets with sample by taxa formats.
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> head(Buty)
B11-28F B12-28F B13-28F B14-28F B15-28F

Lactococcus                   17     204       8       7       4
Tannerella                   646     170     670     421     548
Barnesiella                    6       2      12       8      21
Bacteroides           604     406     436     260     443
Hydrogenoanaerobacterium       1       0       7       1       0
Clostridium                  179     398     564     400     737
> head(NOButy)

B21-28F B22-28F B23-28F B24-28F B25-28F
Lactococcus                   52      21       0       9       1
Tannerella                   787     756     395    1266    1111
Barnesiella                   12      21       8      24      17
Bacteroides                  130     241     192     228     315
Hydrogenoanaerobacterium       0       0       0       0       1
Clostridium                  458     344     418     167     334

> Buty_t <- t(Buty)
> NOButy_t<-t(NOButy)
> head(Buty_t)

Lactococcus Tannerella Barnesiella Bacteroides
B11-28F  17        646           6         604
B12-28F         204        170           2         406
B13-28F           8        670          12         436
B14-28F           7        421           8         260
B15-28F           4        548          21   443
> head(NOButy_t)

Lactococcus Tannerella Barnesiella Bacteroides
B21-28F          52        787          12         130
B22-28F          21        756          21         241
B23-28F           0        395           8         192
B24-28F  9       1266          24         228
B25-28F           1       1111          17         315

The following codes check the number of taxa and the number of sample in each
data set.

> ncol(Buty_t) # for the number of taxa

[1] 196

> nrow(Buty_t) # for the number of samples

[1] 5

> ncol(NOButy_t) # for the number of taxa

[1] 196

> nrow(NOButy_t) # for the number of samples

[1] 5

5.5.3.2 Power and Size Calculations Using Taxa Composition Data
Analysis

The function MC.Xdc.statistics() uses simulation and likelihood ratio test to provide
the power and size of the several sample Dirichlet-Multinomial parameter test
comparison. Here, we compare two sample sets of “Buty” and “NOButy”.

One sample syntax is like this:
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MC.Xdc.statistics(group.Nrs, numMC = 1000, alphap, type = “ha”, siglev =
0.05, est = “mom”)

where, group.Nrs is used for specifying the number of reads/sequence depth for
each sample in a group. numMC is used for specifying the number of Monte-Carlo
experiments. In practice at least 1000 should be specified.

If alphap is used for computing size of the test statistics (Type I error), i.e., when
type = “hnull” is specified, then alphap specifies the matrix where rows are vectors
of alpha parameters for the reference group. Such as, the following codes: alphap <-
fit_Buty $gamma specifies the “Buty” gamma matrix for the reference group.

If alphap is used for computing power of the test statistics (Type II error), i.e.,
the default, or when type = “ ha” is specified, then alphap represents the matrix
consisting of vectors of alpha parameters for each taxa in each group. Such as, the
following codes: alphap <- rbind(fit_Buty$gamma, fit_NOButy$gamma) specifies
both “Buty” and “NOButy” gamma matrice for each taxa in each group.

If type = “hnull”, then the size of the test statistics is computed; If type = “ha”,
then the power of the test statistics is computed, which is also the default.

siglev is used for specifying the significance level for size of the test or power
calculation. The default is 0.05.

est is used for specifying the type of parameter estimator to be used with the
Likelihood-ratio-test statistics, ‘mle’ or ‘mom’. Default value is ’mom’. The authors
of HMP package notes that ‘mle’ will take much longer time to run and is not
optimal for small sample sizes, while the result from ’mom’ is more conservative in
small sample case.

First, get a list of Dirichlet-multinomial parameters(i.e., loglik, gamma, pi and
theta) for the data using the function DM.MoM().

> fit_Buty <- DM.MoM(Buty_t);fit_NOButy <- DM.MoM(NOButy_t)

> fit_Buty

Second, set up the number of Monte-Carlo experiments, here we use 1000, the
minimum value recommneted in practice and generate the number of reads per
sample.

> numMC <- 1000

> ##The first number is the number of reads and the second is the number of

samples or subjects

> nrsGrp1 <- rep(1000, 10)

> nrsGrp2 <- rep(1000, 10)

> group_Nrs <- list(nrsGrp1, nrsGrp2)

Third, compute size of the test statistics (Type I error).

> alphap <- fit_Buty $gamma

> pval1 <- MC.Xdc.statistics(group_Nrs, numMC, alphap, ”hnull”)
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> pval1

[1] 0.000999

Finally, Compute power of the test statistics (Type II error).

> alphap <- rbind(fit_Buty$gamma, fit_NOButy$gamma)

> pval2 <- MC.Xdc.statistics(group_Nrs, numMC, alphap)

> pval2

[1] 0.999

Table 5.3 shows a power analysis to compare the taxa frequencies of the Buty
versus the NOButy populations using 5% significance level based on the Dirichlet-
multinomial parameters obtained from the Buty and NOButy 10 sample dataset.
Each entry represents the power achieved for the specified number of samples, and
number of reads at 0.05 significance level. For example, for number of samples =
10, and number of reads per sample = 500, the study has 98.8% power to detect the
effect size observed in the data. The results show that the power is impacted by
increasing the number of reads when samples are small (in this case, 5); but is not
impacted by increasing the number of reads when larger size of samples is achieved
(in this case, 10). The results also indicate that when sufficient samples are
achieved, increasing sample size does not increase power.

5.5.3.3 Power and Size Calculations Using Rank Abundance
Distributions Data Analysis

Several Sample RAD-Probability Mean Test Comparison With Known Reference
Vector of Proportions
The function MC.Xmc.statistics() use simulation and the generalized Wald-type
statistics to provide the power and size of the several sample RAD-probability mean
test comparison with known reference vector of proportions. Here, again we
compare two sample sets of “Buty” and “NOButy”.
One sample syntax is like this:

MC.Xmc.statistics(group.Nrs, numMC = 1000, pi0, group.pi, group.theta, type =
“ha”, siglev = 0.05)

where, group.Nrs, numMC, type and siglev are defined as in MC.Xdc.statistics()
fnction.

pi0 is the RAD-probability mean vector. If group.pi = “hnull”, then this argu-
ment is ignored; if group.pi = “ha”, then it specifies a matrix where each row is a
vector pi values for each group. Group.theta is a vector of overdispersion values for
each group.

The technical challenges for analyzing rare taxa are low convergence rates and
less precise test statistics. To improve the convergence rates and accurate estimates,
in microbiome studies, one way is to get rid off the less frequent taxa, such as in any
sample with percentage less than 1%; another way is to combine all less frequent
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taxa, such as, weighted average across all groups with less than 1% into one taxon
called “other” (La Rosa et al. 2012). We did not use these techniques in above taxa
composition data analysis when call MC.Xdc.statistics()function. Here, we use the
Data.filter() function to order taxa in order of decreasing abundance and collapse
less-abundant taxa into one category labeling as “Other”.

One sample syntax is like this:
Data.filter(data, order.type = “sample”, minReads = 1000, numTaxa = 10,

perTaxa = NULL)
where, data is a matrix of taxonomic counts(columns) for each sample(rows).
If order.type = “sample”, then rank taxa based on its taxonomic frequency;if

order.type = “data”, then rank taxa based on cumulative taxonomic counts across all
samples (default). Let’s minReads = one read cut-off value, then the samples with a
total number of reads less than this read cut-off value will be deleted. The argu-
ments numTaxa and perTaxa, only one should be specified in one call. The argu-
ment numTaxa is used to specify the number of taxa to keep, while collapsing the
other (less abundant) taxa into “Other” category. The argument perTaxa is used to
combine percentage of data to keep, while collapsing the remaining taxa.

First, order taxa in order of decreasing abundance and collapse less-abundant
taxa into “Other” category using the Data.filter() function.

> filter_Buty<- Data.filter(Buty_t, "sample", 1000, 10)
> head(filter_Buty)

Other
B11-28F 646 604 265 196 179 159 103 53 52 32   261
B12-28F 406 398 312 242 204 170 102 82 50 45   382
B13-28F 670 564 436 110  65  62  59 58 47 39   266
B14-28F 421 400 260 149 111  67  64 58 49 48   421
B15-28F 737 548 443 281 214  97  94 69 59 53   476

> filter_NOButy<- Data.filter(NOButy_t, "sample", 1000, 10)
> head(filter_NOButy)

Other
B21-28F  787 458 231 130 114 110  67 61 52 35   220
B22-28F  973 756 344 312 241 151 145 56 40 38   256
B23-28F  418 395 192 165  80  42  41 37 36 34   238
B24-28F 1266 425 402 228 167 142 113 54 42 25   178
B25-28F 1111 334 315 102  59  53  43 35 22 19   133

Second, get a list of Dirichlet-multinomial parameters(i.e., loglik, gamma, pi and
theta) for the data using the function DM.MoM().

> fit_Buty <- DM.MoM(Buty_t);fit_NOButy <- DM.MoM(NOButy_t)

> fit_Buty$pi

0.23155 0.20212 0.13796 0.07863 0.06215 0.04462 0.03393 0.02573

Other

0.02066 0.01745 0.14520
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> fit_NOButy$pi

0.36373 0.18909 0.11850 0.07482 0.05278 0.03977 0.03266 0.01940

Other

0.01533 0.01206 0.08185

> fit_Buty$theta

[1] 0.007523

> fit_NOButy$theta

[1] 0.01615

Third, set up the number of Monte-Carlo experiments, here we use 1000, the
minimum value recommneted in practice and generate the number of reads per
sample.

> numMC <- 1000

> #The first number is the number of reads and

> #the second is the number of subjects

> nrsGrp1 <- rep(1000, 10);nrsGrp2 <- rep(1000, 10)

> group_Nrs <- list(nrsGrp1, nrsGrp2)

Fourth, set up the values of the vector of taxa frequencies (taxa proportion) and
overdispersion parameters for each group.

> pi0 <- fit_Buty$pi

> group_theta <- c(0.007523, 0.01615)

Fifth, compute size of the test statistics (Type I error).

> pval1 <- MC.Xmc.statistics

(group_Nrs, numMC, pi0, group.theta=group_theta, type="hnull")

> pval1

[1] 0.08492

Finally, compute power of the test statistics (Type II error).

> group_pi <- rbind(fit_Buty$pi, fit_NOButy$pi)

> pval2 <- MC.Xmc.statistics

(group_Nrs, numMC, pi0, group_pi, group_theta)

> pval2

[1] 0.999

Table 5.4 shows the power analysis results of rank abundance distributions
(RAD) data analysis using the function MC.Xmc.statistics(). The RAD data anal-
ysis achieved a higher power to detect the effect size comparing to taxa composition
data analysis. For example, with only 5 samples per group, 500 reads per sample,
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we can achieve 89.61% power. Actually, comparing to the taxa composition data
analysis, the RAD data analysis approach decreases power because the information
in the data is lost when the taxa labels are ignored (La Rosa et al. 2012). The higher
power achieved in this case is because the RAD data analysis reduced the 196 taxa
to 11 taxa including 1 “pooled less frequently abundant taxa”.

Several Sample RAD-Probability Mean Test Comparison With Unknown Vector
of Proportion
The function MC.Xmcupo.statistics() use simulation and the generalized Wald-type
statistics to provide the power and size of the several sample RAD probability mean
test comparisons without reference vector of proportions. Here, again we compare
two sample sets of “Buty” and “NOButy”.

One sample syntax is like this:
MC.Xmcupo.statistics(group.Nrs, numMC = 1000, pi0, group.pi, group.theta,

type = “ha”, siglev = 0.05)
where, group.Nrs, numMC, type, siglev, pi0, group.pi, and group.theta are

defined as in the fnction MC.Xmc.statistics().
The function MC.Xmcupo.statistics() runs at the same way as the function MC.

Xmc.statistics().

> ##Generate the number of reads per sample

> ##The first number is the number of reads and the second is the number of

Samples or subjects

> nrsGrp1 <- rep(1000, 10);nrsGrp2 <- rep(1000, 10)

> group_Nrs <- list(nrsGrp1, nrsGrp2)

> pi0 <- fit_Buty$pi

> group_theta <- c(0.007523, 0.01615)

> ##Computing size of the test statistics (Type I error)

> group_theta <- c(fit_Buty$theta, fit_NOButy$theta)

> pval1 <- MC.Xmcupo.statistics

(group_Nrs, numMC, pi0, group.theta=group_theta, type="hnull")

> pval1

[1] 0.004995

> ##Computing Power of the test statistics (Type II error)

Table 5.4 Power calculations (based on alpha = 0.05) using the Dirichlet-multinomial model to
compare the ranked expected taxa frequencies from the Buty and the NoButy populations, using as
a reference the taxa frequencies obtained from the 10 samples

Reads

Samples 500 (%) 1000 (%) 2000 (%) 5000 (%) 10,000 (%)

3 70.63 73.03 75.12 72.53 76.52

5 89.61 92.61 92.21 92.61 94.01

10 99.9 99.9 99.9 99.9 99.9
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> group_pi <- rbind(fit_Buty$pi, fit_NOButy$pi)

> pval2 <- MC.Xmcupo.statistics(group_Nrs, numMC, group.pi=-

group_pi, group.theta=group_theta)

> pval2

[1] 0.9231

Table 5.5 shows the power analysis results of rank abundance distributions
(RAD) data analysis using the function MC.Xmcupo.statistics(). The powers
achieved by the function MC.Xmcupo.statistics () is smaller than those by the
function MC.Xmc.statistics() due to without using a reference vector of
proportions.

5.5.4 Effect Size Calculation Using HMP Package

HMP Package has the capability to calculate effect size. Here, we illustrate the
effect size calculation, using the function Xmcupo.effectsize(), which computes the
Cramer’s Phi and Modified Cramer’s Phi Criterion for the test statistic
Xmcupo.sevsample(). The interested readers can reference the HMP package to
conduct hypothesis testing, using the function Xmcupo.sevsample(). Here, we focus
on the effect size calculation.

The syntax is:
Xmcupo.effectsize(group.data)
where, group.data is a list where each element is a matrix of taxonomic counts

(columns) for each sample(rows).

> ##Combine the data sets into a single list
> group_data <- list(filter_Buty, filter_NOButy)
> effect <- Xmcupo.effectsize(group_data)
> effect

Chi-Squared          Cramer Phi Modified-Cramer Phi 
20.97915             0.02899             0.15208 
P value 
0.02124 

Table 5.5 Power calculations (based on alpha = 0.05) using the Dirichlet-multinomial model to
compare the ranked expected taxa frequencies from the Buty and the NoButy populations, without
using a reference vector of proportions

Reads

Samples 500 (%) 1000 (%) 2000 (%) 5000 (%) 10,000 (%)

3 18.88 21.88 22.28 25.37 24.08

5 38.16 45.25 49.45 51.85 50.85

10 87.91 92.31 94.81 95.9 95.2
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The effect sizes observed in the RAD data analysis based on the test statistic
Xmcupo.sevsample are 0.03 for Cramer Phi, 0.15 for Modified-Cramer Phi,
respectively.

5.6 Summary

This chapter focused on power and sample size calculations for microbiome data.
Both univariate and multivariate analysis approaches were introduced. For uni-
variate analysis approach, we introduced and illustrated parametric and non-
pararemetric tests and models; for multivariate analysis approach, the focus was on
power and sample size calculations using the parametric Dirichlet-multinomial
model. Both statistical theory and the associated R packages were introduced in
each analysis.

We started with introducing the elements of hypothesis testing and power
analysis, and forming hypothesis testing and power analysis with microbiome data.
Second, we divided four sections to separately cover power and sample size
analyses for testing differences in diversity using t-test; comparing diversity across
more than two groups using ANOVA; comparing a taxon of interest across groups;
and comparing the frequency of all taxa across groups using Dirichlet-multinomial
model.

Microbiome power analysis is very important for study design of microbiome
studies. The hypothesis testing methods and models are limited in literature,
especially rare for appropriate multivariate models. Except those we illustrated in
this chapter, we also found a few other metheds appeared in research papers (Kelly
et al. 2015; Mattiello et al. 2016). We do not intend to further discuss them due to
lack of detail documents or only available in web-based application.
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Chapter 6
Community Diversity Measures
and Calculations

In this chapter, we use a real microbiome data set to introduce community diversity
measures and their calculations. We introduce Vdr−/− mice data set in Sect. 6.1. The
concepts of alpha, beta and gamma diversities are covered in Sect. 6.2. In Sects. 6.3
and 6.4, we introduce some common used alpha and beta diversity measures and
calculations, respectively. Section 6.5 is a brief summary of this chapter.

6.1 Vdr−/− Mice Data Set

Murine intestinal microbiome data (Jin et al. 2015) are generated from fecal and
cecal stool of vitamin D receptor knockout (Vdr−/−) and wild-type (WT) mice with
454 pyrosequencing. The whole data sets include 5 samples of Vdr−/− mice and 3
samples of WT mice from both fecal and cecal locations. The overall purpose of
this study is to explore whether VDR status regulates the composition and functions
of the intestinal bacterial community. The null hypothesis is that Vdr status and
intestinal location is not associated with taxonomic alterations of the bacterial
community in the gut. The post sequencing data have six levels of taxa, including
phylum, class, family, order, genus, and species. For better differentiation from
sample to sample, we analyze the intestinal microbiota at the genus level in this
chapter.

6.2 Introduction to Community Diversities

Analyses of community diversities are widely used in community microbiome
study. Throughout this book, we use the term diversity to mean richness, or the
number of types, and various diversity indices. For clarity, we will often refer to
species or genus as the measured unit of diversity, but our discussion can be applied
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to operational taxonomic units (OTUs) or any level of taxa. Most diversity methods
assume that data are counts of individuals. Three levels of diversity (alpha diversity,
beta diversity and gamma diversity) have become central to community ecology
(Whittaker 1967, 1969). In microbiome study, alpha diversity and beta diversity are
commonly used. In Chap. 7, the alpha and beta diversity measures will be explored
with various plots and clustering and ordination techniques. Chapters 8 and 9 will
focus on hypothesis testing of alpha diversity and beta diversity.

6.2.1 Alpha Diversity

Whittaker (1960) introduced and divided diversity into various components. The
best known distinct components are alpha diversity and the beta diversity.

Alpha diversity as one of the basic diversity indices is defined as diversity in one
spot or sample. It acts like a summary statistic of a single population (Morgan and
Huttenhower 2012). Although several slightly different definitions of alpha diver-
sity have been used, such as Whittaker himself used the term for both the species
diversity in a single subunit and the mean species diversity in a collection of
subunits (Whittaker 1960, 1972), alpha diversity is used for local diversity. In
microbiome study, alpha diversity is referred to as diversity within a single sample
or within a community.

6.2.2 Beta Diversity

One important purpose of microbiome study is to determine whether the micro-
biome communities can be classified together or need to be separated in their
bacteria, to differentiate treatment from control, healthy from disease, genetic
deficiency from wild type. The questions of community classification lead us to
measure the similarity between two community samples (beta-diversity). The
concept of “similarity” or beta-diversity and its measures mainly come from
ecology and other fields.

Beta diversity was originally defined by Whittaker as a measure of change in
diversity across environmental gradients; in other words, it is the rate of change in
species composition from one community to another along gradients (Whittaker
1960). Hence, it reflects species replacement as one moves across space or time
(Magurran 2004). Beta diversity is also known as ‘species turnover’. In general,
beta diversity evaluates differences between two or more local assemblages or
between local and regional assemblages (Koleff et al. 2003; Lozupone and Knight
2008), thus allowing us to elucidate how much diversity is unique to a local
assemblage, or describe how many taxa are shared between communities. The
microbiome researchers adopted the concept and techniques from these studies.

168 6 Community Diversity Measures and Calculations



6.2.3 Gamma Diversity

In ecological literature, there is another extreme diversity called gamma diversity,
the diversity of a region or a landscape that contains several communities. In
microbiome literature, gamma diversity is rarely used. Thus, in this book, we focus
on alpha and beta diversities. However, simply describing the relationship among
alpha, beta and gamma diversities may be helpful for understanding alpha and beta
diversities. Practically, alpha diversity can be considered to be the diversity of the
individual sample or observation, and gamma diversity to be the diversity of all
sample combined, whereas beta diversity is a measure of how distinct the sampling
units are along gradients.

6.3 Alpha Diversity Measures and Calculations

Alpha diversity is one of the essential concepts in ecology, biological and micro-
biome community. The fundamental questions encountered by researchers are: how
many species present? When you speak this way, you are describing the richness of
community. How many species are truly there? When you talk this way, you are
talking about diversity of community. And when you ask how even are each species
relatively to each other? You want to know the evenness of community.
Community diversity indices combine species richness and abundance into a single
value of evenness. Communities that are numerically dominated by one or a few
species exhibit low evenness while communities where abundance is distributed
equally among species exhibit high evenness (Gotelli 2008). In microbiome liter-
ature, Chao 1 index (Chao 1984), which is qualitative species-based measures,
Shannon (or Shannon-Wiener) index (Shannon 1948; Shannon and Weaver 1949)
and Simpson’s index (Simpson 1949), which are quantitative species-based mea-
sures, have been most widely applied. The Chao 1 index and number of taxa,
Shannon-Wiener Diversity, Simpson Diversity, Pielou’s Evenness indices will be
introduced in Sects. 6.3.1, 6.3.2, 6.3.3 and 6.3.4, respectively. All these four indices
are made into a dataframe and combined together in Sect. 6.3.5.

6.3.1 Chao 1 Richness Index and Number of Taxa

Species richness estimators estimate the total number of species present in a sample
or community. This is the oldest and the simplest concept of species diversity. Two
non-parametric estimators of species richness for presence/absence data were
developed by Anne Chao and are called ‘Chao 1’ and ‘Chao 2’ in the literature
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(Colwell and Coddington 1994). They are very similar in concept. Chao 1 index is
based upon the number of rare classes (i.e., OTUs) found in a sample (Chao 1984).
It is commonly used in ecology and microbiome studies. The formula is given as
below:

SChao1 ¼ Sobs þ n21
2n2

ð6:1Þ

where SChao1 is the estimated number of species, Sobs is the number of species
observed in total, n1 is the number of singleton taxa (taxa represented by a single
read in that community), such as number of species represented only once in the
samples (unique species), and n2 is the number of doubleton taxa, such as number
of species represented only twice in the samples. Chao (1984) noted that this index
is particularly useful for data sets skewed toward the low-abundance classes, as is
likely to be the case with microbiome data. However, from above formula, we can
see if the number of singleton taxa n1 is larger, that is, a sample contains many
singletons; in such case, it is likely that more undetected OTUs exist, and then
the Chao 1 index will estimate greater species richness than it would for a sample
without rare OTUs.

Further to above Chao 1 measure in (6.1), Chao also derived a closed-form
solution for the variance of SChao1 (Chao 1987):

VarðSChao1Þ ¼ n2
m4

4
þm3 þ m2

2

� �
; ð6:2Þ

where m ¼ n1
n2
. This formula estimates the precision of Chao1 from multiple

samples.
The alpha diversity is calculated based on raw abundance data. The data

structure should be rows for samples and columns for taxa (such as, genera, spe-
cies). Alpha diversity can be calculated by several R packages. Here, we will use
the ecological R package called vegan (for “vegetation analysis”) to estimate the
four most often used alpha indices in the microbiome literature: number of taxa,
Chao1 richness, Shannon evenness and Simpson index using the Vdr−/− mice data
set.

First, let us read the genus count abundance data into R and load vegan package.

> options(width=65,digits=4)

> abund_table=read.csv("VdrGenusCounts.csv",row.names=1,

check.names=FALSE)

> library(vegan)

The following print of few lines shows that the data structure is taxa (in these
case, genera) by sample format.
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The data table needs to be transformed into samples by taxa (genera) before
calculating various diversities.

The extremely simple function specnumber can be used to find the number of
species or any taxa. Here the function specnumber() is used to calculate the number
of genera.

Adding up the number of taxa (genera in this case) present in the samples is the
simplest way to estimate diversity. However, this method ignores the identity of the
taxa (genera in this case) and their abundances, two very different communities
might be identical. For example, the following two communities are the same based
on the number of taxa counted or taxon richness (both have 5 taxa), but obviously
they are different communities.

Taxon Community I Community II

A 10 5

B 1 5

C 1 5

D 1 5

E 1 5
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We can also estimate the number of genera and Chao1 index in our Vdr−/− mice
data set using estimateR() function. We will get the observed number of genera in
each sample, and the estimated number of Chao1 estimator. Please note that Chao1
index can be only calculated on integer counts. Thus, in case of only relative
abundances available, we need to transform all counts to integers. In Vdr−/− mice
data set, the read already has integer counts, so we do not need transform here.

From the above matrix, we can see that function estimate R generates 5 indices,
in which chao1 is listed as second row. Thus we can extract Chao 1 index using the
following R codes:
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6.3.2 Shannon-Wiener Diversity Index

One of the most popular measures of species diversity is Shannon-Wiener diversity
index, labeled as H′. It considers the differences in proportion or abundance of each
species. This index is based on information theory, measures the uncertainty: How
difficult would it be to predict correctly the species of the next individual collected?
The formula of Shannon index is:

H0 ¼ �
XS
i¼1

pi ln pi; ð6:3Þ

where pi is the proportion of individuals (or relative abundance) of species i in the
community and S is the total number of species present so that

PS
i¼1 pi ¼ 1.

Information theory is tomeasure the amount of uncertainty, so that the larger the value
ofH′, the greater the uncertainty. The Shannon-Wiener measureH′ increases with the
number of species in the community and in theory can reach very large values. In
practice for biological communities H′ does not seem to exceed 5.0 (Washington
1984). Shannon’s index “gives more importance” to less common categories (for
example, rare species, inmicrobiome studies). Strictly speaking, the Shannon-Wiener
measure of information content should be used only on random samples drawn from a
large community in which the total number of species is known (Pielou 1966).

We can use the diversity function in the vegan package to calculate
Shannon-Wiener diversity. Alternatively, we can use plain R codes based on above
formula. Here we show both approaches. First, let’s use the diversity() function, the
R codes are listed as below.

The default index of diversity function is Shannon index, so the index=“shan-
non” can be omitted.
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Since the Shannon index calculation is relative to rows. The argument
MARGIN=1 can be omitted also.

Now we will illustrate the calculation by plan R codes using the formula of
Shannon-Wiener diversity Index. Since in above formula pi is the proportion of
individuals (or relative abundance) of species i in the community, we use decostand
() function in vegan package to convert count data in each sample into proportions.

> # use decostand to convert data into proportions

> abund_table_total<-decostand(abund_table, MARGIN=1, method="total")

The augments of MARGIN = 1 mean “rows”, MARGIN = 2 mean “columns”
of the matrix-like object data (in this case, abund_table); method = “total” means
to divide by margin total (MARGIN = 1 is also the default). By applying function
decostand, we obtained the proportion of individuals in the samples that belong to
each gene. We then can use Shannon-Wiener index formula to calculate the index
as below.

We can see that these two approaches obtain the same results.

6.3.3 Simpson Diversity Index

Simpson in 1949 (Simpson 1949) proposed a new concept of diversity which
combines two separate ideas, species richness and evenness. The new
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non-parametric measure of diversity states that diversity is inversely related to the
probability that two individuals picked at random belong to the same species.
Actually, the new defined concept of diversity is about species heterogeneity (Good
1953) although in ecological literature this concept is synonymous with diversity
(Hurlbert 1971). For an infinite population the formula of Simpson index is
given by:

D ¼ 1�
XS
i¼1

p2i ð6:4Þ

where pi is the proportion of individuals (or relative abundance) of species i in the
community. Simpson’s index ranges from 0 (low diversity) to almost 1. In contrary
to the Shannon’s index, Simpson’s diversity index “gives more importance” to
more common species.

Since heterogeneity contains both species richness and evenness, it was natural
for researchers to try to separately measure the evenness component from richness.
The null hypothesis of evenness is all species in a hypothetical community are
equally common. However, most communities contain a few dominant species and
many species that are relatively uncommon. Evenness measures attempt to quantify
this unequal representation against the null hypothesis. As the independent mea-
sures of species richness, many different measures of evenness (or equitability) have
been proposed in the literature. In microbiome literature, two evenness measures
have been used.

The definition of Simpson’s index of evenness is obtained from reciprocal of
Simpson’s index. The Simpson’s original index is given by:

DO ¼
XS
i¼1

p2i ð6:5Þ

The inverse Simpson index is given by:

DI ¼ 1PS

i¼1
p2i
, which is the reciprocal of Simpson’s original index (1=DO), where

pi is the proportion of species i in the community. Simpson’s index of evenness is
defined as

E ¼ 1

S
PS

i¼1 p
2
i

; ð6:6Þ

where S is the number of species in the sample. This index ranges from 0 to 1 and is
relatively unaffected by the rare species in the sample.
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We can use either diversity() function in the vegan package or plain R function
to calculate Simpson’s index. The following R codes use the diversity() function.

The following R codes use Simpson index formula to calculate the index. The
count data need to be converted into proportions before using this formual.

The inverse Simpson index can be calculated by specifying the method “in-
vsimpson” or “inv” as below. The interested readers can easily obtain the
Simpson’s index of evenness using above formula in (6.6).
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6.3.4 Pielou’s Evenness Index

The most common evenness is Pielou’s evenness:

J ¼ H0

logðSÞ ; ð6:7Þ

where H′ is Shannon-Weiner diversity and S is the total number of species observed
in a sample.

Many diversity indices, such as Simpson’s diversity, Shannon-Weiner diversity
incorporate evenness. However, it has been shown that the diversity indices which
concentrate totally on evenness are fraught with problems, including dependence on
species counts (McCune and Grace 2002). A particular problem with Pielou’s index
is that it is a ratio of a relatively stable index, H′, and one that is strongly dependent
on sample size, S.

Pielou index can be calculated using specnumber() and diversity() functions
based on its formula we introduced above as below.

Besides the above indices, within a community, several other estimators
including the Abundance-based Coverage Estimator (ACE) (Chao and Lee 1992;
Chao et al. 1993), and Jackknife (Heltshe and Forrester 1983) measures can be
found for calculating alpha diversity of taxa expected within a single population.
However, we do not discuss them in details and the interested readers can explore
them in the ecological and microbiome literatures.
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6.3.5 Make a Dataframe of Diversity Indices

We can make a dataframe for number of genera using the following R codes.

> #make a dataframe of number of genera

> N <- specnumber(abund_table)

> df_N <-data.frame(sample=names(N),value=N,measure=rep("Number",

length(N)))

The following R codes are used to make a dataframe for Chao 1 index.

> #make a dataframe of Chao1 richness

> CH=estimateR(abund_table)[2,]

> df_CH <-data.frame(sample=names(CH),value=CH,measure=rep("Chao1",

length(CH)))

The following R codes are used to make a dataframe for Shannon index.

> #make a dataframe of Shannon evenness

> H<-diversity(abund_table, "shannon")

> df_H<-data.frame(sample=names(H),value=H,measure=rep("Shannon",

length(H)))

The following R codes are used to make a dataframe for Simpson index.

> #make a dataframe of Simpson index

> df_simp<-data.frame(sample=names(simp_genus),value=simp_genus,

measure=rep("Simpson",length(simp_genus)))

The following R codes are used to make a dataframe for Pielou index.

> #make a dataframe of Pielou index

> df_J<-data.frame(sample=names(J),value=J,measure=rep("Pielou",

length(J)))

We can combine all the dataframes together for future use.
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6.4 Beta Diversity Measures and Calculations

Ecologists have proposed a number of beta diversity indices (Whittaker 1969;
Wilson and Mohler 1983; Oksanen and Tonteri 1995). In the literature of animal
and plant ecology, there are more than two dozen measures of similarity available
(Koleff et al. 2003). All commonly used indices can be found using betadiver()
function in the BiodiversityR package. We can check the definitions of beta
diversities through the BiodiversityR package. First, we load “BiodiversityR”:

> library(BiodiversityR)

Then call function betadiver() to obtain the following 24 definitions of beta
diversities.

> betadiver(help=TRUE)

1 "w" = (b+c)/(2*a+b+c)

2 "-1" = (b+c)/(2*a+b+c)

3 "c" = (b+c)/2

4 "wb" = b+c

5 "r" = 2*b*c/((a+b+c)^2-2*b*c)

6 "I" = log(2*a+b+c) - 2*a*log(2)/(2*a+b+c) -

((a+b)*log(a+b) + (a+c)*log(a+c)) / (2*a+b+c)

7 "e" = exp(log(2*a+b+c) - 2*a*log(2)/(2*a+b+c) -

((a+b)*log(a+b) + (a+c)*log(a+c)) / (2*a+b+c))-1

8 "t" = (b+c)/(2*a+b+c)

9 "me" = (b+c)/(2*a+b+c)
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10 "j" = a/(a+b+c)

11 "sor" = 2*a/(2*a+b+c)

12 "m" = (2*a+b+c)*(b+c)/(a+b+c)

13 "-2" = pmin(b,c)/(pmax(b,c)+a)

14 "co" = (a*c+a*b+2*b*c)/(2*(a+b)*(a+c))

15 "cc" = (b+c)/(a+b+c)

16 "g" = (b+c)/(a+b+c)

17 "-3" = pmin(b,c)/(a+b+c)

18 "l" = (b+c)/2

19 "19" = 2*(b*c+1)/(a+b+c)/(a+b+c-1)

20 "hk" = (b+c)/(2*a+b+c)

21 "rlb" = a/(a+c)

22 "sim" = pmin(b,c)/(pmin(b,c)+a)

23 "gl" = 2*abs(b-c)/(2*a+b+c)

24 "z" = (log(2)-log(2*a+b+c)+log(a+b+c))/log(2)

The beta diversity indices are grouped into two broad classes of similarity
measures: binary similarity coefficients and quantitative similarity coefficients.
When only measure of presence/absence data are available for the species in a
community, then the binary similarity coefficients are used; whereas when some
measures of relative abundance also be available for each species, the quantitative
similarity coefficients will be applied.

The methods of estimating alpha is fairly straightforward, but the measurement
of beta diversity has been controversial (Ellison 2010). Some beta diversity mea-
sures are designed solely to determine whether communities are significantly dif-
ferent, others are measures of distance between pairs of communities that satisfy the
requirements of a distance metric. For example, the widely used are the Jaccard and
Bray-Curtis coefficients for measuring the distance between communities based on
the species that they contain (Lozupone and Knight 2008). The key point to
selection of the proper measure of beta diversity is based on microbiome hypothesis
testing and the methods that must be tailored to the hypothesis, rather than vice
versa.

Beta diversity is calculated by using a similarity or dissimilarity (distance)
measure to represent the relationships of samples. In this chapter, we are going to
calculate three matrices: Bray-Curtis dissimilarity measure, Jaccard index and
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Sørensen index of dissimilarity. Of which, the first two are particularly widely
applied matrices in ecology and microbiome studies. Beta diversities can be esti-
mated by using vegan, BiodiversityR, or other packages.

6.4.1 Binary Similarity Coefficients: Jaccard and Sørensen
Indices

The coefficients (or association) of presence-absence binary data can be calculated
using a 2 � 2 contingency table.

Sample A

No. of species present No. of species absent

Sample B No. of species present a b

No. of species absent c d

where
a—Number of species in sample A and sample B (joint occurrences)
b—Number of species in sample B but not in sample A
c—Number of species in sample A but not in sample B
d—Number of species absent in both samples (zero-zero matches).

There are more than 20 binary similarity measures now in the literature. The
most often used similarity coefficients for binary data are Jaccard and Sørensen’s
indices. The Jaccard’s Index is given below:

Sj ¼ a
aþ bþ c

ð6:8Þ

where

Sj Jaccard’s similarity coefficient as defined in above presence-absence matrix
a Number of species in sample A and sample B (joint occurrences)
b Number of species in sample B but not in sample A
c Number of species in sample A but not in sample B.

Jaccard’s dissimilarity coefficient 1� Sj is modified from this similarity.
Jaccard’s dissimilarity measure can be calculated using the vegdist function() in
vegan package as below.
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Sørensen’s index (1948) is very similar to the Jaccard measure, which is given
below:

SS ¼ 2a
2aþ bþ c

ð6:9Þ

where SS = Sørensen’s similarity coefficient.
This index can also be modified to a coefficient of dissimilarity: 1� SS. The

Sørensen and Jaccard coefficients are thought as very closely correlated (Baselga
and Orme 2012). The range of all similarity coefficients for binary data is supposed
to be 0 (no similarity) to 1 (complete similarity). In fact, this is not true for all
coefficients. The Sørensen index of dissimilarity can be calculated for all samples
using vegan function vegdist() with binary data:
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6.4.2 Distance (Dissimilarity) Coefficients: Bray-Curtis
Index

For microbiome abundance data, the measures of distance coefficients are not really
distances. They actually measure “dissimilarity”. The simplest case of distance
coefficients is two species in two community samples. The smaller the distance, the
more similar the two communities are. When a distance coefficient is zero, com-
munities are identical. However, since the measures are distance coefficients
(although are not really distances), they can be visualized. This visualization feature
is intuitively appealing to the microbiome researchers. Measures of dissimilarity
include Euclidian distance, Manhattan, and Bray-Curtis measures.

The Euclidian distance can be measured by the following formula:

djk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Xij � Xik
� �2s

ð6:10Þ

where

djk Euclidean distance between samples j and k
Xij Number of individuals of species i in sample j
Xik Number of individuals of species i in sample k
n Total number of species in samples.

The Manhattan measure is one of the simplest metric functions. The formula of
Manhattan is given by:

dMðj; kÞ ¼
Xn
i¼1

Xij � Xik

�� �� ð6:11Þ
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where

dMðj; kÞ Manhattan distance between samples j and k
Xij, Xik Number of individuals in species i in each sample (j, k)
n Total number of species in samples.

The Bray-Curtis dissimilarity, named after J. Roger Bray and John T. Curtis
(Bray and Curtis 1957), is a statistic measure used to quantify the compositional
dissimilarity between two different samples, based on counts at each sample.
Bray-Curtis dissimilarity comes from Euclidean distance. As defined by Bray and
Curtis, the index of dissimilarity is given as follow.

BC ¼
Pn

i¼1 Xij � Xik

�� ��Pn
i¼1 Xij þXik

� � ð6:12Þ

where

BC Bray-Curtis measure of dissimilarity
Xij, Xik Number of individuals in species i in each sample (j, k)
n Total number of species in samples.

Bray-Curtis measure is the standardized Manhattan metric (Bray and Curtis
1957) so that it has a range from 0 (similar) to 1 (dissimilar). One feature of the
Bray-Curtis measure is that it ignores cases in which the species is absent in both
community samples, and it is dominated by the abundant species so that rare
species add very little to the value of the coefficient.

The best known index of beta diversity is based on the ratio of total number of
species in a collection of samples S and the average richness per one sample �a
(Tuomisto 2010):

b ¼ S=�a� 1 ð6:13Þ

Subtraction of one means that b ¼ 0 when there are no excess species or no
heterogeneity between samples.Aswe can see fromabove formula, S increaseswith the
number of samples even in the case that samples are all subsets of the same community.
This really causes problem in ecology and also in microbiome studies. Thus,Whittaker
suggested using pairwise comparison of samples to find the index (Whittaker 1960).
The new index called the Sørensen index of dissimilarity can be expressed as:

b ¼ aþ bþ c
ð2aþ bþ cÞ=2� 1 ¼ bþ c

2aþ bþ c
ð6:14Þ

where
a = Number of shared species in two samples
b and c = Numbers of species unique to each sample, respectively
�a ¼ ð2aþ bþ cÞ=2, the average richness per one sample
S = a + b + c

Bray-Curtis dissimilarity measure can be calculated using the vegdist() function
in vegan package as below.
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As seen above, all Bray-Curtis, Jaccard and Sørensen are in distance format
matrix, which only has values in the lower triangle of the matrix. After we obtain
beta diversity indices, we can conduct hypothesis testing and statistical analysis on
them. Typically these dissimilarity matrixes can be analyzed by a multivariate
technique and hypothesis testing using a multivariate analysis of variances, such as
nonparametric MANOVA, multi-response permutation procedure (MRPP) or
analysis of similarities (ANOSIM). We will cover these contents in Chaps. 7 and 9.

6.5 Summary

In this chapter, we introduced community diversities: alpha, beta and gamma
indices. The focus was given to the alpha and beta diversities and their calculations.
Microbiome study often starts with estimation of Chao 1 and Shannon diversities.
Beta diversity has been applied to two conceptual models: the change in species
richness over an ecological gradient (multiplicative model) (Whittaker 1972) and
simply to measure variation among samples within a study area (additive model)
(Anderson et al. 2011). Beta diversity can be seen as species turnover or as vari-
ation in species composition (Anderson et al. 2011). The two conceptual models
have been linked to two different definitions of beta diversity.

The calculations were illustrated using Vdr−/− mice data set. The readers can use
these methods and the associated R codes to analyze their own study. The mea-
surements of alpha and beta diversities are the bases of hypothesis testing of
microbiome community study.
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Chapter 7
Exploratory Analysis of Microbiome
Data and Beyond

We can divide methods of microbiome community composition study into two
major components: analysis of taxonomic diversities and multivariate analysis of
microbiome composition. The multivariate analysis includes various multivariate
techniques, such as clustering and (unconstrained and constrained) ordination and
hypothesis testing differences among groups. Although the unconstrained ordina-
tion involves post hoc hypothesis, it belongs to exploratory analysis per se. The
constrained ordination is a hypothesis testing. In this chapter, we will use various
graphical techniques to explore taxonomic diversities and use clustering and
ordination techniques to explore microbiome compositions. In Chap. 8, we will
present comparisons of taxa diversities. Chapter 9 will focus on hypothesis testing
of multivariate analysis of compositions.

7.1 Datasets from Mice and Human

7.1.1 Vdr−/− Mice Data Set

We will continue to use Vdr−/− mice data set, which was introduced in Chap. 6. The
murine intestinal microbiome data (Jin et al. 2015) were collected from fecal and
cecal stool samples. Here, the fecal samples are used.

7.1.2 Cigarette Smokers Data Set

The second data set is from Charlson et al. (2010) and Chen (2012), which includes
studies on the effect of smoking on the upper respiratory tract microbiome. The
original data set contains samples from both throat and nose microbiomes, and from
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both body sides. The data set used in this chapter is from the throat microbiome of
left body side. It contains 60 subjects (32 non-smokers and 28 smokers). The data
set includes three data: abundance count, tree, and meta-data. It is suitable to
illustrate tree plotting and constrained ordination analysis.

7.2 Exploratory Analysis with Graphic Summary

Microbiome data can be explored through various graphs. Here, we illustrate the
five commonly used plots: richness, abundance bar, heatmap, network and phylo-
genetic tree using above two data sets. The plots are generated by the phyloseq
package (McMurdie and Holmes 2013). The phyloseq package is a tool to import,
store, analyze, and graphically display complex phylogenetic sequencing data. The
input data used in this package can be OTUs or abundant count data. This package
uses advanced/flexible graphic systems (ggplot2) to easily produce publication-
quality graphics of data.

7.2.1 Plot Richness

The estimated alpha diversities can be summarized via a graph using the function
plot_richness() in the phyloseq package. Although its name suggests plotting
“richness,” which usually refers to plot the total number of species/taxa/OTUs in a
sample or environment, actually the function not only plots richness, also generates
figures of observed and other estimated diversities. First, we need load the phyloseq
and ggplot2 packages, and the Vdr−/− mice data set.

> library(phyloseq)

> library(ggplot2)

> abund_table=read.csv("VdrFecalGenusCounts.csv",row.names=1,

check.names=FALSE)

> abund_table<-t(abund_table)

The critical step when you use the phyloseq package is to build a phyloseq-class
object. The following chunk of R codes build a phyloseq class object called physeq
using the constructor phyloseq(). The phyloseq class object is built from its com-
ponent data: otu table, sample data, taxonomy table and phylo tree. As an
experiment-level object, two or more component data objects must be provided.
The order of arguments does not matter.

> meta_table <-

data.frame(row.names=rownames(abund_table),t(as.data.frame(strsplit

(rownames(abund_table),"_"))))
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> meta_table$Group <- with(meta_table,ifelse(as.factor(X2)%in%

c(11,12,13,14,15),c("Vdr-/-"), c("WT")))

> #Convert the data to phyloseq format

> OTU = otu_table(as.matrix(abund_table), taxa_are_rows = FALSE)

> SAM = sample_data(meta_table)

> physeq<-merge_phyloseq(phyloseq(OTU),SAM)

> physeq

phyloseq-class experiment-level object

otu_table() OTU Table: [ 248 taxa and 8 samples ]

sample_data() Sample Data: [ 8 samples by 4 sample variables ]

After build a physeq object, we can use the function plot_richness() through the
ggplot2 package to plot the observed and estimated alpha diversities.

> plot_richness(physeq, x = "Group", color = "Group")

The input data “physeq” is required, which is phyloseq-class, or alternatively, an
otu table-class. The optional argument “x” is a variable to map to the horizontal
axis; x can be either a character string or a vector. The default value is “samples”,
which will map each sample’s name to a separate horizontal position in the plot. In
this case, x = “Group” will map group membership to the x axis. The argument
color is also optional. It will specify the sample variable to map to different colors.
Like argument x, this can be a single character string or a vector.

In alpha diversity estimation, the noise can be trimmed; however since many
richness estimates and even the “observed” richness are highly dependent on the
number of singletons. Thus, if you want meaningful results, you must use
untrimmed datasets (McMurdie and Holmes 2013).

Figure 7.1 is generated by the above R codes.
You can also choose the alpha-diversity measures that you want to plot. For

example, the following R codes plot Chao1 and Shannon diversities only.

> plot_richness(physeq, measures = c("Chao1", "Shannon"),

x = "Group", color

= "Group")

7.2.2 Plot Abundance Bar

The phyloseq function plot_bar() is powerful and flexible. Its main purpose is to
quickly and easily create informative summary graphics of the differences in taxa
abundance between samples in an experiment (McMurdie and Holmes 2013). One
usage is given below:
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plot_bar(physeq, x=“Sample”, y=“Abundance”, fill=NULL, title=NULL,
facet_grid=NULL)

Both “x” and “y” arguments are optional and character strings. The variables in
the data will be mapped to the x-axis, and the y-axis, respectively. Typically “y”
argument will be ”Abundance” to quantitatively display the abundance values for
each OTU/group. Other two sophisticated and customized optional arguments are
“fill” and “facet_grid”. The “fill” option is a character string to specify which
sample variable will be used to map to the fill color of the bars. The “facet_grid”
option is a formula object to specify the faceting you want to be displayed in the
“ggplot2” graphics.

Let’s adjust the default theme first.

> theme_set(theme_bw())

The default barplot without any parameters being given will plot with every
sample individually mapped to the x-axis, and abundance values mapped to the y-
axis. The abundance values for each OTU/sample are stacked in the order from
greatest to least, separated by a thin horizontal line.

> plot_bar(physeq)

The following R codes are used to fill different colors for Vdr−/− and WT groups
to which each sample belongs.

> plot_bar(physeq, fill="Group")

Fig. 7.1 Alpha diversity measure plots with Vdr−/− and WT groups in fecal samples
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In Fig. 7.2, all abundance values are plotted, if you just want to know the top
five most abundant bacteria, then you can use following R code chunk (Fig. 7.3).

> TopNGenus <- names(sort(taxa_sums(physeq), TRUE)[1:5])

> Top5Genus <- prune_taxa(TopNGenus,physeq)

> plot_bar(Top5Genus, fill="Group", facet_grid=*Group)

So far, we illustrate “fill” and “facet_grid” options using variable group. Actually,
more informative way to visualize sample abundance difference between Vdr−/− and
WT groups is to use “Genus” to fill the color here, which need to include taxonomy
data in the phyloseq object. However, we do not have taxonomy data for this study.
The interested readers can use the below sample codes for their own study.

> plot_bar(Top5Genus, fill="Genus", facet_grid=*Group)

7.2.3 Plot Heatmap

Rajaram and Oono have shown how to create a heatmap to organize the rows and
columns using ordination methods instead of hierarchical cluster analysis (Rajaram

Fig. 7.2 Abundance bar plots with Vdr−/− and WT groups in fecal samples
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and Oono 2010). The ordination-based ordering is much better than hierarchical-
clustering to present microbiome data. There are many useful examples of phyloseq
heatmap graphics in the phyloseq online tutorials. The interested readers can ref-
erence these sample heatmaps to do their owns. Here, we focus on illustrating the
plot_heatmap() function based on the NMDS and PCA ordination methods.

One usage of plot_heatmap() function is given below.

plot_heatmap(physeq, method = “NMDS”, distance = “bray”, sample.label =
NULL, taxa.label = NULL, low = “#000033”, high = “#66CCFF”, na.value =
“black”)

The input data argument “physeq” is required. It is a phyloseq-class object
(otu_table). Both method and distance augments are optional. The ordination
method is to use for organizing the heatmap. The ecological distance method is a
character string for using in the ordination. Both “sample.label” and “taxa.label” are
character strings and optional to use to label the sample (horizontal) axis and re-label
the taxa/species/OTU (vertical) axis, respectively. Both low and high augments are
character strings and optional. They are used to choose color options support in R.
R understands over 600 colors. You can type colors() in R to check the names.

> colors()

Fig. 7.3 Abundance bar plots of top five most abundant bacteria with Vdr−/− and WT groups in
fecal samples
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You can also find a table summary of these colors at the R Cookbook (http://
www.cookbook-r.com/Graphs/Colors_(ggplot2)/).

In the heatmap, zero-values are treated as NA, and set to “black”, to represent a
background color. The low option is used to represent the lowest non-zero value,
and the default of low argument is a dark blue color, “#000033”; while the high
option is used to represent the highest value and the default is “#66CCFF”.

In the heatmap plot, too many taxa (in this case, genera) will make the figure be
too crowded to be seen clearly. We need to limit the number of taxa to be plotted.
The following R codes choose the top five most abundant genera to make a heatmap.

> TopNGenus <- names(sort(taxa_sums(physeq), TRUE)[1:5])

> Top5Genus <- prune_taxa(TopNGenus, physeq)

> plot_heatmap(Top5Genus)

The following R codes use NMDS ordination method and Bray-Curtis distance
method to plot the top five genera.

> (p <- plot_heatmap(Top5Genus, "NMDS", "bray"))

You can try different colors for heatmap to meet the journal requirements. The
following are some examples you can use.

> plot_heatmap(Top5Genus, "NMDS", "bray", low="#000033", high="#CCFF66")

> plot_heatmap(Top5Genus, "NMDS", "bray", low="#000033", high="#FF3300")

> plot_heatmap(Top5Genus, "NMDS", "bray", low="#000033", high="#66CCFF")

> plot_heatmap(Top5Genus, "NMDS", "bray", low="#66CCFF", high="#000033",

na.value="white")

You can also try to use different combinations of ecological distances and
ordinations. For example, the following heatmap uses PCoA ordination on the
default Bray-Curtis distance (Fig. 7.4).

> plot_heatmap(Top5Genus, "PCoA", "bray")

7.2.4 Plot Network

There are two functions in the phyloseq package to plot microbiome network using
“ggplot2”: plot_network() and plot_net(). If you use the function plot_network(),
then its first argument need to be an igraph object, and the network itself should be
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represented using the igraph package. The network object (argument g) can be
created using the make_network() function via phyloseq package. The function
plot_net() is a performance and interface revision to plot_network(), its first/main
argument is a phyloseq-class instance.

The example usages of plot_network() and plot_net() are given below:

plot_network(g, physeq=NULL, type=“samples”, color=“Group”, shape=
“Group”)
plot_net(physeq, distance = “bray”, type = “samples”, maxdist = 0.7, color =
NULL, shape = NULL)

In plot_network(), g is a required igraph-class object created either by the
function make_network(), or directly by the igraph-package. The optional argument
physeq is a phyloseq-class object on which g is based. Type option indicates
whether the network represented in the primary argument, g, is samples or taxa/
OTUs. Default is “samples”. Both options color and shape are optional. They are
used for color mapping and shape mapping of points.

The required argument physeq in plot_net() function is the phyloseq-class object
that you want to represent as a network. The distance option is a distance method or
an already-computed dist-class. Default is “bray”. The option maxdist means the
maximum distance value between two vertices to connect with an edge in the graph.
The default value is 0.7.

The following R codes create an igraph-based network based on the default
distance method, “Jaccard” and a maximum distance between connected nodes of

Fig. 7.4 Heatmap of top five most abundant bacteria with Vdr−/− and WT groups in fecal samples
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0.8. The “Group” is used to both color and shape mappings to visualize the
structure of Vdr−/− and WT mouse samples (Fig. 7.5).

> ig <- make_network(physeq, max.dist=0.8)

> plot_network(ig, physeq, color="Group", shape="Group")

The above graphic displays some interesting structure, with two subgraphs
comprising of the samples from Vdr−/− and WT mice respectively. Also, there
seems to be a correlation among samples.

Compared to the function plot_network(), the newer plot_net() function does not
require a separate make _network() function call, or a separate igraph object. The
following codes create a network based on a maximum distance between connected
nodes of 0.5. As we are interested in how the structure of Vdr−/− and WT mouse
samples, we use “Group” to color mapping and shape mapping of points (Fig. 7.6).

> plot_net(physeq, maxdist = 0.5, color = "Group", shape="Group")

7.2.5 Plot Phylogenetic Tree

The function plot_tree() in the phyloseq package is intended to facilitate easy
graphical investigation of the phylogenetic tree, as well as sample data. For phy-
logenetic sequencing of samples with large richness, the tree generated by this

Fig. 7.5 Network plot of Vdr−/− and WT groups in fecal samples by plot_network()
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function will be difficult to read and interpretable. A rough “rule of thumb” pro-
posed by the authors of phyloseq package is to use subsets of data with not more
than 200 OTUs per plot. One usage of this function is given below:

plot_tree(physeq, method = “sampledodge”, color = NULL, shape = NULL,
ladderize = FALSE)

The input data “physeq” is required. The data should be the phyloseq-class and
contain at minimum a phylogenetic tree component. It is this data that you want to
plot and annotate a phylogenetic tree. The “method” option is the name of the
annotation method to use. The default “sampledodge”will draw points next to leaves
if individuals from that taxon were observed, and a separate point for each sample.
Both “color” and “shape” arguments are optional. They provide the names of the
variable in physeq to map to point color, and map to point shape, respectively.

The option “ladderize” is used to specify whether or not to ladderize the tree, i.e.,
reorder nodes according to the depth of their enclosed subtrees prior to plotting.
Default is FALSE, no ladderization is applied. When TRUE or “right”, “right”
ladderization is used. When set to “left”, “left” ladderization is applied.

The smokers data set is used to illustrate plotting phylogenetic tree. The data are
from GUniFrac package (Charlson et al. 2010; Chen 2012). Let’s first load this
package and make the data available for use.

> library(GUniFrac)

> data(throat.otu.tab)

Fig. 7.6 Network plot of Vdr−/− and WT groups in fecal samples by plot_net()
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> data(throat.tree)

> data(throat.meta)

Then, we need to build phyloseq class object through phyloseq package as
below.

> library(phyloseq)

> #Convert the data to phyloseq format

> OTU = otu_table(as.matrix(throat.otu.tab), taxa_are_rows = FALSE)

> SAM = sample_data(throat.meta)

> TRE <-throat.tree

> physeq<-merge_phyloseq(phyloseq(OTU),SAM,TRE) )

Check how many taxa/OTUs in the data set.

> ntaxa(physeq)

[1] 856

There are 856 OTUs. They are too many to be used for annotation in a phy-
logenetic tree. The following prune_taxa() function prunes just the first 50 OTUs in
the data set. We use these first 50 OTUs to plot and annotate in a phylogenetic tree.

> physeq = prune_taxa(taxa_names(physeq)[1:50], physeq)

The following R codes map color to smoking status variable (Fig. 7.7).

> plot_tree(physeq, ladderize = "left", color = "SmokingStatus")

The following R codes map both color and shape to smoking status variable
(Fig. 7.8).

> plot_tree(physeq, ladderize = "left", color = "SmokingStatus",shape =

"SmokingStatus")

Above tree is vertically-oriented tree. It is a Cartesian mapping of the data to a
graph. In the literature, a radial tree is frequently used. We can also use the same
mapping as in vertically-oriented tree to make a radial tree with ggplot2.
The difference is that this time the mapping is with polar coordinates instead
(Fig. 7.9).

> plot_tree(physeq,color = "SmokingStatus",

shape = "SmokingStatus", ladderize = "left") + coord_polar(theta = "y")
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7.3 Clustering

7.3.1 Introduction to Clustering, Distance and Ordination

Clustering (or classification) and ordination are the two main classes of multivariate
methods that microbiome researchers and community ecologists often employ. To
certain degree, these two approaches are complementary. The objective of clus-
tering is to put samples into (perhaps hierarchical) classes to reduce complexity
(dimensionalities) of data; it may reduce all samples on one dimension (x-axis).
However, the data with two or three dimensions are more interpretable than that
with one dimension because most community data are continuous. With ordination,
community data can be reduced to two or three dimensions. Thus, ordination is
usually desired by microbiome researchers and community ecologists. Many
multivariate methods have been developed based on ordination in the microbiome
and ecology study. When you are doing clustering and ordination, a distance
measure need to be provided by a distance method.

Fig. 7.7 Phylogenetic tree with smoking status (non-smoker and smoker) mapped to the tree
using different colors
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Fig. 7.8 Phylogenetic tree with smoking status (non-smoker and smoker) mapped to the tree
using different colors and shapes

Fig. 7.9 A radial tree with smoking status (non-smoker and smoker) mapped to the tree using
different colors and shapes
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7.3.2 Clustering

There are several families of clustering methods available in the literature
(Legendre and Legendre 2012): sequential or simultaneous algorithms, agglomer-
ative or divisive, monothetic versus polythetic, hierarchical versus non-hierarchical
methods, probabilistic versus non-probabilistic methods. Among these categories,
Ward’s hierarchical clustering and k-means partitioning methods are commonly
used in microbiome studies. Hierarchical clustering results are generally repre-
sented as dendrograms. We will illustrate several different clustering methods
including “single linkage agglomerative clustering”, “complete linkage agglomer-
ative clustering”, “average linkage agglomerative clustering”, and “Ward’s mini-
mum variance clustering”. The Vdr−/− mouse dataset with fecal samples that you
met earlier will be used to illustrate clustering analysis. Here, Bray-Curtis distance
is to be used to illustrate classification of samples. Other distances are also applied.
If vegan package is not loaded, loading it now.

Let’s first normalize the abundance table using the function decostand() and
calculate the Bray-Curtis dissimilarities between all pairs of samples using the
function vegdist() in vegan package.

> abund_table_norm <- decostand(abund_table, "normalize")

> bc_dist<- vegdist(abund_table_norm , method = "bray")

Given Bray-Curtis dissimilarities having been calculated, we now apply the
hierarchical clustering function hclust() with four different clustering algorithms
—“average”, “complete”, “single” linkage methods, and Ward’s clustering method.

7.3.2.1 Single Linkage Agglomerative Clustering

“Agglomerate” means gathered into a cluster; single-linkage agglomerative clus-
tering is also called nearest neighbor sorting. At each step, the clustering combines
two samples that contain the shortest pairwise distances (or greatest similarity). The
result of the clustering can be visualized as a dendrogram. The drawback of the
dendrogram resulting a single linkage clustering often shows chaining of samples.
The formed clusters are forced together due to single elements being close to each
other, whereas many elements in each cluster maybe very distant to each other.
Another relevant drawback of single-linkage clustering is that it could be difficult to
interpret in terms of partitions of the data. It is a real disadvantage of single linkage
clustering, because we are interested in the data partitions (Fig. 7.10).

> cluster_single <- hclust (bc_dist, method = 'single')

> plot(cluster_single)
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7.3.2.2 Complete Linkage Agglomerative Clustering

Complete-linkage clustering is also known as farthest neighbor clustering. It allows
a sample (or a group) to agglomerate with another sample (or group) only at the
distance that is farthest away from each other. Thus, all members of both groups are
linked. Complete linkage clustering avoids the drawback of chaining samples by
the single linkage method. Complete linkage tends to find many small separate
groups (Fig. 7.11).

> cluster_complete <- hclust (bc_dist, method = 'complete')

> plot(cluster_complete)

7.3.2.3 Average Linkage Agglomerative Clustering

Average linkage clustering allows a sample to be grouped to a cluster at the mean of
the distances between this sample and all members of the cluster. The two clusters
are joined at the mean of the distances between all members of one cluster and all
members of the other. The cluster resulting the dendrogram looks somewhat
intermediate between a single and complete linkage clustering (Fig. 7.12).

> cluster_average <- hclust (bc_dist, method = 'average')

> plot(cluster_average)
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7.3.2.4 Ward’s Minimum Variance Clustering

Ward’s minimum variance clustering (a.k.a., Ward’s clustering) originally pre-
sented by Ward (1963) is based on the linear model criterion of least squares. This
method minimizes within-cluster sums of squared (i.e., the squared error of
ANOVA) distances between samples. Basically, it looks at cluster analysis as an
analysis of variance problem, instead of using distance metrics or measures of
association. This method is most appropriate for quantitative variables, and not
binary variables. Ward’s clustering is implemented through finding the pair of
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Fig. 7.12 Average linkage agglomerative clustering dendrogram of Bray-Curtis dissimilarity
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clusters at each step that leads to minimum increase in total within-cluster variance
after merging. This increase is a weighted squared distance between cluster centers.
Although the initial cluster distances are defined to be the squared Euclidean dis-
tance between points in Ward’s clustering, other distance methods can produce
meaningful results too (Fig. 7.13).

> cluster_ward <- hclust (bc_dist, method = 'ward.D2')

> plot(cluster_ward)

To draw the results together into one diagram using par (mfrow = c(2,2)) to
create one graph with two rows with two panels.

> par (mfrow = c(2,2))

> plot(cluster_single)

> plot(cluster_complete)

> plot(cluster_average)

> plot(cluster_ward)

Restore the default window panel.

> par (mfrow = c(1,1))

The comparison among these four dedrograms shows that complete linkage and
Ward’s clustering generated the same partitioning clusters and have the better per-
formance in terms of partitioning data in the direction of our interest (samples 11, 12,
13, 14, and 15 are from Vdr−/− mice, and 22, 23, and 24 from wild-type mice).
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Fig. 7.13 Ward’s clustering dendrogram of Bray-Curtis dissimilarity
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7.4 Ordination

The primary goal of ordination was considered “exploratory” (Gauch 1982a, b),
with the introduction of canonical correspondence analysis (CCA), ordination has
gone beyond mere “exploratory” analysis (ter Braak 1985) and become hypothesis
testing as well.

The data structure of two variables typically is revealed by a scatterplot of the
samples. As we presented in Chap. 2, the multivariate microbiome data are multi-
dimensional, generally have more than two variables. The microbiome dataset can
be viewed as a collection of samples (subjects) positioned in a space where each
variable or species (or OTUs/taxa) define one dimension. Thus, there are as many
dimensions as variables or species (or OTUs/taxa). For example, in our Vdr−/−

mouse fecal data set, there are 8 samples and 248 genera. Thus, the data dimension is
248. For a dataset with n variables, the number of scatterplots need to be drawn
would be n (n − 1)/2. In our case, the 248 genera will need (248 � 247)/2 = 30,628
scatterplots. Such large number of scatterplots is not informative to know the data
structure; it is also tedious to work on.

Ordination primarily endeavors to represent sample and species (or OTUs/taxa)
relationships as faithfully as possible in a low-dimensional space (Gauch 1982a, b).
This objective is desirable, because community data are multiple dimensions mixed
with noise, low dimensions may ideally and typically represent important and
intuitive interpretations of species (or OTUs/taxa)—environment relationships.

For a n � p dataset containing n subjects and p variables, the data structure can
be reviewed as n subjects (represented as a cluster of points) in the p-dimensional
space. The primary aim of ordination is to represent multiple samples (subjects) in a
reduced number of orthogonal (i.e., independent) axes, where the total number of
axes is less than or equal to the number of samples (subjects). The importance of
ordination axes decreases by order. The first axis of an ordination explains the most
variation in the dataset, followed by the second axis, then the third, and so on.

The ordination plots are particularly useful for visualizing the similarity among
samples (subjects). For example, in the context of beta diversity, samples that are
closer in ordination space have species assemblages that are more similar to one
another than samples that are further apart in ordination space.

Ordination methods include constrained and unconstrained ordinations,
depending on whether the ordination axes are constrained by environmental factors
(variables). As the names suggest, in constrained ordination, ordination axes are
constrained by environmental factors: the positions of the samples in the ordination
are constrained by the environmental variables. In unconstrained ordination, ordi-
nation axes are not constrained by environmental factors. In other words, con-
strained ordination directly uses environmental variables in the construction of the
ordination; whereas in unconstrained ordination, the environmental variables are
entered in post hoc analyses.

For the perspective of hypothesis testing, unconstrained ordination analysis
per se is primarily descriptive method and not really involves hypotheses testing in
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multivariate data. Although it involves hypothesis about the explanation of axes
using environmental variables, such as using the function envfit() in vegan package,
unconstrained ordination is simple. It analyzes one data matrix; its objective is to
reveal the major data structure in a graph from a reduced set of orthogonal axes. In
contrast, constrained ordination is a “hypothesis driven” ordination: a hypothesis
testing method, which directly tests the hypothesis about the influence of envi-
ronmental factors on species (or OTUs/taxa) composition.

The constrained ordination is related to multivariate linear models as this way:
with “dependent” (or the community) variables in left side as responses, “inden-
pendent” variables (or constraints) in right side as explained factors. Thus, the
constrained ordination is non-symmetric.

Here, we cover the most common unconstrained ordinations: principal compo-
nent analysis (PCA) in Sect. 7.4.1; principal coordinate analysis (PCoA) in
Sect. 7.4.2; non-metric multidimensional scaling (NMDS) in Sect. 7.4.3; corre-
spondence analysis (CA) in Sect. 7.4.4; and constrained ordinations: redundancy
analysis (RDA) in Sect. 7.4.5; constrained correspondence analysis (CCA) in
Sect. 7.4.6; constrained analysis of principal coordinates (CAP) in Sect. 7.4.7.

7.4.1 Principal Component Analysis (PCA)

In term of the vegan package, the environmental variable in our case is genetic
conditions (Vdr−/− and WT). We want to know whether the vdr gene deficiency
interprets beta diversity in genus composition. We conduct a PCA to explore
whether the changes in genus composition of communities (beta diversities) are
caused by the genetic factor.

With PCA, the samples are plotted based on abundances of genus A on axis 1,
genus B on axis 2, genus C on axis 3, and so on until n samples are plotted in a very
high dimensional space. The n samples create (n − 1) number of PCs: PC1 is the
first straight line going through the space created by all these samples, PC2 is the
second line, perpendicular to PC1, and so the third PC3, until PC(n − 1). The
importance of PCs decreases by order. PC1 is the most important PC and explains
the most variations among all samples. PC2 explains second most variations, and
PC3 explains the third most, and so on the (n – 1) PC explains lest variations of the
samples.

Several R functions including prcomp() in preinstalled stats package, rda() in
vegan package, pca() in labdsv package can be used to conduct PCA. Here, we use
the function rda(). The two extensional functions: evplot() (Borcard et al. 2011) and
PCAsignificance() in BiodiversityR package can improve the plots. The evplot()
provides visual methods to decide the importance of ordination axes through using
Keiser-Guttman criterion and broken stick model. The function PCAsignificance()
calculates broken-stick model for PCA axes.
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When use the function rda() to conduct PCA, by not specifying the environ-
mental data matrix (i.e., group variable), the function performs unconstrained
ordination PCA.

In microbiome data analysis, the absolute abundance counts are not appropriate
because the large values will have too high influence in the analysis. Thus, we need
to standardize the abundance read data before analysis. Here, we use the function
decostand() with total method to standardize read.

> stand_abund_table <- decostand(abund_table, method = "total")
> PCA <-rda(stand_abund_table)
> PCA
Call: rda(X = stand_abund_table)

Inertia Rank
Total          0.0408     
Unconstrained  0.0408    7
Inertia is variance 

Eigenvalues for unconstrained axes:
PC1     PC2     PC3     PC4     PC5     PC6     PC7 

0.02029 0.01279 0.00371 0.00173 0.00143 0.00077 0.00010 

In vegan’s language, “Inertia” is the general term of “variation” in the data. Total
variation of the whole dataset is 0.0408 in this case, and the first axis explains 60.4%
of total variation (0.02029/0.0408 = 0.4973). Total variation is a sum of variations
of each genus in analyzed matrix. The following R codes check the total variance:

> sum (apply (stand_abund_table, 2, var))

[1] 0.04082

Then, let’s draw the diagrams using the function biplot(). The display option
“species” is the vegan package label for OTUs/taxa. Default is “sites” (label for
samples) (Fig. 7.14).

> biplot(PCA, display = 'species')

The above diagrams plotted by biplot() is just drawing arrows for genus, which
is not informative. The more informative plot is to use function ordiplot() to draw
both genus and sample scores as centroids as below (Fig. 7.15):

> ordiplot(PCA, display = "sites", type = "text")

In above augments, type=“text” or “t” added text labels to figure (default setting
adds only points).

As an alternative, we can use function cleanplot.pca() written by François Gillet
& Daniel Borcard to intend the drawing PCA results to two diagrams and differing
by scaling. This function is to draw two biplots (scaling 1 and scaling 2) from an
object of class “rda” in PCA or RDA result from vegan’s rda() function. This
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function is provided in Borcard et al’s book “Numerical Ecology with R” (Borcard
et al. 2011). We run the function cleanplot.pca() first as below.

"cleanplot.pca" <- function(res.pca, ax1=1, ax2=2, point=FALSE,

ahead=0.07, cex=0.7)

{

# A function to draw two biplots (scaling 1 and scaling 2) from an object

# of class "rda" (PCA or RDA result from vegan's rda() function)

#

# License: GPL-2

# Authors: Francois Gillet & Daniel Borcard, 24 August 2012
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Fig. 7.14 Biplot of two principal components of Vdr−/− mouse fecal data
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Fig. 7.15 Ordiplot of two principal components of Vdr−/− mouse fecal data with samples labeled
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require("vegan")

par(mfrow=c(1,2))

p <- length(res.pca$CA$eig)

# Scaling 1: "species" scores scaled to relative eigenvalues

sit.sc1 <- scores(res.pca, display="wa", scaling=1, choices=c(1:p))

spe.sc1 <- scores(res.pca, display="sp", scaling=1, choices=c(1:p))

plot(res.pca, choices=c(ax1, ax2), display=c("wa", "sp"), type="n",

main="PCA - scaling 1", scaling=1)

if (point)

{

points(sit.sc1[,ax1], sit.sc1[,ax2], pch=20)

text(res.pca, display="wa", choices=c(ax1, ax2), cex=cex,

pos=3, scaling=1)

}

else

{

text(res.pca, display="wa", choices=c(ax1, ax2), cex=cex,

scaling=1)

}

text(res.pca, display="sp", choices=c(ax1, ax2), cex=cex, pos=4,

col="red", scaling=1)

arrows(0, 0, spe.sc1[,ax1], spe.sc1[,ax2], length=ahead, angle=20,

col="red")

pcacircle(res.pca)

# Scaling 2: site scores scaled to relative eigenvalues

sit.sc2 <- scores(res.pca, display="wa", choices=c(1:p))

spe.sc2 <- scores(res.pca, display="sp", choices=c(1:p))

plot(res.pca, choices=c(ax1,ax2), display=c("wa","sp"), type="n",

main="PCA - scaling 2")

if (point) {

points(sit.sc2[,ax1], sit.sc2[,ax2], pch=20)

text(res.pca, display="wa", choices=c(ax1 ,ax2), cex=cex, pos=3)

}

else

{

text(res.pca, display="wa", choices=c(ax1, ax2), cex=cex)

}

text(res.pca, display="sp", choices=c(ax1, ax2), cex=cex, pos=4,

col="red")

arrows(0, 0, spe.sc2[,ax1], spe.sc2[,ax2], length=ahead,

angle=20, col="red")

}
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"pcacircle" <- function (pca)

{

# Draws a circle of equilibrium contribution on a PCA plot

# generated from a vegan analysis.

# vegan uses special constants for its outputs, hence

# the 'const' valuebelow.

eigenv <- pca$CA$eig

p <- length(eigenv)

n <- nrow(pca$CA$u)

tot <- sum(eigenv)

const <- ((n - 1) * tot)^0.25

radius <- (2/p)^0.5

radius <- radius * const

symbols(0, 0, circles=radius, inches=FALSE, add=TRUE, fg=2)

}

Then call PCA as follows (Fig. 7.16).

> cleanplot.pca (PCA)

“Scaling” is the way that the ordination results are projected in the reduced space
for graphical display (Borcard et al. 2011). The function cleanplot.pca() generates
two PCA scalings.

PCA-scaling 1 in the left figure is distance biplot, which focuses on distances
among samples. If you’re mainly interested to interpret the relationships among
samples, choose Scaling 1. The essential features of Scaling 1 are:

The eigenvectors are scaled to unit length and the distances among samples
(subjects) in the biplot are approximations of their Euclidean distances in

Fig. 7.16 PCA Plots of two principal components of Vdr−/− mouse fecal data using function
cleanplot.pca()
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multidimensional space. However, the angles among variables (bacteria in this
case) vectors are meaningless. The circle is called circle of equilibrium contribution,
representing the equilibrium contribution of the variables. For given combination of
axes, the variables with vectors longer than the radius of the circle could be
interpreted with confidence as most important bacteria, whereas the variables have
vectors shorter than the radius of the equilibrium contribution circle contribute little
to a given reduced space.

PCA-scaling 2 in the right figure is correlation biplot. It plots the correlation
among variables (bacteria in this case). If your main interest focuses on the rela-
tionships among variables, choose scaling 2. The essential features of Scaling 2 are:

Each eigenvectors is scaled to the square root of its eigenvalue; the length of
vector approximates standard deviation of variables (bacteria); the angles between
variables (bacteria in this case) reflect their correlations: the cosine of angle
approximates correlation between variables (bacteria); however, the distances
among samples (subjects) in the biplot are not approximations of their Euclidean
distances in multidimensional space.

7.4.2 Principal Coordinate Analysis (PCoA)

PCoA is also referred to metric multidimensional scaling. PCoA is a flexible
ordination technique that allows the user to choose virtually any distance metric
(e.g., Jaccard, Bray-Curtis, Euclidean, etc.). As PCA, PCoA uses eigenvalues to
measure the importance of a set of returned orthogonal axes. The dimensionality of
matrix is reduced by determining each eigenvector and eigenvalue. The principal
coordinates are obtained by scaling each eigenvector. PCoA when calculated on
Euclidean distances among samples yields the same results as PCA calculated on
covariance matrix of the same dataset (if scaling 1 is used).

The R functions, including cmdscale() in vegan package and pcoa() in ape
package, can perform PCoA. With vegan, the input data could be calculated by the
function vegdist() (default is Bray-Curtis dissimilarity), and the ordination diagram
could be drawn with the function ordiplot(). The ordination diagram could be also
drawn with the function biplot.pcoa() from ape package. In this case, we use the
cmdscale() function and same Vdr−/− mice fecal data to conduct a PCoA. This
function needs a resemblance matrix as the input data.

First, let’s calculate Bray-Curtis dissimilarity using the function vegdist() and
name it as
> bc_dist <-vegdist(abund_table, "bray")

Then, we are going to explicitly set k = 2 (the default values for the number of
dimensions to return) and eig = TRUE (which saves the eigenvalues).
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> PCoA <- cmdscale (bc_dist, eig = TRUE,k = 2)
> PCoA
$points

[,1]      [,2]
5_15_drySt-28F  0.35060  0.007035
1_11_drySt-28F -0.17119  0.137244
2_12_drySt-28F  0.02928  0.115931
3_13_drySt-28F -0.17013  0.126964
4_14_drySt-28F  0.27190  0.088394
7_22_drySt-28F  0.13943 -0.258936
8_23_drySt-28F -0.25091 -0.157891
9_24_drySt-28F -0.19898 -0.058740

$eig
[1]  3.779e-01  1.517e-01 1.170e-01  8.855e-02  2.771e-02
[6]  2.167e-02 -2.515e-17 -4.493e-03

$x
NULL

$ac
[1] 0

$GOF
[1] 0.6713 0.6751

The cmdscale() function produces a list of output. The first output points contain
the coordinates for each sample in each reduced dimension. The second output eig
contains the eigenvalues. The last three outputs pertain to other options of the
analysis that we will not cover here. The following chunk of R codes is used to
examine the percent variation in the data set that is explained by the first two axes
of the PCoA.

> explainedvar1 <- round(PCoA$eig[1] / sum(PCoA$eig), 2) * 100

> explainedvar1

[1] 48

> explainedvar2 <- round(PCoA$eig[2] / sum(PCoA$eig), 2) * 100

> explainedvar2

[1]19

> sum_eig <- sum(explainedvar1, explainedvar2)

> sum_eig

[1] 67

First axis explains 48% variations of the data, the second axis 19%. Thus, a large
amount of variations of the data (total 67%) has been explained by these two axes.

There are two criteria to assess whether or not the first few PCoA axes capture a
disproportionately large amount of the total explained variation: (1) Kaiser-
Guttman criterion and (2) broken-stick model. Kaiser-Guttman criterion states that
“the eigenvalues associated with the first few axes should be larger than the average
of all the eigenvalues.” By the criterion of broken-stick model, the eigenvalues
associated with the first few axes are compared to the expectations of the
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broken-stick model. The broken stick model assumes that the total sum of eigen-
values decreases sequentially with ordered PCoA axes. We evaluate the perfor-
mance of PCoA using these two criteria with the following plots:

> # Define Plot Parameters

> par(mar = c(5, 5, 1, 2) + 0.1)

> # Plot Eigenvalues

> plot(PCoA$eig, xlab = "PCoA", ylab = "Eigenvalue",

+ las = 1, cex.lab = 1.5, pch = 16)

> # Add Expectation based on Kaiser-Guttman criterion and Broken Stick

Model

> abline(h = mean(PCoA$eig), lty = 2, lwd = 2, col = "blue")

> b_stick <- bstick(8, sum(PCoA$eig))

> lines(1:8, b_stick, type = "l", lty = 4, lwd = 2, col = "red")

> # Add Legend

> legend(“topright", legend = c("Avg Eigenvalue", "Broken-Stick"),

+ lty = c(2, 4), bty = "n", col = c("blue", "red"))

Figure 7.17 shows that the eigenvalues associated with the first three axes are
larger than the average of all the eigenvalues and are larger than the expectations of
the Broken-Stick model. After evaluating the PCoA output, next we will create an
ordination plot for the two PCoA axes (Fig. 7.18).

> # Define Plot Parameters

> par(mar = c(5, 5, 1, 2) + 0.1)
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Fig. 7.17 PCoA with Kaiser-Guttman criterion and broken-stick model in Vdr−/− mouse fecal
data
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> # Initiate Plot

> plot(PCoA$points[ ,1], PCoA$points[ ,2], ylim = c(-0.5, 0.5),

+ xlab = paste("PCoA 1 (", explainedvar1, "%)", sep = ""),

+ ylab = paste("PCoA 2 (", explainedvar2, "%)", sep = ""),

+ pch = 5, cex = 1.0, type = "n", cex.lab = 1.0, cex.axis = 1.2,

axes = FALSE)

> # Add Axes

> axis(side = 1, labels = T, lwd.ticks = 2, cex.axis = 1.2, las = 1)

> axis(side = 2, labels = T, lwd.ticks = 2, cex.axis = 1.2, las = 1)

> abline(h = 0, v = 0, lty = 3)

> box(lwd = 2)

> # Add Points & Labels

> points(PCoA$points[ ,1], PCoA$points[ ,2],

+ pch = 19, cex = 3, bg = "blue", col = "blue")

> text(PCoA$points[ ,1], PCoA$points[ ,2],

+ labels = row.names(PCoA$points))

Basic ordination plots allow us to see how samples separate from one another. In
our example, samples are separating along the PCoA axes owing to variation in the
abundance of different mice genera. A logical follow-up question is to ask what
genera of the data set are driving the observed divergence among points. Can we
identify and visualize these influential genera in PCoA? We can obtain this
information using the add.spec.scores() function in the BiodiversityR package.
Frist, the relative abundance is calculated as follows:
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Fig. 7.18 Ordination plot for the two PCoA axes in Vdr−/− mouse fecal data
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> fecalREL <- abund_table

> for(i in 1:nrow(abund_table)){

+ fecalREL[i, ] = abund_table[i, ] / sum(abund_table[i, ])

+ }

Then the genera scores are calculated and added to the figure (Fig. 7.19).

> require("BiodiversityR")

> PCoA <- add.spec.scores(PCoA,fecalREL,method = "pcoa.scores")

> text(PCoA$cproj[ ,1], PCoA $cproj[ ,2],

+ labels = row.names(PCoA$cproj), col = "black")

The add.spec.scores() function can also be used to determine the correlation of
each toxon along the PCoA axes. This is a more effectively quantitative approach of
identifying influential taxa.

> Genus_corr <- add.spec.scores(PCoA, cecalREL, method = "cor.scores")

$cproj

To identify and pull out the important taxa, we need to define a
correlation-coefficient cutoff value, such as 0.70. Then print out the taxa with the
correlation-coefficient greater than 0.70 from either dimension.

Fig. 7.19 Ordination plot for the two PCoA axes with influential genera in Vdr−/− mouse fecal
data
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> corrcut <- 0.7

> genus_corr <- add.spec.scores(PCoA, fecalREL, method = "cor.scores")

$cproj

> import_genus <- genus_corr[abs(genus_corr[, 1]) >= corrcut |

abs(genus_corr[, 2]) >= corrcut, ]

The 12 important genera with correlation greater or equal 0.7 along the PCoA
axes are printed as below:

> import_genus[complete.cases(import_genus),]
Dim1     Dim2

Tannerella            0.82046  0.16847
Lactobacillus        -0.30640 -0.86651
Helicobacter          0.74876  0.11758
Paraprevotella        0.74631 -0.08582
Bacillus              0.19803 -0.77265
Pedobacter           -0.24607  0.87028
Limibacter           -0.08244  0.70361
Mycoplasma            0.72268  0.22945
Slackia               0.09773 -0.75775
Fluviicola            0.24247 -0.71075
Caldicellulosiruptor  0.24247 -0.71075
Anaerophaga           0.24247 -0.71075

Finally, we use the envfit() function from the vegan package to conduct a
permutation test for general abundances across axes on these correlations.

> envfit(PCoA, fecalREL, perm = 999)

The partial output is given below:

Dim1     Dim2   r2      Pr(>r)  
Tannerella               0.951  0.308    0.70  0.044 *
Lactobacillus           -0.219 -0.976    0.84  0.013 *
Parasutterella          -0.754 -0.657    0.63  0.031 * 
Porphyromonas            0.359 -0.933    0.56  0.072 .
Bacillus                 0.160 -0.987    0.64  0.056 .
Pedobacter              -0.176  0.984    0.82  0.015 *
Slackia                  0.081 -0.997    0.58  0.085 .
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Permutation: free
Number of permutations: 999

The genera with q-value less than 0.05 are displayed with plot below (Fig. 7.20):

> fit <- envfit(PCoA, fecalREL, perm = 999)

> plot(fit, p.max = 0.05, col = "red")
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7.4.3 Non-metric Multidimensional Scaling (NMDS)

NMDS is the non-metric alternative to PCoA analysis. NMDS has been recognized
as a good ordination method because it uses ecologically meaningful ways to
measure community dissimilarities and any distance (dissimilarities) measure
among samples as input. Thus, it is the recommended method in community
ordination. The main focus of NMDS analysis is to project the relative position of
sample points into low dimensional ordination space (two or three axes).

The function metaMDS() in vegan package performs NMDS analysis. To sim-
plify, the algorithm of NMDS analysis is summarized as below:

First, it uses the function vegdist() to get adequate dissimilarity measures; then it
runs NMDS several times with random starting configurations and compares the
results via the function procrustes(), and stops after finding twice a similar mini-
mum stress solution. Finally, it scales and rotates the solution, and adds species (or
OTUs/taxa) scores to the configuration as weighted averages using the function
wascores(). After the algorithm is finished, the final solution is rotated using PCA to
ease its interpretation.

In this case, we use vegan package and same Vdr−/− mice fecal data to illustrate
NMDS analysis.

First, we use function vegdist() to get the Bray-Curtis dissimilarity measures (the
default method) using the default setting of metaMDS() function. It automatically
transforms data and checks solution robustness. Wisconsin double standardization
and sqrt transformation were combinedly used in the metaMDS() function call. The
function call produces stress value of 7.57%.

Fig. 7.20 Ordination plot for the two PCoA axes of influential genera with p-value < 0.05 in
Vdr−/− mouse fecal data
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> bc_nmds <- metaMDS(abund_table, dist = "bray")

Square root transformation

Wisconsin double standardization

Run 0 stress 0.07574

Run 1 stress 0.1562

Run 2 stress 0.1284

Run 3 stress 0.1801

Run 4 stress 0.1284

Run 5 stress 0.1562

Run 6 stress 0.1678

Run 7 stress 0.1393

Run 8 stress 0.1562

Run 9 stress 0.1284

Run 10 stress 0.1393

Run 11 stress 0.1192

Run 12 stress 0.1764

Run 13 stress 0.1192

Run 14 stress 0.1551

Run 15 stress 0.1562

Run 16 stress 0.1562

Run 17 stress 0.07574

… Procrustes: rmse 1.314e-06 max resid 2.644e-06

… Similar to previous best

Run 18 stress 0.1284

Run 19 stress 0.1899

Run 20 stress 0.07574

… Procrustes: rmse 1.503e-06 max resid 2.229e-06

… Similar to previous best

*** Solution reached

> bc_nmds

Call:

metaMDS(comm = abund_table, distance = "bray")

global Multidimensional Scaling using monoMDS

Data: wisconsin(sqrt(abund_table))

Distance: bray

Dimensions: 2

Stress: 0.07574

Stress type 1, weak ties

Two convergent solutions found after 20 tries

Scaling: centring, PC rotation, halfchange scaling

Species: expanded scores based on 'wisconsin(sqrt(abund_table))'
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Second, we use function ordiplot() to draw the results of NMDS. The default
setting adds only points to the figure, we use the type = ‘t’ or type = ‘text’ to add
text labels in this figure (Fig. 7.21).

> ordiplot (bc_nmds, type = 't')

To plot site (sample) scores as text (Fig. 7.22):

> ordiplot(bc_nmds, display = "sites", type = "text")

Finally, the function stressplot() is used to draw the Shepards stress plot. The
function stressplot() generates two figures: one plots ordination distances versus
observed dissimilarity (the chosen community dissimilarities), along with a
monotone step line to show the fit; another plots goodness of fit to assess goodness
of ordination of NMDS2 versus NMDS1 of particular samples. The following R
codes are used to divide plotting window into two panels:

> par (mfrow = c(1,2))

The function plot() draws NMDS ordination diagram with sites (samples):

Fig. 7.21 Ordiplot of two NMDS axes with text labels in Vdr−/− mouse fecal data
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> stressplot (bc_nmds)

> plot (bc_nmds, display = 'sites', type = 't', main = 'Goodness of fit')

The function points() adds the points with size reflecting goodness of fit (big-
ger = worse fit) (Fig. 7.23).

> points (bc_nmds, display = 'sites', cex = goodness (bc_nmds)*300))

The stressplot shows the relationship between real distances between samples in
resulting m dimensional ordination solution, and their particular compositional
dissimilarities expressed by selected Bray-Curtis dissimilarity measure. There are
two correlation-like statistics of goodness of fit; the correlation based on stress:
R2 = 1 − S2 (non-metric fit = 0.994) and the correlation between the fitted values
and ordination distances, or between the step line and the points: “fit-based R2”
(linear fit = 0.956).

7.4.4 Correspondence Analysis (CA)

CA is another unconstrained ordination method. It uses chi-square distances among
samples in the multidimensional space of all ordination axes and gives high weight
to rare species (e.g., low occurrence species with many zeros). The same as PCA and
PCoA, CA uses eigenvalues to measure the importance of returned orthogonal axes.
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Fig. 7.22 Ordiplot of two NMDS axes with sample labels in Vdr−/− mouse fecal data
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In PCA ordination diagram, taxa are vectors and samples are points, whereas in
CA, taxa and samples are represented by points. Similar to PCA, CA has two types
of scalings: Scalings 1 and 2. In the reduced ordination space, the distances among
samples (Scaling 1) approximate their chi-square distance. For example, any sample
near the point representing a taxon likely contains a high contribution to that taxon.

The distances among taxa (Scaling 2) also approximate their chi-square dis-
tances. For example, any taxon close to the point representing a sample more likely
has higher frequency in that sample.

The function cca() in vegan package can be used to perform unconstrained
correspondence analysis. We use function cca() to conduct CCA and function
evplot() to select important ordination axes based on Kaiser-Guttman criterion or
broken stick model. The function evplot(), written by Borcard et al. (2011), is used
here to plot eigenvalues and percentages of variation of an ordination object.

When the function cca() (cca = canonical compoent analysis) is used to perform
unconstrained CA, do not specify the environmental matrix or grouping information.

> fecal_genus_cca=cca(abund_table)
> fecal_genus_cca
Call: cca(X = abund_table)

Inertia Rank
Total           0.502     
Unconstrained   0.502    7
Inertia is mean squared contingency coefficient 
122 species (variables) deleted due to missingness

Eigenvalues for unconstrained axes:
CA1    CA2    CA3    CA4    CA5    CA6    CA7 

0.2036 0.1256 0.0747 0.0374 0.0322 0.0200 0.0090 

Fig. 7.23 Shepards stress plot and goodness of fit in Vdr−/− mouse fecal data
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The total heterogeneity of the data (inertia) is 0.502, and the first axis captures
40.56% of total variation in genus composition (0.2036/0.502 = 0.4056, where
0.2036 is eigenvalue of the first axis CA1, and 0.502 is the total heterogeneity of the
data).

The following R codes are used to plot the ordination and display the sample
names in the figure (Fig. 7.24):

> plot(fecal_genus_cca, display="sites")

If you don’t want the graph to be overcrowded, use the following R codes to just
show points instead of sample names in the figure:

> plot(fecal_genus_cca, display="sites", type="p")

The following ordination diagram reveals the pattern of samples and genera in
ordination diagram (Fig. 7.25):

> ordiplot (fecal_genus_cca)

The following post CA analysis using the function evplot() is to illustrate how to
decide which CA axis should be used for interpretation of results. The syntax of the
function evplot() is evplot(ev), where ev is a vector of eigenvalues. First, we run the
function.

evplot <- function(ev)

{# Broken stick model

Fig. 7.24 Plotting the ordination and only showing the samples in the figure in Vdr−/− mouse
fecal data
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n <- length(ev)

bsm <- data.frame(j=seq(1:n), p=0)

bsm$p[1] <- 1/n

for (i in 2:n) bsm$p[i] <- bsm$p[i-1] + (1/(n + 1 - i))

bsm$p <- 100*bsm$p/n

# Plot eigenvalues and % of variation for each axis

op <- par(mfrow=c(2,1))

barplot(ev, main="Eigenvalues", col=“bisque", las=2)

abline(h=mean(ev), col="red")

legend("topright", "Average eigenvalue", lwd=1, col=2, bty="n")

barplot(t(cbind(100*ev/sum(ev), bsm$p[n:1])), beside=TRUE,

main="% variation", col=c("bisque",2), las=2)

legend("topright", c("% eigenvalue", "Broken stick model"),

pch=15, col=c("bisque",2), bty="n")

par(op)

}

# Plot eigenvalues and % of variance for each axis

ev <- fecal_genus_cca$CA$eig

windows(title="CA eigenvalues")

evplot(ev)

As presented in section of PCoA, to assess whether the first few CA axes of the
analysis capture a disproportionately large amount of the total explained variation,
two additional post-ways using graphics are Keiser-Guttman criterion and broken

Fig. 7.25 Plotting the ordination and showing the pattern of samples and genera in ordination
diagram in Vdr−/− mouse fecal data. The circles represent samples, whereas plus represents genera.
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stick model. Based on Kaiser-Guttman criterion, the eigenvalues associated with
the first few axes should be larger than the average of all the eigenvalues; with
broken-stick model, the eigenvalues associated with the first few axes are compared
to the expectations. Both Keiser-Guttman criterion and broken stick model show
that first three axes are important (Fig, 7.26).

7.4.5 Redundancy Analysis (RDA)

Counterparting to three basic ordination methods, the vegan package has three
versions of constrained ordination: redundancy analysis (RDA, related to principal
components analysis), constrained analysis of principal coordinates (CAP, related
to metric scaling), and constrained correspondence analysis (CCA, related to cor-
respondence analysis).

RDA in the function rda() is based on Euclidean distances and combines mul-
tiple regression with PCA. With RDA, each canonical axis is linear combination
of all explanatory variables. The number of canonical axes corresponds to the
number of explanatory variables, or more precisely to the number of degrees of
freedoms (Borcard et al. 2011).

Fig. 7.26 Plotting eigenvalues and percentages of variation with Keiser-Guttman criterion and
broken stick model in Vdr−/− mouse fecal data
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You can use two different syntaxes to calculate an RDA via the function rda ()
from vegan: matrix and formula syntaxes. The matrix syntax is simplest: just list the
names of objects separated by commas as below.

RDA = rda(Y, X, W), where Y is the response matrix (taxa composition), X is
the explanatory matrix (environmental factors) and W is the optional matrix of
co-variables.

The formula syntax is given below:

RDA ¼ rda ðY� var 1þ factor Aþ var 2 � var 3þ condition ðvar 4Þ; data ¼ XWÞ:

The left side of the formula, Y, is the response matrix (taxa composition);
constrainted or explanatory variables are in the right sides of the formula, including
a quantitative variable var 1, a categorical variable factor A, an interaction term
between var 2 and var 3, and co-variable var 4 which can be partialled out. The
explanatory and covariable variables are in object XW data set, which must be a
data frame.

The hypothesis test is not the case in PCA. However, with two data sets Y and
X, in RDA we can test a null hypothesis of absence of linear relationship between
them. We use smoker data set to illustrate the usage of RDA.

First, load data from GUniFrac Package and use the function select() from dplyr
package to create a subset of explanatory variables.

> library(GUniFrac)

> data(throat.otu.tab)

> data(throat.meta)

> library(dplyr)

> throat_meta <- select(throat.meta, SmokingStatus, Age, Sex, PackYears)

For the purpose of RDA, we transform the taxa data using Hellinger’s
transformation:

> abund_hell <- decostand (throat.otu.tab, 'hell')

The RDA is calculated by the function rda() if matrix of environmental variables
is supplied (if not, PCA will be calculated as we did in Sect. 7.4.1).

> rda_hell<- rda(abund_hell * ., throat_meta)

> summary (rda_hell)

We print the partial output here.
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Call:
rda(formula = abund_hell ~ SmokingStatus + Age + Sex + PackYears,     data = 
throat_meta) 

Partitioning of variance:
Inertia Proportion

Total         0.46271     1.0000
Constrained   0.04823     0.1042
Unconstrained 0.41448     0.8958

Eigenvalues, and their contribution to the variance 

Importance of components:
RDA1    RDA2     RDA3     RDA4    PC1     PC2     PC3

Eigenvalue           0.02393 0.01330 0.005969 0.005039 0.0683 0.05946 0.03554
Proportion Explained 0.05172 0.02874 0.012900 0.010890 0.1476 0.12849 0.07681
Cumulative Proportion0.05172 0.08045 0.093350 0.104240 0.2518 0.38034 0.45715

Accumulated constrained eigenvalues
Importance of components:

RDA1   RDA2     RDA3     RDA4
Eigenvalue            0.02393 0.0133 0.005969 0.005039
Proportion Explained  0.49612 0.2757 0.123740 0.104460
Cumulative Proportion 0.49612 0.7718 0.895540 1.000000

Scaling 2 for species and site scores
* Species are scaled proportional to eigenvalues
* Sites are unscaled: weighted dispersion equal on all dimensions
* General scaling constant of scores:  2.285815

Species scores

RDA1       RDA2       RDA3       RDA4        PC1        PC2
4695  1.921e-03 -1.129e-02 -7.088e-03 -2.362e-03 -7.858e-04 -5.495e-04
2983  2.385e-03 -1.850e-03 -4.702e-03  4.402e-03  8.961e-04 -3.710e-03
(…)

Site scores (weighted sums of species scores)

RDA1      RDA2     RDA3      RDA4       PC1       PC2
ESC_1.1_OPL  -0.444360 -0.479468 -0.17464 -0.351952  0.081583 -0.135377
ESC_1.3_OPL   0.601039 -0.226340 -0.10553 -0.275939  0.183698 -0.077295
(…)

Site constraints (linear combinations of constraining variables)

RDA1      RDA2      RDA3      RDA4       PC1       PC2
ESC_1.1_OPL  -0.30617 -0.220346  0.030881 -0.328152  0.081583 -0.135377
ESC_1.3_OPL   0.32421 0.055762 -0.132139  0.107388  0.183698 -0.077295
(…)
Biplot scores for constraining variables

RDA1    RDA2    RDA3    RDA4 PC1 PC2
SmokingStatusSmoker 0.9064 -0.3399 -0.1354 0.21095   0   0
Age                 0.2275 -0.0442  0.7482 0.62172   0   0
SexMale             0.4961  0.8360  0.1026 0.21097   0   0
PackYears           0.6576 -0.1515  0.7376 0.02219   0   0

Centroids for factor constraints

RDA1     RDA2     RDA3     RDA4 PC1 PC2
SmokingStatusNonSmoker -0.2502  0.09382  0.03738 -0.05823   0   0
SmokingStatusSmoker     0.2860 -0.10723 -0.04273  0.06655   0   0
SexFemale              -0.1995 -0.33619 -0.04127 -0.08484   0   0
SexMale                 0.1074  0.18103  0.02222  0.04568   0   0
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The four constrained ordination axes (named RDA1 to RDA4) are related to the
4 environmental variables (SmokingStatus, Age, Sex, PackYears). Unconstrained
axes are named as PC axes.

The total variances are partitioned into constrained variance and unconstrained
variance. The constrained variance is explained by constrained axes (i.e., envi-
ronmental variables); whereas the unconstrained variance is explained by uncon-
strained axes (i.e., variance not explained by environmental factors). The
constrained variance is the amount of variance that the Y matrix is explained by
the explanatory variables. It is an equivalent to a biased, unadjusted R2 in the
multiple regression. The table for partitioning of variance shows that 4.8%
(0.04823) of the proportion of the total variance is explained by all these 4
environmental factors.

The function coef() retrieves the canonical coefficients (the equivalent of
regression coefficients) for each explanatory variable on each canonical axis.

> coef(rda_hell)
RDA1      RDA2      RDA3     RDA4

SmokingStatusSmoker  0.177040 -0.120402 -0.187134  0.15184
Age                 -0.004452 -0.002161  0.002997  0.01757
SexMale              0.092005  0.267873 -0.027579  0.01856
PackYears            0.005257 -0.000520  0.011633 -0.01596

We can use the function RsquareAdj() to extract the value of R2 and adjusted
R2 from results of ordination.

> RsquareAdj(rda_hell)

$r.squared

[1] 0.1042

$adj.r.squared

[1] 0.03909

The function returns two R2s: one is ordinary R2 (r.squared), another is adjusted
version R2

adj (adj.r.squared). Note that R2
adj is always lower than R2, and the dif-

ference increases with increasing number of explanatory variables. R2
adj can be

negative, which means explanatory variables explaining less variation than the
same number of randomly generated variables.

Apply Kaiser-Guttman criterion to residual axes.

> rda_hell$CA$eig[rda_hell$CA$eig 
> mean(rda_hell$CA$eig)]

PC1      PC2      PC3      PC4      PC5      PC6      PC7 
0.068299 0.059456 0.035542 0.024040 0.017406 0.015601 0.014898 

PC8      PC9     PC10     PC11     PC12     PC13 
0.012182 0.010314 0.009654 0.009245 0.008760 0.007745 
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Next, we plot the results of RDA. Based on which ordination of your interest,
you can choose to plot type 1 scaling or type 2 scaling. If you are primarily
interested in the ordination of samples, scaling 1 is your most appropriate choice. If
you are primarily interested in the ordination of taxa, then, scaling 2 is your most
appropriate choice.

Type 1 scaling emphasizes the relationships among samples. The essential
features (Borcard et al. 2011; Legendre and Legendre 2012) are samples act as the
centroids of the response variables (columns) and the distances between sample
points indicate their v2 distances. The interpretation is based on: (1) sample points
that are close each other are likely to be relative similar regarding to their relative
frequencies; (2) samples near centroids representing states of categorical or quali-
tative variables are more likely to possess the state for that species/taxon; and (3) a
right-angled projection of an sample point onto a vector representing a quantitative
explanatory variable approximates the value of the variable realized for that sample.

Type 2 scaling emphasizes the relationships among response variables. The
essential features are response variables (columns) act as the centroids of the
samples and the distances between response variable points indicate their v2 dis-
tances. The interpretation is based on: (1) species/taxon points that close to each
other are likely to have similar relative frequencies along the samples; (2) the closer
a response variable(a species/taxon) is to the centroid representing a state of a
categorical explanatory variable, the more likely that response variable is to have
higher values at that state; and (3) a right-angled projection of a point representing a
response variable (a species/taxon) onto an arrow representing an explanatory
variable indicates the position of the maximum value (the optimum) of the response
variable along that explanatory variable.

In constrained ordination, one additional source data is available for plot:
explanatory (environmental) variables. Thus, three different data are available for
plotting: samples, response variables, and explanatory variables. If you display all
data from three sources, you have ‘triplot’. If you display two source data, you have
‘biplot’. The following R codes generate a type 2 scaling triplot:

> plot(rda_hell, display=c("sp", "lc", "cn"),main="Triplot

RDA - scaling 2")

In above codes, “sp” stands for species (display = “sp”), and “cn” for constraints
or the explanatory variables (display = “cn”). There are two sample scores in vegan
package: weighted sums of species/taxa (display = “wa”), and fitted sample scores
or “LC scores" (display = “lc”), i.e., linear combinations of explanatory variables.
You can choose one of them to display in one plot.

The following R codes are used to add arrows to display species/taxa. The
argument of the scores() function “choices=c(1,2)” is the axes to plot. The defaults
plot the axes 1 and 2. Therefore, we can omit the codes “choices=c(1,2)” (Fig. 7.27).
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> taxa_scores <- scores(rda_hell, choices=c(1,2), display="sp")

> arrows(0, 0, taxa_scores[,1], taxa_scores[,2], length=0, lty=1,

col="red")

In above triplot RDA-scaling 2, green hollow triangles represent samples, blue
crosses represent the states of a categorical explanatory variable (e.g., male, femal,
or smoker, non-smoker), and blue arrows for quantitative explanatory variables
(here, PackYears and Age) with arrowheads indicating their direction of increase,
and the species/taxa are shown as red plus.

To test the significance of the variation in the smoker community data explained
by explanatory variables, we can conduct a Monte Carlo permutation test via the
function anova.cca() in vegan package. This function can test the significances of
the global model (default), all axes (by = “axis”), individual explanatory variables
(by = “terms”), the first constrained axis (first = TRUE), or variation explained by
individual explanatory variables after removing variation of all other variables in
the model (by = “margin”). We illustrate its capability by testing the global model,
each axis and each explanatory variable, respectively.

To ensure getting same result of permutation test each time you run, set the same
seed.

> set.seed (123)

The following R codes test the significance of the global model. The argument
“step” specifies the minimal number of permutations.

Fig. 7.27 RDA triplot of the smoker throat abundance constrained by SmokingStatus, Age, Sex,
PackYear with type 2 Scaling
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Model: rda(formula = abund_hell ~ SmokingStatus + Age + Sex + PackYears, data 
= throat_meta)

Df Variance   F Pr(>F)   
Model     4    0.048 1.6  0.006 **
Residual 55    0.414              
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> anova(rda_hell, step=1000)
Permutation test for rda under reduced model
Permutation: free
Number of permutations: 999

The global test is statistically significant. Now let’s test each axis.

> anova(rda_hell, by="axis", step=1000)
Permutation test for rda under reduced model
Marginal tests for axes
Permutation: free
Number of permutations: 999

Model: rda(formula = abund_hell ~ SmokingStatus + Age + Sex + PackYears, data 
= throat_meta)

Df Variance    F Pr(>F)    
RDA1      1    0.024 3.18  0.001 ***
RDA2      1    0.013 1.76  0.032 *  
RDA3      1    0.006 0.79  0.735    
RDA4      1    0.005 0.67  0.886    
Residual 55 0.414                
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We can see that the first and second axis are significant.

Now let’s test the significance of each explanatory variable.

> anova(rda_hell, by="terms", step=1000)
Permutation test for rda under reduced model
Terms added sequentially (first to last)
Permutation: free
Number of permutations: 999

Model: rda(formula = abund_hell ~ SmokingStatus + Age + Sex + PackYears, data 
= throat_meta)

Df Variance    F Pr(>F)    
SmokingStatus  1    0.022 2.86  0.001 ***
Age            1    0.006 0.75  0.787    
Sex            1    0.014 1.92  0.017 *  
PackYears      1    0.007 0.88  0.601    
Residual      55    0.414                
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We can see that both SmokingStatus and Sex are significant.
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Finally, we use forward selection to reduce the number of explanatory variables
entering the analysis, while optimazing the variation explained by them.

Curently, three functions are available in RDA for forward selection: ordistep(),
ordiR2step(), and forward.sel().The first two functions are from package vegan. The
third is available from package “adespatial”. These functions use different criteria
for variable selection. The function ordistep() uses the AIC criteria and p-values
from Monte Carlo permutation test for the comparison of variable.The function
ordiR2step() uses R2

adj. The function forward.sel() uses the preselected significance
level of a as the variable selection criterion.

Although the function forward.sel() has different logic for setting arguments,
comparing to the other two functions, basically the returned results are same as
ordiR2step(). Thus, we only illustrate the first two functions. The procedure
ordistep() is applicable with functions rda(), cca() or cmdscale(). The ordiR2step()
can be applied only to rda() and capscale(), but not for cca() because cca() doesn’t
return R2

adj.
The following R codes use the function ordistep() to run forward selection.

Options for stepwise and backward selection are also available. This function
allows the use of factors.

> step_forward <- ordistep(rda(abund_hell ~ 1, data=throat_meta),
+    scope=formula(rda_hell), direction="forward", pstep=1000)

Start: abund_hell ~ 1 

Df   AIC    F Pr(>F)   
+ SmokingStatus  1 -46.1 2.83  0.005 **
+ Sex            1 -45.3 2.01  0.015 * 
+ PackYears      1 -45.1 1.80  0.045 * 
+ Age            1 -44.1 0.83  0.720   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Step: abund_hell ~ SmokingStatus 

Df   AIC    F Pr(>F)  
+ Sex        1 -46.0 1.87  0.025 *
+ PackYears  1 -45.0 0.87  0.650  
+ Age        1 -44.9 0.74  0.820  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Step: abund_hell ~ SmokingStatus + Sex 

Df   AIC    F Pr(>F)
+ PackYears  1 -45.0 0.85   0.66
+ Age        1 -44.9 0.81   0.69

This procedure chooses variables SmokingStatus and Sex. The following for-
ward selection uses the function ordiR2step().The default setting for this procedure
to include a new variable is based on R2

adj and their comparison with that of the
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global model (with all variables). The selection will be stopped if the new variable
is not significant or the R2

adj of the model including this new variable would exceed

the R2
adj of the global model.

> step_forward <- ordiR2step(rda(abund_hell ~ 1, data=throat_meta), 
+                            scope=formula(rda_hell), direction="forward",
pstep=1000)

Step: R2.adj= 0 
Call: abund_hell ~ 1 

R2.adjusted
<All variables>    0.039094
+ SmokingStatus    0.030093
+ Sex              0.016765
+ PackYears        0.013326
<none>             0.000000
+ Age             -0.002834

Df   AIC    F Pr(>F)   
+ SmokingStatus  1 -46.1 2.83  0.002 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Step: R2.adj= 0.03009 
Call: abund_hell ~ SmokingStatus 

R2.adjusted
+ Sex               0.04449
<All variables>     0.03909
<none>              0.03009
+ PackYears         0.02786
+ Age               0.02574

The variable smoking status is selected by the forward selection using the
function ordiR2step().

After running forward selection procedure, we fit the final parsimonious RDA
model and test with the global model, each axis and each variable:

> rda_final<-rda(abund_hell~SmokingStatus+Sex, data=throat_meta)

> anova(rda_final, step=1000)

Permutation test for rda under reduced model
Permutation: free
Number of permutations: 999

Model: rda(formula = abund_hell ~ SmokingStatus + Sex, data = throat_meta)
Df Variance    F Pr(>F)    

Model     2    0.036 2.37  0.001 ***
Residual 57    0.427                
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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> anova(rda_final, by="axis", step=1000)
Permutation test for rda under reduced model
Marginal tests for axes
Permutation: free
Number of permutations: 999

Model: rda(formula = abund_hell ~ SmokingStatus + Sex, data = throat_meta)
Df Variance    F Pr(>F)    

RDA1      1    0.023 3.01  0.001 ***
RDA2      1    0.013 1.74  0.031 *  
Residual 57    0.427                
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> anova(rda_final, by="terms", step=1000)
Permutation test for rda under reduced model
Terms added sequentially (first to last)
Permutation: free
Number of permutations: 999

Model: rda(formula = abund_hell ~ SmokingStatus + Sex, data = throat_meta)
Df Variance    F Pr(>F)   

SmokingStatus  1    0.022 2.87  0.003 **
Sex            1    0.014 1.87  0.022 * 
Residual      57    0.427               
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

7.4.6 Constrained Correspondence Analysis (CCA)

CCA is also known as canonical correspondence analysis. Since its introduction in
1986, it has been one of the most popular ordination methods in community
ecology and accepted by microbiome researchers (ter Braak 1986). Just like RDA
relating to PCA, CAP relates to PCoA, and CCA relates to CA. CCA shares the
basic properties of CA and combines them into a constrained ordination. CCA is
performed by the function cca(). Its algorithm is based on Legendre and Legendre’s
(1998): it preserves the v2 distance among samples, and taxa are represented as
points in the tripplots (Borcard et al. 2011). The calculated v2 distance is subjected
to weighted linear regression on constraining variables, and the fitted values are
passed to correspondence analysis performed via singular value decomposition
(svd). Thus, it is a weighted form of RDA.

Like RDA, there are two kinds of syntaxes of CCA. One is simple (default)
matrix syntax:

cca ðX;Y;ZÞ

where, X = community data matrix or data frame, it must be given;
Y = constraining matrix or data frame, typically of environmental variables (can be
omitted); If matrix Y is supplied, it is used to conduct CCA, if not supplied, it
calculates CA. Z = conditioning matrix or data frame (also can be omitted). If
matrix Z is supplied, then the effect will be partialled out from the community
matrix.
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Another is formula syntax:
cca formula; data; na:action ¼ na:fail; subset ¼ NULLð Þ

where, formula is typical model formula: the left side of the formula must be the
community data matrix(X); right side defines the constraining model: the con-
straining variables can contain ordered or unordered factors, interactions among
variables and functions of variables; and conditioning variables can be given within
a special function condition for conditioning variables (covariables) partialled out
before analysis. So the following commands are equivalent: cca(X, Y, Z), cca
(X * Y + condition(Z)), where Y and Z refer to constraints and conditions
matrices respectively. The data is a data frame containing the variables on the right
hand side of the model formula. The na.action() is used to handle the missing values
in constraints or conditions. The default (na.fail) is to stop with missing value; na.
omit is to remove all rows with missing values; na.exclude is to keep all obser-
vations but give NA for results that cannot be calculated. However, missing values
are never allowed in dependent community data. The subset is used to subset of
data rows.

In this section, we will use smoker data to conduct CCA through the function cca
() from vegan package. We mentioned earlier, to conduct CCA, the matrix of
environmental variables must be supplied, and otherwise the function cca() cal-
culates CA. As recall, smoker data have two data sets: throat.otu.tab (community
abundance data frame) and throat.meta(meta data including two binary variables
SmokingStatus and Sex, and two continuous variables Age and PackYears). To run
a CCA, load vegan library now and do not transform the community abundance
data by Hellinger method as we did in RDA. Otherwise, the v2 distance cannot be
calculated and the results cannot be interpreted.

In the following CCA, smoker abundance data are constrained by four envi-
ronmental variables in the throat.meta data including SmokingStatus, Age, Sex, and
PackYears.

> smoker_cca <- cca(throat.otu.tab ~ ., throat_meta)
> smoker_cca
Call: cca(formula = throat.otu.tab ~ SmokingStatus + Age
+ Sex + PackYears, data = throat_meta)

Inertia Proportion Rank
Total          4.9330     1.0000     
Constrained    0.3782     0.0767    4
Unconstrained  4.5548     0.9233   55
Inertia is mean squared contingency coefficient 

Eigenvalues for constrained axes:
CCA1   CCA2   CCA3   CCA4 

0.1517 0.0912 0.0781 0.0572 

Eigenvalues for unconstrained axes:
CA1   CA2   CA3   CA4   CA5   CA6   CA7   CA8 

0.457 0.358 0.325 0.299 0.237 0.187 0.165 0.160 
(Showed only 8 of all 55 unconstrained eigenvalues)
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The first section after the “Call:” give the “mean squared contingency coeffi-
cients” of the analysis. They play the same role in CCA that total variance plays in
RDA. Since the community matrix is converted to v2 distance, the entries are
contingency coefficients. The total variation before the matrix is subjected to
weighted regression is 4.9330; this is the variation that could be explained. The
variation in the community matrix that explained after weighted regression is
0.3782; this is the variation that will be explained by the axes in the CCA. The
variance of the residuals of the regression is 4.5548; this is the variation that will
not be explained by the axes in the CCA, which can be subjected to CA.

Here, we notice that the CCA is not very successful because only 0.3782/4.9330
or 0.0767 (see the column Proportion and row Constrained) of the total variation of
data was captured in the CCA by all four variables. The variance explained by
particular axes could be found by summary() function:

> summary(smoker_cca)
Call:
cca(formula = throat.otu.tab ~ SmokingStatus + Age + Sex + PackYears, data = 
throat_meta) 

Partitioning of mean squared contingency coefficient:
Inertia Proportion

Total           4.933     1.0000
Constrained     0.378     0.0767
Unconstrained   4.555     0.9233

Eigenvalues,and their contribution to the mean squared contingency
coefficient

Importance of components:
CCA1   CCA2   CCA3   CCA4    CA1    CA2

Eigenvalue            0.1517 0.0912 0.0781 0.0572 0.4567 0.3581
Proportion Explained  0.0307 0.0185 0.0158 0.0116 0.0926 0.0726
Cumulative Proportion 0.0307 0.0492 0.0651 0.0767 0.1692 0.2418
(…)

Accumulated constrained eigenvalues
Importance of components:

CCA1   CCA2   CCA3   CCA4
Eigenvalue            0.152 0.0912 0.0781 0.0572
Proportion Explained  0.401 0.2411 0.2066 0.1512
Cumulative Proportion 0.401 0.6422 0.8488 1.0000
(…)

Biplot scores for constraining variables

CCA1   CCA2    CCA3   CCA4 CA1 CA2
SmokingStatusSmoker 0.831  0.452  0.0597 0.3181   0   0
Age                 0.202 -0.179 -0.7738 0.5729   0   0
SexMale             0.683 -0.730  0.0444 0.0112   0   0
PackYears           0.615  0.163 -0.7704 0.0303   0   0
Centroids for factor constraints

CCA1   CCA2    CCA3     CCA4 CA1 CA2
SmokingStatusNonSmoker -0.746 -0.406 -0.0531 -0.28569   0   0
SmokingStatusSmoker     0.926  0.503  0.0660  0.35459   0   0
SexFemale              -0.922  0.985 -0.0599 -0.01516   0   0
SexMale                 0.505 -0.540  0.0328  0.00831   0   0
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The variance explained by first four constrained axes (CCA1, CCA2, CCA3,
CCA4): 3.07, 1.85 1.58, and 1.16%, respectively. The variance explained by first
unconstrained axis (CA1) is 9.26%.

The section of “Accumulated constrained eigenvalues” provides the eigenvalues
associated with the projection. Because we have four variables in our environmental
dataframe, there are four constrained eigenvalues. As shown here, the first axis
accounts for approximately 40% of the constrained variation, with the second axis
at 24%, the third at 21%, and the fourth at 15%.

Next, we plot the results of CCA for type 1 scaling using the plot() function. In
the plot, we want to display linear constraints or “LC scores” (display = “lc”) and
centroids of levels of factor variables (display = “cn”).

plot(smoker_cca,scaling=1,display = c("lc","cn"),main="Biplot

CCA-scaling 1")

The type 1 scaling shows four groups of samples, with smoker group linked to
PackYears. In this analysis, the first axis is associated with increasing PackYears
while the second is associated with decreasing Age (Fig. 7.28).

Similar as in RDA, let’s conduct a permutation test for the global model, each
axis and each explanatory variable. To ensure getting the same result of permutation
test, each time you run, set the same seed.

> set.seed (123)

The following R codes test the significance of the global model.

Fig. 7.28 CCA biplot of the smoker throat abundance constrained by SmokingStatus, Age, Sex,
PackYear with type 1 Scaling
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> anova(smoker_cca, step=1000)
Permutation test for cca under reduced model
Permutation: free
Number of permutations: 999

Model: cca(formula = throat.otu.tab ~ SmokingStatus + Age + Sex + PackYears, 
data = throat_meta)

Df ChiSquare    F Pr(>F)
Model     4      0.38 1.14    0.2
Residual 55      4.55            

The result is not statistically significant.

Then test the significance of each axis.

> anova (smoker_cca, by = 'axis',step=1000)
Permutation test for cca under reduced model
Marginal tests for axes
Permutation: free
Number of permutations: 999

Model: cca(formula = throat.otu.tab ~ SmokingStatus + Age + Sex + PackYears,
data = throat_meta)

Df ChiSquare    F Pr(>F)   
CCA1      1      0.15 1.83  0.004 **
CCA2      1      0.09 1.10  0.350   
CCA3      1      0.08 0.94  0.611   
CCA4      1      0.06 0.69  0.959   
Residual 55      4.55               
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We can see that the first axis is significant.

Now let’s test the significance of each explanatory variable.

> anova (smoker_cca, by = 'terms')
Permutation test for cca under reduced model
Terms added sequentially (first to last)
Permutation: free
Number of permutations: 999

Model: cca(formula = throat.otu.tab ~ SmokingStatus + Age + Sex + PackYears, 
data = throat_meta)

Df ChiSquare    F Pr(>F)   
SmokingStatus  1      0.13 1.56  0.009 **
Age            1      0.07 0.89  0.751   
Sex            1      0.10 1.27  0.104   
PackYears      1      0.07 0.85  0.768   
Residual      55      4.55               
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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We can see that SmokingStatus is significant with p-value of 0.009.
Finally, let’s do forward selection using the function ordistep() in vegan pack-

age. As we stated in RDA, the function ordistep() is applicable with functions rda(),
cca() or cmdscale().

Comparing variables is based on AIC criteria and p-values from Monte Carlo
permutation test.

> ordistep(cca(throat.otu.tab ~ 1
,data=throat_meta),scope=formula(smoker_cca), direction="forward",
pstep=1000)

Start: throat.otu.tab ~ 1 

Df    AIC      F Pr(>F)  
+ SmokingStatus  1 539.05 1.5638  0.015 *
+ Sex            1 539.17 1.4378  0.025 *
+ PackYears      1 539.34 1.2775  0.225  
+ Age            1 539.73 0.8914  0.795  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Step: throat.otu.tab ~ SmokingStatus 

Df    AIC      F Pr(>F)  
+ Sex        1 539.71 1.2838  0.075 .
+ PackYears  1 540.04 0.9688  0.555  
+ Age        1 540.12 0.8877  0.760  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Call: cca(formula = throat.otu.tab ~ SmokingStatus, data = throat_meta)

Inertia Proportion Rank
Total         4.93301    1.00000     
Constrained   0.12951    0.02625    1
Unconstrained 4.80350    0.97375   58
Inertia is mean squared contingency coefficient 

Eigenvalues for constrained axes:
CCA1 

0.12951 
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Eigenvalues for unconstrained axes:
CA1    CA2    CA3    CA4    CA5    CA6    CA7    CA8 

0.4840 0.3834 0.3322 0.3025 0.2486 0.1884 0.1774 0.1614 
(Showed only 8 of all 58 unconstrained eigenvalues)

> ordistep(cca(throat.otu.tab ~ 1, data=throat_meta),
scope=formula(smoker_cca), direction="forward", pstep=1000)

Start: throat.otu.tab ~ 1 

Df AIC    F Pr(>F)   
+ SmokingStatus  1 539 1.56  0.005 **
+ Sex            1 539 1.44  0.045 * 
+ PackYears      1 539 1.28  0.190   
+ Age            1 540 0.89  0.710   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Step: throat.otu.tab ~ SmokingStatus 

Df AIC F Pr(>F)  
+ Sex        1 540 1.28   0.08 .
+ PackYears  1 540 0.97   0.54  
+ Age        1 540 0.89   0.78  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Call: cca(formula = throat.otu.tab ~ SmokingStatus, data = throat_meta)

Inertia Proportion Rank
Total          4.9330     1.0000     
Constrained    0.1295     0.0263    1
Unconstrained  4.8035     0.9737   58
Inertia is mean squared contingency coefficient 

Eigenvalues for constrained axes:
CCA1 

0.1295 

Eigenvalues for unconstrained axes:
CA1   CA2   CA3   CA4   CA5   CA6   CA7   CA8 

0.484 0.383 0.332 0.302 0.249 0.188 0.177 0.161 
(Showed only 8 of all 58 unconstrained eigenvalues)

The selected variable is SmokingStatus. The final model is fitted below.
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Eigenvalues for constrained axes:
CCA1 

0.1295 

Eigenvalues for unconstrained axes:
CA1 CA2   CA3   CA4   CA5   CA6   CA7   CA8 

0.484 0.383 0.332 0.302 0.249 0.188 0.177 0.161 
(Showed only 8 of all 58 unconstrained eigenvalues)

> anova.cca(smoker_cca_final, step=1000)
Permutation test for cca under reduced model
Permutation: free
Number of permutations: 999

Model: cca(formula = throat.otu.tab ~ SmokingStatus, data = throat_meta)
Df ChiSquare    F Pr(>F)   

Model     1      0.13 1.56  0.007 **
Residual 58      4.80               
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> (smoker_cca_final <- cca(throat.otu.tab ~ SmokingStatus, data=throat_meta))
> anova.cca(smoker_cca_final, step=1000)
Call: cca(formula = throat.otu.tab ~ SmokingStatus, data = throat_meta)

Inertia Proportion Rank
Total          4.9330     1.0000     
Constrained    0.1295     0.0263    1
Unconstrained  4.8035     0.9737   58
Inertia is mean squared contingency coefficient 

Smoking Status reaches the same level of significance with p-value of 0.007.
However, the parsimony model has paid off with larger residual.

7.4.7 Constrained Analysis of Principal Coordinates (CAP)

CAP (also called constrained analysis of proximities in vegan package), is an
ordination method similar to RDA. It is simply a redundancy analysis of results of
principal coordinates analysis (or metric multidimensional scaling) (Anderson and
Willis 2003). CAP allows non-Euclidean dissimilarity indices, such as Manhattan
or Bray-Curtis distance. If Euclidean distance is specified as the ordination method,
the results will be identical to RDA.

The function capscale() from vegan package is used to implement CAP. It needs
a dissimilarity matrix as input data set, which can be calculated using functions
vegdist(), dist(), or any other method producing similar matrices. Two steps are
needed: first, it uses the function cmdscale () to ordinate the dissimilarity matrix,
then uses RDA to analyze these results. Unlike RDA, in which both matrix and
formula syntaxes can be used, the function capscale() can be called only with the
formula syntax. One usage of the function capscale() is listed below.
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capscale formula, data, distance ¼ 00bray00; dfun ¼ vegdistð Þ

where, formula is a typical model formula as defined in rda() and cca(). The left side
of the formula must be either a community data matrix (frame) or a dissimilarity
matrix, which can be estimated from the function vegdist() or dist(). If the left side
of the formula is a data matrix (frame) instead of dissimilarity matrix, then a
dissimilarity (or distance) index must be provided as input of distance. The right
side of the formula defines the constraints. The constraining variables can be
continuous variables, factors, interaction terms or a special term condition used as
defining variables to be partialled out. The data are a data frame containing the
variables on the right hand side of the model formula. The dfun is the distance or
dissimilarity function used.

The basic CAP can be done with following codes. The constraining variables include
two binary variables (SmokingStatus and Sex), and two continuous variables (PackYears
and Age). The special term condition (Age) is used to be partialled out age effect.

> throat_cap <- capscale(throat.otu.tab ~ SmokingStatus + Sex + PackYears +
Condition(Age), throat_meta, dist="bray")
> throat_cap
Call: capscale(formula = throat.otu.tab ~ SmokingStatus + Sex + PackYears +
Condition(Age), data = throat_meta, distance = "bray")

Inertia Proportion Eigenvals Rank
Total         14.0932     1.0000   14.5356     
Conditional    0.2020     0.0143    0.2084    1
Constrained    1.2438     0.0883    1.2623    3
Unconstrained 12.6473     0.8974   13.0648   46
Imaginary                          -0.4425   13
Inertia is squared Bray distance 

Eigenvalues for constrained axes:
CAP1  CAP2  CAP3 

0.731 0.376 0.155 

Eigenvalues for unconstrained axes:
MDS1  MDS2  MDS3  MDS4  MDS5  MDS6  MDS7 MDS8 

2.278 1.994 1.144 0.925 0.749 0.615 0.534 0.473 
(Showed only 8 of all 46 unconstrained eigenvalues)

The first three axes are called “CAP1”, “CAP2”, and “CAP3”, and then followed
by original MDS. We can see that the three constrained variables (SmokingStatus,
Sex and PackYears) explain 8.83% of the total variation of whole data set.

> anova(throat_cap)
Permutation test for capscale under reduced model
Permutation: free
Number of permutations: 999

Model: capscale(formula = throat.otu.tab ~ SmokingStatus + Sex + PackYears + 
Condition(Age), data = throat_meta, distance = "bray")

Df SumOfSqs   F Pr(>F)   
Model     3     1.24 1.8  0.004 **
Residual 55    12.65              
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The model is statistically significant with p-value of 0.004.
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The default plot() function generates the following figure, it is not informative
(Fig. 7.29).

> plot(throat_cap)

As we are interested in the different dissimilarities between smokers vs.
non-smokers, let’s extract the group information here.

> groups <- throat.meta$SmokingStatus
> groups
[1] NonSmoker Smoker    Smoker    Smoker    Smoker    Smoker   
[7] NonSmoker NonSmoker NonSmoker NonSmoker Smoker    NonSmoker

[13] NonSmoker Smoker    NonSmoker Smoker    Smoker    NonSmoker
[19] NonSmoker NonSmoker NonSmoker NonSmoker NonSmoker NonSmoker
[25] NonSmoker NonSmoker NonSmoker NonSmoker NonSmoker NonSmoker
[31] NonSmoker NonSmoker NonSmoker Smoker    NonSmoker NonSmoker
[37] NonSmoker NonSmoker NonSmoker Smoker    NonSmoker Smoker   
[43] NonSmoker Smoker    Smoker    Smoker    Smoker    Smoker   
[49] Smoker    Smoker    Smoker    Smoker    Smoker    Smoker   
[55] Smoker    Smoker    Smoker    NonSmoker Smoker    Smoker   
Levels: NonSmoker Smoker

In the following bunch of R codes, the function plot() generates an empty CAP
ordination diagram; the function points() adds points to the ordination diagram
(low-level plotting function) created by the plot. The function ordispider() creates
spiderplot by connecting individual members of the group with the group centroid.
The function ordiellipse() encircles the clouds of points within the group by ellipse
like the envelopes (Fig. 7.30).

Fig. 7.29 Basic plot of CAP in smoker throat data
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> plot(throat_cap, type="n")

> points(throat_cap, col=as.numeric(as.factor(groups)),

+ pch=as.numeric(as.factor(groups)))

> ordispider(throat_cap, groups, lty=2, col="grey", label=T)

> ordiellipse(throat_cap, groups, lty=2, col="grey", label=F)

Similar as in RDA and CCA, let’s conduct a permutation test for the global
model, each axis and each explanatory variable.

To ensure getting same result of permutation test each time you run, set the same
seed.

> set.seed (123)

The following codes test the significance of the global model.

> anova(throat_cap, step=1000)
Permutation test for capscale under reduced model
Permutation: free
Number of permutations: 999

Model: capscale(formula = throat.otu.tab ~ SmokingStatus + Sex + PackYears + 
Condition(Age), data = throat_meta, distance = "bray")

Df SumOfSqs   F Pr(>F)   
Model     3     1.24 1.8  0.003 **
Residual 55    12.65              
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Fig. 7.30 Ordispider and ordiellipse plots of CAP in smoker throat data
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The result is statistically significant with p-value of 0.003.

Then test the significance of each axis.

Permutation test for capscale under reduced model
Marginal tests for axes
Permutation: free
Number of permutations: 999

Model: capscale(formula = throat.otu.tab ~ SmokingStatus + Sex + PackYears + 
Condition(Age), data = throat_meta, distance = "bray")

Df SumOfSqs    F Pr(>F)    
CAP1      1     0.73 3.08  0.001 ***
CAP2      1     0.38 1.58  0.073 .
CAP3      1     0.16 0.65  0.869    
Residual 55    13.06                
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> anova(throat_cap, by="axis", step=1000)

We can see that the first axis is significant with p-value of 0.001 and second axis
is marginally significant with p-value of 0.073.

Now let’s test the significance of each explanatory variable.

> anova(throat_cap, by="terms", step=1000)
Permutation test for capscale under reduced model
Terms added sequentially (first to last)
Permutation: free
Number of permutations: 999

Model: capscale(formula = throat.otu.tab ~ SmokingStatus + Sex + PackYears + 
Condition(Age), data = throat_meta, distance = "bray")

Df SumOfSqs    F Pr(>F)   
SmokingStatus  1     0.63 2.72  0.003 **
Sex            1     0.44 1.89  0.035 * 
PackYears      1     0.18 0.79  0.682   
Residual      55    12.65               
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We can see that both SmokingStatus and Sex are significant with p-values =
0.003, and 0.035, respectively.
Now, let’s do forward selection using the function ordistep() in vegan package.

As we stated in RDA and CCA, the function compares variables based on AIC
criteria and p-values from Monte Carlo permutation test.
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> step_forward <- ordistep(capscale(throat.otu.tab ~ 1, data=throat_meta), 
+               scope=formula(throat_cap), direction="forward", pstep=1000)

Start: throat.otu.tab ~ 1 

Df AIC    F Pr(>F)  
+ SmokingStatus   1 712 2.05  0.035 *
+ Sex             1 712 1.68  0.090 .
+ PackYears       1 712 1.27  0.215  
+ Condition(Age)  1 713 0.00         
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Step: throat.otu.tab ~ SmokingStatus 

Df AIC    F Pr(>F)
+ Sex             1 712 1.53   0.14
+ PackYears       1 713 0.58   0.78
+ Condition(Age)  1 713 0.00       

The selected variable is Smoking Status. The final model is fitted below.

> cap_final<- capscale(throat.otu.tab ~ SmokingStatus, throat_meta,
dist="bray")
> anova(cap_final, step=1000)
Permutation test for capscale under reduced model
Permutation: free
Number of permutations: 999

Model: capscale(formula = throat.otu.tab ~ SmokingStatus, data = throat_meta, 
distance = "bray")

Df SumOfSqs   F Pr(>F)   
Model     1     0.65 2.8  0.004 **
Residual 58    13.44              
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smoking Status reaches the significance with p-value of 0.004, but the parsi-
mony model has paid off with larger residual.

7.5 Summary and Discussion

In this chapter, we used mouse and human data sets to illustrate exploratory
analysis of microbiome data. We first used the phyloseq package to illustrate the
five plots, including richness, abundance bar, heatmap, network and phylogenetic
tree. Then, we introduced several families of clustering methods available in the
ecology and microbiome studies, and focused on illustrating four clustering
methods (single linkage agglomerative, complete linkage agglomerative, average
linkage agglomerative, and Ward’s minimum variance). We also briefly descri-
bed the relationship of clustering, ordination and distance measure. Finally, we
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illustrated the most common unconstrained and constrained ordinations: PCA,
PCoA, NMDS, CA, RDA, CCA, and CAP.

The characteristics of unconstrained ordinations are considered ‘exploratory’.
However, the capabilities of constrained ordinations are beyond merely exploratory
data analysis, and become hypothesis testing as well. We introduced the different
characteristics of unconstrained and constrained ordinations. Reader can further
understand these ordinations through the real examples.

We illustrated exploratory analysis and hypothesis testing (in terms of con-
strained ordinations) of microbiome data through using the specifically developed
package for analyzing microbiome census data “phyloseq” and the packages that
commonly used in ecology such as vegan package. The extending functions, i.e.,
cleanplot.pca() and evplot() are attractive and two criteria to evaluate the perfor-
mance of ordinations (Kaiser-Guttman criterion and broken-stick model) are helpful
for evaluating the ordination analyses.
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Chapter 8
Univariate Community Analysis

We divide microbiome community composition study into two major components:
(1) hypothesis testing of taxonomic diversities, OTUs and taxa and (2) analysis of
dissimilarities among groups. The first component primarily belongs to univariate
community analysis. The second component can be further divided into various
multivariate techniques, such as clustering and ordinations, and hypothesis testing
of multivariate analysis of dissimilarities. In Chap. 7, we covered these multivariate
techniques. We will focus on comparisons of diversities, OTUs and taxa in this
chapter. Hypothesis testing of multivariate analysis of dissimilarities among groups
will be presented in Chap. 9.

8.1 Comparisons of Diversities Between Two Groups

In our Vdr−/− mouse study, one of the purposes is to test the difference of diversities
between two groups (Vdr−/− and wild type mices) in fecal and cecal sites. In
Chap. 6, we calculated the Shannon diversity using the fecal samples. Here, to
illustrate univariate community analysis, we shall compare the calculated Shannon
diversity using various testing statistics.

8.1.1 Two-Sample Welch’s t-Test

The t-statistic was introduced in 1908 by William Sealy Gosset. A two-sample t-test
is used to test the means of two populations are equal. It is most commonly applied
when the test statistic would follow a normal distribution. If the two groups have
the same variance, the t statistic can be calculated as follows:
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t ¼
�X1 � �X2

sp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

q ; ð8:1Þ

where, sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�1Þs21 þðn2�1Þs22

n1 þ n2�2

q
is an estimator of the pooled standard deviation of the

two samples. Welch’s t-test or unequal variances t-test is adapted from t-test (Welch
1947). The Welch’s t-test statistic is given:

t ¼
�X1 � �X2

s�D
; ð8:2Þ

where, s�D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1
þ s22

n2

q
; s21 and s22 are the unbiased estimator of the variance of

samples 1 and 2, respectively. When the two samples have unequal variances and
unequal sample sizes, Welch’s t-test is considered as more reliable (Ruxton 2006).
Thus, here we use Welch’s t-test to our Vdr−/− mouse data.

First, load and transpose the data set as previously in Chaps. 6 and 7.

> abund_table=read.csv("VdrGenusCounts.csv",row.names=1,

check.names=FALSE)

> abund_table<-t(abund_table)

In order to incorporate group information from data set directly to the com-
parison, we need to do data management. In the data set, sample id and group
information are in a character striple. We first extract them from there.

> grouping<-data.frame(row.names=rownames(abund_table),t(as.data.frame
(strsplit(rownames(abund_table),"_"))))

> grouping$Location <- with(grouping, ifelse(X3%in%"drySt-28F", "Fecal", 
"Cecal"))
> grouping$Group <- with(grouping,ifelse(as.factor(X2)%in% c(11,12,13,14,15),
c("Vdr-/-"), c("WT")))
> grouping <- grouping[,c(4,5)]
> grouping 

Location  Group
5_15_drySt-28F    Fecal Vdr-/- 
20_12_CeSt-28F    Cecal Vdr-/- 
1_11_drySt-28F    Fecal Vdr-/- 
2_12_drySt-28F    Fecal Vdr-/- 
3_13_drySt-28F    Fecal Vdr-/- 
4_14_drySt-28F Fecal Vdr-/- 

7_22_drySt-28F    Fecal     WT
8_23_drySt-28F    Fecal     WT
9_24_drySt-28F    Fecal     WT
19_11_CeSt-28F    Cecal Vdr-/- 
21_13_CeSt-28F    Cecal Vdr-/- 
22_14_CeSt-28F    Cecal Vdr-/- 
23_15_CeSt-28F    Cecal Vdr-/- 
25_22_CeSt-28F    Cecal     WT
26_23_CeSt-28F    Cecal     WT
27_24_CeSt-28F    Cecal     WT
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The Shannon diversity was calculated in Chap. 6, we repeat here for the
convenience.

> library(vegan)

> H<-diversity(abund_table, "shannon")

We make a dataframe of Shannon diversity.

> df_H<-data.frame(sample=names(H),value=H,measure=rep("Shannon",

length(H)))

Then we combine diversity and grouping data frames to make a new data frame.

> df_G <-cbind(df_H, grouping)
> rownames(df_G)<-NULL
> df_G

sample value measure Location  Group
1  5_15_drySt-28F 2.461 Shannon    Fecal Vdr-/- 
2  20_12_CeSt-28F 2.340 Shannon    Cecal Vdr-/- 
3  1_11_drySt-28F 2.228 Shannon    Fecal Vdr-/- 
4  2_12_drySt-28F 2.734 Shannon    Fecal Vdr-/- 
5  3_13_drySt-28F 2.077 Shannon    Fecal Vdr-/- 
6  4_14_drySt-28F 2.467 Shannon    Fecal Vdr-/- 
7  7_22_drySt-28F 1.777 Shannon    Fecal     WT
8  8_23_drySt-28F 2.000 Shannon    Fecal     WT
9  9_24_drySt-28F 1.972 Shannon    Fecal     WT
10 19_11_CeSt-28F 1.345 Shannon Cecal Vdr-/- 
11 21_13_CeSt-28F 2.016 Shannon    Cecal Vdr-/- 
12 22_14_CeSt-28F 1.955 Shannon    Cecal Vdr-/- 
13 23_15_CeSt-28F 1.614 Shannon    Cecal Vdr-/- 
14 25_22_CeSt-28F 1.959 Shannon    Cecal     WT
15 26_23_CeSt-28F 2.271 Shannon    Cecal     WT
16 27_24_CeSt-28F 2.002 Shannon    Cecal     WT

Next, we subset fecal data from the new data frame.

> Fecal_G<- subset(df_G, Location=="Fecal")
> Fecal_G

sample value measure Location  Group
1 5_15_drySt-28F 2.461 Shannon    Fecal Vdr-/- 
3 1_11_drySt-28F 2.228 Shannon    Fecal Vdr-/- 
4 2_12_drySt-28F 2.734 Shannon    Fecal Vdr-/- 
5 3_13_drySt-28F 2.077 Shannon    Fecal Vdr-/- 
6 4_14_drySt-28F 2.467 Shannon    Fecal Vdr-/- 
7 7_22_drySt-28F 1.777 Shannon    Fecal     WT
8 8_23_drySt-28F 2.000 Shannon    Fecal     WT
9 9_24_drySt-28F 1.972 Shannon    Fecal     WT

Now the data is ready for statistical analysis. Before conducting hypothesis
testing, let’s explore the distribution of the Shannon diversity values using the
function ggplot() from the ggplot2 package and the function ddply() in plyr
package.

> library(ggplot2)

We split the plot into two panels using facet_grid.
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> p<-ggplot(Fecal_G, aes(x=value))+

+ geom_histogram(color="black", fill="black")+

+ facet_grid(Group * .)

The package plyr is used to calculate the average Shannon diversity values of
each group.

> library(plyr)
> mu <- ddply(Fecal_G, "Group", summarise, grp.mean=mean(value))
> head(mu)

Group grp.mean
1 Vdr-/- 2.393
2     WT    1.916

Add the mean lines to the plot.

> p+geom_vline(data=mu, aes(xintercept=grp.mean, color="red"),

+ linetype="dashed")

The distribution (Fig. 8.1) shows that Vdr knockout results in higher diversity
because the histogram for this group is shifted to the right (higher diversity values)
relative to the WT group. To test the null hypothesis of no difference in Shannon
diversity, a Welch’s t-test was used resulting in p-value = 0.01 (t = 3.6, df = 5.9).
Thus, we reject the null hypothesis of no difference in favor of the alternative that
the Shannon diversities are different in the two groups.

> fit_t <- t.test(value ~ Group, data=Fecal_G) 
> fit_t

Welch Two Sample t-test

data:  value by Group
t = 3.6, df = 5.9, p-value = 0.01
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.1518 0.8026

sample estimates:
mean in group Vdr-/- mean in group WT 

2.393                1.916 

8.1.2 Wilcoxon Rank Sum Test

Wilcoxon rank sum test is equivalent to the Mann-Whitney U test developed by
Mann and Whitney (1947). It is a nonparametric alternative to the two sample t-test
that uses ranks of two independent sample data to test the null hypothesis: the two
independent samples come from populations with the same distribution (that is, the
two populations are identical). Unlike the t-test, Wilcoxon rank sum test does not
require the assumption of normal distributions, and is nearly as efficient as the t-test.
Therefore, it is widely used in microbiome study. It takes three main steps to
conduct the Wilcoxon rank sum test for finding the value of the test statistic:
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Step 1. Assign ranks to all the observations, the smallest value gets a rank of 1.
Where values are tied, assign the mean of the ranks involved in the tie.

Step 2. Sum the ranks for either one of the two samples. The sum of ranks in
another sample can be determinated since the sum of all the ranks equals N
(N + 1)/2, where N is the total number of observations.

Fig. 8.1 Distribution of the Shannon diversity of Vdr−/− and WT in fecal samples
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If the two testing populations have the same distribution, then the rank R has the

mean of lR ¼ n1ðn1 þ n2 þ 1Þ
2 , and the standard deviation of rR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2ðn1 þ n2 þ 1Þ

12

q
. The

Wilcoxon rank sum test rejects the hypothesis that the two populations have
identical distributions when the rank sum R is far from its mean. The rank sum
statistic becomes approximately normal as the two sample sizes increase. We can
form the statistic by standardizing rank sum.

Step 3. Calculate the value of the z test statistic using the formula below:

z ¼ R� lR
rR

; ð8:3Þ

where

R sum of ranks of the sample with number n1
n1 the sample size for which the rank sum R is found (such as sample 1)
n2 the other sample size (such as sample 2).

The following codes are used to conduct Wilcoxon rank-sum test.

> fit_w <- wilcox.test(value * Group, data=Fecal_G)

> fit_w

Wilcoxon rank sum test

data: value by Group

W = 15, p-value = 0.04

alternative hypothesis: true location shift is not equal to 0

Figure 8.1 shows that the distributions are skewed with the small sample size.
The Wilcoxon rank sum test may be more appropriate; however, the p = 0.04 given
by the Wilcoxon rank sum test leads to the same conclusion as the Welch’s t-test
with p = 0.01 at 0.05 significance level.

8.2 Comparisons of a Taxon of Interest Between Two
Groups

8.2.1 Comparison of Relative Abundance Using Wilcoxon
Rank Sum Test

When we analyze microbiome abundance data, it is inappropriate to draw infer-
ences regarding the total abundance in the ecosystem from the abundance of OTUs
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or abundance of taxa in the samples. Instead, we can use the relative abundance in
the sample to inference its relative abundance of a taxon in the ecosystem. The
reason underling it is that it exists a compositional constraint: all microbial relative
abundances within a sample sum to one, which results in compositional data
residing in a simplex (Aitchison 1982, 1986) rather than the Euclidean space. Thus,
it is often to standardize the data to a common scale to facilitate the comparison of
the abundance of the taxon across groups. The way is to divide the taxon count by
the total number of reads time 100 to convert the abundance to the percentage of
reads in the sample, scale the data to “the number of taxon per 100 reads”.

When we select a specific single taxon to test across groups, it is important to
make sure the specified taxon is based on hypothesis or theory to reduce the chance
to inflate the false positive rate (i.e., rejects the null hypothesis when it should not
be rejected).

Vdr in mice substantially affects beta diversity and consistently influences
individual bacterial taxa, such as Parabacteroides (Wang et al. 2016). In this
section, we illustrate Wilcoxon rank sum test to compare bacterial Bacteroides in
the Vdr mouse data set using fecal samples.

First, check total abundance in each sample.

> apply(abund_table,1, sum)
5_15_drySt-28F 20_12_CeSt-28F 1_11_drySt-28F 2_12_drySt-28F 3_13_drySt-28F 

1853           3239           6211           5115           6016 
4_14_drySt-28F 7_22_drySt-28F 8_23_drySt-28F 9_24_drySt-28F 19_11_CeSt-28F 

2343           2262           7255           5502           5067 
21_13_CeSt-28F 22_14_CeSt-28F 23_15_CeSt-28F 25_22_CeSt-28F 26_23_CeSt-28F 

2397           3788           9264           2072           6903 
27_24_CeSt-28F 

6327 

Then, calculate relative abundance by dividing each value by sample total
abundance.

> relative_abund_table<-decostand(abund_table, method = "total")

Check the total abundance in each sample to make the above calculations are
correct.

> apply(relative_abund_table, 1, sum)
5_15_drySt-28F 20_12_CeSt-28F 1_11_drySt-28F 2_12_drySt-28F 3_13_drySt-28F 

1              1              1              1              1 
4_14_drySt-28F 7_22_drySt-28F 8_23_drySt-28F 9_24_drySt-28F 19_11_CeSt-28F 

1              1              1              1              1 
21_13_CeSt-28F 22_14_CeSt-28F 23_15_CeSt-28F 25_22_CeSt-28F 26_23_CeSt-28F 

1              1              1              1              1 
27_24_CeSt-28F 

1

Take a look at the transformed data.
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22_14_CeSt-28F      0.0000000     0.000000  0.0007920    0.005280

23_15_CeSt-28F      0.0002159     0.000000  0.0010794    0.003346

25_22_CeSt-28F      0.0000000 0.000000  0.0033784    0.009170

26_23_CeSt-28F      0.0002897     0.000000  0.0007243    0.006664

27_24_CeSt-28F      0.0000000     0.000000  0.0039513    0.019282

> relative_abund_table[1:16,1:8]
Tannerella Lactococcus Lactobacillus Lactobacillus::Lactococcus

5_15_drySt-28F   0.256881     0.17593       0.05073                  0.0005397

20_12_CeSt-28F   0.020685     0.22754       0.18432                  0.0037048

1_11_drySt-28F   0.088392     0.36983       0.06988                  0.0040251

2_12_drySt-28F   0.113001     0.10714       0.14057                  0.0009775

3_13_drySt-28F   0.165559     0.39528       0.05352                  0.0028258

4_14_drySt-28F   0.172429     0.20102 0.08749                  0.0004268

7_22_drySt-28F   0.141026     0.38992       0.28470                  0.0057471

8_23_drySt-28F   0.072502     0.27195       0.32254                  0.0020675

9_24_drySt-28F   0.077063     0.41948       0.18175      0.0025445

19_11_CeSt-28F   0.000000     0.08328       0.06513                  0.0013815

21_13_CeSt-28F   0.002503     0.07217       0.26658                  0.0000000

22_14_CeSt-28F   0.005280     0.15312       0.16711                  0.0007920

23_15_CeSt-28F   0.003994     0.52537       0.19635                  0.0026986

25_22_CeSt-28F   0.018340     0.34122       0.30164                  0.0043436

26_23_CeSt-28F   0.011734     0.20339       0.19716                  0.0014486

27_24_CeSt-28F   0.037142     0.30235       0.05769                  0.0020547

Parasutterella Helicobacter Prevotella Bacteroides

5_15_drySt-28F      0.0005397     0.048030  0.0652995    0.147329

20_12_CeSt-28F      0.0000000     0.000000  0.0021612 0.010497

1_11_drySt-28F      0.0001610     0.000000  0.0465303    0.154242

2_12_drySt-28F      0.0007820     0.002542  0.0193548    0.073705

3_13_drySt-28F      0.0003324     0.003989  0.0556848    0.087434

4_14_drySt-28F      0.0000000     0.013658  0.0610329    0.085361

7_22_drySt-28F      0.0000000     0.001326  0.0490716    0.038019

8_23_drySt-28F      0.0016540     0.000000  0.0122674    0.058442

9_24_drySt-28F      0.0001818     0.000000  0.0152672    0.036714

19_11_CeSt-28F      0.0000000     0.000000  0.0000000    0.000000

21_13_CeSt-28F      0.0000000     0.000000  0.0004172    0.002086

Our interested bacterial Bacteroides is in column 8. Let’s subset this bacterial.

> (Bacteroides <-relative_abund_table[,8])
5_15_drySt-28F 20_12_CeSt-28F 1_11_drySt-28F 2_12_drySt-28F 3_13_drySt-28F 

0.147329       0.010497       0.154242       0.073705       0.087434 
4_14_drySt-28F 7_22_drySt-28F 8_23_drySt-28F 9_24_drySt-28F 19_11_CeSt-28F 

0.085361       0.038019       0.058442       0.036714       0.000000 
21_13_CeSt-28F 22_14_CeSt-28F 23_15_CeSt-28F 25_22_CeSt-28F 26_23_CeSt-28F 

0.002086       0.005280       0.003346       0.009170       0.006664 
27_24_CeSt-28F 

0.019282 

Now, combine Bacteroides and grouping data frames and subset fecal sanmples
for later use.

Bacteroides Location  Group
1  0.14732866    Fecal Vdr-/- 
3  0.15424247    Fecal Vdr-/- 
4  0.07370479    Fecal Vdr-/- 
5  0.08743351    Fecal Vdr-/- 
6  0.08536065    Fecal Vdr-/- 
7  0.03801945    Fecal     WT
8 0.05844245    Fecal     WT
9  0.03671392    Fecal     WT

The boxplot() function is used to generate a simple boxplot of Bacteroides with
group (Fig. 8.2).
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> boxplot(Bacteroides * Group,data=Fecal_Bacteroides_G, col=rainbow

(2),main="Bacteroides in Vdr WT/KO mice")

The following codes are used to generate boxplot using function ggplot()
(Fig. 8.3).

> ggplot(Fecal_Bacteroides_G, aes(x=Group, y=Bacteroides,col=factor

(Group)))+ geom_boxplot(notch=FALSE)

> ggplot(Fecal_Bacteroides_G, aes(x=Group, y=Bacteroides)) +

geom_boxplot(outlier.colour="red", outlier.shape=8, outlier.size=4) +

layer(stat_params = list(binwidth = 2))

The boxplots display taxa (Bacteriodes) in wild type (WT, n = 3) and Vdr
knockout mice (KO, n = 5).

> fit_w_b=wilcox.test(Bacteroides*Group,data=Fecal_Bacteroides_G)

> fit_w_b

Wilcoxon rank sum test

data: Bacteroides by Group

W = 15, p-value = 0.04

Vdr-/- WT
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Fig. 8.2 Boxplot of bacterial
Bacteroides with Vdr−/− and
WT groups in fecal samples

Bacteroides Location  Group
1 0.14733    Fecal Vdr-/- 
3     0.15424    Fecal Vdr-/- 
4     0.07370    Fecal Vdr-/- 
5     0.08743    Fecal Vdr-/- 
6     0.08536    Fecal Vdr-/- 
7     0.03802    Fecal     WT
8     0.05844    Fecal     WT
9     0.03671    Fecal     WT
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alternative hypothesis: true location shift is not equal to 0

The above Wolcoxon test indicates that a statistical significance of a relative
abundance of Bacteriodes exisits between Vdr−/− and WT mice. We can conclude
that Vdr knockout enriches Bacteriodes.

8.2.2 Comparison of Present or Absent Taxon Using
Chi-Square Test

A chi-square test, also written as v2 test, often used as short for Pearson’s chi-square
test, was proposed and first investigated its properties by Karl Pearson in 1900
(Pearson 1900). v2 test is applied to sets of categorical data to test whether an
observed frequency distribution differs from a claimed or theoretical distribution
(tests of goodness of fit) and to investigate whether the row variable and the column
variable in a contingency table are independent of each other (tests of
independence).

The test statistic of goodness of fit is given by:
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Fig. 8.3 Boxplot of bacterial Bacteroides with Vdr−/− and WT groups in fecal samples generated
using ggplot
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v2 ¼
Xn
i¼1

Oi � Eið Þ2
Ei

¼ N
Xn
i¼1

Oi=N � pið Þ2
pi

; ð8:4Þ

where

v2 Pearson’s test statistic, which asymptotically approaches a v2

distribution
Oi number of observations of category i
N total number of observations
Ei ¼ Npi expected (theoretical) frequency of category i under the null hypothesis
pi probability of category i in the population
n number of cells in the table.

The test statistic of independence is given below:

v2 ¼
Xr

i¼1

Xc

j¼1

Oi;j � Ei;j
� �2

Ei;j
¼ N

X
i;j

pi:p:j
Oi;j=N
� �� pi:p:j

pi:p:j

� �2

; ð8:5Þ

where

N total sample size (the sum of all cells in the table)
Eij ¼ Npi:p:j expected (theoretical) frequency under the null hypothesis of

independence

pi: ¼ Oi:
N ¼ Pc

j¼1

Oi;j

N
probability of observations of category i ignoring the column
attribute (probability of row totals)

p:j ¼ O:j

N ¼ Pr
i¼1

Oi;j

N
probability of observations of category j ignoring the row
attribute (probability of column totals).

As a rule of thumb, it requires that all expected cell counts equal or exceed 5 to
provide an adequate approximation to the distribution of Chi-square distribution
(Wackerly et al. 2002), although Cochran (1952) noted that this value could be as
low as 1 for some situations.

In this section, we illustrate v2 test to compare bacterial Parabacteroides in the
Vdr mouse data set using cecal samples. To illustrate the v2 test, we transform the
abundance count data of Parabacteroides into a binary variable. The count data in
the abundance table for the taxon Parabacteroides would be transformed to 0 if the
taxon is absent in the sample or to 1 if the taxon is present in the sample. The
transformed data are summarized in Table 8.1.

First, look at the abundance data to identify bacterial Parabacteroides and subset
this bacterial.
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> abund_table[1:16,1:27]

> (Parabacteroides <- abund_table[,27])

Then, combine the subsetted data with grouping data frame.

> Parabacteroides_G <-cbind(Parabacteroides, grouping)

> rownames(Parabacteroides_G)<-NULL

Since the combined dataframe includes both fecal and cecal samples, let’s subset
cecal data from this dataframe.

> Cecal_Parabacteroides_G <- subset(Parabacteroides_G, Location=="Cecal")
> Cecal_Parabacteroides_G

Parabacteroides Location  Group
2                0    Cecal Vdr-/- 
10               0    Cecal Vdr-/- 
11               1    Cecal Vdr-/- 
12               4    Cecal Vdr-/- 
13              15    Cecal Vdr-/- 
14               5    Cecal     WT
15               4 Cecal     WT
16               6    Cecal     WT

Recode a binary variable “Present” for Chi-square test.

> Cecal_Parabacteroides_G$Present <- ifelse((Cecal_Parabacteroides_G$Parabact
eroides > 0), "Present","Absent")
> Cecal_Parabacteroides_G

Parabacteroides Location  Group Present
2                0    Cecal Vdr-/- Absent
10               0    Cecal Vdr-/- Absent
11               1    Cecal Vdr-/- Present
12               4    Cecal Vdr-/- Present
13              15    Cecal Vdr-/- Present 
14               5    Cecal     WT Present
15               4    Cecal     WT Present
16               6    Cecal     WT Present

The following codes are used to conduct Chi-square test.

Table 8.1 Distribution of the Parabacteroides rate across Vdr−/− and WT cecal samples obtained
from the Vdr mouse data set

Group Presence Absence Total

Vdr−/− 3 (60%) 2 (40%) 5

WT 3 (100%) 0 (0%) 3
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> library(MASS)       
> tbl = table(Cecal_Parabacteroides_G$Group, Cecal_Parabacteroides_G$Present) 
> tbl                 

Absent Present
Vdr-/- 2       3
WT          0       3

> chisq.test(tbl)

Pearson's Chi-squared test with Yates' continuity correction

data:  tbl
X-squared = 0.18, df = 1, p-value = 0.7

Warning message:
In chisq.test(tbl) : Chi-squared approximation may be incorrect

Table 8.1 shows the distribution of these rates—3 (60%) out of 5 Vdr−/− cecal
samples had Parabacteroides, while 3 (100%) out of 3 wild type samples did. To
test the null hypothesis that of no difference in the rates of occurrence between the
two groups a chi-square test gave a P-value 0.7 (X-squared = 0.18, df = 1), so we
can not reject the null hypothesis of no difference between the two groups, and
conclude that they do not have different rates of occurrence. Note that because the
small sample size, there is a warning message in the output. Typically if the cell
values are small (such as <5) in the contingency table, Chi-square test may be
incorrect, a Fisher’s exact test is applied.

> fisher.test(tbl)

Fisher’s Exact Test for Count Data

data: tbl

p-value = 0.5

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.109 Inf

sample estimates:

odds ratio

Inf

The result of Fisher’s exact test is not significant either with p-value of 0.5,
which is consistent with that of Chi-square test. However, the test is hard to con-
clude with the infinite confidence interval.
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8.3 Comparisons Among More than Two Groups Using
ANOVA

8.3.1 One-Way ANOVA

Analysis of variance (ANOVA) was proposed by Ronald Fisher in 1918 (Fisher
1918) and became well known after Fisher’s book “Statistical Methods for
Research Workers” was published in 1925. ANOVA generalizes the two-sample t-
test to more than two groups. The null hypothesis of ANOVA is: all the means of
compared groups are equal. The analysis using ANOVA relies on an assumption of
normality of the underlying data. However, most of microbiome community
composition data, especially multivariate data, are not normally distributed, thus,
ANOVA is only used for comparing univariate analysis of alpha diversity measures
in this book. For multivariate community composition data, either a non-parametric
version of ANOVA or other suitable statistical methods are applied.

The formation of testing statistic is through using traditional partitioning of the
sum of squares (portioning of variation). The definitional equation of sample
variance is

s2 ¼ 1
n� 1

Xn
i¼1

yi � �yð Þ2; ð8:6Þ

where s2 = sample variance. The sample variance is calculated by the sum of
squares (SS) divided by n − 1 (called degrees of freedom, DF). The result is called
the mean square (MS) and the squared terms are deviations from the sample mean.

The fundamental technique of ANOVA partitions the total sum of squares (SS)
of deviations into two components: sum of squares related to treatment and sum of
squares related to error:

SSTotal ¼ SSTreatments þ SSError

The number of degrees of freedom, DF, can be partitioned in a similar way:

DFTotal ¼ DFTreatments þDFError

The F-test is used for comparing the factors of the total deviation. The F-value is
obtained by dividing the variance between treatments by the variance within
treatments. The F test statistic in one-way ANOVA is given below:

F ¼ MSTreatments
MSError

¼ SSTreatments=ðK � 1Þ
SSError=ðN � 1Þ ð8:7Þ

where MS = mean square, K = number of treatments and N = total number of
samples.
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To illustrate ANOVA in microbiome community composition study, we use our
Vdr−/− mouse data. One hypothsis of this study is that Vdr status and intestinal
location have no effects on the bacterial community in the gut. We analyze Chao 1
alpha diversity measures using ANOVA to address this hypothsis.

For your convenience, we copy the codes used in Chap. 6 to calculate Chao 1
richness measures below. The results were wrapped up a data frame. The group
information is merged for the ANOVA test.

The following codes make a dataframe of Chao1 richness and add group
information into this dataframe.

> CH=estimateR(abund_table)[2,] 
> df_CH <-data.frame(sample=names(CH),value=CH,measure=rep("Chao1",length(CH)
)) 
> df_CH_G <-cbind(df_CH, grouping)
> rownames(df_G)<-NULL
> df_CH_G

sample  value measure Location  Group
5_15_drySt-28F 5_15_drySt-28F  94.75   Chao1    Fecal Vdr-/- 
20_12_CeSt-28F 20_12_CeSt-28F  59.80   Chao1    Cecal Vdr-/- 
1_11_drySt-28F 1_11_drySt-28F  77.00   Chao1    Fecal Vdr-/- 
2_12_drySt-28F 2_12_drySt-28F 103.27   Chao1    Fecal Vdr-/- 
3_13_drySt-28F 3_13_drySt-28F  85.67   Chao1    Fecal Vdr-/- 
4_14_drySt-28F 4_14_drySt-28F  55.14   Chao1    Fecal Vdr-/- 
7_22_drySt-28F 7_22_drySt-28F  62.75   Chao1    Fecal  WT
8_23_drySt-28F 8_23_drySt-28F  67.67   Chao1    Fecal     WT
9_24_drySt-28F 9_24_drySt-28F  80.50   Chao1    Fecal     WT
19_11_CeSt-28F 19_11_CeSt-28F  52.17   Chao1    Cecal Vdr-/- 
21_13_CeSt-28F 21_13_CeSt-28F  55.00   Chao1    Cecal Vdr-/- 
22_14_CeSt-28F 22_14_CeSt-28F  59.00   Chao1    Cecal Vdr-/- 
23_15_CeSt-28F 23_15_CeSt-28F  60.88   Chao1    Cecal Vdr-/- 
25_22_CeSt-28F 25_22_CeSt-28F  51.00   Chao1    Cecal     WT
26_23_CeSt-28F 26_23_CeSt-28F 112.86   Chao1    Cecal     WT
27_24_CeSt-28F 27_24_CeSt-28F  78.06   Chao1    Cecal     WT

The new four levels of group are generated using interaction of Location and
Group.

> df_CH_G$Group4<- with(df_CH_G, interaction(Location,Group))
> df_CH_G

sample  value measure Location  Group       Group4
5_15_drySt-28F 5_15_drySt-28F  94.75   Chao1    Fecal Vdr-/- Fecal.Vdr-/- 
20_12_CeSt-28F 20_12_CeSt-28F  59.80   Chao1    Cecal Vdr-/- Cecal.Vdr-/- 
1_11_drySt-28F 1_11_drySt-28F  77.00   Chao1    Fecal Vdr-/- Fecal.Vdr-/- 
2_12_drySt-28F 2_12_drySt-28F 103.27   Chao1    Fecal Vdr-/- Fecal.Vdr-/- 
3_13_drySt-28F 3_13_drySt-28F  85.67   Chao1    Fecal Vdr-/- Fecal.Vdr-/- 
4_14_drySt-28F 4_14_drySt-28F  55.14   Chao1    Fecal Vdr-/- Fecal.Vdr-/- 
7_22_drySt-28F 7_22_drySt-28F  62.75   Chao1    Fecal     WT     Fecal.WT
8_23_drySt-28F 8_23_drySt-28F  67.67   Chao1    Fecal     WT     Fecal.WT
9_24_drySt-28F 9_24_drySt-28F  80.50   Chao1    Fecal     WT     Fecal.WT
19_11_CeSt-28F 19_11_CeSt-28F  52.17   Chao1    Cecal Vdr-/- Cecal.Vdr-/- 
21_13_CeSt-28F 21_13_CeSt-28F  55.00   Chao1    Cecal Vdr-/- Cecal.Vdr-/- 
22_14_CeSt-28F 22_14_CeSt-28F  59.00   Chao1    Cecal Vdr-/- Cecal.Vdr-/- 
23_15_CeSt-28F 23_15_CeSt-28F  60.88   Chao1    Cecal Vdr-/- Cecal.Vdr-/- 
25_22_CeSt-28F 25_22_CeSt-28F  51.00   Chao1    Cecal     WT     Cecal.WT
26_23_CeSt-28F 26_23_CeSt-28F 112.86   Chao1    Cecal     WT     Cecal.WT
27_24_CeSt-28F 27_24_CeSt-28F  78.06   Chao1    Cecal     WT     Cecal.WT

We explore the Chao 1 index using boxplot() (Fig. 8.4).
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> boxplot(value*Group4, data=df_CH_G, col=rainbow

(4), main="Chao1 index")

The following ggplot() generates high quality boxplot for publication use
(Fig. 8.5).

> p <- ggplot(df_CH_G, aes(x=Group4, y=value),col=rainbow

(4), main="Chao1 index") + geom_boxplot()

Fig. 8.4 Boxplot of Chao 1 index with four groups generated using function boxplot()
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Fig. 8.5 Boxplot of Chao 1 index with four groups generated using ggplot()
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> p + coord_flip()

> ggplot(df_CH_G, aes(x=Group4, y=value,col=factor(Group4))) +

+ geom_boxplot(notch=FALSE)

Except visual inspection of normality of the underlying data, homogeneity of
variance can be tested. Sokal and Rohlf (2011) describe three such tests: the
Bartlett’s test for homogeneity, Hartley’s Fmax test and the log-anova, or Scheffé-
Box test. To proceed with the verification of using ANOVA, we must first test for
homogeneity of variances. The software R provides two tests: the Bartlett’s test,
and the Fligner-Killeen test.

To illustrate the test for homogeneity of variances, we use the Chao 1 richness
measures of Vdr−/− and WT mouse data from both fecal and cecal locations. The
null hypothesis (H0) is that all variances in four groups are the same.

We begin with the Bartlett’s test. For convenience of processing the Bartlett’s
test, we use the function select() from dplyr package to select the relevant group and
Chao 1 value columns.

> library(dplyr)

> df_CH_G4 <- select(df_CH_G, Group4,value)
> df_CH_G4

Group4  value
5_15_drySt-28F Fecal.Vdr-/- 94.75
20_12_CeSt-28F Cecal.Vdr-/- 59.80
1_11_drySt-28F Fecal.Vdr-/- 77.00

2_12_drySt-28F Fecal.Vdr-/- 103.27
3_13_drySt-28F Fecal.Vdr-/- 85.67
4_14_drySt-28F Fecal.Vdr-/- 55.14
7_22_drySt-28F     Fecal.WT  62.75
8_23_drySt-28F     Fecal.WT  67.67
9_24_drySt-28F     Fecal.WT  80.50
19_11_CeSt-28F Cecal.Vdr-/- 52.17
21_13_CeSt-28F Cecal.Vdr-/- 55.00
22_14_CeSt-28F Cecal.Vdr-/- 59.00
23_15_CeSt-28F Cecal.Vdr-/- 60.88
25_22_CeSt-28F     Cecal.WT  51.00
26_23_CeSt-28F     Cecal.WT 112.86
27_24_CeSt-28F     Cecal.WT  78.06

The R codes below conduct the Bartlett’s test of homegeneity of variances:

> bartlett.test(df_CH_G4, Group4)

Bartlett test of homogeneity of variances

data: df_CH_G4

Bartlett’s K-squared = 62, df = 1, p-value = 3e-15

The function gives us the K squared value of the statistical tests, and the p-value.
It shows that the null hypothesis can be rejected at the 5% level. Alternatively, we
can compare the Bartlett’s K-squared with the value of chi-square tables, using the
same level of alpha and degrees of freedom at the qchisq() function. If
Chi-squared > Bartlett’s K-squared, we accept the null hypothesis H0 (homo-
geneity of variances), elsewise reject the null hypothesis.
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> qchisq(0.95, 1)

[1] 3.841

Because Chi-squared is less than Bartlett’s K-squared, we reject the null
hypothesis H0 and conclude that the variances are not same.

We now use Fligner-Killeen test to check the homoscedasticity. The syntax as
below is quite similar.

> fligner.test(df_CH_G4, Group4)

Fligner-Killeen test of homogeneity of variances

data: df_CH_G4

Fligner-Killeen:med chi-squared = 21, df = 1, p-value = 6e-06

The conclusions are similar as the test of Bartlett: the variances are not the same.
However, for the purpose of illustration, we proceed to analyze the data by
ANOVA regardless of the test results of homegeneity of variances.

The following R codes fit the model:

> fit = lm(formula = value*Group4,data=df_CH_G)

Then we analyze the ANOVA model:

> anova (fit)
Analysis of Variance Table

Response: value
Df Sum Sq Mean Sq F value Pr(>F)

Group4     3   1926     642    2.19   0.14
Residuals 12   3513     293           

Or just use the following concise R codes: aov() function nested within summary
() function.

> summary(aov(value~Group4, data=df_CH_G))
Df Sum Sq Mean Sq F value Pr(>F)

Group4       3   1926     642    2.19   0.14
Residuals   12   3513     293 

You may also want print out the intercept by using below R codes.

> aov_fit <- aov(value*Group4,data=df_CH_G)

> summary(aov_fit, intercept=T)

The output of the function is a classical ANOVA table.

Df Sum Sq Mean Sq F value Pr(>F)    
(Intercept)  1  83450   83450  285.08  1e-09 ***
Group4       3   1926     642    2.19   0.14    
Residuals   12   3513     293                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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As p-value > 0.05, we accept the null hypothesis H0: the four means are not
different. You can also compare the computed F-value with the tabulated F-value:

> qf(0.95, 12, 3)

[1] 8.745

Because the tabulated F-value is larger than the computed F-value, we accept the
null hyptohesis.

The outputs from ANOVA are some kind of messy. You can use broom package
to obtain the tidy and more informative tables.

6  4_14_drySt-28F  55.14 Fecal.Vdr-/-   83.17   7.651 -28.024 0.2000  15.17 0.2095941

7  7_22_drySt-28F  62.75     Fecal.WT   70.31   9.878  -7.556 0.3333  17.65 0.0365658

8  8_23_drySt-28F  67.67     Fecal.WT   70.31   9.878  -2.639 0.3333  17.84 0.0044605

9  9_24_drySt-28F  80.50     Fecal.WT   70.31   9.878  10.194 0.3333  17.47 0.0665687

10 19_11_CeSt-28F  52.17 Cecal.Vdr-/-   57.37   7.651  -5.202 0.2000  17.78 0.0072213

11 21_13_CeSt-28F  55.00 Cecal.Vdr-/-   57.37   7.651  -2.368 0.2000  17.85 0.0014970

12 22_14_CeSt-28F  59.00 Cecal.Vdr-/-   57.37   7.651   1.632 0.2000  17.86 0.0007105

13 23_15_CeSt-28F  60.88 Cecal.Vdr-/-   57.37   7.651   3.507 0.2000  17.83 0.0032819

14 25_22_CeSt-28F  51.00     Cecal.WT   80.64   9.878 -29.639 0.3333  14.13 0.5626776

15 26_23_CeSt-28F 112.86     Cecal.WT   80.64   9.878  32.218 0.3333  13.33 0.6648948

16 27_24_CeSt-28F  78.06     Cecal.WT   80.64   9.878  -2.580 0.3333  17.84 0.0042631

   .std.resid

1      0.7570

2      0.1589

3     -0.4030

4      1.3139

5      0.1634

6     -1.8313

7     -0.5409

8     -0.1889

9      0.7298

10    -0.3399

11    -0.1548

12     0.1066

13     0.2292

14    -2.1217

15     2.3063

16    -0.1847

> glance(aov_fit)
r.squared adj.r.squared sigma statistic p.value df logLik   AIC   BIC deviance

1    0.3541        0.1926 17.11     2.193  0.1418  4 -65.84 141.7 145.5     3513

  df.residual

1          12

> library(broom)
> tidy(aov_fit)

term df sumsq meansq statistic p.value
1    Group4  3  1926  641.9     2.193  0.1418
2 Residuals 12  3513  292.7        NA      NA
> augment(aov_fit)

.rownames  value       Group4 .fitted .se.fit  .resid   .hat .sigma   .cooksd

1  5_15_drySt-28F  94.75 Fecal.Vdr-/- 83.17   7.651  11.584 0.2000  17.44 0.0358109

2  20_12_CeSt-28F  59.80 Cecal.Vdr-/- 57.37   7.651   2.432 0.2000  17.85 0.0015781

3  1_11_drySt-28F  77.00 Fecal.Vdr-/- 83.17   7.651  -6.166 0.2000  17.75 0.0101485

4  2_12_drySt-28F 103.27 Fecal.Vdr-/- 83.17   7.651  20.106 0.2000  16.53 0.1078934

5  3_13_drySt-28F  85.67 Fecal.Vdr-/- 83.17   7.651   2.500 0.2000  17.85 0.0016683
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8.3.2 Pairwise and Tukey Multiple Comparisons

The ANOVA results give the overall test of group difference (in this case, 4 groups
with fecal, cecal, Vdr−/−, and WT combination). Our purpose is to also test each
pair difference associated with Chao 1 richness. The following steps are to illustrate
the capabilities of pairwise t-test and Tukey’s ad hoc multiple comparisons in R.

Let’s run unadjusted pairwise t-test for all the four groups. The default setting in
R for this test is to adjust p-values as a post hoc using the Holm method, so to get
un-adjusted p-values, you need to specify p.adjust = “none”. R’s default is to
assume homogeneity of variance, therefore, it is unnecessary to specify pool.
sd = T. If your data have unequal variance, you need to use pool.sd = F.

> #Pairwise tests of mean differences
> pairwise.t.test(df_CH_G$value, df_CH_G$Group4,p.adjust="none",pool.sd=T)

Pairwise comparisons using t tests with pooled SD 

data:  df_CH_G$value and df_CH_G$Group4 

Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT
Fecal.Vdr-/- 0.03         - -
Cecal.WT     0.09     0.84         -
Fecal.WT     0.32         0.32         0.47    

P value adjustment method: none 

If we don’t make any adjustments to our p-values, there are statistically differ-
ences between fecal Vdr−/−, cecal Vdr−/−, and marginally statistically differences
between cecal WT and cecal Vdr−/−. These differences are visualized in above
boxplot.

As we notice, the p.adjust() function is nested within the pairwise.t.test()
function. This is a basic and very useful R function. It can be used to control the
family-wise Type I error. The p.adjust() function can be nested in other function, or
be independently called. In an independent call, the syntax is given below:

p.adjust(p, method = p.adjust.methods, n = length(p))

where, p = numeric vector of p-values, method = correction method, n = number
of comparisons, must be at least length(p). The adjustment methods include c
(“bonferroni”, “holm”, “hochberg”, “hommel”, “BH”, “BY”, “fdr”, “none”). Where
“bonferroni” is the Bonferroni correction in which the p-values are multiplied by
the number of comparisons; “holm”, “hochberg”, “hommel”, “BH”, “BY”, “fdr”,
are refered to Holm (1979), Hochberg (1988), Hommel (1988), Benjamini and
Hochberg (1995) and Benjamini and Yekutieli (2001), and “fdr” is alias of “BH”.
They are less conservative corrections.
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> #conservative Bonferroni adjustment
> pairwise.t.test(df_CH_G$value, df_CH_G$Group4, p.adjust="bonferroni", pool.
sd = T)

Pairwise comparisons using t tests with pooled SD 

data:  df_CH_G$value and df_CH_G$Group4 

Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT
Fecal.Vdr-/- 0.2          - -
Cecal.WT     0.5          1.0          -
Fecal.WT     1.0     1.0          1.0     

P value adjustment method: bonferroni 

Fecal.Vdr-/- 0.2          - -
Cecal.WT     0.4          1.0          -
Fecal.WT     1.0          1.0          1.0     

P value adjustment method: holm 

> #Holm method 
> pairwise.t.test(df_CH_G$value, df_CH_G$Group4, p.adjust="holm",pool.sd = T)

Pairwise comparisons using t tests with pooled SD 

data:  df_CH_G$value and df_CH_G$Group4 

Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT

> #Benjamini & Hochberg(BH)
> pairwise.t.test(df_CH_G$value, df_CH_G$Group4, p.adjust="BH", pool.sd = T)

Pairwise comparisons using t tests with pooled SD 

data:  df_CH_G$value and df_CH_G$Group4 

Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT
Fecal.Vdr-/- 0.2          - -
Cecal.WT     0.3          0.8          -
Fecal.WT     0.5          0.5          0.6     

P value adjustment method: BH 

> #Benjamini & Yekutieli
> pairwise.t.test(df_CH_G$value, df_CH_G$Group4, p.adjust="BY", pool.sd = T)

Pairwise comparisons using t tests with pooled SD 

data:  df_CH_G$value and df_CH_G$Group4 

Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT
Fecal.Vdr-/- 0.5          - - 
Cecal.WT     0.6          1.0          -
Fecal.WT     1.0          1.0          1.0     

P value adjustment method: BY 

All four adjustments above give no significant differences of pairwise compar-
isons. The conservative Bonferroni and Benjamini & Yekutieli adjustments have
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largest p-values. With the Benjamini & Hochberg method none of the comparisons
are significant either, but their adjusted p-values are smaller. The Benjamini &
Hochberg method is more powerful in this case.

Both Benjamini & Hochberg (BH) and Benjamini & Yekutieli (BY) methods are
for adjusting for the “False Discovery Rate”. Actually it is not a true control of
family-wise error. The False Discovery Rate methods find the same results: all
pairwise comparisons are not significant differences.

Next, let’s show using the TukeyHSD () function to do Tukey multiple com-
parisons of means and obtain their confidence intervals. The way to call this
function is similar to the summary() function. It takes the variable from the original
ANOVA calculation as one of its arguments (Fig. 8.6).

> #Tukey multiple comparisons of means
> TukeyHSD(aov_fit, conf.level=.95) 
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = value ~ Group4, data = df_CH_G)

$Group4
diff     lwr   upr  p adj

Fecal.Vdr-/--Cecal.Vdr-/- 25.798  -6.328 57.92 0.1334
Cecal.WT-Cecal.Vdr-/- 23.270 -13.825 60.37 0.2935
Fecal.WT-Cecal.Vdr-/- 12.937 -24.159 50.03 0.7328
Cecal.WT-Fecal.Vdr-/- -2.528 -39.624 34.57 0.9969
Fecal.WT-Fecal.Vdr-/- -12.861 -49.957 24.23 0.7362
Fecal.WT-Cecal.WT         -10.333 -51.807 31.14 0.8792

> plot(TukeyHSD(aov(df_CH_G$value~df_CH_G$Group4), conf.level=.95))

Fig. 8.6 Plot of Tukey
multiple comparisons of
means and their confidence
intervals in Vdr−/− mouse data
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This plot represents all possible pairwise tests and the p-values, and 95% con-
fidence intervals. The default 95% confidence level can be changed based on your
choice. Because all confidence lines cross 0, for this example, there are no sig-
nificantly different terms after adjustment using Tukey multiple comparisons.

8.4 Comparisons Among More than Two Groups Using
Kruskal-Wallis Test

8.4.1 Kruskal-Wallis Test

The Kruskal-Wallis test or One-way ANOVA on ranks, named after William
Kruskal and W.Allen Wallis, is a non-parametric method for testing whether sam-
ples are originated from the same distribution (Kruskal and Wallis 1952; Daniel
1990). The parametric equivalent of the Kruskal-Wallis test is the one-way ANOVA.
It extends the Mann-Whitney U test to more than two groups. The null hypothesis of
the Kruskal-Wallis test is that the mean ranks of the groups are the same. Unlike the
analogous one-way ANOVA, the non-parametric Kruskal-Wallis test does not
assume a normal distribution of the underlying data. It has been widely used in
microbiome research. For example, the post-sequencing microbiome data are not
normally distributed and contain some strong outliers. Therefore, it is appropriate to
use ranks rather than actual values to avoid the testing being affected by the presence
of outliers or by non-normal distribution. The test statistic takes four main steps:

Step 1. Rank all data from all groups together in a single series in ascending order,
i.e., rank the data from 1 to N ignoring group membership.

Step 2. Assign any tied values by averaging their rank position.
Step 3. Sum up the different ranks, e.g., R1 R2 R3… for each of the different

groups.
Step 4. Calculate the test statistic by applying the following formula:

H ¼ 12
nðnþ 1Þ

Xk
i¼1

R2
i

ni
� 3ðnþ 1Þ; ð8:8Þ

where

H Kruskal-Wallis test statistic
n total number of measurements in all samples
ni number of measurements in sample from population i
k number of populations
Ri rank sum for sample i.
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The Kruskal-Wallis test statistic is approximately a chi-square distribution, with
k − 1 degrees of freedom if ni values are ‘large.’ The approximation is generally
accepted to be adequate when each of the ni values is greater than or equal 5.

8.4.2 Compare Diversities Among Groups

Kruskal-Wallis test or Kruskal-Wallis one-way ANOVA is performed to compare
multiple groups that data do not follow a normal distribution. This test is similar to
the Wilcoxon rank sum test for two samples. We first use our Vdr−/− mouse data to
illustrate this test.

> library(dplyr)

> Data <- mutate(df_CH_G, Group = factor(df_CH_G$Group4, levels=unique

(df_CH_G$Group4)))

Obtain Descriptive Statistics

> library(FSA)
> Summarize(value ~ Group4, data = df_CH_G)

Group4 n  mean     sd   min    Q1 median    Q3    max
1 Cecal.Vdr-/- 5 57.37  3.659 52.17 55.00  59.00 59.80  60.88
2 Fecal.Vdr-/- 5 83.17 18.494 55.14 77.00  85.67 94.75 103.27
3     Cecal.WT 3 80.64 31.009 51.00 64.53  78.06 95.46 112.86
4     Fecal.WT 3 70.31  9.165 62.75 65.21  67.67 74.08  80.50

Generate Histograms by Group (Fig. 8.7).

> #Individual plots in panel of 2 columns and 2 rows

> library(lattice)

> histogram(* value|Group4, data=df_CH_G,layout=c(2,2))

The histogram shows that the distributions of values among groups are different
in this case. We now conduct Kruskal-Wallis test to compare the differences of
medians using the kruskal.test() function.

> #kruskal wallis test of Chao 1 richness

> kruskal.test(value * Group4, data = df_CH_G)

Kruskal-Wallis rank sum test
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data: value by Group4

Kruskal-Wallis chi-squared = 5.2, df = 3, p-value = 0.2

The value of the test statistic is 5.2 with p-value greater than 0.05 and it is also
lower than the chi-square-tabulation:

> qchisq(0.950, 3)

[1] 7.815

Thus we accept the null hypothesis H0: the medians of the 4 groups are statis-
tically equal at 5% significant level.

Generally, a post hoc analysis is further conducted to find which levels of the
groups are different from each other if the Kruskal-Wallis test is significant. In this
case, the Kruskal-Wallis test is not significant. For the purpose of illustration, we
conduct two post hoc tests: Nemenyi test and Dunn test. Similar to ANOVA, we
can choose a method to adjust the p-values to control the familywise error rate or to
control the false discovery rate. When you enter ?p.adjust in R or RStudio, it
appears a link to the document “Adjust P-values for Multiple Comparisons”. You
can check the details of adjustment methods from this link.

Nemenyi Test for Multiple Comparisons
Nemenyi test is performed via the NemenyiTest() function in DescTools package.
We first load the DescTools package and call the function NemenyiTest(). The

Fig. 8.7 Histograms of four groups in Vdr mouse fecal and cecal data
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method for adjusting the p-values should be one of “tukey”, “chisq”. We here
choose the Tukey method.

> library(DescTools)
> #Tukey method for adjusting p-values
> Test_N = NemenyiTest(x = df_CH_G$value,
+                  g = df_CH_G$Group4,
+                  dist="tukey")
> Test_N

Nemenyi's test of multiple comparisons for independent samples (tukey)  

mean.rank.diff   pval    
Fecal.Vdr-/--Cecal.Vdr-/- 6.6000 0.1254    
Cecal.WT-Cecal.Vdr-/- 4.7333 0.5237    
Fecal.WT-Cecal.Vdr-/- 5.0667 0.4636    
Cecal.WT-Fecal.Vdr-/- -1.8667 0.9501    
Fecal.WT-Fecal.Vdr-/- -1.5333 0.9713    
Fecal.WT-Cecal.WT                 0.3333 0.9998    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Nemenyi’s test shows that there is no significant mean rank differences of Chao
1 diversity among locations and genotypes in fecal and cecal vdr knockout samples
using Tukey adjustment method. However, when the groups have unequal numbers
of observations, Nemenyi test is inappropriate, and the Dunn test is appropriate (Zar
2010). We run the Dunn test as below.

Dunn Test for Multiple Comparisons
The most popular post hoc Kruskal-Wallis test is the Dunn test. We can perform the
Dunn test using the dunnTest() function from FSA package. In following, we call the
function dunnTest() and use Benjamini and Hochberg method to adjust the p-values.

> library(FSA)
> # “bh” suggests Benjamini and Hochberg  method for adjusting p-values
> Test_N = dunnTest(df_CH_G$value ~ df_CH_G$Group4,data=df_CH_G, method="bh")
> Test_N
Dunn (1964) Kruskal-Wallis multiple comparison
p-values adjusted with the Benjamini-Hochberg method.

Comparison        Z P.unadj  P.adj
1     Cecal.Vdr-/- - Cecal.WT -1.36136 0.17340 0.3468
2 Cecal.Vdr-/- - Fecal.Vdr-/- -2.19190 0.02839 0.1703
3     Cecal.WT - Fecal.Vdr-/- -0.53688 0.59135 0.8870
4     Cecal.Vdr-/- - Fecal.WT -1.45723 0.14505 0.4352
5         Cecal.WT - Fecal.WT -0.08575 0.93167 0.9317
6     Fecal.Vdr-/- - Fecal.WT  0.44100 0.65921 0.7911

Dunn test shows that there is a statistical significant difference of Chao 1
diversity between cecal and fecal Vdr−/− samples. However, after the multiple
comparison p-values are adjusted with the Benjamini-Hochberg method, there are
no statistical significant terms among the locations and genotypes in the samples.
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8.4.3 Find Significant Taxa Among Groups

In this section, we use Kruskal-Wallis test to illustrate how to find significant taxa
among groups. Suppose we want to know if there exist any significant taxa among
samples of Vdr−/− and WT mice from fecal and cecal locations. We use the
Kruskal-Wallis test to each one of the 248 taxa (bacteria) in the data set.

First, normalize the abundance data and make the data to a data frame. One
normalization method is to use log transformation.

> data<-log((abund_table+1)/(rowSums(abund_table)+dim(abund_table)

[2]))

> df<-as.data.frame(data)

Another normalization method is to convert the adundance count into relative
abundance.

> df <- as.data.frame(abund_table/rowSums(abund_table))

Then, use the kruskal.test() function and an iterative R function to perform 248
tests (each for one bacterium). The kruskal.test() function have several key
components:

• The test is looping for all taxa (columns) with the codes “for (i in 1:dim(df)[2])”.
• For each loop, run Kruskal-Wallis test with codes “KW_test <- kruskal.test(df[,i],

g=Group4)”.
• The results are stored in a dataframe with one row per sample, and one column

per each p-value of the KW test.
• Report the number of tests with cat function “cat(paste(“Kruskal-Wallis test for

”,names(df)[i],“ ”, i, “/”, dim(df)[2], “; p-value=”, KW_test$p.value,“\n”,
sep=“”))”.

> KW_table <- data.frame()

> for (i in 1:dim(df)[2]) {

+ #run KW test for each bacterium

+ KW_test <- kruskal.test(df[,i], g=df_CH_G$Group4)

+ # Store the result in the data frame

+ KW_table <- rbind(KW_table,

+ data.frame(id=names(df)[i],

+ p.value=KW_test$p.value

+ ))

+ # Report number of bacteria tested
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+ cat(paste("Kruskal-Wallis test for ",names(df)[i]," ", i, "/",

+ dim(df)[2], "; p-value=", KW_test$p.value,"\n", sep=""))

+ }

Check the dataframe table to make sure the function works:

> #Check the data frame table
> head(kW_table)

id  p.value
1                 Tannerella 0.005289
2                Lactococcus 0.407302
3              Lactobacillus 0.058626
4 Lactobacillus::Lactococcus 0.476355
5             Parasutterella 0.120519
6               Helicobacter 0.140053

8.4.4 Multiple Testing and E-value, FWER and FDR

Several different types of multiple testing corrections exist in the literature. Among
them the Bonferroni correction is more conservative. The correction is simply to
divide the alpha by the number of tests. We have illustrated p-value adjustment
using Bonferroni, Holm, Tukey methods and two versions of method adjusting for
the “False Discovery Rate” in pairwise comparisons and tests using ANOVA in
Sect. 8.3.2, and post hoc of Kruskal-Wallis test in Sect. 8.4.2. In this section, we
present general multiple testing corrections: E-value, Family-Wise Error Rate
(FWER), and FDR.

8.4.4.1 E-value

The E-value is the expected number of false positives by chance when you make
multiple tests. You can simply multiply the p-value with the number of taxa on
which the test is performed to get it: E-value = p-value � the number of tests.
Please note that on the E-value, the base correction is to use the original alpha, the
p-value from testing rather than the nominal p-value.

> #E-value

> KW_table$E.value <-KW_table$p.value * dim(KW_table)[1]

> KW_table$E.value

Since the E-value is just multiplying the p-value by the number of tests, it can be
larger than 1. If there are many taxa in the dataframe for testing, this correction
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method is not easy to find the significant taxa. Significant taxa are those for which
the E-value is much smaller than 1. The following codes are used to check whether
or not the E-values are added to the result data frame:

> #check E-value in result data frame
> head(kW_table)

id  p.value E.value
1                 Tannerella 0.005289   1.312
2                Lactococcus 0.407302 101.011
3              Lactobacillus 0.058626  14.539
4 Lactobacillus::Lactococcus 0.476355 118.136
5             Parasutterella 0.120519  29.889
6               Helicobacter 0.140053  34.733

8.4.4.2 FWER

FWER is the probability that you make at least one false positive (type I error). In
other words, it is the probability that you did not reject the null hypothesis H0: there
are no differences among groups while making multiple tests. The formula is
given by:

FWER ¼ 1� 1� p� valueð ÞT; ð8:9Þ

where, T = the number of tests. In order to avoid rounding errors caused by direct
calculation using above formula, in R it is better to compute FWER with a right-tail
binomial distribution test. The R codes are given as below.

> #FWER

> KW_table$FWER <- pbinom(q=0, p=KW_table$p.value,size=dim(KW_table)[1],

lower.tail=FALSE)

Check the dataframe to see if FWER are added to the result data frame:

> #check the dataframetable
> head(kW_table)

id  p.value E.value   FWER
1                 Tannerella 0.005289   1.312 0.7316
2                Lactococcus 0.407302 101.011 1.0000
3              Lactobacillus 0.058626  14.539 1.0000
4 Lactobacillus::Lactococcus 0.476355 118.136 1.0000
5             Parasutterella 0.120519  29.889 1.0000
6               Helicobacter 0.140053  34.733 1.0000
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8.4.4.3 FDR

Last but not least important is the FDR. Benjamini and Hochberg (1995) defined the
false discovery rate as follows:

FDR = expected proportion of erroneous rejections among all rejections.
In this case, FDR is the proportion of false positives among those taxa accepted

as positive when you make multiple tests. The Benjamini-Hochberg correction
consists in following steps.

First, order p-values from smallest to largest and make a rank (1, 2, 3,…, k,…,
T); the codes are given below:

> #FDR
> #order p-values from smallest to largest
> kW_table <- kW_table[order(kW_table$p.value, decreasing=FALSE), ]
> head(kW_table)

id  p.value E.value   FWER
8    Bacteroides 0.003976   0.986 0.6277
19     Alistipes 0.004637   1.150 0.6842
7     Prevotella 0.005174   1.283 0.7238
39 Butyricimonas 0.005174   1.283 0.7238
1     Tannerella 0.005289   1.312 0.7316
10   Odoribacter 0.008189   2.031 0.8699

Next, calculate the q-value using following equation and codes:

q-value ¼ p� value � T=k; ð8:10Þ

> #calculate q-value
> kW_table$q.value.factor <- dim(kW_table)[1] / 1:dim(kW_table)[1]
> head(kW_table$q.value.factor)
[1] 248.00 124.00  82.67  62.00  49.60  41.33

> kW_table$q.value <- kW_table$p.value * kW_table$q.value.factor
> head(kW_table$q.value)
[1] 0.9860 0.5749 0.4277 0.3208 0.2623 0.3385

> #check to see if q-value added to the result data frame
> head(kW_table)

id  p.value E.value   FWER q.value.factor q.value
8    Bacteroides 0.003976   0.986 0.6277         248.00  0.9860
19     Alistipes 0.004637   1.150 0.6842         124.00  0.5749
7     Prevotella 0.005174   1.283 0.7238          82.67  0.4277
39 Butyricimonas 0.005174   1.283 0.7238          62.00  0.3208
1     Tannerella 0.005289   1.312 0.7316          49.60  0.2623
10   Odoribacter 0.008189   2.031 0.8699          41.33  0.3385

Then, specify the target FDR and identify the last item of the ranked list having a
q-value equal or less that the specified alpha by using the below codes:
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> #set up alpha value

> KW_alpha=0.05

> #identify the last item of the ranked list with a q-value =< alpha

> last.significant.item <- max(which(KW_table$q.value <= KW_alpha))

Warning message:

In max(which(KW_table$q.value <= KW_alpha)) :

no non-missing arguments to max; returning -Inf

> last.significant.item

[1] -Inf

In our case, there are no q-value less than or equal to the specified alpha, so the
program returns negative infinite.

Finally, display the result frame table and chosen taxa:

> #display the chosen results
> selected <- 1:5
> #selected <- 1:last.significant.item
> print(kW_table[selected,])

id  p.value E.value   FWER q.value.factor q.value
8    Bacteroides 0.003976   0.986 0.6277         248.00  0.9860
19     Alistipes 0.004637   1.150 0.6842         124.00  0.5749
7 Prevotella 0.005174   1.283 0.7238          82.67  0.4277
39 Butyricimonas 0.005174   1.283 0.7238          62.00  0.3208
1     Tannerella 0.005289   1.312 0.7316          49.60  0.2623

> diff.taxa.factor <- kW_table$id[selected]
> diff.taxa <- as.vector(diff.taxa.factor)
> diff.taxa
[1] "Bacteroides"   "Alistipes"     "Prevotella"   
[4] "Butyricimonas" "Tannerella"   

Because there are no q-value less or equal the specified alpha = 0.05 in this case,
the above displayed 5 taxa are not based on FDR. They are the chosen taxa with
smallest p-values. The Benjamini-Hochberg correction is less stringent than the
other multiple testing corrections presented above and thus has a higher sensitivity.
FDR is widely used in microbiome (Le Chatelier et al. 2013; Ballou et al. 2016) and
other study fields (Jungquist et al. 2010) and many R functions.

8.5 Summary

In this chapter, we presented a variety of common and classic methods in all
research fields. Some of them are widely applied in microbiome studies. We
illustrated these methods for analyzing microbiome data with step-by-step imple-
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mentation in the R system. The data sets are from our own publications (Jin et al.
2015; Wang et al. 2016). Readers may use the R codes and explanations provided
in this chapter to analyze their own microbiome data. We focused on hypothesis
testing for univariate community microbiome data in this chapter. In the coming
Chap. 9, we will emphasize on hypothesis testing multivariate community micro-
biome data.

References

Aitchison, J. 1982. The statistical analysis of compositional data. Journal of the Royal Statistical
Society. Series B (Methodological) 44 (2): 139–177.

Aitchison, J. 1986. The statistical analysis of compositional data. Chapman & Hall; reprinted in
2003, with additional material, by The Blackburn Press.

Ballou, A.L., R.A. Ali, et al. 2016. Development of the Chick microbiome: How early exposure
influences future microbial diversity. Frontiers in Veterinary Science 3: 2.

Benjamini, Y. and Y. Hochberg 1995. Controlling the false discovery rate: A practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (57):
289–300.

Benjamini, Y., and D. Yekutieli. 2001. The control of the false discovery rate in multiple testing
under dependency. The Annals of Statistics 29 (4): 1165–1188.

Cochran, W.G. 1952. The v 2 test of goodness offit. Annals of Mathematical Statistics 25: 315–345.
Daniel, W. W. 1990. Kruskal–Wallis one-way analysis of variance by ranks. Applied

nonparametric statistics (2nd ed.), 226–234. Boston, PWS-Kent.
Fisher, R.A. 1918. The correlation between relatives on the supposition of mendelian inheritance.

Philosophical Transactions of the Royal Society of Edinburgh 52: 399–433.
Hochberg, Y. 1988. A sharper Bonferroni procedure for multiple tests of significance. Biometrika

75 (4): 800–802.
Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of

Statistics 6: 65–70.
Hommel, G. 1988. A stagewise rejective multiple test procedure based on amodified Bonferroni test.
Jin, D., S. Wu, et al. 2015. Lack of vitamin D receptor causes dysbiosis and changes the functions

of the murine intestinal microbiome. Clinical Therapeutics 37 (5): 996–1009. e1007.
Jungquist, C.R., C. O’Brien, et al. 2010. The efficacy of cognitive-behavioral therapy for insomnia

in patients with chronic pain. Sleep Medicine 11 (3): 302–309.
Kruskal, W.H., and W.A. Wallis. 1952. Use of ranks in one-criterion variance analysis. Journal of

the American Statistical Association 47 (260): 583–621.
Le Chatelier, E., T. Nielsen, et al. 2013. Richness of human gut microbiome correlates with

metabolic markers. Nature 500 (7464): 541–546.
Mann, H.B., and D.R. Whitney. 1947. On a test of whether one of two random variables is

stochastically larger than the other. Annals of Mathematical Statistics 18 (1): 50–60.
Pearson, K. 1900. On the criterion that a given system of deviations from the probable in the case

of a correlated system of variables is such that it can be reasonably supposed to have arisen
from random sampling. Philosophical Magazine Series 5.50 (302): 157–175.

Ruxton, G.D. 2006. The unequal variance t-test is an underused alternative to student’s t-test and
the Mann-Whitney U test. Behavioral Ecology 17 (4): 688–690.

Sokal, R. R. and F. J. Rohlf, 2011. Biometry: The principles and practice of statistics in biological
research, Freeman, W. H. & Company.

282 8 Univariate Community Analysis



Wackerly, D. D., W. Mendenhall, et al. 2002. Mathematical statistics with applications. Duxbury
Press.

Wang, J., L.B. Thingholm, et al. 2016. Genome-wide association analysis identifies variation in
vitamin D receptor and other host factors influencing the gut microbiota. Nature Genetics
48 (11): 1396–1406.

Welch, B.L. 1947. The generalization of “Student’s” problem when several different population
variances are involved. Biometrika 34 (1–2): 28–35.

Zar, J.H. 2010. Biostatistical analysis. Upper Saddle River, NJ: Pearson Prentice Hall.

References 283



Chapter 9
Multivariate Community Analysis

The main goal of microbiome community studies is to compare the composition of
different communities (beta diversity). In Chap. 6, we introduced beta diversities
and illustrated how to calculate beta diversity indices. After we obtain beta diversity
indices, we can conduct statistical analysis on them. The beta diversity analyses in
studies of microbiome fall into two categories: exploratory techniques and statis-
tical tests of significance. We illustrated clustering and ordination in Chap. 7. In this
chapter, we focus on statistical tests of significance on beta diversity. Several
methods or models have been developed to test for differences in microbiome
community composition. We will introduce statistical tests of beta diversity using
permutational multivariate analysis of variance (PERMANOVA), Mantel test,
analysis of similarity (ANOSIM) , multi-response permutation procedures (MRPP)
and generalized UniFrac distance via PERMANOVA.

9.1 Hypothesis Testing Among Groups Using
Permutational Multivariate Analysis of Variance
(PERMANOVA)

9.1.1 Introduction of PERMANOVA

The traditional multivariate analysis of variance (MANOVA) is simply an ANOVA
with several dependent variables. ANOVA is used to test the null hypothesis: there
are no differences in means between two or more groups; in contract, MANOVA
could be used to test the null hypothesis: there are no differences in two or more
vectors of means. Thus, it is particularly powerful for analysis of multivariate data.
However, the traditional MANOVA assumes the dependent variable should be
normally distributed within groups (normal distribution), the linear relationships
among all pairs of dependent variables, all pairs of covariates, and all dependent
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variable-covariate pairs in each cell (linearity), the dependent variables exhibit
equal levels of variance across the range of predictor variables (homogeneity of
variances) and homogeneity of variances and covariances. Due to these stringent
assumptions, the traditional MANOVA is not appropriate for most microbiome
multivariate data sets. For example, it is not suitable to analyze the relationships
between microbiome composition and environment factors (i.e., different treatment
groups or conditions).

In 2001, Anderson (2001) proposed a nonparametric procedure for testing the
hypothesis of no difference between two or more groups of samples based on the
analysis and partitioning sums of square distances. It is called permutational
MANOVA (formerly “nonparametric MANOVA”, abbreviated as NP-MANOVA).
Anderson’s permutational MANOVA is formulated by the dissimilarity matrix.
Let’s consider a matrix of distances between every pair of observations and let
N = an, the total number of observations (points), and dij be the distance between
observation i = 1,…,N, and observation j = 1,…,N, then the total sum of squares is
given below:

SST ¼ 1
N

XN�1

i¼1

XN
j¼iþ 1

d2ij ð9:1Þ

The sum adds up the squares of all of the distances in the half sub-diagonal (or
upper-diagonal) of the distance matrix (but not including the diagonal) and divide
by N. SST is used to calculate average distance among all samples. Similarly, the
within-group or residual sum of squares is

SSW ¼ 1
n

XN�1

i¼1

XN
j¼iþ 1

d2ijeij ð9:2Þ

Where eij is an indicator and takes the value 1 if observation i and observation j are
in the same group, otherwise it takes the value of zero. That is, add up the squares
of all of the distances between observations that occur in the same group and divide
by n, the number of observations per group. With this formulation, SSW is used to
calculate average distance among samples within groups.

The sum of squares used to calculate average distance among groups can be
obtained through subtract SST by SSW. That is, SSA = SST � SSW. A pseudo F-
ratio to test the multivariate hypothesis is given:

F ¼ SSA=ða� 1Þ
SSW=ðN � 1Þ ð9:3Þ

The rationale for this test statistics lies in the fact if the points from different
groups have different central locations (centroids in the case of Euclidean distances)
in multivariate space, then the among-group distances will be relatively large
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compared to the within-group distances, and the resulting pseudo F-ratio will be
relatively large.

From formula (9.3) as the F test statistic, we can see that the bigger the ratio
between SSA=ða� 1Þ to SSW=ðN � 1Þ (called the signal to noise ratio), the larger
the F value, and thus results in a smaller p-value. The question is: how we can
obtain a p-value? The individual variables in microbiome and ecology are typically
not normally distributed and we do not expect that the Euclidean distance will
necessarily be used for the analysis. As Anderson (2001) noticed, even if each of
the variables were normally distributed and the Euclidean distance used, the mean
squares calculated for the multivariate data would not each consist of sums of
independent v2 variables, because, although individual observations are expected to
be independent, individual species (OTUs or taxa) variables are not independent of
one another. Thus, traditional tabled p-values cannot be used.

Anderson proposed to randomly shuffled (permuted) the variables within the
dataset to generate empirical distribution. The algorithm underlying this is that
under the null hypothesis, the groups are not really different, and then the multi-
variate observations (rows) would be exchangeable among the different groups. The
random shuffling can be repeated for all possible re-orderings of the rows, such as
1000 times, and then 1000 distributions specific to the type of data are generated.
The p-value, which indicates the significance between groups, will be obtained
from the empirical F distribution.

Now, let us explain how we can obtain p-value from permutation testing. As
presented above, permutations mean randomly assigning sample observations to
groups. The p-value is calculated by comparing the permuted F-ratio to the
observed F-ratio. The significance test is simply the fraction of permuted F-ratio
that are greater than the observed F-ratio. Briefly, we take one-way test as an
example to explain what permutations actually do. In a one-way test, our interest is
to see whether a statistic is either less than or greater than what can be expected by
chance. The p-value is calculated from the proportion of permuted pseudo
F-statistics which are greater than or equal to the observed F-statistic. In another
words, we want to know whether the permuted data sets following the
PERMANOVA yield a better resolution of groups relative to the actual data set. If
more than 5% of the permuted F-statistics has values greater than that of the
observed F statistic, the p-value is greater than 0.05. Then, we can conclude that
any difference among groups is not statistically significant.

PERMANOVA has at least two advantages over the traditional MANOVA.
First, it does not require any assumptions about distributions. Second, it can use the
distance matrix calculated by any distance metric. Obviously, non-distribution
assumption is an advantage, but the later feature is also important, because the
Euclidean distances-based analysis is to calculate average distance among samples
within groups. In other words, it is to measure the central location for the group in
Euclidean space, called a centroid. However, for many distance measures, it is
difficult to calculate the central location. For example, in ecological and micro-
biome studies, there exist many situations when the semi-metric Bray-Curtis
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measure is more appropriate; however, we cannot easily calculate the central
location directly from the sample data in multivariate Bray-Curtis space.

9.1.2 Implementing PERMANOVA Using Vegan Package

PERMANOVA is implemented through the function adonis() in the vegan package.
The function adonis() is used to analyze and partition sums of squares using
semi-metric and metric distance matrices (Oksanen et al. 2016). Typical uses of
adonis() include analysis of ecological and microbiome community data (samples
by species (taxa) matrices) or genetic data with a limited number of samples of
individuals and thousands or millions of columns of gene expression. The function
adonis() allows ANOVA-like tests of the variance in beta diversity explained by
continuous and/or categorical predictors. ADONIS is a recommended method in the
vegan package. Other methods in vegan include MRPP and ANOSIM. However,
both MRPP and ANOSIM handle only categorical predictors, and they are less
robust than ADONIS (Oksanen et al. 2016).

To implement of PERMANOVA, you need to choose a distance measure. For
regular measurements, usually the “euclidean” distance is the choice, but for
community microbiome data, “bray” (the Bray-Curtis distance) is more appropriate.
In the literature, four beta-diversity measures including Bray-Curtis distance,
Jaccard distance, weighted and unweighted UniFrac distances typically have been
reported (Linnenbrink et al. 2013).

One example of usages is given below:

adonis(formula, data, permutations = 1000, method = “bray”, contr.unordered =
“contr.sum”, contr.ordered = “contr.poly”)

In above syntax, formula = model formula, such as Y * A + B + C * D, where,
Y can be a dissimilarity object (inheriting from class “dist”), a data frame or a
matrix; A, B, C, and D may be factors or continuous variables.

data the data frame.
permutations number of replicate permutations used for the hypothesis tests

(F tests).
method name of any method used in the function vegdist () to calculate

pairwise distances if the left hand side of the formula was a data
frame or a matrix.

contr.unordered contrasts used for the design matrix; in general, R default uses
dummy or treatment contrasts for unordered factors. However,
the default contrasts in vegan package are different; they use
“sum” or “ANOVA” contrasts.

contr.ordered contrasts used for the design matrix for ordered factors.
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In Chap. 6, we calculate several beta-diversity measures including Bray-Curtis
index using Vdr mouse sample data. After obtaining these beta-diversity indices,
we can conduct multivariate community analysis to test how the composition of
microbiome communities varies across different samples. In this case, first we want
to test whether the composition of microbiome communities varies in fecal and
cecal sites and differentiates between groups (Vdr−/− and WT mice). We also want
to test within same site, such as fecal samples, whether genetic deficient group
(Vdr−/− mice) has different microbiome composition, compared to the WT group.

Prepare Implementation of PERMANOVA Using Vegan Package
Since the location and group information is not directly given in our data set, we
need additional programming to extract them from the sample ids, as we did in
Chaps. 6, 7 and 8. The following codes are used to split string sample ids as three
components as X1, X2, and X3.

> grouping<-data.frame(row.names=rownames(abund_table),t(as.data.frame(strsplit(rownames
(abund_table),"_")))) 
> grouping<-data.frame(row.names=rownames(abund_table),t(as.data.frame
(strsplit(rownames(abund_table),"_"))))
> grouping

X1 X2        X3
5_15_drySt-28F  5 15 drySt-28F
20_12_CeSt-28F 20 12  CeSt-28F
1_11_drySt-28F  1 11 drySt-28F
2_12_drySt-28F  2 12 drySt-28F
3_13_drySt-28F  3 13 drySt-28F
4_14_drySt-28F  4 14 drySt-28F
7_22_drySt-28F  7 22 drySt-28F
8_23_drySt-28F  8 23 drySt-28F
9_24_drySt-28F  9 24 drySt-28F
19_11_CeSt-28F 19 11  CeSt-28F
21_13_CeSt-28F 21 13  CeSt-28F
22_14_CeSt-28F 22 14  CeSt-28F
23_15_CeSt-28F 23 15  CeSt-28F
25_22_CeSt-28F 25 22  CeSt-28F
26_23_CeSt-28F 26 23  CeSt-28F
27_24_CeSt-28F 27 24  CeSt-28F

In the data set, “drySt” indicates that the samples come from fecal, “CeSt”
indicates that the samples come from cecal. Thus, we create a location variable to
group the samples from fecal and cecal sites.

> grouping$Location <- with(grouping, ifelse(X3%in%"drySt-28F",

"Fecal", "Cecal"))

We further separate Vdr−/− samples from WT samples within fecal and cecal
sites as below:

> grouping$Group <- with(grouping,ifelse(as.factor(X2)%in% c

(11,12,13,14,15),c("Vdr-/-"), c("WT")))
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Check variable names and remove X1, X2, and X3 from the data set.

> names(grouping)
> grouping <- grouping[,c(4,5)] 
> grouping

Location  Group
5_15_drySt-28F    Fecal Vdr-/- 
20_12_CeSt-28F    Cecal Vdr-/- 
1_11_drySt-28F    Fecal Vdr-/- 
2_12_drySt-28F    Fecal Vdr-/- 
3_13_drySt-28F    Fecal Vdr-/- 
4_14_drySt-28F    Fecal Vdr-/- 
7_22_drySt-28F    Fecal     WT
8_23_drySt-28F    Fecal     WT
9_24_drySt-28F    Fecal     WT
19_11_CeSt-28F    Cecal Vdr-/- 
21_13_CeSt-28F    Cecal Vdr-/- 
22_14_CeSt-28F    Cecal Vdr-/- 
23_15_CeSt-28F    Cecal Vdr-/- 
25_22_CeSt-28F    Cecal     WT
26_23_CeSt-28F    Cecal     WT
27_24_CeSt-28F    Cecal     WT

After creating location and group variables, now we can call function adonis() to
conduct PERMANOVA. The input data of the function adonis () can either be
dissimilarities or data frame; in the latter case, adonis() uses vegdist() to find the
dissimilarities. To illustrate, we choose the Bray-Curtis, Jaccard, and Sørensen
beta-diversity measures. They were calculated in Chap. 6, so we can directly use
them here.

Test Difference of the Bray-Curtis Dissimilarity Between Genotypes
The simplest R codes to implement PERMANOVA to test difference of the
Bray-Curtis dissimilarity between Vdr−/− and wild type samples in vegan is as
below.

> set.seed(123)
> # adonis="analysis of dissimilarity"  
> adonis(bray ~ Group,data=grouping,permutations = 1000)

Call:
adonis(formula = bray ~ Group, data = grouping, permutations = 1000) 

Permutation: free
Number of permutations: 1000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model    R2 Pr(>F)
Group      1      0.23   0.230     1.5 0.097   0.18
Residuals 14      2.14   0.153         0.903       
Total     15      2.37                 1.000    
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If the Bray-Curtis dissimilarity measure is not given, the following codes give
the same results.

> adonis(abund_table ~ Group,data=grouping,permutations = 1000, method =
"bray")

Call:
adonis(formula = abund_table ~ Group, data = grouping, permutations = 1000,      
method = "bray") 

Permutation: free
Number of permutations: 1000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model    R2 Pr(>F)
Group      1  0.23   0.230     1.5 0.097   0.19
Residuals 14      2.14   0.153         0.903       
Total     15      2.37                 1.000    

Except the difference of p-value due to round up, all statistics are same in these
two outputs. The p-value was obtained by permutation test. The R2 for group is
0.097, which means that 9.7% of total variance can be explained by
group. Performing 1000 randomizations of the rows and columns of Bray-Curtis
distance matrix generate the R2 under the null hypothesis. Out of these 1000 values,
180 was larger than the observed value of 0.097, so that the chance of obtaining a
value as large as the observed is smaller than 180/1000, indicating a p-value of
0.18. Thus, we conclude that the Bray-Curtis distance differences between Vdr−/−

and wild type samples tend to be by chance.

Test Difference of the Jaccard Dissimilarity Between Genotypes
Similarly, we can implement PERMANOVA to test difference of the Jaccard dis-
similarity between Vdr−/− and wild type samples.

> adonis(jaccard ~ Group,data=grouping,permutations = 1000)

Call:
adonis(formula = jaccard ~ Group, data = grouping, permutations = 1000) 

Permutation: free
Number of permutations: 1000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model    R2 Pr(>F)
Group      1      0.33   0.334    1.37 0.089   0.17
Residuals 14      3.40   0.243         0.911       
Total     15      3.74                 1.000   
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Test Difference of the Sørensen Dissimilarity Between Genotypes

> adonis(Sørensen ~ Group,data=grouping,permutations = 1000)

Call:
adonis(formula = Sørensen ~ Group, data = grouping, permutations = 1000) 

Permutation: free
Number of permutations: 1000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model    R2 Pr(>F)
Group      1     0.119  0.1191     1.3 0.085   0.21
Residuals 14     1.282  0.0916         0.915       
Total     15     1.401                 1.000    

The PERMANOVA were performed using analysis of dissimilarity (“adonis”)
applied to Bray-Curtis, Jaccard and Sørensen beta-diversity measures. The Vdr−/−

and WT mice samples displayed non-significant separation according to Bray-
Curtis distance (adonis, R2 = 0.097, P = 0.18), Jaccard distance (R2 = 0.089,
P = 0.17), and Sørensen distance (R2 = 0.085, P = 0.21). We can conclude that
given small sample size, with combined fecal and cecal samples, these three dis-
similarities have no difference between Vdr−/− and WT mice at the 0.05 of statis-
tical significance level.

Test Difference of the Bray-Curtis Dissimilarity Between Locations
The following R codes are used to test if the Bray-Curtis dissimilarities are different
between fecal and cecal samples.

> adonis(bray ~ Location,data=grouping,permutations = 1000)

Call:
adonis(formula = bray ~ Location, data = grouping, permutations = 1000) 

Permutation: free
Number of permutations: 1000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model    R2 Pr(>F)    
Location   1     0.533   0.533    4.06 0.225  0.001 ***
Residuals 14     1.840   0.131         0.775           
Total     15     2.374                 1.000           
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The R2 is 0.225, which suggests that 22.5% of total variance can be explained by
location. Performing 1000 randomizations of the rows and columns of Bray-Curtis
distance matrix generate the R2 under the null hypothesis. Out of these 1000 values,
one was larger than the observed value of 0.225, so that the chance of obtaining a
value as large as the observed is smaller than 1/1000, indicating a p-value of 0.001.
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Thus, we can conclude that the Bray-Curtis distance differences between fecal and
cecal samples not tend to be by chance.

Test Difference of the Jaccard Dissimilarity Between Locations
The following R codes are used to test if the Jaccard dissimilarities are different
between fecal and cecal samples:

Number of permutations: 1000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model    R2 Pr(>F)   
Location   1      0.64   0.645    2.92 0.173  0.006 **
Residuals 14      3.09   0.221         0.827          
Total     15      3.74                 1.000          
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> adonis(jaccard ~ Location,data=grouping,permutations = 1000)

Call:
adonis(formula = jaccard ~ Location, data = grouping, permutations = 1000) 

Permutation: free

Test Difference of the Sørensen Dissimilarity Between Locations
The following R codes are used to test if the Sørensen dissimilarities are different
between fecal and cecal samples:

> adonis(Sørensen ~ Location,data=grouping,permutations = 1000)

Call:
adonis(formula = Sørensen ~ Location, data = grouping, permutations = 1000) 

Permutation: free
Number of permutations: 1000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model    R2 Pr(>F)    
Location   1     0.352   0.352    4.71 0.252  0.001 ***
Residuals 14     1.049   0.075         0.748           
Total     15     1.401                 1.000           
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The fecal and cecal mice samples displayed significant separation according to
Bray-Curtis distance (adonis, R2 = 0.225, P = 0.001), Jaccard distance (adonis,
R2 = 0.173, P = 0.006), and Sørensen (adonis, R2 = 0.252, P = 0.001). We can
conclude that the differences between the two sites are statistically significant and
that around 22.5%, 17.3% and 25.2% of the “variance” is accounted for by site
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differences according to Bray-Curtis distance, Jaccard distance and Sørensen dis-
tance, respectively.

Sequential Test the Bray-Curtis Dissimilarity Ordering by Group to Location
In testing of group, the Vdr−/− and WT samples are not differentiated from fecal or
cecal location. In testing of location, the fecal and cecal samples are not differen-
tiated from Vdr−/− or WT group. Actually, given two variables group and location,
we can conduct a sequential test of permutation ANOVA. To illustrate, we use the
Bray-Curtis dissimilarity to conduct the sequential test. The interested readers can
try their own tests using Jaccard and Sørensen distance measures.

> adonis(bray ~ Group*Location,data=grouping,permutations = 1000)

Call:
adonis(formula = bray ~ Group * Location, data = grouping, permutations
= 1000) 

Permutation: free
Number of permutations: 1000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model    R2 Pr(>F)    
Group           1     0.230   0.230    1.77 0.097  0.123    
Location        1     0.533   0.533    4.10 0.225  0.001 ***
Group:Location  1     0.051   0.051    0.39 0.021  0.928    
Residuals      12     1.559   0.130         0.657           
Total       15     2.374                 1.000           
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Sequential Test the Bray-Curtis Dissimilarity Ordering Location by Group

> adonis(bray ~ Location*Group,data=grouping,permutations = 1000)

Call:
adonis(formula = bray ~ Location * Group, data = grouping, permutations
= 1000) 

Permutation: free
Number of permutations: 1000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model    R2 Pr(>F)   
Location        1     0.533   0.533    4.10 0.225  0.002 **
Group           1     0.230   0.230    1.77 0.097  0.095 . 
Location:Group  1     0.051   0.051    0.39 0.021  0.909   
Residuals      12     1.559   0.130         0.657          
Total          15     2.374     1.000          
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Notice that the order of variables matters. However, either the group test first or
location first, location is statistically significant with p < 0.05.

Test Difference of the Bray-Curtis Dissimilarity Among Four Levels of Group
Actually, we can implement PERMANOVA to test dissimilarity among four levels
of group combining two genotypes and two locations. The following R codes create
a group variable with 4 levels combining genotype variable and location variable.
The default separator is ‘.’.

> grouping$Group4<- with(grouping, interaction(Location,Group))
> grouping

Location  Group       Group4
5_15_drySt-28F    Fecal Vdr-/- Fecal.Vdr-/- 
20_12_CeSt-28F    Cecal Vdr-/- Cecal.Vdr-/- 
1_11_drySt-28F    Fecal Vdr-/- Fecal.Vdr-/- 
2_12_drySt-28F    Fecal Vdr-/- Fecal.Vdr-/- 
3_13_drySt-28F    Fecal Vdr-/- Fecal.Vdr-/- 
4_14_drySt-28F    Fecal Vdr-/- Fecal.Vdr-/- 
7_22_drySt-28F    Fecal     WT     Fecal.WT
8_23_drySt-28F    Fecal     WT     Fecal.WT
9_24_drySt-28F    Fecal     WT     Fecal.WT
19_11_CeSt-28F    Cecal Vdr-/- Cecal.Vdr-/- 
21_13_CeSt-28F    Cecal Vdr-/- Cecal.Vdr-/- 
22_14_CeSt-28F    Cecal Vdr-/- Cecal.Vdr-/- 
23_15_CeSt-28F    Cecal Vdr-/- Cecal.Vdr-/- 
25_22_CeSt-28F    Cecal     WT     Cecal.WT
26_23_CeSt-28F    Cecal     WT     Cecal.WT
27_24_CeSt-28F    Cecal     WT     Cecal.WT

A PERMANOVA is implemented to test dissimilarity among four levels of
group.

> adonis(bray ~ Group4,data=grouping,permutations = 1000)

Call:
adonis(formula = bray ~ Group4, data = grouping, permutations = 1000) 

Permutation: free
Number of permutations: 1000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model    R2 Pr(>F)  
Group4     3     0.814   0.271    2.09 0.343  0.018 *
Residuals 12     1.559   0.130         0.657         
Total     15     2.374                 1.000         
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The samples displayed significant separation according to Bray-Curtis distance
(adonis, R2 = 0.343, P = 0.018). We can conclude that the differences among the
four levels of group are statistically significant; based on Bray-Curtis dissimilarity,
around 34.3% of the “variance” is accounted for by group differences.
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Change the Default Dummy Contrasts in R to the Default “Sum” Contrasts in
Vegan Package
For unordered factors in the design matrix, R default uses dummy or treatment
contrasts. The vegan package default uses “sum” or ANOVA contrasts. The “sum”
contrasts for unordered factors are used to change the default contrasts in R.

> adonis(bray ~ Group4,data=grouping,permutations = 1000,contr.unordered =
"contr.sum")

Call:
adonis(formula = bray ~ Group4, data = grouping, permutations = 1000,
contr.unordered = "contr.sum") 

Permutation: free
Number of permutations: 1000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model    R2 Pr(>F)   
Group4     3     0.814   0.271    2.09 0.343  0.009 **
Residuals 12     1.559   0.130         0.657          
Total     15     2.374                 1.000          
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Add the Contrasts for Ordered Factors
The following R codes add a “poly” contrasts for ordered factors to the test.

> adonis(bray ~ Group4,data=grouping,permutations = 1000,contr.unordered =
"contr.sum",contr.ordered = "contr.poly")

Call:
adonis(formula = bray ~ Group4, data = grouping, permutations = 1000,
contr.unordered = "contr.sum", contr.ordered = "contr.poly") 

Permutation: free
Number of permutations: 1000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model    R2 Pr(>F)  
Group4     3     0.814   0.271    2.09 0.343  0.011 *
Residuals 12     1.559   0.130         0.657         
Total     15     2.374                 1.000         
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Test the Global Differences Among Groups
We can conduct a permutational MANOVA to test the global differences among
these four levels of group using one of following two sample calls. Both calls give
same output.
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> adonis(bray ~ grouping$Group4,permutations = 1000)

Call:
adonis(formula = bray ~ grouping$Group4, permutations = 1000) 

Permutation: free
Number of permutations: 1000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model    R2 Pr(>F)
grouping$Group4  3     0.814   0.271    2.09 0.343  0.017 *
Residuals       12     1.559   0.130         0.657         
Total           15     2.374                 1.000         
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> adonis(abund_table ~ Group4,data=grouping,permutations = 1000, method =
"bray")

Call:
adonis(formula = abund_table ~ Group4, data = grouping, permutations =
1000,method = "bray") 

Permutation: free
Number of permutations: 1000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model    R2 Pr(>F)   
Group4     3     0.814   0.271    2.09 0.343   0.01 **
Residuals 12     1.559   0.130         0.657          
Total     15     2.374                 1.000          
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

9.1.3 Implementing Pairwise Permutational MANOVA
Using RVAideMemoire Package

In ANOVA, a significant testing result in permutational MANOVA indicates that
there is a significant difference among the defined groups; however, there is no way
to know which groups are separated significantly. After the PERMANOVA is
conducted using the vegan, a pairwise permutational MANOVA can be performed
by using the function pairwise.perm.manova() from the RVAideMemoire package
(Hommel 1988) to do pairwise comparisons of each group level with corrections for
multiple testing.

One example call of this function is as below.

pairwise.perm.manova(resp, fact, test = c(“Pillai”, “Wilks”,”Hotelling-Lawley”,
“Roy”, “Spherical”), nperm = 1000, progress = TRUE, p.method = ”fdr”)
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where, resp = response, either a typical matrix (one column per variable), or a
distance matrix, or a data frame; fact = grouping factor; test = choice of test
statistic when response is a matrix; nperm = number of permutations to obtain the
p-value; progress = logical indicating if the progress bar should be displayed; and
p.method = method for p-values correction.

As in multiple comparisons using ANOVA in Sect. 8.3.2, Kruskal-Wallis Test
in Sect. 8.4.2, several p-value adjustment methods are available in pairwise per-
mutational MANOVA including:

“bonferroni” (Bonferroni 1936), “holm” (Holm 1979), “hochberg” and “hom-
mel” (Hochberg 1988),

“BH” or its alias “fdr” (Benjamini and Hochberg 1995), “BY” (Benjamini and
Yekutieli 2001).

Tukey method is not available in this package. Type? p.adjust() to check the
options and references in R. If you do not want to adjust the p-value, use the
pass-through option (“none”).

To perform a pairwise permutational MANOVA, we first need to install and load
the RVAideMemoire package.

> install.packages("RVAideMemoire")

> library(RVAideMemoire)

We then can use either one of following three sample calls to conduct a pairwise
permutational MANOVA.

> set.seed(0)

> pairwise.perm.manova(bray,grouping$Group4,nperm=1000)

> # or

> pairwise.perm.manova(vegdist(abund_table,"bray"),grouping$Group4,

nperm=1000)

> # or

> pairwise.perm.manova(bray, grouping$Group4, test = c("Pillai",

"Wilks","Hotelling-Lawley", "Roy", "Spherical"),

nperm = 1000,

+ progress = TRUE, p.method = "fdr")
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Adjust the P-Values Using “none” Method
The p-value is not adjusted when using p.method = “none”.

> pairwise.perm.manova(bray, grouping$Group4, test = c("Pillai", "Wilks",
"Hotelling-Lawley", "Roy", "Spherical"), nperm = 1000, 
+                      progress = TRUE, p.method = "none")

Pairwise comparisons using permutation MANOVAs on a distance matrix 

data:  bray by grouping$Group4
1000 permutations 

Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT
Fecal.Vdr-/- 0.02         - -
Cecal.WT     0.64         0.07         -
Fecal.WT     0.08         0.16         0.50    

P value adjustment method: none 

Adjust the P-Values Using “bonferroni” Method

> pairwise.perm.manova(bray, grouping$Group4, test = c("Pillai", "Wilks",
"Hotelling-Lawley", "Roy", "Spherical"), nperm = 1000, 
+                      progress = TRUE, p.method = "bonferroni")

Pairwise comparisons using permutation MANOVAs on a distance matrix 

data:  bray by grouping$Group4
1000 permutations 

Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT
Fecal.Vdr-/- 0.1          - -
Cecal.WT     1.0          0.3          -
Fecal.WT     0.4          1.0          1.0     

P value adjustment method: bonferroni 

Adjust the P-Values Using “holm” Method

> pairwise.perm.manova(bray, grouping$Group4, test = c("Pillai", "Wilks",
"Hotelling-Lawley", "Roy", "Spherical"), nperm = 1000, 
+                      progress = TRUE, p.method = "holm")

Pairwise comparisons using permutation MANOVAs on a distance matrix 

data:  bray by grouping$Group4
1000 permutations 

Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT
Fecal.Vdr-/- 0.09         - -
Cecal.WT     1.00         0.24         -
Fecal.WT     0.27         0.52         1.00    

P value adjustment method: holm 
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Adjust the P-Values Using “hochberg” Method

> pairwise.perm.manova(bray, grouping$Group4, test = c("Pillai", "Wilks",
"Hotelling-Lawley", "Roy", "Spherical"), nperm = 1000, 
+                      progress = TRUE, p.method = "hochberg")

Pairwise comparisons using permutation MANOVAs on a distance matrix 

data:  bray by grouping$Group4
1000 permutations 

Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT
Fecal.Vdr-/- 0.06         - -
Cecal.WT     0.65         0.23         -
Fecal.WT 0.26         0.45         0.65    

P value adjustment method: hochberg 

Adjust the P-Values Using “hommel” Method

> pairwise.perm.manova(bray, grouping$Group4, test = c("Pillai", "Wilks",
"Hotelling-Lawley", "Roy", "Spherical"), nperm = 1000, 
+     progress = TRUE, p.method = "hommel")

Pairwise comparisons using permutation MANOVAs on a distance matrix 

data:  bray by grouping$Group4
1000 permutations 

Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT
Fecal.Vdr-/- 0.07         - -
Cecal.WT     0.64         0.20         -
Fecal.WT     0.30         0.53         0.64    

P value adjustment method: hommel 

Adjust the P-Values Using “BH” Method

> pairwise.perm.manova(bray, grouping$Group4, test = c("Pillai", "Wilks",
"Hotelling-Lawley", "Roy", "Spherical"), nperm = 1000, 
+                      progress = TRUE, p.method = "BH")

Pairwise comparisons using permutation MANOVAs on a distance matrix 

data:  bray by grouping$Group4
1000 permutations 

Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT
Fecal.Vdr-/- 0.1          - -
Cecal.WT     0.7          0.2          -
Fecal.WT     0.2          0.2          0.6     

P value adjustment method: BH 
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Adjust the P-Values Using “fdr” Method

> pairwise.perm.manova(bray, grouping$Group4, test = c("Pillai", "Wilks",
"Hotelling-Lawley", "Roy", "Spherical"), nperm = 1000, 
+                      progress = TRUE, p.method = "fdr")

Pairwise comparisons using permutation MANOVAs on a distance matrix 

data:  bray by grouping$Group4
1000 permutations 

Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT

Fecal.Vdr-/- 0.1          - -
Cecal.WT     0.6          0.1          -
Fecal.WT     0.1          0.3 0.6     

P value adjustment method: fdr 

Adjust the P-Values Using “BY” Method

> pairwise.perm.manova(bray, grouping$Group4, test = c("Pillai", "Wilks",
"Hotelling-Lawley", "Roy", "Spherical"), nperm = 1000, 
+                      progress = TRUE, p.method = "BY")

Pairwise comparisons using permutation MANOVAs on a distance matrix 

data:  bray by grouping$Group4
1000 permutations 

Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT
Fecal.Vdr-/- 0.3          - -
Cecal.WT     1.0          0.3          -
Fecal.WT     0.3          0.6          1.0     

P value adjustment method: BY 

Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT
Fecal.Vdr-/- 0.02         - -
Cecal.WT     0.64         0.07 -
Fecal.WT     0.08         0.16         0.50    

P value adjustment method: none 

Without adjusting, fecal Vdr−/− and cecal Vdr−/− samples are significantly
separated with p-value of 0.02. However, after adjustment using either method,
none pairwise items have significant at the 0.05 significance level.

9.1.4 Test Group Homogeneities Using the Function
betadisper()

After testing the group mean differences using the function adonis(), we can test the
differences in group homogeneities by the function betadisper(). The adonis() is
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analogous to multivariate analysis of variance, and the betadisper() is analogous to
Levene’s test of the equality of variances.

> homo <-with(grouping,betadisper(bray, Group4))
> homo

Homogeneity of multivariate dispersions

Call: betadisper(d = bray, group = Group4)

No. of Positive Eigenvalues: 11
No. of Negative Eigenvalues: 4

Average distance to median:
Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT     Fecal.WT 

0.342        0.285        0.309        0.239 

Eigenvalues for PCoA axes:
PCoA1 PCoA2 PCoA3 PCoA4 PCoA5 PCoA6 PCoA7 PCoA8 
0.775 0.628 0.358 0.174 0.161 0.116 0.100 0.045 

The function has plot and boxplot methods for graphical display. The following
R code produces the plot of PCoA in Fig. 9.1.

> plot(homo)

The following R code produces the boxplot for four groups of distance to
centroid in Fig. 9.2.

Fig. 9.1 Plot of PCoA for inspecting the homogeneity of multivariate dispersions
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> boxplot(homo)

We can use either standard parametric ANOVA or permutation tests (permutest)
to analyze the significance of the fitted model.

> anova(homo)
Analysis of Variance Table

Response: Distances
Df Sum Sq Mean Sq F value Pr(>F)

Groups     3  0.021 0.00701    0.54   0.67
Residuals 12  0.157 0.01305               

> permutest(homo)

Permutation test for homogeneity of multivariate dispersions
Permutation: free
Number of permutations: 999

Response: Distances
Df Sum Sq Mean Sq  F N.Perm Pr(>F)

Groups     3  0.021 0.00701 0.54    999   0.67
Residuals 12  0.157 0.01305                   

Both parametric and permutation tests show that multivariate dispersions are not
statistically different at 0.05 significance level.

Furthermore, the pairwise differences between groups can be analyzed using
parametric Tukey’s HSD test as follows:

Fig. 9.2 Boxplot for four groups of distance to centroid
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> TukeyHSD(homo)
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = distances ~ group, data = df)

$group
diff     lwr    upr  p adj

Fecal.Vdr-/--Cecal.Vdr-/- -0.05622 -0.2707 0.1583 0.8629
Cecal.WT-Cecal.Vdr-/- -0.03273 -0.2804 0.2150 0.9786
Fecal.WT-Cecal.Vdr-/- -0.10244 -0.3501 0.1453 0.6221
Cecal.WT-Fecal.Vdr-/- 0.02349 -0.2242 0.2712 0.9918
Fecal.WT-Fecal.Vdr-/- -0.04623 -0.2939 0.2015 0.9437
Fecal.WT-Cecal.WT         -0.06972 -0.3466 0.2072 0.8760

The results show that the pairwise comparisons among these four groups are not
statistically different. Thus, we can conclude that the variances of these four groups
are homogeneous.

9.2 Hypothesis Tests Among Group-Differences Using
Mantel Test (MANTEL)

9.2.1 Introduction of Mantel and Partial Mantel Tests
for Dissimilarity Matrices

Mantel initiated a permutational testing procedure (Mantel 1967) to test the cor-
relation between two distance matrices and further developed in Mantel and Valand
(Mantel and Valand 1970). Because of this initiation, the procedure has known as
the Mantel test in the biological and environmental sciences, and it is also referred
to as Mantel and Valand’s nonparametric MANOVA in the statistical literature.

Typically, correlation analysis is used to quantify the association between two
continuous variables either between an independent and a dependent variable or
between two independent variables. Mantel’s test has the advantage: it can be
applied to different types of variables including categorical, rank, or interval-scale
data because it uses a distance (dissimilarity) matrix as its input data. The setting of
Mantel’s test is a regression analysis in which the variables themselves are distance
or dissimilarity matrices summarizing pairwise similarities among sample locations.
With this setting, the dependent variable is not the “abundance of taxon X on
sample i”, instead it might be “similarity of the average amount of taxon X on
samples i and j”; similarly, the predictor variable is not the “condition” for a single
sample, it might be “similarity of condition” between samples.

In summary, Mantel’s test is a correlation analysis because it analyzes the
association between two variables or distance matrices. It is merely a regression on
distance matrices. Actually, the power and versatility of Mantel’s test lie in it
handling the distance matrices and framing the regression analysis. The capabilities
of including categorical variables in correlation analysis, and converting these
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variables to distance (dissimilarity) metrics make the metrics better for hypothesis
testing, which is especially useful for ecologists and microbiome researchers. Thus,
Mantel’s test is recognized as overcoming some of the problems inherent in
explaining species-environment relationships (Legendre and Fortin 1989) or in
general taxa-environment relationships.

Generally, the null hypothesis in Mantel’s test is constructed like this: the dis-
tances among samples in a matrix of response variables are not linearly correlated
with another matrix of explanatory variables. The operative questions we can ask
are something like these: “do samples that are similar in terms of the predictor
(environmental) variables also tend to be similar in terms of the dependent (taxon)
variable?” Or “are samples that are close together also compositionally similar?” Or
put another way, “are samples that are in different groups or environmentally
dissimilar from each other also different in terms of compositions of taxa or
compositionally dissimilar?” The test statistic is given as follows:

z ¼
Xn�1

i¼1

Xn
j¼iþ 1

xijyij ð9:4Þ

where, z = test statistic, is Hadamard product (matrices), was named after French
mathematician Jacques Hadamard. In the product, the two matrices with the same
dimensions produce another matrix where each element ij is the product of elements
ij of the original two matrices; Yij is the dependent distance matrix or condensed
vectors; Xij is the predictor matrix or contrast matrix for groups taking 0 if the
sample in sample groups, taking 1 if the sample in different groups. The appropriate
distance metric can be univariate (e.g., “similarity in Bacteroides abundance”) or
multivariate (e.g., Bray-Curtis’, Jaccard’s, Sørenson’s index of similarity); n is the
number of samples.

We can divide the process of Mantel’s test into following four main steps:

Step 1: calculate dissimilarity matrices.
Step 2: calculate test statistic Z.
Step 3: test the significance.

Mantel test compares two sets of dissimilarities by judging whether similarity (or
closeness) in one set of variables is related to similarity (or closeness) in another set
of variables. Basically, it is the correlation between dissimilarity entries. Because
the elements of a distance matrix are not independent and there are too many
dissimilarities among N samples (N(N − 1)/2), normal significance tests are not
applicable. Mantel developed asymptotic test statistics, but in vegan package, the
function mantel() uses permutation tests. As in PERMANOVA test, the p-value of
test statistic z is obtained through randomly rearranging of the rows and columns of
one of the input distance matrices (the first dissimilarity matrix). The significance
test is simply the fraction of permuted Z’s that are greater than the observed Z. It is
the probability of a Z given this large or larger. If randomizations frequently pro-
duce a correlation greater or equal to the observed data little evidence that

9.2 Hypothesis Tests Among Group-Differences Using Mantel Test … 305



correlation differs from zero. If these two distances are rank transformed, Mantel’s
test is the same as ANOSIM and similar to rank-transformed MRPP.

Step 4: calculate the correlation r of the two matrices to determine the strength of
the relationship between them. The standardized Mantel statistic r is given below:

r ¼
P

i

P
j

xij�xð Þ
sx

� �
yij�yð Þ
sy

� �

n� 1
ð9:5Þ

The standardized Mantel statistic r is interpreted like a correlation coefficient which
is a measure of “effect size” as other type of correlation coefficient such as Pearson’s
coefficient r. The value of r falls in the range of −1 to +1, where being close to −1
indicates strong negative correlation and +1 indicates strong positive correlation. If the
average within-group distance between samples is less than the average overall dis-
tance between samples, then r > 0; the larger the r, the more correlated the groups.

While the Mantel test is used to compare between two distance (dissimilarity)
matrices, such as A and B, the partial Mantel test is used to estimate the correlation
between these two matrices, while controlling for the effect of a control matrix C. The
goal is to remove spurious correlations. In ecological literature, one typical example of
the partial Mantel test is used to compare a community distance matrix with another
distance matrix derived from an environmental parameter, while using geographic
distance as the third “control” distancematrix. Inmicrobiome study, the thirdmatrixC
could be either an environmental matrix or an experimental design matrix created
from an environmental matrix or another variable such as treatment membership or
conditions. But remember, both the environmental and the design matrices derived
from an environmental parameter need to be numeric/continuous in nature; and also
need to be distance (dissimilarity) matrices. If the created matrix is not a distance
(dissimilarity) matrix, you should use a distance function to convert it to distance
(dissimilarity) matrix before you use it as a control matrix in the partial Mantel test.

The partial Mantel test is constructed through two steps: First, to conduct the
regression between A and C to construct a matrix of residuals, A′, and the
regression between B and C to construct a matrix of residuals, B′; then compare the
two residual matrices, A′ and B′ by a standard Mantel test.

9.2.2 Illustrating Mantel Test Using Vegan Package

9.2.2.1 Test the Correlation of Two Community Distance Matrices

With high-depth sampling was conducted, Bray-Curtis, Jaccard and Sørensen dis-
similarity indices usually have higher correlation. We can conduct a mantel test for
these matrices. Mantel test can be performed by vegan, ape and ade4 packages.
Here, we use the vegan package for this test. One syntax is given as below:

306 9 Multivariate Community Analysis



mantel(xdis, ydis, method = “pearson”, permutations = 1000)

where, xdis, ydis are dissimilarity matrices or a distance objects; method is correlation
method, is a character string, accepted as “pearson”, “spearman” or “kendall”; per-
mutations are the number of permutations need to be specified in assessing significance.

In Chap. 7, we used the smoker data set from the GUniFrac package to plot tree
and illustrate ordination techniques. In this section, we use it again to illustrate
Mantel test. The following R codes load the package, access and subset the data.

> library(GUniFrac)

> data(throat.otu.tab)

> otu_table <-throat.otu.tab

> data(throat.meta)

> data(throat.tree)

> library(dplyr)

> throat_meta <- select(throat.meta, SmokingStatus, Age, Sex, PackYears)

Test Pearson’s Product-Moment Correlation of Bray-Curtis and Jaccard
Dissimilarities
The correlation of Bray-Curtis and Jaccard dissimilarity indices is estimated as
below.

> library(vegan)
> mantel(bray, jaccard,"pearson",permutations=1000)

Mantel statistic based on Pearson's product-moment correlation 

Call:
mantel(xdis = bray, ydis = jaccard, method = "pearson", permutations = 1000) 

Mantel statistic r: 0.993 
Significance: 0.001 

Upper quantiles of permutations (null model):
90%   95% 97.5%   99% 

0.154 0.201 0.233 0.266 
Permutation: free
Number of permutations: 1000

The Mantel test can be interpreted this way:
We specified permutations = 1000 to perform 1000 randomizations of the rows

and columns of Bray-Curtis distance matrix that generate the distribution of corre-
lations under the null hypothesis: the distances among samples in Bray-Curtis matrix
are not linearly correlated with Jaccard matrix. The results show that, in this case, out
of these 1000 values, nonewas larger than the observed value of 0.993 (that is, number
of permutations < observed = 1000; number of permutations > observed = 0;
number of permutations = observed = 1), so that the chance of obtaining a value as
large as the observed is smaller than 1/1000, indicating a p-value of 0.001. Because a
large correlation generated by chance is so small, we can conclude that Bray-Curtis
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distance differences increase linearly with Jaccard distances; in other words, these two
dissimilarity indices are highly positively correlated.

We can plot Pearson correlation of Bray-Curtis and Jaccard matrices as below:

> plot(bray, jaccard, main="Scatter plot of Bray-Curtis index vs. Jaccard

index")

The Pearson’s coefficient r is 0.993 with a p-value of 0.001. The scatterplot of
elements in Bray-Curtis and Jaccard matrices suggests a linear relationship between
these two distances/dissimilarities as shown in Fig. 9.3.

Test Spearman’s Rank Correlation of Bray-Curtis and Sørensen Dissimilarities
We calculate the correlation of Bray-Curtis and Sørensen dissimilarity indices using
Spearman methods as bellow:

0.132 0.178 0.206 0.241 
Permutation: free
Number of permutations: 1000

> mantel(bray, Sørensen,"spearman",permutations=1000)

Mantel statistic based on Spearman's rank correlation rho 

Call:
mantel(xdis = bray, ydis = Sørensen, method = "spearman", permutations
= 1000)

Mantel statistic r: 0.514 
Significance: 0.001 

Upper quantiles of permutations (null model):
90%   95% 97.5%   99% 
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Scatter plot of Bray-Curtis index vs. Jaccard index

Fig. 9.3 Scatterplot of Pearson correlation between Bray-Curtis and Jaccard matrices

308 9 Multivariate Community Analysis



Test Kendall’s Rank Correlation of Jaccard and Sørensen Dissimilarities
Below we calculate the correlation of Jaccard and Sørensen dissimilarity indices
using Kendall method.

> mantel(jaccard,Sørensen,"kendall",permutations=1000)

Mantel statistic based on Kendall's rank correlation tau 

Call:
mantel(xdis = jaccard, ydis = Sørensen, method = "kendall", permutations
= 1000) 

Mantel statistic r: 0.358 
Significance: 0.001 

Upper quantiles of permutations (null model):
90% 95%  97.5%    99% 

0.0961 0.1285 0.1521 0.1849 
Permutation: free
Number of permutations: 1000

9.2.2.2 Test the Correlation of a Community Matrix and a Design
Matrix

In Sect. 9.2.2.1, the Mantel tests were conducted between two community
matrices. Here we illustrate the test by choosing the Bray-Curtis matrix as the
dependent distance matrix, the smoking status from meta-data as the design
matrix. We will test whether the Bray-Curtis dissimilarities are different between
samples from smokers and non-smokers. The variable SmokingStatus is in throat.
meta data set.

The following R codes extract this variable and convert it to a distance matrix.

> library(dplyr)

> group <-select(throat.meta, SmokingStatus)

> group$Status <- with(group, ifelse(SmokingStatus%in%"Smoker", 1, 0))

> group <- group[,-1]

> group_dist <- vegdist(scale(group), "euclid")

The following R codes conduct the Mantel test of the Pearson’s product-moment
correlation of the Bray-Curtis matrix (the dependent distance matrix) and the
smoking status (the predictor matrix).
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> mantel(group_dist,bray,"pearson",permutations = 1000)

Mantel statistic based on Pearson's product-moment correlation 

Call:
mantel(xdis = group_dist, ydis = bray, method = "pearson", permutations
= 1000) 

Mantel statistic r: 0.0728 
Significance: 0.003 

Upper quantiles of permutations (null model):
90%    95%  97.5%    99% 

0.0245 0.0336 0.0436 0.0581 
Permutation: free
Number of permutations: 1000

The Mantel statistic r of 0.0728 with p-value of 0.003 indicates that the results
are statistically significant at an a of 0.05. Hence, we conclude that smoking status
really predicts the Bray-Curtis dissimilarities although there is relatively weak
positive correlation between these two matrices. The p-value is obtained by spec-
ifying 1000 permutations.

9.2.2.3 Partial Mantel Test the Correlation of Two Distance Matrices
Controlling the Third Matrix

TheMantel partial test is used to conduct correlation analysis of a community distance
matrix and a design distance matrix while controlling an environmental distance
matrix (Smouse et al. 1986). For example, the Mantel partial test can be used to
determine if there is significant correlation of the Bray-Curtis distance (dissimilarity)
matrix and the smoking status distance matrix when control the matrix with age,
gender, and pack per year.

Suppose we would like to know “How much of the variability in Bray-Curtis dis-
similarity (the dependent matrix) is explained by the smoking status (the designmatrix)
while controlling the environmental matrix (the predictor matrix: with age, gender, and
pack per year)?” Then, the test statistic is calculated by constructing a matrix of
residuals,A′, of the regression between the smoking status and the predictormatrixwith
age, gender, and pack per year, and a matrix of residuals, B′, of the regression between
Bray-Curtis dissimilarity and the predictor matrix with age, gender, and pack per year.
The two residual matrices, A′ and B′, are then compared by a standard Mantel test.

The following R codes subset an environmental data set from throat meta data
set.

> meta <- select(throat.meta, Age,Sex,PackYears)

In the original data set, sex is a character variable labeled as “Male” and
“Female”. In order to convert this data set into a numerical distance matrix, we need
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to recode it as a numerical value. The following R codes create a numerical variable
Gender.

> meta$Gender <- with(meta,ifelse(Sex%in%"Male", 1, 0))

> env <-select(meta, Age,Gender,PackYears)

The following R codes convert this data set into a distance matrix using the
function vegdist() in vegan package.

> env_dist <- vegdist(scale(env), "euclid")

Mantel partial test is conducted using Pearson method as below.

> mantel.partial(group_dist,bray,env_dist, method = "pearson", permutations
=1000)

Partial Mantel statistic based on Pearson's product

Call:
mantel.partial(xdis = group_dist, ydis = bray, zdis = env_dist,      method
="pearson", permutations = 1000) 

Mantel statistic r: 0.068 

Significance: 0.008 

Upper quantiles of permutations (null model):
90%    95%  97.5%    99% 

0.0215 0.0321 0.0438 0.0641 
Permutation: free
Number of permutations: 1000

The Mantel r statistic of 0.068 indicates that there is relatively not strong pos-
itive correlation between the smoking status and Bray-Curtis distance (dissimilarity)
matrices while controlling for differences in environmental matrix with age, gender
and pack per year. However, the p-value of 0.008 indicates that the results are
statistically significant at a = 0.05.

9.3 Hypothesis Tests Among-Group Differences Using
ANOSIM

9.3.1 Introduction of Analysis of Similarity (ANOSIM)

ANOSIM is simply a modified version of the Mantel Test based on a standardized
rank correlation between two distance matrices.
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ANOSIM test was developed by Clarke (1993), a distribution-free method of
multivariate data analysis frequently used by community ecologists and micro-
biome researchers. It is a nonparametric procedure for testing the hypothesis of no
difference between two or more groups of samples based on permutation test of
among-and within-group similarities (Clarke 1993). It compares the variation in
species (or any other taxa) abundance and composition among sampling units (e.g.,
beta diversity) in terms of the grouping factor or experimental treatment levels.
Similarly as in ANOVA analysis, ANOSIM treats group membership or treatment
levels as factors and model them as the explanatory variable. Analysis of similarity
is based on the simple idea: if the tested groups are meaningful, then samples within
the groups should be more similar in composition than samples from different
groups. The null hypothesis is therefore: there are no differences between the
members of the testing groups or treatment conditions. Bray-Curtis measure of
similarity method is used in this test.

The anosim test statistic is based on the difference of mean ranks between groups
and within groups. It is given below:

R ¼ rB � rW
M=2

ð9:6Þ

where,

R test statistic, is an index of relative within-group dissimilarity.
M = N(N − 1)/2 number of sample pairs.
N is the total number of samples (subjects).
rB is the mean of the ranked similarity between groups.
rW is the mean of the ranked similarity within groups.

There are five main steps to conduct ANOSIM:

Step 1: calculate dissimilarity matrix.
Step 2: calculate rank dissimilarities and assign a rank of 1 to the smallest
dissimilarity.
Step 3: calculate the mean among-and within-group rank dissimilarities.
Step 4: calculate test statistic R using the above formula R ¼ rB�rW

M=2 .

R is interpreted like a correlation coefficient which is a measure of “effect size”
as other types of correlation coefficient such as Pearson’s coefficient. The test
statistic is to test there is no difference among groups under the null hypothesis. If
the null hypothesis is correct, then R = 0, which suggests that among-and
within-group dissimilarities are the same on average. It occurs when the high and
low similarities are perfectly mixed and bear no relationship to the group. If the null
hypothesis is rejected, then R 6¼ 0, which suggests that all pairs of samples within
groups are more similar than to any pair of samples from different groups. For
example, in the case, all the most similar samples are within the sample groups,
then R = 1. Theoretically, it is also possible that R < 0, but practically such case is
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unlikely in ecological and microbiome studies. The extreme case, R = −1, which
indicates that the most similar samples are all not in the groups.

Step 5: test for significance.

As in PERMANOVA test, the p-value of test statistic R is obtained by per-
mutation: randomly assigning sample observations to groups. Then, the ranked
similarity within and between groups is compared with the similarity that would be
generated by random chance. The significance test is simply the fraction of per-
muted R’s that are greater than the observed value of R. It is the probability of an R
given this large or larger. The algorithm behind the hypothesis testing is same as
PERMANOVA: if two groups of sampling units are really different in their species
(or other taxa) composition, then compositional dissimilarities between the groups
ought to be greater than those within the groups.

9.3.2 Illustrating Analysis of Similarity (ANOSIM) Using
Vegan Package

Analysis of similarities (ANOSIM) provides a way to statistically test whether there
is a significant difference between two or more groups of sampling units. The
analysis of similarity is implemented via the function anosim() in the vegan
package. The function assumes that all ranked dissimilarities within groups have
about equal median and range. The input data is a dissimilarity matrix, which can
be produced by the function dist() or vegdist(). The function also has summary and
plot methods to perform the post modeling analysis. The following is one example
of syntax.

anosim (data, grouping, permutations = 1000, distance = ”bray”)

where, data = data matrix or data frame in which rows are samples and columns are
response variable(s), or a dissimilarity object or a symmetric square matrix of
dissimilarities; grouping = grouping variable (a factor); permutations = number of
permutation to assess the significance of the ANOSIM statistic; distance = distance
or dissimilarity measure. If the input data does not have the dissimilarity structure
or is a symmetric square matrix, then the distance needs to be specified.

The Vdr mouse fecal data are used here to illustrate ANOSIM test. First, we need
to load data and the vegan package if they have not been loaded yet. The grouping
information is obtained as previously described.

> abund_table=read.csv("VdrFecalGenusCounts.csv",row.names=1,

check.names=FALSE)

> abund_table<-t(abund_table)

> grouping<-data.frame(row.names=rownames(abund_table),t(as.data.frame

(strsplit(rownames(abund_table),"_"))))

9.3 Hypothesis Tests Among-Group Differences Using ANOSIM 313



> grouping$Group <- with(grouping,ifelse(as.factor(X2)%in% c

(11,12,13,14,15),c("Vdr-/-"), c("WT")))

> grouping<- grouping[,c(4)]

Fit ANOSIM using the Bray-Curtis Dissimilarity
The following R codes run ANOSIM using Bray-Curtis dissimilarity matrix as
input data.

> library(vegan)
> bray<-vegdist(abund_table, "bray")
> anosim(bray, grouping,permutations = 1000)

Call:
anosim(dat = bray, grouping = grouping, permutations = 1000) 
Dissimilarity: bray 

ANOSIM statistic R: 0.19 
Significance: 0.2 

Permutation: free
Number of permutations: 1000

It can be seen from the output in the function anosim() that it includes the
modeling formula along with the dissimilarity method used from the function call,
the value of ANOSIM statistic R, the significance from permutation and the number
of permutation values of R. The p-value of 0.2 is greater than 0.05, which indicates
that within-group similarity is not greater than between-group similarity at 0.05
significant level. We can conclude that there is no evidence that the within-group
samples are more similar than would be expected by random chance.

The following R codes run ANOSIM using abundance data frame as input data.

anosim(dat = abund_table, grouping = grouping, permutations = 1000,
distance = "bray") 
Dissimilarity: bray 

ANOSIM statistic R: 0.19 
Significance: 0.19 

Permutation: free
Number of permutations: 1000

> anosim(abund_table, grouping, permutations = 1000, distance = "bray")

Call:

The ANOSIM fit results can be summarized by the function summary().
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Finally, we can plot the results (Fig. 9.4):

> plot(fit)

Fit ANOSIM Using the Jaccard Dissimilarity
The following R codes fit ANOSIM using the Jaccard method.

Fig. 9.4 Boxplot of the fitted between and within Bray-Curtis dissimilarities in the WT and
Vdr−/− mouse data

> fit <- anosim(bray, grouping,permutations = 1000)
> summary(fit)

Call:
anosim(dat = bray, grouping = grouping, permutations = 1000) 
Dissimilarity: bray 

ANOSIM statistic R: 0.19 
Significance: 0.18 

Permutation: free
Number of permutations: 1000

Upper quantiles of permutations (null model):
90%   95% 97.5%   99% 

0.282 0.323 0.538 0.846 

Dissimilarity ranks between and within classes:
0% 25% 50%   75% 100%  N

Between  2 9.5  17 21.50   28 15
Vdr-/- 1 6.5  14 19.75   25 10
WT       5 8.0  11 16.50   22  3
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> anosim(abund_table, grouping, permutations = 1000, distance = "jaccard")

Call:
anosim(dat = abund_table, grouping = grouping, permutations = 1000,
distance= "jaccard") 
Dissimilarity: jaccard 

ANOSIM statistic R: 0.19 
Significance: 0.2 

Permutation: free
Number of permutations: 1000

Fit ANOSIM Using the Sørensen Dissimilarity
The following R codes fit ANOSIM using Sørensen method.

> fit_S <- anosim(abund_table, grouping, permutations = 1000,distance =
"Sørensen")
> summary(fit_S)

Call:
anosim(dat = abund_table, grouping = grouping, permutations = 1000) 
Dissimilarity: bray 

ANOSIM statistic R: 0.19 

Significance: 0.19 

Permutation: free
Number of permutations: 1000

Upper quantiles of permutations (null model):
90%   95% 97.5%   99% 

0.282 0.344 0.546 0.846 

Dissimilarity ranks between and within classes:
0% 25% 50%   75% 100%  N

Between  2 9.5  17 21.50   28 15
Vdr-/- 1 6.5  14 19.75   25 10
WT       5 8.0  11 16.50   22  3

9.4 Hypothesis Tests of Multi-response Permutation
Procedures (MRPP)

9.4.1 Introduction of MRPP

Multi-response permutation procedures (MRPP) is a nonparametric procedure for
testing the hypothesis of no difference between two or more groups of samples
based on permutation test of among-and within-group dissimilarities (Mielke 1984,
1991). The testing difference may be differences in mean (location) or differences in
within-group distance (spread) (Warton et al. 2012).

316 9 Multivariate Community Analysis



Similar as PERMANOVA, in both concept and method, MRPP is allied with
ANOVA: it compares dissimilarities within and among groups. The underlying idea
is also same. The MRPP test statistic is based on the difference of weighted mean
between-and within-group dissimilarities. It is given below:

delta ¼ d ¼
Xg
i¼1

Cidi ð9:7Þ

where, d = MRPP test statistic, is the overall weighted mean of within-group means
of the pairwise dissimilarities among sampling units; Ci ¼ ni=N; N = total number
of items; and ni = number of items in group i.

There are five main steps to conduct MRPP:

Step 1: calculate distance matrix using Euclidean distance for general cases, pro-
portional city-block measures for community data.
Step 2: calculate average distance in each group di.
Step 3: calculate delta for g groups.
Step 4: determine the effect size. The statistic A, which is a measure of effect size, is
interpreted like R in ANOISIM; it is obtained as a comparison of within-group
homogeneity to the random expectation.

A ¼ 1� d
ld

¼ 1� observed d
expected d

ð9:8Þ

The test statistic is to test there is no difference among groups under the null
hypothesis. If within-group heterogeneity equals expectation by chance, then
A = 0; when all items are identical within groups, then A = 1. A < 0.1 is common
in ecology; A > 0.3 is fairly high in ecology. However, based on our knowledge,
there is no reporting criterion of effect size in microbiome literature.

Step 5: test for significance. As in PERMANOVA and ANOSIM tests, the p-value
of test statistic d is obtained through Monte Carlo permutations. The significance
test is simply the fraction of permuted deltas that are less than the observed delta,
with a small sample correction. It is the probability of a delta given this small or
smaller.

9.4.2 Illustrating MRPP Using Vegan Package

MRPP provides a way to statistically test whether there is a significant difference
between two or more groups of sampling units. The MRPP is implemented via
the function mrpp() in vegan package. If the input data is dissimilarity, it can be
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directly used. If it is a matrix with observations by responses data structure, then
the dissimilarity needs to be calculated by the function vegdist() before use. The
default distance is Euclidean method, but other dissimilarities in vegdist() also are
applied. The function has summary and plot methods to perform post modeling
analysis.

The following is one sample syntax:

mrpp(data, grouping, permutations = 1000, distance = “bray”)

where, data = data matrix or data frame in which rows are observations and col-
umns are responses, or a dissimilarity object or a symmetric square matrix of
dissimilarities. The response(s) may be univariate or multivariate; group-
ing = grouping variable (a factor); permutations = number of permutation to assess
the significance of the MRPP statistic; distance = distance or dissimilarity measure.
If the input data does not have the dissimilarity structure or is a symmetric square
matrix, then the distance needs to be specified.

As in ANOSIM test, we need to access the data and load the vegan package.

Fit MRPP Using the Bray-Curtis Dissimilarity
The following R codes run MRPP using Bray-Curtis dissimilarity matrix as input
data.

> mrpp(bray, grouping,permutations = 1000)

Call:
mrpp(dat = bray, grouping = grouping, permutations = 1000) 

Dissimilarity index: bray 
Weights for groups:  n 

Class means and counts:

Vdr-/- WT   
delta 0.44   0.427
n     5      3    

Chance corrected within-group agreement A: 0.0502 
Based on observed delta 0.4353 and expected delta 0.4583 

Significance of delta: 0.17 
Permutation: free
Number of permutations: 1000

The observed and expected deltas are 0.4353 and 0.4583, respectively. The
significance of delta is 0.13 with the chance corrected within-group agreement
A of 0.0502. Given the small sample size, we conclude that there is no sta-
tistically significant difference of the two genus clusters at the 0.05 of signifi-
cance level.

The following codes run MRPP using abundance data frame as input data:
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> mrpp(abund_table, grouping, permutations = 1000, distance = "bray")

Call:
mrpp(dat = abund_table, grouping = grouping, permutations = 1000,
distance= "bray") 

Dissimilarity index: bray 
Weights for groups:  n 

Class means and counts:

Vdr-/- WT   
delta 0.44   0.427
n     5      3    

Chance corrected within-group agreement A: 0.0502 
Based on observed delta 0.4353 and expected delta 0.4583 

Significance of delta: 0.15 
Permutation: free
Number of permutations: 1000

Obtain Mean Distance Matrix Using meandist()
The function meandist() calculates a matrix of mean within-cluster (block) dis-
similarities (diagonal) and between-cluster (block) dissimilarities (off-diagonal
elements), and an attribute n of grouping counts.

> meandist(bray, grouping,permutations = 1000)
Vdr-/- WT

Vdr-/- 0.4401 0.4766
WT     0.4766 0.4273
attr(,"class")
[1] "meandist" "matrix"  
attr(,"n")
grouping
Vdr-/- WT 

5      3 

Obtain Mean Distances and Summary Statistics Using meandist()
and summary()
We can use the function summary() to the function meandist() object to find the
within-class, between-class and overall means of these dissimilarities, and the
MRPP statistics with all weight.type options and the classification strength.

> bray_mrpp <- meandist(bray, grouping,permutations = 1000,distance =
"bray",weight.type = 1)
> summary(bray_mrpp)

Mean distances:
Average

within groups   0.4372
between groups  0.4766
overall         0.4583

Summary statistics:
Statistic

MRPP A weights n          0.05016
MRPP A weights n-1        0.04900
MRPP A weights n(n-1)     0.04612
Classification strength   0.04131
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9.5 Compare Microbiome Communities Using
the GUniFrac Package

9.5.1 Introduction to UniFrac, Weighted UniFrac
and Generalized UniFrac Distance Metrics

In multivariate microbiome composition analysis, the measures of unweighted and
weighted UniFrac distances are most widely used to measure two microbiome
communities.

The UniFrac distance, also known as unweighted UniFrac distance, was intro-
duced by Lozupone et al. in 2005 (Lozupone and Knight 2005). It is a measure to
estimate the difference between microbiome samples that based on phylogenetic
distance. The goal of the UniFrac distance metric was to enable objective com-
parison between microbiome samples from different conditions. The unweighted
UniFrac is defined as follows:

dU ¼
Xn
i¼1

bi I pAi [ 0
� �� I pBi [ 0

� ��� ��Pn
i¼1 bi

ð9:9Þ

where, dU = unweighted UniFrac distance; A, B = microbiome community A and
B, respectively; n = rooted phylogenetic tree’s branches; bi =length of the branch i.
piA and piB= taxa proportions descending from the branch i for community A and
B, respectively. I(.) is the indicator function to indicate if species presence/absence
in branch i. In above formula, both taxa proportions descending from the branch
i for community A and B are defined as >0 with I pAi [ 0

� �
and I pBi [ 0

� �
.

As defined this way, the UniFrac measure is calculated by dividing the branch
lengths that are not shared between the two samples by the branch lengths covered
by either sample, but not both (Lozupone and Knight 2005). A distance of 0
indicates that the two samples are identical, and a distance of 1 indicates that the
two samples share no taxa in common. As a binary test of absence, the unweighted
UniFrac distance considers only taxa presence and absence information; it is most
efficient in detecting abundance change in rare lineages. However, such definition
of distance measure completely ignores the taxa abundance information (Chen et al.
2012).

In 2007, Lozupone et al. added a proportional weighting to the original
unweighted method (Lozupone et al. 2007), hence called this new UniFrac measure
as weighted UniFrac. Weighted UniFrac distance uses taxa abundance information
and weights the branch length with abundance difference; in a weighted UniFrac
distance measure, each branch length of the phylogenetic tree is weighted by the
difference in proportional abundance of the taxa between the two samples, instead
of looking only at the presence or absence of taxa. The weighted UniFrac distance
(Lozupone et al. 2007) is defined as
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dW ¼
Pn

i¼1 bi p
A
i � pBi

�� ��Pn
i¼1 bi p

A
i þ pBið Þ ð9:10Þ

where, dW = (normalized) weighted UniFrac distance; A, B = microbiome com-
munity A and B, respectively; n = rooted phylogenetic tree’s branches; bi =length
of the branch i.

There are several features with formulation of this definition: (1) it weights the
branch length with abundance difference; (2) dW can not be reduced to dU even if
we convert abundance data into presence/absence data; and (3) dW uses the
absolute proportion difference, which results in the value of dW is determined
mainly by branches with large proportions and is less sensitive to the abundance
changes on the branches with small proportions (Chen et al. 2012). By adding a
proportional weighting to UniFrac distance, weighted UniFrac distance reduces the
problem of low abundance taxa being represented as a 0 or by a low count
depending on sampling depth. In weighted UniFrac, low abundance taxa have a
much lower weight and so will have a lower impact on the total distance reported
by the metric (Wong et al. 2016). Thus, weighted UniFrac can detect both changes
in how many sequences from each lineage are present, as well as in which taxa are
present (Lozupone et al. 2007); it is most sensitive to detect change in abundant
lineages (Chen et al. 2012). However, either unweighted or weighted UniFrac
distances may not be very powerful in detecting change in moderately abundant
lineages (Chen et al. 2012) bacause they assign too much weight either to rare
lineages or to most abundant lineages. Thus, Chen et al. proposed the following
generalized UniFrac distances to unify weighted UniFrac and unweighted UniFrac
distances.

dðaÞ ¼
Pn

i¼1 biðpAi þ pBi Þa pAi �pBi
pAi þ pBi

��� ���Pn
i¼1 biðpAi þ pBi Þa

ð9:11Þ

where, dðaÞ = generalized UniFrac distances; a 2 ½0; 1� is used to controls the
contribution from high-abundance branches; A, B = microbiome community A and
B, respectively; n = rooted phylogenetic tree’s branches; bi =length of the branch i;Pn

i¼1 bi p
A
i þ pBi

� �a
= normalizing factor to ensure dðaÞ value in [0,1]. Generalized

UniFrac distance contains an extra parameter a controlling the weight on abundant
lineages so the distance is not dominated by highly abundant lineages. a = 0.5 has
overall the best power.

The unified formulation of UniFrac distances has several features: (1) the weight
on branches with large proportions is attenuated through using the relative differ-
ence pAi � pBi

�� ��= pAi þ pBi
� �

. The weight value is in [0,1]; (2) with this formulation,
now dW can be reduced to dU if we convert abundance data into presence/absence
data; when we put a ¼ 1 in above (9.11), dðaÞ is reduced to dW .
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dð1Þ ¼
Pn

i¼1 biðpAi þ pBi Þ1 pAi �pBi
pAi þ pBi

��� ���Pn
i¼1 biðpAi þ pBi Þ1

¼
Pn

i¼1 bi p
A
i � pBi

�� ��Pn
i¼1 bi p

A
i þ pBið Þ ¼ dW ð9:12Þ

When a = 0, we get

dð0Þ ¼
Pn

i¼1 biðpAi þ pBi Þ0 pAi �pBi
pAi þ pBi

��� ���Pn
i¼1 biðpAi þ pBi Þ0

¼
Pn

i¼1 bi
pAi �pBi
pAi þ pBi

��� ���Pn
i¼1 bi

ð9:13Þ

The pseudo-F statistic based on UniFrac distances is defined as

F ¼ trðHGHÞ=ðm� 1Þ
tr½ðI � HÞGðI � HÞ�=ðn� mÞ ; ð9:14Þ

where tr(.) is the trace function of a matrix, H ¼ XðXTXÞ�1XT is the hat (projec-
tion) matrix of the design matrix X, G is Gower’s centered matrix, and n and m is
the number of samples and the number of predictors, respectively. Let dij be the
generalized UniFrac distance between community i and j and denote

A ¼ ðaijÞ ¼ � 1
2 d

2
ij

� �
. The Gower’s matrix is defined as G ¼ I � 110

n

� �
A I � 110

n

� �
.

For details of the test statistic and unified formulation of unweighted, weighted
UniFrac distances and generalized UniFrac distances, readers can reference the
authors’ original paper (Chen et al. 2012).

9.5.2 Breast Milk Data Set

The breast milk data set comes from two recently published studies (Urbaniak et al.
2016; Wong et al. 2016). It collects 58 microbiome samples taken from lactating
Caucasian Canadian women. Human milk is an important source of bacteria for the
developing infant and influences the bacterial composition of the newborn infant,
which in turn can affect disease risk later in life. In the first publication, the authors
used this data set to compare bacterial profiles between preterm and term births, C
section (elective and non-elective) and vaginal deliveries, and male and female
infants. In the second publication, the same data set was used to illustrate the
authors’ own developed tools including unweighted UniFrac, weighted UniFrac,
information UniFrac and ratio UniFrac. Here we use this data set to compare
microbiome communities using the GUniFrac package.
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9.5.3 Comparing Microbiome Communities Using
the GUniFrac Package

The package GUniFrac (Chen 2012) was developed to implement the generalized
uniFrac distance to compare microbiome communities (Chen et al. 2012). As the
PERMANOVA procedure, in GUniFrac package the significance of the pseudo-
F statistics is assessed based on permutations. If the fraction of the tree unique to
one environment is greater than would be expected by chance, then the two
communities are considered different. In this package, the unweighted and weighted
UniFrac, and variance adjusted weighted UniFrac distances can also be imple-
mented. The UniFrac distances can be calculated and used to compare microbiome
communities in the GUniFrac package including dW ; dð0:5Þ; dð0Þ; dU and variance
adjusted weighted UniFrac distance dVAW . In above section, we present the for-
mulas of dW ; dð0Þ, and dU . The dð0:5Þ represents the distance in middle of the

distance series; it is given by: dð0:5Þ ¼
Pn

i¼1
bi

ffiffiffiffiffiffiffiffiffiffiffi
pAi þ pBi

p pA
i
�pB

i
pA
i
þ pB

i

��� ���Pn

i¼1
bi

ffiffiffiffiffiffiffiffiffiffiffi
pAi þ pBi

p . It can be derived by

plugging 0.5 to a in formula (9.11).
The variance-adjusted weighted UniFrac distance dVAW is given by

dVAW ¼
Pn

i¼1
bi

jpA
i
�pB

i
j

mðm�miÞPn

i¼1
bi

pA
i
�pB

i
mðm�miÞ

, where mi is the total number of individuals/reads from both

communities on the ith branch and m is total number of individuals/reads. It was
developed to account for the fact that weighted UniFrac distance does not consider
the variation of the weights under random sampling resulting in less power
detecting the differences between communities (Chang et al. 2011). The GUniFrac
package is dependent on vegan and ape packages and the author also suggests using
package ade4. One usage is given as below.

GUniFrac(otu.tab, tree, alpha = c(0, 0.5, 1))

where, out.tab = OTU count table with row (=sample) and column (=OTU);
tree = rooted phylogenetic tree of R class “phylo”; alpha = parameter controlling
weight on abundant lineages.

UniFrac measure calculations require two pieces of information: a table of
counts and a phylogenetic tree. Thus, two data sets are needed to run GUniFrac
package: a table of counts such as OTU table and a phylogenetic tree.

In the following, we step-by-step illustrate how to use the GUniFrac package to
comparing microbiome communities.
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Step 1: Load and Read OTU Table with Appropriate Formats
Set the directory the same way as we did in previous chapters. The
“td_OTU_tag_mapped_lineage.txt” data set includes two pieces of information:
OTU count table and taxonomy in the last column. The partial R codes from the
original dataset’s authors are useful. We modify them here, and explain and
comment on what the codes are doing for.

> setwd("E:/Home/MicrobiomeStatUsingR/Analysis/")

> otu_tab <- read.table("td_OTU_tag_mapped_lineage.

txt", header=T, sep="\t", row.names=1, comment.

char="", check.names=FALSE)

In the arguments, row.names = 1 argument specifies the column 1 of the table
which contains the row names; comment.char = “” is used to turn off the inter-
pretation of comments altogether. It is very faster than the default read.table(). The
first 6 rows of the dataset “td_OTU_tag_mapped_lineage.txt” are given below:

> head(otu_tab)
S31    S1   S42 S13_T2  S30  S50  S43  S20  S29 S47U  S26 S13_T3   S33  S8L

0   38    36    30     14   13   18   27   38   49    7 5251     12    17   35

1 2866 15069 42985   3292 1223 1056 3959 3021 7023 1856 7993   2571 13306 1101

2  437  9831  4628   4231 4473  718 3843  441 4311 2496 5672   4940  4112 4830

3 3356  7407  5355     62  121   14 3616 6184  334  108   31     30    13   56

4   12   478    16    342   23    8   18   97  390  126    4    271    53    7

5  145   238   234      3   56    1  109  156  374   28    0     45     0    1

……
taxonomy

0  

Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Pasteurella;|93

1               

Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;|77

2  

Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas;|92

3 Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae;Escherichia-

Shigella;|98

4  

Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae;Klebsiella;|75

5  

Bacteria;Actinobacteria;Actinobacteria;Corynebacteriales;Corynebacteriaceae;Corynebacterium;|88

However, for correctly using GUniFrac package, the OTU table should be a
numeric matrix. The following R codes are used to remove taxonomy column from
the original dataset.

> taxonomy <- otu_tab$taxonomy

> otu_tab <- otu_tab[-length(colnames(otu_tab))]

The otu table needs to be transposed into a sample by otu matrix.
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> otu_tab <- t(as.matrix(otu_tab))
> head(otu_tab)

......

0     1    2    3   4   5     6  7   8    9 10  11  12  13   14   15  16  17

S31    38  2866  437 3356  12 145    43  0  20   19 33  27  16  21   79   40  30  12

S1     36 15069 9831 7407 478 238  1368 25 306 2821 91 169 323 475 1290 3795 532 186

S42    30 42985 4628 5355  16 234 14491  2 357  153 48 109 136 520  781 617 727 867

S13_T2 14  3292 4231   62 342   3   282  1 188   51 64 168 161 574  557   33 408   7

S30    13  1223 4473  121  23  56     3  0 123    3 13   3 279 207  703  123 617   5

S50    18  1056  718   14   8   1     3  1  20    5  0   1  35  49  119 28  83   5

Step 2: Use Rarefaction to Normalize the Sample OTU Counts to a Standard
Sequencing Depth
The rarefied data is recommended to be used by the authors of UniFrac (Carcer
et al. 2011) and was used to calculate the unweighted UniFrac distance matrix,
while the non-rarefied data was used for weighted, information, and ratio UniFrac
using their custom UniFrac script (Wong et al. 2016). However, in GUniFrac
package manual, the rarefied data were used for all UniFrac distance calculations.
Because GUniFrac is sensitive to different sequencing depth, to compare micro-
biomes on an equal basis, rarefaction might be used (Chen 2012). Thus, we follow
the package manual; rarefy the samples before performing unweighted, weighted
UniFrac, and variance-adjusted weighted UniFrac distances. The rarefaction can be
done using either function rrarefy() or rarefy() from vegan package.

> library(vegan)

> otu_tab_rarefy <- rrarefy(otu_tab, min(apply(otu_tab,1,sum)))

Step 3: Read Phylogenetic Tree
The GUniFrac package requires a rooted tree as input data. We can use the function
midpoint() from the phangorn package to obtain the rooted tree.

> library(phangorn)
> otu_tree <- midpoint(otu_tree)
> otu_tree

Phylogenetic tree with 115 tips and 114 internal nodes.

Tip labels:
1, 11, 6686, 18, 230, 82, ...

Node labels:
NA, 71.9, 79.1, 86.9, 87.1, 52.4, ...

Rooted; includes branch lengths.

Step 4: Calculate the UniFracs
Now, the UniFracs can be calculated using the GUniFrac package.

> library(GUniFrac)

> #Calculate the UniFracs

> unifracs <- GUniFrac(otu_tab_rarefy, otu_tree, alpha=c(0, 0.5, 1))

$unifracs

9.5 Compare Microbiome Communities Using the GUniFrac Package 325



> dw <- unifracs[,, "d_1"] # Weighted UniFrac

> du <- unifracs[,, "d_UW"] # Unweighted UniFrac

> dv <- unifracs[,, "d_VAW"]# Variance adjusted weighted UniFrac

> d0 <- unifracs[,, "d_0"] # GUniFrac with alpha 0

> d5 <- unifracs[,, "d_0.5"]# GUniFrac with alpha 0.5

Step 5: Conduct PERMANOVA to Compare One UniFrac Measure
In order to test hypothesis on these UniFrac measures, the group information is
needed to be extracted from the meta data. We use the function read.table() to read
the metadata as follows:

> meta_tab<- read.table("metadata.txt", header=T, sep="\t",

row.names=1, comment.char="", check.names=FALSE)

The OTU table and metadata are matched to keep the samples that only appear in
both datasets.

> otu_meta_matched <- match(rownames(meta_tab),rownames(otu_tab))

> otu_meta_matched <- otu_meta_matched[!is.na(otu_meta_matched)]

> otu_tab <- otu_tab[otu_meta_matched,]

> meta_tab_Ordered <- meta_tab[match(rownames(otu_tab),rownames

(meta_tab)),]

The following R codes use the function adonis() in vegan package to conduct
PERMANOVA to compare the distance in middle of the distance series of gesta-
tion. The interested readers can try other UniFrac distance metrics.

> set.seed(123)
> adonis(as.dist(d5) ~ meta_tab$Gestation)

Call:
adonis(formula = as.dist(d5) ~ meta_tab$Gestation) 

Permutation: free
Number of permutations: 999

Terms added sequentially (first to last)

Df SumsOfSqs  MeanSqs F.Model      R2 Pr(>F)
meta_tab$Gestation  4    0.4336 0.108391  1.2001 0.08305   0.22
Residuals          53    4.7869 0.090319         0.91695       
Total              57    5.2205                  1.00000    

Similarly, gender and milktype effects can be tested as below.
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> adonis(as.dist(d5) ~ meta_tab$Gender)

Call:
adonis(formula = as.dist(d5) ~ meta_tab$Gender) 

Permutation: free
Number of permutations: 999

Terms added sequentially (first to last)

Df SumsOfSqs  MeanSqs F.Model     R2 Pr(>F)
meta_tab$Gender  2    0.1864 0.093197  1.0182 0.0357  0.381
Residuals       55    5.0341 0.091529         0.9643       
Total           57    5.2205                  1.0000  

> adonis(as.dist(d5) ~ meta_tab$milktype)

Call:
adonis(formula = as.dist(d5) ~ meta_tab$milktype) 

Permutation: free
Number of permutations: 999

Terms added sequentially (first to last)

Df SumsOfSqs  MeanSqs F.Model      R2 Pr(>F)  
meta_tab$milktype  3    0.4019 0.133976  1.5014 0.07699   0.06 .
Residuals         54    4.8186 0.089233         0.92301      
Total             57    5.2205                  1.00000         
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Step 6: Conduct PERMANOVA to Compare Multiple UniFrac Measures
Using the Function PermanovaG()
Combining multiple distance matrices can add power for hypothesis testing. The
following R codes use d(0), d(0.5), d(1) and the function PermanovaG() to conduct
the permutational multivariate analysis of variance.

> PermanovaG(unifracs[, , c("d_0", "d_0.5", "d_1")] ~ meta_tab$Gestation)
$aov.tab

F.Model p.value
meta_tab$Gestation 1.262764   0.263

9.6 Summary and Discussion

In this chapter, we presented hypothesis testing on multivariate community
microbiome data and their step-by-step implementations in the R system. The data
we used to illustrate are from our own studies (Jin et al. 2015; Wang et al.
2016) or are publicly availble. Readers may use the R codes and explanations
provided in this chapter to analyze their own microbiome data.
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About multivariate community analysis of beta diversity, two approaches exist
in the ecological literature: ‘‘raw-data approach’’ and ‘‘distance (Mantel)
approach’’ (Legendre et al. 2005; Tuomisto and Ruokolainen 2006; Laliberte
2008). PERMANOVA, redundancy analysis (RDA), distance-based RDA
(db-RDA), and canonical analysis of principal coordinates are belong to raw data
based approaches, while Mantel test is typical distance based approach. ANOSIM is
simply a modified version of the Mantel test based on a standardized rank corre-
lation between two distance matrices. Thus, it also belongs to distance based
approach. The domain of application of the Mantel test is also applied to the
analysis of similarity (ANOSIM) as well (Legendre et al. 2005).

The question is which approach is more appropriate for analyzing multivariate
community microbiome data? In ecological literature, there are many discussions
about this topic (McArdle and Anderson 2001; Legendre et al. 2005; Legendre
2007; Laliberte 2008; Legendre et al. 2008; Pélissier et al. 2008; Tuomisto and
Ruokolainen 2008; Anderson et al. 2011; Legendre and Legendre 2012).

The distance-based methods have the problems: (1) they do not correctly par-
tition the variation in the data and do not provide the correct Type-I error rates,
therefore are not appropriate for analyzing beta diversity; (2) as point out by
Anderson et al., what is even more problematic is the use of partitioning methods to
make direct inferences regarding the relative importance of underlying processes
driving patterns in beta diversity (Anderson et al. 2011). For example, ANOSIM
and Mantel tests have been shown that they are inappropriate for testing hypotheses
concerning variation of the raw data (Legendre et al. 2005). Thus, they are sug-
gested to restrict to analyzing the variation of beta diversity, but not beta diversity.
The alternative raw data based approaches have been thought to offer a more
appropriate and more powerful tools for analysis of beta diversity. However, the
distance-based methods do have some advantages. For example, the Mantel test
was thought as a valid approach to relate two distance matrices (Anderson et al.
2011) and offered more flexibility, allowing the use of other types of distance
functions such as Jaccard or Steinhaus/Bray-Curtis (Legendre et al. 2005), and it
may be appropriate for hypotheses concerning the variation in beta diversity among
groups of sites (samples) (Legendre et al. 2005).

Compared to the simple Mantel test, ecological studies have also pointed out that
the partial Mantel approach for some time to be problematic for interpretation (e.g.,
Legendre et al. 2005; Anderson et al. 2011).

About the uses of functions in vegan package, the authors of this package
recommend adonis() over mrpp() and anosim(). The reasons lie on that the function
adonis() allows ANOVA-like tests of the variance in beta diversity explained by
continuous and/or categorical predictors. However, both mrpp() and anosim() only
handle categorical predictors, and they are less robust than adonis() (Oksanen et al.
2016).
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So far, most discussions about multivariate community analysis are limited in
ecological and other relevant study fields, but not in microbiome area. However,
microbiome studies have adopted these methods and approaches, the advantages
and limitations of these methods are also applicable to microbiome research.
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Chapter 10
Compositional Analysis of Microbiome
Data

This chapter focuses on compositional analysis of microbiome data. In Sect. 10.1,
we introduce the concepts, principles, statistical methods and tools of compositional
data analysis. Section 10.2 introduce the reasons that microbiome dataset can be
treated as compositional. In Sect. 10.3, we illustrate some graphics of exploratory
compositional data analysis. Section 10.4 is covered by the ALDEx2 package for
hypothesis testing between the groups. In Sect. 10.5, we introduce the concept of
proportionality for correlation analysis for relative data and illustrate its use. In
Sect. 10.6, we summarize this chapter and discuss the limitations of compositional
data analysis.

10.1 Introduction to Compositional Analysis

10.1.1 What Are Compositional Data?

According toWebster’s II NewCollege Dictionary, composition is “the act of putting
together parts or elements to form a whole”, or it is “the way in which such parts are
combined or related: constitution”. Compositional data quantitatively describe the
parts of whole and provide only relative information between their components
(Hron et al. 2010; Egozcue and Pawlowsky-Glahn 2011; Pawlowsky-Glahn et al.
2015). Thus, compositional data exist as the proportions, or fractions, of a whole or
portions of a total (van den Boogaart and Tolosana-Delgado 2013), conveying
exclusively relative information, and have the properties: the elements of the com-
position are non-negative and sum to unity (Bacon-Shone 2011).

From a practical point of view, if researchers are really only interested in relative
frequencies, not the absolute amount of data, then the data are compositional.
Therefore, compositional data frequently arise in different fields of science:
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genomics, population genetics, demography, ecology, biology, chemistry, geology,
petrology, sedimentology, geochemistry, planetology, psychology, marketing,
survey analysis, economics, probability, and statistics.

10.1.2 Aitchison Simplex

Mathematically, a data is defined as compositional, if it contains D multiple parts of
nonnegative numbers whose sum is 1 (Aitchison 1986, p. 25) or any constant-sum
constraint (Pawlowsky-Glahn et al. 2015, p. 10). It can be formally stated as:

SD ¼ X ¼ x1; x2; . . .; xD½ �jxi [ 0; i ¼ 1; 2; . . .;D;
XD
i¼1

xi ¼ j

( )
ð10:1Þ

The formula states that compositional data can be represented by constant sum real
vectors with positive components. This defines the sample space of compositional
data as a hyperplane, called the simplex (Aitchison 1986, p. 27; Mateu-Figueras
et al. 2011; van den Boogaart and Tolosana-Delgado 2013, p. 37;
Pawlowsky-Glahn et al. 2015, p. 10).

Note that j is arbitrary. Depending on the units of measurement or rescaling,
frequent values are 1 (per unit, proportions), 100 (percent, %), 106 (ppm, parts per
million), and 109 (ppb, parts per billion).

10.1.3 Problems with Standard Statistical Methods

Standard data analysis techniques, such as correlation analysis, rely on the
assumption of the Euclidean geometry in real space (Eaton 1983). Applying them to
compositional data may yield misleading results because the compositional data
represent the special properties of the sample space, the simplex.

In Chap. 3 of “The Statistical Analysis of Compositional Data” (Aitchison
1986), John Aitchison reviewed and discussed some challenging problems in
compositional data analysis. We summarize the key points and give further
explanations here.

First, there is a spurious correlation, which results in being difficult to interpret
the correlations between proportions in any meaningful way, mainly because
uncorrelated proportions are not necessarily independent. Earlier in 1897, Pearson
first observed the problem of “spurious correlation” between ratios of variables. i.e.,
while statistically independent variables X, Y, and Z are not correlated, their ratios
X/Z and Y/Z must be, because of their common divisor (Pearson 1897; Lovell et al.
2015). For example, in microbiome study, relative abundance data can make
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statistically independent components appear correlated (Lovell et al. 2011). Thus,
correlation of relative abundances is thought as just wrong and correlation analysis
of relative abundances is considered to tell us absolutely nothing (Lovell et al.
2015).

Second, the difficulties of high dimensionality arise in compositional data
analysis, which results in graphical distortions of the multivariate pattern of vari-
ability. When the analysis is restricted to a selection of subcompositions rather than
the compositions as a whole, then it projects a partial analysis and loses a picture of
the multivariate pattern of variability. Due to unit-sum constraint confines com-
positional vectors to a simplex, graphical distortions happened: graphical pattern
seen is no guarantee as the same in familiar space such as R2.

Third, constant-sum problem (also called negative bias problem) makes it dif-
ficult to interpret the correlation and covariance in their usual ways. Using the
traditional way, the interdependence of the compositions of a D-part composition
vector is expressed through product-moment covariances. However, the covariance
structure is not interpretable.

The difficulties have been expressed in a variety of ways: negative bias difficulty,
subcomposition difficulty, basis difficulty, and null correlation difficulty.

Subject to unit-sum or constant-sum constraint, there must be at least one
negative element in each row of the (raw) covariance matrix. In other words, at least
D of its entries must be negative. For example, in each sample if the amount of one
kind of taxa in the ecosystem increases, the amounts of one or more other kinds of
taxa must decrease. Hence subject to the non-negative definiteness of the covari-
ance or correlation matrix, the values of correlations are not in the usual interval
(−1, 1) (Aitchison 1986, 1999). This is called negative bias difficulty.

Similarly, the unit-sum constraint precludes relationship between the raw
covariance matrix of a subcomposition and that of the full composition. Moreover,
the raw correlations may change substantially when we move from full composition
to its subcompositions and variances may display different and unrelatable rank
orderings as we form subcompositions. Aitchison called this as subcomposition
difficulty.

When we construct a composition from a basis vector, the correlations between
the elements of constructed vector are different from their basis vector, which
results in difficulty in relating the raw covariance matrix of the composition to the
covariance matrix of its basis: basis difficulty.

Furthermore, due to negative bias, it is difficult to use the value zero to present
no association or independence of random variables. Actually, uncorrelated com-
ponents of the bases yields null correlations, but not necessarily zero. The concept
of null correlation here is analogous to Pearson’s spurious correlation. This is null
correlation difficulty. Thus, compositional constraints are notorious for their
impacts on the covariance and correlation structures of data (Aitchison 1986)
(Sect. 3.3).

Finally, it is difficult to use parametric distributions into the simplex sample
space to model compositional data (difficulty of parametric modeling). Regression
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and multivariate analysis rely on the assumption of multivariate normality and are
conducted in the real sample space. A unit sum constraint places a much more
fundamental restriction on the freedom of the components of composition than the
non-negative restriction. Because of analyzing the parts from the whole or subject
to non-negative restriction and a unit sum constraint, components cannot be nor-
mally distributed, due to the bounded range of values. Therefore, the multinormal
and its transformed multivariate lognormal parametric class of distributions are not
appropriate statistical tools to analyze compositional data (Aitchison 1986).

In standard factorial experimental design and associated ANOVA and linear
models, the independence of factors allows us to test their additive effect on the
response or specific interaction terms exist (Cameron and Trivedi 1998). However,
in simplex space, because of the unit-sum constraint, the factors (D parts of a
composition) are not independent; actually they are the mixture. If we change one
component, we had to change at least one other component, and not linear (espe-
cially at the boundaries). Thus, it is difficult to formulate meaningful hypotheses
about the nature of the effect of the mixture on the response. Aitchison called it as
the mixture variation difficulty.

The main properties of Dirichlet distribution shown by Aitchison are: the cor-
relation structure of a Dirichlet composition is completely negative, which makes it
inappropriate to analyze data patterns for which some such correlations are defi-
nitely positive. Every Drichlet composition has a very strong implied independence
structure, unlikely being used to describe compositions with even weak forms of
dependence (Aitchison 1986). Thus, even the Dirichlet classes turn out to be totally
inadequate for the description of the variability of compositional data.

In summary, composition data violate the assumptions of all standard statistical
tests; i.e., differences between parts are linear or additive. It makes most standard
statistical methods and tests invalid: (1) spurious correlations preclude correlation
analysis; (2) graphical distortions make the visualizing tools (e.g., scatter plot, QQ
plot, et al.) impossible; (3) lack of multivariate normality of compositions preclude
multivariate parametric modeling of compositional data; and (4) dependence of the
mixture makes ANOVA and linear regression meaningless to be used to test
hypotheses on the response.

10.1.4 Statistical Analysis of Compositional Data

10.1.4.1 Fundamental Principles

Aitchison proposed three fundamental principles for the analysis of compositional
data, and suggested that we should adhere to these principles when analyzing
compositional data (Aitchison 1982, 1986). They have been reformulated several
times (Barceló-Vidal et al. 2001; Martín-Fernández et al. 2003; Aitchison and
Egozcue 2005; Egozcue 2009; Egozcue and Pawlowsky-Glahn 2011) according to
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new theoretical developments. The principles are all rooted in the definition of
compositional data: only ratios of components carry information.

(i) Scaling invariance.
It states that analyses must treat vectors with proportional positive compo-
nents as representing the same composition (Lovell et al. 2015). In other
words, statistical inferences about compositional data should not depend on
the scale used. Thus, the vector of per-units and the vector of percentages
convey exactly the same information (Egozcue and Pawlowsky-Glahn 2011).
We should obtain exactly the same results from analyzing proportions and
percentages. For example, the vectors a = [11, 2, 5], b ¼ ½110; 20; 50�, and
c ¼ ½1100; 200; 500� represent all the same composition because the relative
importance (the ratios) between their components is the same (van den
Boogaart and Tolosana-Delgado 2013).

(ii) Subcompositional coherence.
It states that analyses should depend only on data about components (or
parts) within that subset, not depend on other non-involved components (or
parts) (Egozcue and Pawlowsky-Glahn 2011); and statistical inferences
about subcompositions (a particular subset of components) should be con-
sistent, regardless of whether the inference is based on the subcomposition or
the full composition (Lovell et al. 2015).

(iii) Permutation invariance.
It states that the conclusions of a compositional analysis should not depend
on the order (the sequence) of the components (the parts) (Egozcue and
Pawlowsky-Glahn 2011; van den Boogaart and Tolosana-Delgado 2013;
Lovell et al. 2015). In compositional analysis, the information from the order
of the different components plays no role. For example, it does not matter
that we choose which component to be the “first”, which component to be
the “second” and so on, which one to be the “last”.

10.1.4.2 A Family of Log-Ratio Transformations

The major problem with compositional data is that the data points do not map to
Euclidean space, but instead to the Aitchison simplex (Aitchison 1986). The
question is: how to analyze compositional data? Should we move or stay with the
simplex? Because standard statistical methods cannot solve the compositional data
problems in simplex, the critical step towards compositional data analysis is to
provide an approach for a one-to-one mapping onto a real space.

Log and Log-Ratio Transformations
The approach of solving the compositional data problems in simplex is expected to
be completed through several steps: first transform compositions into real space
using a log-ratio transformation, then to apply standard statistical methods to the
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transformed data, finally, return to the simplex by using the inverse log-ratio
transformation (Mateu-Figueras et al. 2011). The log-ratio transformation of
compositional data is thought to legally restore much usage of traditional statistical
analysis tools in situations such as relative abundance.

Although using a log-ratio transformation is considered as a critical approach to
release compositional constraint, it has taken a long time to reach the currently
suitable versions.

To remove the non-negative constraint from compositional data, the first and
maybe the easy way is to use log-normal distributions. Over a hundred years, from
Galton-McAlister’s introduction (Galton 1879; McAlister 1879) to the text book of
Aitchison and Brown for the log-normal distribution (Aitchison and Brown 1969),
the log transform techniques are readily available. By taking a log transform of the
data, the non-negative constraint is removed, and then assuming a normal distri-
bution. The approach is analogous to using logistic link function to model binary
data with generalized linear model framework (McCullagh and Nelder 1989).
However, the log transformation approach only addresses the non-negative con-
straint of compositional data and does not address the unit sum constraint
(Bacon-Shone 2011). It is until Aitchison in the 1980s developed methodology
based on a variety of log-ratio transformation (Aitchison and Egozcue 2005), the
unit sum constraint problem began to solve. Aitchison in the 1980s realized that
compositions only provide the information about relative, not absolute values of
parts or components. Thus, he used the ratios of components to present every
statement about a composition (Aitchison 1981, 1982, 1983, 1984). Because
mathematically log-ratios are easier to handle than ratios, and a log-ratios trans-
formation provides a one-to-one mapping onto a real space, it opens a path for
researchers to develop methodology based on a variety of log-ratio transformation
(Aitchison and Egozcue 2005). The algorithm behind the log-ratio transformation
principle is based on the fact that there is a one-to-one correspondence between
compositional vectors and associated log-ratio vectors, so that any statement about
compositions can be reformed in terms of log-ratios, and vice versa
(Pawlowsky-Glahn et al. 2015).

With log-ratio transformations, the problem of a constrained sample space, the
simplex, is removed, and data are projected into multivariate real space. Therefore,
open up all available standard multivariate techniques (Pawlowsky-Glahn et al.
2015). The log-ratio transformation methodology was accepted by statisticians and
researchers in geology, ecology and other fields (Aitchison 1982; Pawlowsky-
Glahn and Buccianti 2011; van den Boogaart and Tolosana-Delgado 2013;
Pawlowsky-Glahn et al. 2015).

In a seminal work (1986) (Aitchison 1986), in order to transform the simplex to
the real space, Aitchison developed an axiomatic approach to compositional data
analysis with a set of fundamental principles. Based on these fundamental princi-
ples, a variety of methods, operations, and tools, including additive log-ratio (alr),
centered log-ratio (clr) and isometric log-ratio (ilr) transformations, have been
developed by Aitchison and others. We briefly describe these three log-ratio
transformations appropriate for compositional data as below:
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Additive Log-Ratio (alr) Transformation
The original approach proposed in Aitchison (1986) for the compositional data
analysis was based on the additive log-ratio (alr) transformation. It is defined as:

alrðxÞ ¼ ln
x1
xD

� �
; . . .; ln

xi
xD

� �
; . . .; ln

xD�1

xD

� �� �
: ð10:2Þ

The distinguishing feature of this formula is to map a composition in the D-part
Aitchison simplex none isometrically to a D-1 dimensional Euclidean vector. Thus,
the log-ratio transformation transforms raw compositional data from simplex to
real/Euclidean space. The log-ratio transformed data can then be analyzed by all
standard statistical methods, which are not relied on a distance. Its inverse trans-
forms from real/Euclidean space back to the simplex (Aitchison 2003).

The additive log-ratio (alr) transformation is the simplest one which chooses one
component as a reference. It is still in wide use. For example, in studying the
association of obesity and microbiome, the ratio of Bacteroidetes to Firmicutes has
been reported in many publications (Ley et al. 2005, 2006; Turnbaugh et al. 2006,
2009; Arumugam et al. 2011; Knights et al. 2011; The Human Microbiome Project
2012; Sweeney and Morton 2013; Finucane et al. 2014; Walters et al. 2014;
Sze and Schloss 2016).

Centered Log-Ratio (clr) Transformation
Centered log-ratio (clr) transformation maps a composition in the D-part Aitchison
simplex isometrically to a D-1 dimensional Euclidean vector. The clr representation
of composition x ¼ ðx1; . . .; xi; . . .; xDÞ is defined as the logarithm of the compo-
nents after dividing by the geometric mean of x:

clrðxÞ ¼ ln
x1

gmðxÞ
� �

; . . .; ln
xi

gmðxÞ
� �

; . . .; ln
xD

gmðxÞ
� �� �

; ð10:3Þ

with gmðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2 � � � xDD

p
ensuring that the sum of the elements of clr(x) is zero.

The clr transforms the composition to the Euclidean sample space, and hence
providing the possibility of using standard unconstrained statistical methods for
analyzing compositional data (Aitchison. 2003). Dividing all components in a
composition by the geometric mean gmðxÞ or any constant does not alter the ratios
of components. Just like the alr, the inverse of clr also exists.

For example, the clr-approach transforms each taxon within a sample by taking
the log-ratio of the counts for that taxon divided by the geometric mean of the
counts of all taxa, instead of using one reference taxon. This algorithm has been
adopted by some software developments (Fernandes et al. 2013; van den Boogaart
and Tolosana-Delgado 2013) for microbiome research and argued that this trans-
formation could be used to successfully analyze microbiome data, as well as
RNA-seq data and next-generation sequence data set (Fernandes et al. 2014).
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Isometric Log-Ratio (ilr) transformation
The isometric log-ratio (ilr) transformation was defined by Egozcue et al. (2003) as
below:

y ¼ ilrðxÞ ¼ ðyi; . . .; yD�1Þ 2 RD�1: ð10:4Þ

where, yi ¼ 1ffiffiffiffiffiffiffiffiffiffi
iðiþ 1Þ

p ln

Qi

j¼1
xj

ðxi þ 1Þi

� �
.

Like the clr, the ilr transformation maps a composition in the D-part Aitchison
simplex isometrically to a D-1 dimensional Euclidian vector. Like alr and clr, the
isometric log-ratio (ilr) can transform the data from simplex to real space according
to isometric log-ratio transformation. It also has inverse. All standard statistical
methods can be applied into analysis of the ilr-transformed data.

The ilr transformation is the product of the clr and the transpose of a matrix
which consists of elements. The elements are clr-transformed components of an
orthonormal basis. This ilr transformation is an orthonormal isometry. It addresses
certain difficulties of alr and clr, but its interpretability is subject to the selection of
its basis, which has somewhat limited its adoption (Egozcue et al. 2003).

Which Transformation We Should Choose?
The difference among these three log-ratio transformations is to choose the divisor.
In other words, is to choose which value to be used to normalize all the values in a
sample. Each transformation has its own weaknesses or advantages.

Theoretically, one shortcoming of alr transformation is that the transformation
by definition, is asymmetric in the parts of the composition (Egozcue et al. 2003),
thus, the distances between points in the transformed space are not the same for
different divisors (Bacon-Shone 2011). Therefore, it means alr transformed data
should not be analyzed by standard statistical methods, such as ANOVA and t-test,
although as shown in Aitchison (1986) and further developed in Aitchison et al.
(2000), this weakness is a conceptual rather than practical problem (Aitchison et al.
2000). The main drawback of alr transformation is: it is not an isometric trans-
formation from the simplex, with the Aitchison metric, onto the real alr-space, with
the ordinary Euclidean metric. Although using an appropriate metric with oblique
coordinates in real additive log-ratio (alr)-space could solve this weakness.
However, it is not a standard practice (Aitchison and Egozcue 2005).

In practice, the alr transformation or choosing reference taxa is relatively simple
to interpret the results, because the relation to the original D-1 first parts is pre-
served. It is the advantage of alr. However, there may not always be an obvious
reference to choose, the choice of reference taxon is somewhat arbitrary (Li 2015)
and results may vary substantially dependent on the choice of reference (Tsilimigras
and Fodor 2016). It may be one of the reasons that the alr transformation was not
used for analysis of compositional data in “Analyzing Compositional Data with R”
(van den Boogaart and Tolosana-Delgado 2013), although there was a choice for
the alr function.
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By avoiding alr transformation problem of choosing a divisor (e.g., using one
reference taxon), the clr transformation is to divide by the geometric mean. The
advantage of the clr is that it is an isometric transformation of the simplex with the
Aitchison metric, onto a subspace of real space with the ordinary Euclidean metric
(Egozcue et al. 2003). However, the disadvantage is that the clr covariance matrix is
singular, making it difficult to use in some standard statistical procedures without
adaption (Bacon-Shone 2011). Additionally, the orthogonal references in its sub-
space are not obtained in a straightforward manner (Egozcue et al. 2003), which is
thought as its prominent weakness.

The ilr avoids the arbitrariness of alr and the singularity of clr. It has significant
conceptual advantages (Bacon-Shone 2011); however there is no one-to-one rela-
tion between the original components and the transformed variables, it is difficult to
interpret the results. Thus, in practice, ilr has limited adoption in use.

10.1.4.3 How to Deal Zeros in Compositional Data Analysis

One critical progress in compositional data analysis since the 1980s was to use the
log-ratio methods. However, the log-ratio methods did not solve zero problems,
instead, highlighted the importance of dealing zeros. Because the logarithm of zero
is not defined, log and log-ratio transformations require non-zero elements in the
data matrix; as a consequence, compositional data analysis must be preceded by a
treatment of the zeros.

The three log-ratio transformations have difficulties to meet the central chal-
lenges arisen from the complexity of sequencing data sets, especially to solve zero
problems. We have reviewed the topic of zero in Chap. 2, and will further cover
this topic in zero-inflated models in Chap. 12. Here we review how the composi-
tional data analysts deal with different kinds of zeros.

The zeros are caused by many complicated reasons and currently, no simple
general treatment strategy exists (Martín-Fernández et al. 2011). Compositional
data analysts try to find the underlying reason and determine the appropriate
approach to be applied. Since Aitchison proposed his initial approaches to zeros by
replacement and using a model (Aitchison 1986), several treatment approaches
have been developed in compositional data analysis.

Deal with Rounded Zeros
For rounds zeros, most approaches treat them as a particular NMAR (Not Missing
At Random) case, and deal with them by using both nonparametric multiplicative
replacement (Martín-Fernández et al. 2003) and more sophisticated model-based
replacements parametric methods: to replace them with a small, nonzero value
(Martín-Fernández et al. 2012, 2015).

Technically, the non-parametric methods for rounded zeros essentially are to
replace a small quantity for each zero by imputation (Martín-Fernández et al. 2003,
2011); while several strategies for rounded compositional zeros have been proposed
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in the literature. One of the parametric methods for rounded zeros uses a modifi-
cation of the common expectation-maximization (EM) algorithm in combination
with the alr transformation to generate suitable estimates for the values below the
detection limit (Palarea-Albaladejo et al. 2007; Mateu-Figueras and Pawlowsky-
Glahn 2008; Palarea-Albaladejo and Martín-Fernández 2008; Martín-Fernández
et al. 2011).

The aim of imputation of zero is to avoid taking logarithms of zero using the
log-ratio transformations. However, in real study, it is difficult to replace zeros with
the particular imputed small non-zero values and while do not distort statistical
estimates, especially if the degree of sparsity changes dramatically and outlier
occurs (Filzmoser et al. 2012; Martín-Fernández et al. 2012; Palarea-Albaladejo and
Martín-Fernández 2015; Palarea-Albaladejo and Martín-Fernández 2015).

Deal with Sampling Zeros
Sampling zeros are assumed to be a consequence of the sampling process, not
genuine zeros, and specialized methods are required (Martín-Fernández 2015). To
address the sampling zero problem, a Bayesian-multiplicative (BM) treatment
combining with the Dirichlet distribution has been proposed (Martín-Fernández
et al. 2011, 2015). The Bayesian replacement techniques are considered as the most
popular way to deal with count zeros (Martín-Fernández et al. 2015).

A new version of Bayesian-multiplicative method for compositional data anal-
ysis was proposed by Martín-Fernández et al. (2015). It involves Bayesian infer-
ence on the zero values and a multiplicative modification of the non-zero values in
the vector of counts. A zero value is replaced by its posterior Bayesian estimate.
The non-zero parts are modified in a multiplicative way. This modification pre-
serves the original ratios between parts, as well as the total sum representation of
the vector (Martín-Fernández et al. 2015) and has a minor distortion of the asso-
ciation between the parts (Martín-Fernández et al. 2003, 2015).

Based on the valuable information: the average of a compositional vector is
equal to its geometric mean (Aitchison 1986), the Geometric BM (GBM) prior and
the GBM replacement (Martín-Fernández et al. 2015) are developed to replace zero.
However, although the GBM replacements result in the best behavior among the
Bayesian replacement techniques, none of the Bayesian methods, neither the GBM
replacement, do fully account for the scale invariance. Because it is not fully
compatible with the principle of scale invariance of compositional data analysis
(Egozcue 2009), researchers cast further doubts on the Bayesian replacement
(Martín-Fernández et al. 2015) and back to directly use a model-based replacement
procedure to impute the values below the detection limit and developed R software
to implement it. For example, a version of this procedure is currently implemented
in the function impRZilr() in the library “robCompositions” (Bacon-Shone 2003).

Deal with Structural Zeros
There are various attempts to address the structural zero problem. Relevant con-
tributions specifically focused on the treatment of this kind of zero are by Aitchison
and Kay (2003) and Bacon-Shone (2003, 2008). Although currently there is no
general method for dealing with the structural zero, it is clear that strategies for
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replacing it by a small value are not appropriate (Martín-Fernández et al. 2011,
2015).

Under the framework of compositional data analysis, most early researches take
the responsibility of the decision on whether a zero is structural or not. They
thought that structural zeros can be present in data sets where the components are
continuous variables or percentages (Aitchison and Kay 2003) or appear in discrete
compositions of count data (Bacon-Shone 2008) and modeled them based on a
binomial conditional logistic normal model (Aitchison and Kay 2003) and based on
the Poisson-log normal distribution (Bacon-Shone 2008), respectively. Although
these two approaches have modeled structural zeros with some success, however,
structural zero issue is by far the most complicated problem; it needs the specific
models to consider combining zero and non-zero components (Martín-Fernández
et al. 2011).

In summary, the approaches of differentiating zero sources and modeling them
based on distinct categories: rounded, sampling, or structural zeros under the
framework of compositional data analysis, have difficulties, troubles, and chal-
lenges, especially in the field of omics researches. In omics, the zero issues are
more complicated since it is not easy to separate sampling zeros from structural
zeros. Microbiome read counts are generated through two high-throughput
sequencing-based approaches: either by sequencing the 16S rRNA marker gene
or the shotgun sequencing, which sequences all the microbial genomes presented in
the sample. After the sequencing reads are obtained, the data are quantified by
aligning to some known reference sequences, and normalized to the relative
abundances to make the compositional data comparable (Chen and Li 2016).
Generally, we can say that lots of zeros occur due to the process of data generating.
However, the presence of zero values in a compositional data set can be due to
multiple and different reasons. The zero measurements exist, either because a
component was not present, or because it was present but not sampled, or because
some measurement error occurred (Lovell et al. 2011).

10.1.4.4 Statistical Tools for Compositional Data Analysis

Statistical Software Under the Classic Framework of Aitchison’s CODA
In 2001, compositional data researchers noticed that the original set of routines
programmed by John Aitchison (1986) under the name of CODA (with Basic as the
language) and NEWCODA (with Matlab 5) were difficult to use for scientists and
other users with no programming skills (Aitchison and Greenacre 2002). Since then
many R packages have been developed by compositional data researchers and are
available for use. We can divide these tools into two categories: exploratory
analysis and statistical modeling.
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CoDaPack 3D
CoDaPack 3D belongs to the first category. It is publicly available as freeware at
http://ima.udg.edu/CoDaPack. Compositional data analysis, following Aitchison’s
approach, is mainly based on the study and interpretation of log-ratios. CoDaPack
3D provides a user-friendly freeware environment that performs most of the
techniques of this approach (Aitchison and Greenacre 2002; Gotelli 2008).
CoDaPack 3D is implemented as a set of menus from an ExcelR datasheet and
returns numerical results either on the same sheet or as graphical results in an
independent window. Compositional data techniques do not permit zero values
because of the use of logarithms. In order to replace the zeros, CoDaPack 3D has a
routine on the operation menu.

Compositions
Three frequently used R packages for compositional data analysis with Aitchison’s
approach are compositions (van den Boogaart et al. 2014), robCompositions
(Templ et al. 2011), and zCompositions (Palarea-Albaladejo and Martin-Fernandez
2015).
The “compositions” is a unified R package to analyze compositional data
(Greenacre 1993). The package provides functions for the consistent analysis of
compositional data. Especially, it offers methods for the statistical analysis of four
different scales of amount data: (1) acomp: compositional data with relative
geometry (Aitchison Simplex); (2) rcomp: compositional data in absolute geometry
(Classical Simplex); (3) aplus: positive data with relative geometry (Log-scale
analysis); and (4) rplus: positive data with absolute geometry (R + ^d). It provides:

• descriptive statistics (e.g., variation matrix, Aitchison mean)
• basic plotting (e.g., ternary diagrams, log-geometry boxplots)
• advanced plotting (e.g., confidence ellipsoids, Aitchison lines)
• multivariate analysis (e.g., compositional principle components)
• all operations in all four geometries (e.g., perturbation, norm)
• standard transforms (e.g., ilr, clr)
• complexity reduction (e.g., marginal compositions, grouping)
• examples.

All data sets from Aitchison (1986) on compositional data are available in the
package compositions.

robCompositions
While the compositions package is devoted in particular to classical statistical
procedures, the robCompositions package provides tools of exploratory composi-
tional data analysis (Templ et al. 2011): a robust statistical analysis of composi-
tional data together with corresponding graphical tools (Barnett 1981). The
robCompositions package provides for the alr, clr and ilr transformations. However,
their implementations of transformations are different from the compositions
package; in the robCompositions package, variable names and absolute values are
preserved. It also provides a comprehensive tool for robust statistical analysis of
compositional data, including principal component analysis, factor analysis,
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discriminant analysis, missing values imputation, multivariate outlier detection, and
the accordingly graphic tools (e.g., compositional biplot), etc.

zCompositions
A common left-censoring problem in data sets susceptible to a compositional
analysis is the presence of rounded zeros. The zCompositions package implements
methods for imputing zeros in compositional count data sets (Palarea-Albaladejo
and Martin-Fernandez 2015). It performs imputation of multivariate data with
left-censored values under a compositional approach (Palarea-Albaladejo and
Martin-Fernandez 2015). The novelty of zCompositions package is to consider both
the multivariate structure of the data and methods for left-censored data compatible
with a compositional approach to data analysis. Thus, it was adopted by other
packages (e.g., ALDEx2).

Statistical Methods and Packages for Correlation and Graphical Network
CCREPE

The CCREPE (Compositionality Corrected by REnormalizaion and PErmutation)
package (Egozcue and Pawlowsky-Glahn 2005; Gevers et al. 2014;Weiss et al. 2015)
was designed to assess the significance of general similarity measures in composi-
tional datasets, by using permutation-based methods, which implemented through
two functions: ccrepe()ccrepe() and nc.score()nc.score(). The first function calculates
similarity measures, p-values and q-values for relative abundances, using bootstrap
and permutation matrices of the data, while the second function calculates
species-level co-variation and co-exclusion patterns based on an extension of the
checkerboard score to ordinal data. The package takes the sum to one constraint into
account when assigning p-values to similarity measures between the taxa.

SparCC
A common goal of genomic surveys is to identify correlations between taxa within
ecological communities. As an alternative to CCREPE, SparCC (Sparse
Correlations for Compositional data) (Friedman and Alm 2012a, b) was specifically
designed to estimate the linear Pearson correlations between the log-transformed
components from compositional data.

SpiecEasi
SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association
Inference) (Kurtz et al. 2015) is a statistical method for the inference of microbial
ecological networks from amplicon sequencing that addresses the two issues:
(1) the microbial abundances are compositional, and therefore are not indepen-
dent; and (2) the much larger number of taxa (OTUs) when compared with the
number of samples. The SPIEC-EASI and package SpiecEasi addresses these
issues by taking advantage of the proportionality invariance of relative abundance
data and making assumptions about the underlying network structure when the
number of taxa in the dataset is larger than the number of sampled communities
(Kurtz et al. 2015).
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The software including CCREPE, SPARCC, SPIEC-EASI, addresses different
difficulties arising from the compositional nature of microbiome analyses
(Tsilimigras and Fodor 2016). It adopts all the algorithms that have been developed
to appropriately analyze compositional data. However, the proposed approaches
have the fundamental limitations: they are all built on the assumptions about the
underlying data, and no “gold standard” to validate the assumptions and general
features of such data sets (Kurtz et al. 2015), although there are no guiding
assumptions.

For example, CCREPE’s permutation approach has been argued that will fail to
adequately control for compositional effects and lead to “false confidence” in the
observed correlations (Friedman and Alm 2012a, b; Tsilimigras and Fodor 2016).
There are two arguable issues of SparCC model. First, it assumes that there are a
sufficiently large number of taxa, and that these taxa on average are uncorrelated
with each other leading to a sparse network, which potentially has overestimated the
underlying association networks. Second, it eliminates zero fractions by adding
small pseudocounts (Friedman and Alm 2012a, b), which obviously simplifies the
complication of zero problem.

In SPIEC-EASI, the problem of producing less consistent and sparser interaction
networks by SparCC and CCREPE has been investigated. Actually, SPIEC-EASI
constructed more highly reproducible association networks, compared to SparCC
and CCREPE. Although these two methods are designed to account for these
compositional biases and represent the state of the art in the field, it is not clear that
correlation is the proper measure of association (Kurtz et al. 2015).

Statistical Tools for Examining Differences in Taxon Abundance Using the
CoDa
ANCOM
ANCOM (Analysis of Composition of Microbiomes) (Mandal et al. 2015) was
developed to account for the compositional constraints to reduce false discoveries
in detecting differences in microbial mean taxa abundance at an ecosystem level. It
is based on the compositional log-ratios. ANCOM allows researchers to compare
microbial taxa abundance in two or more populations, including detecting trends
over time in longitudinal or cross sectional studies, while adjusting for covariates if
necessary. The method is implemented via ANCOM package. The method of
ANCOM is one of two currently available tools for statistical analysis and
hypothesis testing of differences in taxon (OTU) abundance that use the CoDa
analysis approach. The other is ALDEx2.

ALDEx2
As reviewed in Chap. 3, to our knowledge, most existing tools for compositional
data analysis have been used in the other fields, such as geology and ecology, but
not in microbiome studies. These existing tools can be readily adapted and is a valid
approach to analyze microbiome high-throughput sequencing data (Gloor and Reid
2016). The R packages called ALDEx and ALDEx2 were developed to analyze

344 10 Compositional Analysis of Microbiome Data



ANOVA-like differential express (Fernandes et al. 2013; Gloor et al. 2016) and to
unify the analysis of high-throughput sequencing datasets including RNA
sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq),
sequencing of 16S rRNA gene fragments, metagenomic analysis and selective
growth experiments (Fernandes et al. 2014).

ALDEx and ALDEx2 are compositional data analysis tools that use Bayesian
methods to infer technical and statistical error. It incorporates a Bayesian estimate
of the posterior probability of taxon abundance into a compositional framework:
using a Dirichlet distribution to transform the observed data, then estimates the
distribution of taxon abundance by random sampling instances of the transformed
data. ALDEx and ALDEx2 are robust statistical methods developed in a traditional
ANOVA-like framework that decompose sample-to-sample variation into four
parts: within-condition variation, between-condition variation, sampling variation,
and general (unexplained) error. They evaluate the taxon (OTU) abundance in
microbiome datasets using both statistical testing of significance and measuring the
effect size based on CoDa approach.

As a CoDa analysis approach, ALDEx is not interested in the total number of
reads, but the proportions from counts. Let ni present the number of counts
observed in taxon i, and assume that each taxon’s read count was sampled from a
Poisson process with rate li, i.e., ni �PoissonðliÞ with n ¼ P

i ni. The equivalency
between Poisson and multinomial processes can then be used to assert that the set of
joint counts with given total has a multinomial distribution, i.e., f½n1; n2; . . .�jng�
Multinomial ðp1; p2; . . .jnÞ where each pi ¼ li=

P
k lk.

Based on the fact of equivalence between Poisson and multinomial processes,
traditional methods use ni to estimate li and then use the set of li to estimate pi.
The methods ignore that most datasets of this type contain large numbers of taxa
with zero or small read counts, thus the maximum-likelihood estimate of pi this way
is often exponentially inaccurate. Therefore, ALDEx estimates the set of propor-
tions pi directly from the set of counts ni.

ALDEx uses standard Bayesian techniques to infer the posterior distribution of
½p1; p2; . . .� as the product of the multinomial likelihood with a Dirichlet ð12 ; 12 ; . . .Þ
prior. Considering the large variance and extreme non-normality of the marginal
distributions pi when the associated ni are small, ALDEx does not summarize the
posterior of pi using point-estimates. Instead, it performs all inferences using the
full posterior distribution of probabilities drawn from the Dirichlet distribution such
that ½p1; p2; . . .� � Dirichlet ð½n1; n2; . . .� þ 1

2Þ.
Adding 0.5 to the Dirichlet distribution, the multivariate distribution avoids the

zero problem for the inferred proportions even if the associated count is zero, and
conserves the probability, i.e.,

P
k pk ¼ 1. After obtaining the multivariate Dirichlet

proportional distributions, to make a meaningful comparison between-sample val-
ues from proportional distributions, ALDEx uses the procedures developed by
Aitchison, Egozcue, and others (Egozcue et al. 2003; Aitchison and Egozcue 2005;
Egozcue and Pawlowsky-Glahn 2005) to transform component proportions into
linearly independent components.
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ALDEx takes the component-wise logarithms and subtracts the constant
1
m

P
k logðpkÞ from each log-proportion component for a set of m proportions

½p1; p2; . . .; pm�, because mathematically log-proportions are easily manipulated.
This results in the values of the relative abundances qi ¼ logðpiÞ � 1

m

Pm
k¼1 logðpiÞ

where
P

k qk is always zero. Most important, it projects q onto a m� 1 dimensional
Euclidean vector space with linearly independent components. Thus, a traditional
ANOVA-like framework can be formed to analyze the q values ½q1; q2; . . .; qm�.

The software estimates the distribution of q from multiple Monte Carlo real-
izations of p given ½n1; n2; . . .; nm�, because it is cumbersome to directly compute q
distribution.

The distribution of p * Dirichlet (a) has the following properties:

EflogðpiÞg ¼ wðaiÞ � w
X

ak
� �

; ð10:5Þ

and

cov logðpiÞ; logðpjÞ
	 
 ¼ w0ðaiÞdij � w0 X

ak
� �

ð10:6Þ

where w, w0, and d represent the digamma, trigamma, and Kronecker-delta func-
tions, respectively.

Let i ¼ f1; 2; . . .; Ig index genes (taxa), j ¼ f1; 2; . . .; Jg index the conditions,
and k ¼ f1; 2; . . .;Kjg index the replicate of a given condition, using the framework
of random-effect ANOVA models, the proposed ALDEx is given by:

qijk ¼ lij þ mijk þ sijk þ eijk; ð10:7Þ

where,

qijk adjusted log-expression (abundance)
lij expected expression (abundance) of gene (taxon) i within each condition j
mijk sample-specific expression (abundance) change for replicate k
sijk sampling variation from inferring expression (abundance) from read counts
eijk remaining nonspecific error.

As the usual ANOVA assumptions, mijk is assumed to be approximately normal.
The distribution of the sampling error sijk is given by the adjusted log-marginal
distributions of the Dirichlet posterior and is very Gaussian-like.

ALDEx does not assume that within condition sample-to-sample variation is
small and essentially negligible, which is more appropriate for the analysis of
high-throughput sequencing datasets.

Under the ANOVA framework, we can test the hypotheses:

H0 : lij ¼ lij0
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The authors of the model emphasize the statistical significance by this hypoth-
esis test does not imply that the conditions j and j0 are meaningfully different.
Instead, such meaning can be inferred through an estimated effect-size that com-
pares predicted between condition differences to within-condition differences.

Given the set of random variables pijk and qijk, the within-condition distribution
is:

Wði; jÞ ¼
XKj

k¼1

qijk; ð10:8Þ

the absolute fold difference between-condition distribution is:

DAði; j; j0Þ ¼ Wði; jÞ �Wði; j0Þ; ð10:9Þ

the between sample, within-condition difference:

DW ði; jÞ ¼ maxj
k 6¼k0

qijk � qijk0 j; ð10:10Þ

and the relative effect-size:

DRði; j; j0Þ ¼ DAði; j; j0Þ=maxfDWði; jÞ;DWði; j0Þg: ð10:11Þ

The distributions are estimated from multiple independent Monte Carlo
realizations of their underlying Dirichlet-distributed proportions for all genes
i simultaneously.

10.2 Why Microbiome Dataset Can Be Treated
as Compositional?

There are several reasons that microbiome dataset can be treated as compositional.

The Structure of Microbiome Data Set is Compositional.
In his 1986 seminar work (Aitchison 1986), Aitchison summarized that a compo-
sitional data set has four characteristic features: (1) each row of the data array
corresponds to a replicate, a single experimental or observational unit; (2) each
column corresponds to a specific ingredient or part of each composition; (3) each
entry is non-negative; and (4) the sum of the entries in each row is 1, or equivalently
100%. The relative abundance table of microbiome data meets the characteristic
features of a compositional data set.
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Relative Values of Microbiome Data May be the Interest of Microbiome
Study.
In some circumstances the genuinely interest of microbiome study is to compare
relative amounts, or the relative abundance of different components. That is,
researchers are really interested in the truly relative feature of different components
(Lovell et al. 2011). For example, in the obesity microbiome study, one of the
research interests is the ratio of the relative abundance of Bacteroidetes to that of
Firmicutes (Ley et al. 2005; Sze and Schloss 2016). Under this situation, the total
number of reads for a particular sample is not itself informative or not itself
important.

The Source of Microbiome Data May Make the Total Values of the Data
Meaningless.
From the sequencing perspective, datasets generated from high throughput
sequencing are predefined or constrained to some constants. The omics datasets
including RNA sequencing (RNA-seq), sequencing of 16S rRNA gene fragments
(Illumina HiSeq or 454 pyrosequencing), chromatin immunoprecipitation
sequencing (ChIP-seq), metagenomic analysis and selective growth experiments are
composed of counts of sequencing reads mapped to a large number of features (e.g.,
OTUs, genes, species, or any taxonomic levels) in each sample. The capacity of the
machine (the sequencing platform used) and the number of samples that are mul-
tiplexed in the run determine the observed number of reads (sequencing depth)
(Fernandes et al. 2014). Thus, although the total of reads reported from the
high-throughput sequencing methods are large but finite.

Sample Preparation Limits Microbiome Data Carry Only Relative
Information.
Sample preparation and DNA/RNA extraction process have made the measure-
ments of omics in ways that ensure that data carry only relative information (Lovell
et al. 2011). For example, RNA sequencing starts with a fixed weight or volume
tissue sample, a fixed weight or volume of DNA/RNA are extracted, and a finite
number of sequence fragment reads are obtained from a fixed volumes of total
RNA.

In summary, essentially, the common feature of microbiome data is composi-
tional (Lovell et al. 2011, 2015; Friedman and Alm 2012a, b; Fernandes et al. 2013,
2014) based on the criteria defined by Aitchison (1986). Thus the approaches of
compositional data analysis can be applied to microbiome data.

Practical Rules of Choosing Compositional Approach to Analyze Microbiome
Data.
In practice, how do we judge whether a compositional approach is appropriate?
Generally, when we are interested in the ratios between their components, rather
than the total sum of the vectors, then a compositional approach is appropriate
(Martín-Fernández et al. 2015). Specially, the appropriateness of a data
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transformation for compositional data can be addressed by answering two questions
(van den Boogaart and Tolosana-Delgado 2008; Fernandes et al. 2014). First, is the
total sum of the counts of the data useful? And second, is the absolute difference
between observations important? When we answer yes to both questions, then it
means that the data belongs to Euclidean space, and the traditional statistical
methods are valid. If we answer no to both questions, it means that the data belongs
to the Aitchison simplex, and it must be transformed prior to analysis. Most
RNA-seq analysis tools, for example, the major tools used for 16S rRNA gene
analysis (qiime, mothur and vegan) and tools to analyze ChIP-seq, assume that the
values in the dataset are Euclidean and the absolute differences are important. The
interested readers can reference the papers of Fernandes et al. (2014) on how to
unify the analysis of high-throughput sequencing datasets by compositional data
analysis.

10.3 Exploratory Compositional Data Analysis

10.3.1 Compositional Biplot

The compositional biplot is one of the most widely used tools for exploring mul-
tivariate compositional data. The compositional biplot is considered as the first
exploratory data analysis tool that should be used whenever exploring a micro-
biome dataset. The plot shows whether or not the samples separate into different
groups; what taxa are driving this separation and what taxa are irrelevant to the
analysis.

In Chap. 7, the biplot was used when we introduced principal component
analysis (PCA), but without details. Here, we further introduce its concept and use.
The biplot, proposed by Gabriel (1971, 1981), displays the observations (objects
or samples) and variables in the same plot, in a way that depicts their joint
relationships. The prefix “bi” in the name biplot refers to the simultaneous display
of both rows (observations or samples) and columns (variables) of the data matrix,
not to a two-dimensionality of the plot. The biplot is usually used to graphic
display of matrices with application to PCA (called principal component biplot).
As displays of more than two dimensions are generally difficult to make and even
more difficult to interpret, most biplots show only the two dimensions which
account for the maximum amount of variation in the data matrix (Kroonenberg
2008).

Biplots were used in biomedical research (Gabriel and Odoroff 1990), com-
positional data analysis (Aitchison and Greenacre 2002) and currently in micro-
biome studies (Gloor and Reid 2016) in the form of compositional biplot. In
microbiome study, the compositional biplot displays both samples and taxa
(OTUs) of a data matrix graphically in the form of scores and loadings of a
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principal component analysis. Usually, samples are displayed as points while taxa
are displayed either as vectors or rays. Biplots essentially are a projection of the
multidimensional data onto two dimensions by displaying the two principle
components from PCA. Thus, ideally, the first two principle components can
explain all the variation of the data.

The most basic property of a biplot is that the inner product of the samples vector
and the taxa vector in the plot is the best approximation to the corresponding value
in the data matrix. Under a perfect fit condition (two dimensions), then the inner
products are identical to the values in the data matrix. Several interpretational rules
have been formed from this basic property. Generally, samples are preferably
displayed as points and taxa as vectors or arrows. If the angle between two sample
vectors is small, they have similar response patterns over taxa. If the angle between
two taxon vectors is small, they are strongly associated. Specifically, several rules
of interpretation in terms of compositional biplot have been summarized (Gloor and
Reid 2016):

(1) rays show the variance exhibited by each taxon, with longer rays indicate
more variation across all samples; (2) the locations of sample names show the
variable relationship related to other samples; (3) samples that are highly variable
and in the same direction as a long ray for a taxon suggest those samples contain
that taxon in high abundance; (4) two taxa with co-incident rays and the same
length indicate that the ratio of these two taxa is nearly identical across all samples;
(5) taxa with orthogonal rays are uncorrelated; (6) taxa having very far distant tips
of the rays indicate highly variable ratios across the samples; (7) three or more taxa
lying on a common link suggest that they are positively or negatively correlated;
(8) the cosine of the angle between links is proportional the correlation between the
pairs of ratios, or groups of ratios.

We illustrate the compositional biplot using our Vdr mouse dataset. There are 8
samples including 5 Vdr−/− and 3 wild type mice. We use the compositional biplot
to examine the relationship between samples and taxa. Two critical procedures need
to be performed by applying biplot to compositional data. One is to convert the
microbiome data to the centered log-ratio because the compositional biplot based
on clr-transformed compositions is easily interpreted. Another is to use a statistical
method to replace zero values. We illustrate the compositional biplot step-by-step
as below:

Step 1: Load the Data and Convert the Data to the Appropriate Format.
For the plot, the data format needs to be samples being rows, taxa being columns.
We load the “VdrFecalGenusCounts” mouse data as previously, and convert the
data to the appropriate format.
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> abund_table=read.csv("VdrFecalGenusCounts.csv",row.names=1,check.names=
FALSE)
> abund_table_t<-t(abund_table)
> head(abund_table_t)
               Tannerella Lactococcus Lactobacillus 
5_15_drySt-28F        476         326            94 
1_11_drySt-28F        549        2297           434 
2_12_drySt-28F        578         548           719 
3_13_drySt-28F        996        2378           322 
               Lactobacillus::Lactococcus Parasutterella Helicobacter 
5_15_drySt-28F                          1              1           89 
1_11_drySt-28F                         25              1            0 
2_12_drySt-28F                          5              4           13 
3_13_drySt-28F                         17              2           24 

Step 2: Replace 0 Values Using the zCompositions Package.
The following R codes use the function cmultRepl() from the zCompositions
package to replace 0 values with the count zero multiplicative method and output
counts. This function expects the samples to be in rows and taxa (or OTUs) to be in
columns. Because the abund_table_t dataset already have the appropriate data
format, we directly use here. But in order to convert the count data to proportion,
we use the t() function to transpose the data back to taxa by samples format.

> library (zCompositions) 
> abund_table_r <- t(cmultRepl((abund_table_t), method="CZM", output="counts"
))

No. corrected values:  54  

No. Corrected values: 54

> head(abund_table_r) 
                           5_15_drySt-28F 1_11_drySt-28F 2_12_drySt-28F 
Tannerella                            476       549.0000            578 
Lactococcus                           326      2297.0000            548 
Lactobacillus                          94       434.0000            719 
Lactobacillus::Lactococcus              1        25.0000              5 
Parasutterella                          1         1.0000              4 
Helicobacter                           89         0.3281             13 
                           3_13_drySt-28F 4_14_drySt-28F 7_22_drySt-28F 
Tannerella                            996       404.0000       319.0000 
Lactococcus                          2378       471.0000       882.0000 
Lactobacillus                         322       205.0000       644.0000 
Lactobacillus::Lactococcus             17         1.0000        13.0000 
Parasutterella                          2         0.3343         0.3348 
Helicobacter                           24        32.0000         3.0000 

                           8_23_drySt-28F 9_24_drySt-28F 
Tannerella                       526.0000       424.0000 
Lactococcus                     1973.0000      2308.0000 
Lactobacillus                   2340.0000      1000.0000 
Lactobacillus::Lactococcus        15.0000        14.0000 
Parasutterella                    12.0000         1.0000 
Helicobacter                       0.3278         0.3288 

10.3 Exploratory Compositional Data Analysis 351



Step 3: Convert the Data to Proportions.
After replace the zero counts, we convert the data to proportions using the function
apply() by samples (columns).

> abund_table_prop <- apply(abund_table_r, 2, function(x){x/sum(x)}) 
> head(abund_table_prop) 
                           5_15_drySt-28F 1_11_drySt-28F 2_12_drySt-28F 
Tannerella                      0.2487268      8.755e-02      0.1117660 
Lactococcus                     0.1703465      3.663e-01      0.1059650 
Lactobacillus                   0.0491183      6.921e-02      0.1390308 
Lactobacillus::Lactococcus      0.0005225      3.987e-03      0.0009668 
Parasutterella                  0.0005225      1.595e-04      0.0007735 
Helicobacter                    0.0465056      5.233e-05      0.0025138 
                           3_13_drySt-28F 4_14_drySt-28F 7_22_drySt-28F 
Tannerella                      0.1638771      0.1676255      0.1368797 
Lactococcus                     0.3912647      0.1954248      0.3784574 
Lactobacillus                   0.0529803      0.0850575      0.2763340 
Lactobacillus::Lactococcus      0.0027971      0.0004149      0.0055782 
Parasutterella                  0.0003291      0.0001387      0.0001437 
Helicobacter                    0.0039488      0.0132773      0.0012873 
                           8_23_drySt-28F 9_24_drySt-28F 
Tannerella                      0.0718879      7.617e-02 
Lactococcus                     0.2696479      4.146e-01 
Lactobacillus                   0.3198054      1.796e-01 
Lactobacillus::Lactococcus      0.0020500      2.515e-03 
Parasutterella                  0.0016400      1.796e-04 
Helicobacter                    0.0000448      5.907e-05 

Step 4: Perform Abundance and Sample Filtering and Deal Sparsity.
We filter the data to remove all taxa that are less than 0.1% abundance in any
sample using the function apply() again.

> abund_table_prop_f <- abund_table_r[apply(abund_table_prop, 1, min) > 0.001
,]
> head(abund_table_prop_f) 
              5_15_drySt-28F 1_11_drySt-28F 2_12_drySt-28F 3_13_drySt-28F 
Tannerella               476            549            578            996 
Lactococcus              326           2297            548           2378 
Lactobacillus             94            434            719            322 
Prevotella               121            289             99            335 
Bacteroides              273            958            377            526 
Eubacterium               52            144            238            129 
              4_14_drySt-28F 7_22_drySt-28F 8_23_drySt-28F 9_24_drySt-28F 
Tannerella               404            319            526            424 
Lactococcus              471            882           1973           2308 
Lactobacillus            205            644           2340           1000 
Prevotella               143            111             89             84 
Bacteroides              200             86            424            202 
Eubacterium               90             20             88            192 

Step 5: Perform the clr Data Transform.
After filter the data, we want to make a reduced dataset before convert the data to
the centered log-ratio. First, we add the names again and sort by abundance to
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check which taxa are most top in samples. Then obtain the taxa in the reduced
dataset by name. Finally, make the compositional dataset and transpose it to
samples by taxa format.

> names_add <- rownames(abund_table_prop_f)[ 
+   order(apply(abund_table_prop_unord, 1, sum), decreasing=T) ]
> abund_table_prop_reduced <- abund_table_prop_f[names_add,] 
> head(abund_table_prop_reduced) 

              5_15_drySt-28F 1_11_drySt-28F 2_12_drySt-28F 3
_13_drySt-28F 
Lactococcus              326           2297            548           2378 
Lactobacillus             94            434            719            322 
Tannerella               476            549            578            996 
Bacteroides              273            958            377            526 
Clostridium              130            597            815            203 
Akkermansia               48            102             85            519 
              4_14_drySt-28F 7_22_drySt-28F 8_23_drySt-28F 9_24_drySt-28F 
Lactococcus              471            882           1973           2308 
Lactobacillus            205            644           2340           1000 
Tannerella               404            319            526            424 
Bacteroides              200             86            424            202 
Clostridium              232             43            114            184 
Akkermansia              113             27            111            513 

> abund_clr <- t(apply(abund_table_prop_reduced, 2, function(x){log(x) - mean
(log(x))})) 
> head(abund_clr) 
               Lactococcus Lactobacillus Tannerella Bacteroides Clostridium 
5_15_drySt-28F      1.4104        0.1668     1.7889      1.2329      0.4910 
1_11_drySt-28F      2.1759        0.5096     0.7447      1.3014      0.8285 
2_12_drySt-28F      0.9113        1.1829     0.9646      0.5373      1.3083 
3_13_drySt-28F      2.2679        0.2684     1.3976      0.7592     -0.1929 
4_14_drySt-28F      1.4623        0.6305     1.3089      0.6058      0.7542 
7_22_drySt-28F      2.4995        2.1850     1.4825      0.1717     -0.5215 
               Akkermansia Prevotella Eubacterium Alistipes Butyricimonas 
5_15_drySt-28F    -0.50532     0.4193    -0.42528   -1.8116        -2.767 
1_11_drySt-28F    -0.93845     0.1030    -0.59361   -1.1326        -2.998 
2_12_drySt-28F    -0.95228    -0.7998     0.07734   -0.3198        -2.910 
3_13_drySt-28F     0.74576     0.3080    -0.64633   -2.1739        -2.734 
4_14_drySt-28F     0.03486     0.2703    -0.19271   -2.1276        -2.747 
7_22_drySt-28F    -0.98685     0.4268    -1.28695   -1.8848        -2.085 

Step 6: Perform the Singular Value Decomposition Using the Function
prcomp().
The following R codes do principal component analysis on the compositional
dataset using the function prcomp().
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> abund_PCX <- prcomp(abund_clr) 
> abund_PCX$x 
                   PC1     PC2      PC3      PC4      PC5      PC6       PC7 
5_15_drySt-28F  1.0242 -0.6032  0.80957 -0.32768  0.22770 -0.15661 -0.214411 
1_11_drySt-28F  1.0227  0.2804  0.44953  0.96400  0.09902  0.16335 -0.001434 
2_12_drySt-28F  1.6109  1.5102 -0.69053 -0.25939 -0.15748 -0.18697  0.072141 
3_13_drySt-28F -0.1694 -1.5474  0.06475  0.13418 -0.08307 -0.28778  0.175535 
4_14_drySt-28F  0.6115 -0.6322 -0.01712 -0.52362  0.01342  0.43329  0.089260 

7_22_drySt-28F -1.5161  0.6660  1.03864 -0.07416 -0.60975  0.02074 -0.025307 
8_23_drySt-28F -1.7195  0.8018  0.01231 -0.08533  0.68585 -0.02853  0.048112 
9_24_drySt-28F -0.8642 -0.4756 -1.66715  0.17200 -0.17568  0.04252 -0.143895 
                      PC8 
5_15_drySt-28F  1.388e-17 
1_11_drySt-28F  2.359e-16 
2_12_drySt-28F -1.943e-16 
3_13_drySt-28F -3.504e-16 
4_14_drySt-28F  1.041e-17 
7_22_drySt-28F  8.327e-17 
8_23_drySt-28F  0.000e+00 
9_24_drySt-28F  8.327e-17 

Step 7: Display the Results of Principal Component Analysis by Using Either
the biplot() or the coloredBiplot().
In Chap. 7, we used the basic biplot() function, here we illustrate the coloredBiplot
() function from the compositions package to generate a simple biplot and allow to
color the samples individually. One syntax is given by:

coloredBiplot(x, y, choices = 1:2, var.axes = T, col, cex = rep(par(“cex”), 2),
xlabs = the names to write for the points of the first set, ylabs = the names to write
for the points of the second set, expand = 1, arrow.len = 0.1, main = main title,
sub = subtitle, xlab = horizontal axis title, ylab = vertical axis title, xlabs.col = the
color(s) to draw the points of the first set, xlabs.pc = the plotting character(s) for the
first set, scale = 1)
where:

• x = the co-information to be plotted, given by a result of the prcomp() function
or the first set of coordinates to be plotted;

• y = optional, the second set of coordinates to be potted;
• var.axes = T or TRUE, the second set of points have arrows representing them

as (unscaled) axes; col = used to specify one color (to be used for the y set) or a
vector of two colors (to be used for x and y sets respectively, if xlabs.col is
NULL);

• cex = the usual cex parameter for plotting, can be a length-2 vector to format
differently x and y labels/symbols;

• expand = an expansion factor to apply when plotting the second set of points
relative to the first. This can be used to tweak the scaling of the two sets to a
physically comparable scale.

• arrow.len = the length of the arrow heads on the axes plotted in’var.axes’ is
true. The arrow head can be suppressed by ‘arrow.len = 0’.

• choices = the components to be plotted.
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• Scale = the way to distribute the singular values on the right or left singular
vectors for princomp and prcomp objects. Scale = 0 is to scale the plot based on
the samples. Scale = 1 is to scale based on taxa.

> library(compositions)

#Sum the total variances

> sum(abund_PCX$sdev[1:2]^2)/mvar(abund_clr)

[1] 0.6894

We calculate the total variance explained by the first two principal components
by calling the compositions package. The results show that 68.94% of total vari-
ances are explained by the first two components.

There are 5 Vdr−/− and 3 wild type samples. In order to have a differentiated
visualization of two conditions, we use different colors to label them.

> samples <- c(rep(1, 5,rownames(abund_PCX$x)),

+ rep(2, 3,rownames(abund_PCX$x)))

> palette=palette(c(rgb(1,0,0,0.6), rgb(0,0,1,0.6), rgb(.3,0,.3,0.6)))

> palette

[1] "black" "red" "green3" "blue" "cyan" "magenta"

"yellow"

[8] "gray"

The following R Codes call the function coloredBiplot() from the compositions
package to make a covariance biplot of the compositional data (Fig. 10.1).

> library(compositions)

> coloredBiplot(abund_PCX, col="black", cex=c(0.6, 0.5),xlabs.col=

samples,

+ arrow.len=0.05,

+ xlab=paste("PC1 ", round (sum(abund_PCX$sdev[1]

^2)/mvar(abund_clr),3), sep=""),

+ ylab=paste("PC2 ", round (sum(abund_PCX$sdev[2]

^2)/mvar(abund_clr),3), sep=""),

+ expand=0.8,var.axes=T, scale=1, main="Biplot")

The plot shows that:

• The first two principle components explain about 69% of the variance in the
dataset. Generally, the greater the variance explained by these two components,
the greater the distinction from taxa or OTUs (in this case, genera) and samples.

• The samples partition into two groups: 3 wild types (in blue) on the left and 5
Vdr−/−(in red) on the right. They are separated on PC1, which indicates the
effects on the split between samples.
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• The length and direction of the arrows (taxa location) is proportional to the
standard deviation of the taxon in the dataset. Lactobacillus is highly variable
genus along the same direction as samples 22 and 23, which indicates that this
bacterial is more abundant in WT samples than in Vdr−/− samples.

• Bacteroides and Eubacterium are very close together. They have a short link.
The length of a link is proportional to the variance in their ratios. So the variance
of the ratios of these two bacteria is fairly constant.

10.3.2 Compositional Scree Plot

After creating a compositional dataset, we can use a scree plot to display the
proportion of the total variation in the dataset that is explained by each of the
components in a principle component analysis. This helps us to identify how many
of the components are needed to summarize the data. To create a scree plot of the
components, we use the screeplot() function. It is the plot method for classes
“princomp” and “prcomp”. Its default plots the variances against the number of the
principal component (Fig. 10.2).

> layout(matrix(c(1,2),1,2, byrow=T), widths=c(6,4), heights=c(6,4))

> par(mgp=c(2,0.5,0))

> screeplot(abund_PCX, type = "lines", main="Scree plot")

> screeplot(abund_PCX, type = "barplot", main="Scree plot")

Fig. 10.1 The compositional
biplot of the
abundance-filtered Vdr mouse
data. The Vdr −/− and WT
samples are separated very
well. The first two
components explained 69%
total variance (42.7% for
component 1, 26.3% for
component 2) in the dataset
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10.3.3 Compositional Cluster Dendrogram

The biplot suggested that two groups could be defined with our Vdr mouse data. It
appears that the samples were separated between the WT samples containing taxa
of Lactobacillus, Butyricimonas, Lactococcus, and the Vdr−/− samples containing
taxa of Alistipes, Clostridium, Eubacterium, Bacteroides, Tannerella, Prevotella,
Akkermansia. We can use a compositional cluster analysis (compositional cluster
dendrogram) and a compositional barplot to confirm the relationship between the
sample clusters and taxa abundance.

In Chap. 7, we introduced cluster analysis based on Bray-Curtis distance using
the same data as use here. Usually in the traditional microbiome analysis, clustering
is based on one metric: either the weighted or unweighted unifrac distances, or the
Bray-Curtis dissimilarity. However, the Aitchison distance used in compositional
data analysis is considered as more robust to the community data. Thus, according
to the compositional approach, we here illustrate how to conduct a cluster analysis
or plot cluster dendrogram on the log-ratio-transformed data. Euclidian distance can
be used because the Aitchison transformed data are linearly related, but all distances
should be calculated from the ratios (Fig. 10.3).

> # generate the distance matrix

> dist <- dist(abund_clr, method="euclidian")

Fig. 10.2 The scree plot of the abundance-filtered Vdr mouse data. It shows that the majority of
the variability is on components 1 and 2
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> # cluster the data

> hc <- hclust(dist, method="ward.D2")

> hc

Call:
hclust(d = dist, method = “ward.D2”)

Cluster method : ward.D2
Distance : euclidean
Number of objects: 8

> # plot the dendrogram

> plot(hc, cex=1.0)

10.3.4 Compositional Barplot

In Sect. 7.2.2 of Chap. 7, we used barplot to display the taxa abundance distribu-
tion via the function plot_bar() from the phyloseq package. Here, we conduct the
sample bar plot, but on the compositionally transformed data. The following R

Fig. 10.3 Cluster
dendrogram generated by
compositional cluster
analysis. The figure shows
that the samples were
separated with WT samples
(9_22_drySt-28F, and
9_23_drySt-28F) on the left,
and 5 Vdr−/− samples on the
right, except one WT sample
(9_24_drySt-28F)
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codes are used to reorder the samples to match the sample orders as cluster den-
drogram. We can stack the cluster dendrogram on the top of barplot later.

> re_order <- abund_table_prop_reduced[,hc$order] 
> re_order 
              7_22_drySt-28F 8_23_drySt-28F 1_11_drySt-28F 2_12_drySt-28F 
Lactococcus              882           1973           2297            548 
Lactobacillus            644           2340            434            719 
Tannerella               319            526            549            578 
Bacteroides               86            424            958            377 
Clostridium               43            114            597            815 
Akkermansia               27            111            102             85 
Prevotella               111             89            289             99 
Eubacterium               20             88            144            238 
Alistipes                 11             19             84            160 
Butyricimonas              9             26             13             12 
              9_24_drySt-28F 3_13_drySt-28F 5_15_drySt-28F 4_14_drySt-28F 
Lactococcus             2308           2378            326            471 
Lactobacillus           1000            322             94            205 
Tannerella               424            996            476            404 
Bacteroides              202            526            273            200 
Clostridium              184            203            130            232 
Akkermansia              513            519             48            113 
Prevotella                84            335            121            143 
Eubacterium              192            129             52             90 
Alistipes                 27             28             13             13 
Butyricimonas              8             16              5              7 

Now we call the acomp() and barplot() functions to generate the compositional
barplot (Fig. 10.4).

Fig. 10.4 Compositional barplot. The figure shows taxa abundance distribution with the same
sample order as that of cluster dendrogram
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> library(compositions)

> re_order_acomp <- acomp(t(re_order))

> par(mfrow=c(1,2))

> colors <- rainbow(10)

> # plot the barplot below

> barplot(re_order_acomp, legend.text=F, col=colors, axisnames=F,

border=NA, xpd=T)

> # and the legend

> plot(1,2, pch = 1, lty = 1, ylim=c(-10,10),

type = "n", axes = FALSE, ann = FALSE)

> legend(x="center", legend=names_add, col=colors, lwd=5,

cex=.6, border=NULL)

Cluster dendrogram visualized the sample separation, but did not provide the
information on taxa abundance; bar plot visualized the distribution of taxa abun-
dance, but did not present clear sample information. We can stack the cluster
dendrogram on the top of the bar plot to have a better visualization of both sample
separation and taxa abundance as Gloor and Reid did in their paper (Gloor and Reid
2016) (Fig. 10.5).

Fig. 10.5 Cluster dendrogram and compositional barplot. With the sample order of cluster
dendrogram matched with that of barplot, we can clearly see that taxon Lactobacillus enrich in the
WT samples, which confirms the results of the biplot

360 10 Compositional Analysis of Microbiome Data



> layout(matrix(c(1,3,2,3),2,2, byrow=T), widths=c(5,2), height=c(3,4))

> par(mar=c(3,1,1,1)+0.8)

> # plot the dendrogram

> plot(hc, cex=0.6)

> # plot the barplot below

> barplot(re_order_acomp, legend.text=F, col=colors, axisnames=F,

border=NA, xpd=T)

> # and the legend

> plot(1,2, pch = 1, lty = 1, ylim=c(-10,10),

type = "n", axes = FALSE, ann = FALSE)

> legend(x="center", legend=names_add, col=colors, lwd=5, cex=.6,

border=NULL)

10.4 Comparison Between the Groups Using ALDEx2
Package

10.4.1 Vdr Data Set of Fecal and Cecal Sites

The “VdrSitesGenusCounts” data set comes from a part of our microbiome study
comparing the effect of Vdr deficiency, which we used in this chapter and previous
chapters. Here we focus on comparing the effects of Vdr deficiency and location on
microbiome. The data set contains samples of 5 Vdr deficient mice from both fecal
and cecal sites (total 10 samples). Here we use this data set to run compositional
data analysis using ALDEx2 package.

10.4.2 Compositional Data Analysis Using ALDEx2

There are two essential procedures in ALDEx2: first takes the original input data,
and generates a distribution of posterior probabilities of observing each taxon; then
uses the centred log-ratio transformation to transform this distribution. After centred
log-ratio transforming the distribution, the univariate statistical tests can be con-
ducted by a parametric or nonparametric t-test or ANOVA, and return the p-values
and Benjamini-Hochberg adjusted p-values.

In this section, we illustrate the capabilities of ALDEx2 by analyzing data on our
Vdr fecal and cecal locations. We first load the abundance table and assign the
group variable.

> abund_table=read.csv("VdrSitesGenusCounts.csv",row.names=1,

check.names=FALSE)
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> abund_table_t<-t(abund_table)

> ncol(abund_table_t) # check the number of genera

[1] 248

> nrow(abund_table_t) # check the number of samples

[1] 10

Then extract group information from the abundance table and assign a group
variable:

> meta_table <- data.frame(row.names=rownames(abund_table_t),t(as.data.

frame(strsplit(rownames(abund_table_t),"_"))))

> meta_table

X1 X2 X3

5_15_drySt-28F 5 15 drySt-28F

20_12_CeSt-28F 20 12 CeSt-28F

1_11_drySt-28F 1 11 drySt-28F

2_12_drySt-28F 2 12 drySt-28F

3_13_drySt-28F 3 13 drySt-28F

4_14_drySt-28F 4 14 drySt-28F

19_11_CeSt-28F 19 11 CeSt-28F

21_13_CeSt-28F 21 13 CeSt-28F

22_14_CeSt-28F 22 14 CeSt-28F

23_15_CeSt-28F 23 15 CeSt-28F

> groups <- with(meta_table,ifelse(as.factor(X3)%in% c("drySt-28F"),

c("VdrFecal"), c("VdrCecal")))

> groups

[1] "VdrFecal" "VdrCecal" "VdrFecal" "VdrFecal" "VdrFecal"

[6] "VdrFecal" "VdrCecal" "VdrCecal" "VdrCecal" "VdrCecal"

ALDEx2 needs the input data with taxa by samples format (row being per-taxon
counts, column being each sample). We check to make sure the data format is
correct.

> abund_table[1:3,1:3] 
              5_15_drySt-28F 20_12_CeSt-28F 1_11_drySt-28F 
Tannerella               476             67            549 
Lactococcus              326            737           2297 
Lactobacillus             94            597            434 

To use the aldex() function to implement compositional data analysis, we need to
install package ALDEx2 and call the ALDEx2 library. To install this package, start
R and enter:

362 10 Compositional Analysis of Microbiome Data



> source("https://bioconductor.org/biocLite.R")

> biocLite("ALDEx2")

ALDEx2 can be run using aldex modular or wrapper. To illustrate the capa-
bilities of ALDEx2, we implement both approaches.

Run the ALDEX Modular Step-by-Step.
The aldex modular offers the user the ability to build a data analysis pipeline for
her/his experimental designs and tests. Readers can check the manual of ALDEX
software for more details. To simplify, the procedure of this approach is just to call
aldex.clr(), aldex.ttest(), and aldex.effect() functions in turn and then merge the data
into one object.

Step 1: Generate Instances of the Centred Log-Ratio Transformed Values
Using the Function aldex.clr().
The function has three inputs: counts table, number of Monte-Carlo instances, and
level of verbosity (TRUE or FALSE). The software authors recommend 128 or
more mc.samples for the t-test, 1000 for a rigorous effect size calculation, and at
least 16 for ANOVA.

> library(ALDEx2)

> #this operation is fast.

> vdr <- aldex.clr(abund_table, groups, mc.samples=128, verbose=TRUE)

Step 2: Perform the Welch’s t and Wilcoxon Rank Sum Test Using
aldex.ttest().
As in other statistical testing for two conditions, the Welch’s t-test and Wilcoxon
rank sum test can both be used. The function aldex.ttest() has three inputs: the
aldex object from aldex.clr(), the vector of conditions, and whether or not a paired
test should be conducted (TRUE or FALSE). The aldex.ttest() function returns the
values of we.ep (expected p-value of Welch’s t test), we.eBH (expected
Benjamini-Hochberg corrected p-value of Welch’s t test), wi.ep (expected p-value
of Wilcoxon rank sum test), and wi.eBH (expected Benjamini-Hochberg corrected
p-value of Wilcoxon rank sum test).

> vdr_t <- aldex.ttest(vdr, groups, paired.test=FALSE) 
> head(vdr_t) 
                              we.ep we.eBH    wi.ep wi.eBH 
Tannerella                 0.023164 0.2194 0.007937 0.1030 
Lactococcus                0.809151 0.9260 0.850632 0.9448 
Lactobacillus              0.005553 0.1275 0.008557 0.1059 
Lactobacillus::Lactococcus 0.699612 0.8774 0.712302 0.8796 
Parasutterella             0.398490 0.6859 0.428075 0.6801 
Helicobacter               0.079861 0.3355 0.077071 0.3308 
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As an alternative to step 2, we can perform the glm and Kruskal-Wallis tests for
one-way ANOVA using the function aldex.glm(); however, this is slow. The aldex.
glm() function returns the values of kw.ep (expected p-value of Kruskal-Wallis
test), kw.eBH (expected Benjamini-Hochberg corrected p-value of Kruskal-Wallis
test), glm.ep (expected p-value of glm test), and glm.eBH (expected
Benjamini-Hochberg corrected p-value of glm test).

> # based on the documentation this is slow and not evaluated

> vdr_glm <- aldex.glm(vdr, groups)

Step 3: Estimate Effect Size Using the Function aldex.effect().
The aldex.effect() function estimates effect size and the within and between con-
dition values in the case of two conditions. It has four inputs: the aldex object from
aldex.clr(), the vector of conditions, a flag indicating whether or not to include
values for all samples are used as the denominator, and the level of verbosity.

> vdr_effect <- aldex.effect(vdr, groups, include.

sample.summary=FALSE, verbose=FALSE)

The aldex.effect() function returns all the values including:

rab.all (median clr value for all samples in the feature)
rab.win.VdrFecal (median clr value for the VdrFecal group of samples)
rab.win. VdrCecal (median clr value for the VdrCecal group of samples)
dif.btw (median difference in clr values between VdrFecal and VdrCecal groups)
dif.win (median of the largest difference in clr values within VdrFecal and VdrCecal
groups)
effect (median effect size: diff.btw /max(diff.win) for all instances
overlap (proportion of effect size that overlaps 0 (i.e., no effect): it is overlap
between the Bayesian distribution of groups VdrFecal and VdrCecal.

Step 4: Merge all Data into One Object and Make a Data Frame for Result
Viewing and Downstream Analysis.

> vdr_all <- data.frame(vdr_t, vdr_glm, vdr_effect)

The following head() function examines the first few lines of data:
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> head(vdr_all) 
                              we.ep we.eBH    wi.ep wi.eBH 
Tannerella                 0.023164 0.2194 0.007937 0.1030 
Lactococcus                0.809151 0.9260 0.850632 0.9448 
Lactobacillus              0.005553 0.1275 0.008557 0.1059 
Lactobacillus::Lactococcus 0.699612 0.8774 0.712302 0.8796 
Parasutterella             0.398490 0.6859 0.428075 0.6801 
Helicobacter               0.079861 0.3355 0.077071 0.3308 
                              kw.ep kw.eBH   glm.ep glm.eBH 
Tannerella                 0.009023 0.1171 0.004246 0.03923 
Lactococcus                0.764270 0.8477 0.781273 0.89270 
Lactobacillus              0.009571 0.1191 0.001292 0.02153 
Lactobacillus::Lactococcus 0.630767 0.7727 0.659656 0.81794 
Parasutterella             0.368972 0.5766 0.341531 0.54294 
Helicobacter               0.062197 0.2737 0.048052 0.15739 
                           rab.all rab.win.VdrCecal 
Tannerella                  7.8986           5.2093 
Lactococcus                10.1128          10.1775 
Lactobacillus               9.4856          10.2528 
Lactobacillus::Lactococcus  3.5202           3.9320 
Parasutterella              0.4034          -0.3646 
Helicobacter                0.6931          -1.1552 
                           rab.win.VdrFecal diff.btw diff.win 
Tannerella                            9.523   4.5454   1.8002 
Lactococcus                           9.837  -0.2911   2.1394 
Lactobacillus                         8.773  -1.6159   0.9453 
Lactobacillus::Lactococcus            2.434  -0.5853   3.2089 
Parasutterella                        1.018   1.2547   3.3765 
Helicobacter                          5.099   5.9691   4.3374 
                            effect   overlap 
Tannerella                  2.4660 0.0002193 
Lactococcus                -0.1482 0.4454829 
Lactobacillus              -1.7516 0.0062660 
Lactobacillus::Lactococcus -0.1572 0.4112150 
Parasutterella              0.2863 0.3312502 
Helicobacter                1.2005 0.1214960 

Here, the results actually present ratios between values, rather than abundances.
The abundances are determined as the ratio of the abundance of a taxon to all taxa
in the sample. Except p-value, all values are on a log2 scale and should be inter-
preted as log2 scale. In addition, because the aldex.clr() function uses Monte Carlo
method to sample the data, all the reported values are the mean values over the
number of Dirichlet instances as given by the mc.samples variable in the aldex.clr()
function (Gloor and Reid 2016).

We check how many significant taxa between fecal versus cecal sites detected in
both Welch’s t-test and Wilcoxon rank sum tests, and how many remain significant
when the p-values are adjusted for multiple testing corrections using the
Benjamini-Hochberg’s method. Then, we summarize these detected significant taxa
with a table.

> sig_by_both <- which(vdr_all$we.ep < 0.05 & vdr_all$wi.ep < 0.05)

> sig_by_both

[1] 1 3 7 8 10 19 22 36 39 57 58
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> sig_by_both_fdr <- which(vdr_all$we.eBH < 0.05 & vdr_all$wi.eBH < 0.05)

> sig_by_both_fdr

integer(0)

Eleven taxa are identified as significant by both Welch’s t-test and GLM, but
none of these reach significance when the p-values are adjusted for multiple testing
corrections using the Benjamini-Hochberg’s method.

The following R codes use the xtable() function from xtable package to make a
result table. The xtable package is used to create export tables, with converting an R
object to an xtable object, which can then be printed as a LaTeX or HTML table.
Here, the print.xtable() function is used to export to HTML file. If you want to
export the LaTeX file, then use type=“latex”, file=“Vdr_Table.tex” instead.

> library(xtable)

> table <-xtable(

+ vdr_all[sig_by_both,c

(12:15,1,3,2,4)], caption="Table of significant taxa", digits=3,

label="sig.table", align=c("l",rep("r",8) )

+ )

> print.xtable(table, type="html", file="Vdr_Table.html")

Where, vdr_all[sig_by_both,c(12:15,1,3,2,4)] is a R object; the element of the
object “sig_by_both” is the row of output matrix, the element of the object
“c(12:15,1,3,2,4)]” is the column of output matrix with the order of columns you
want to be in export table. Caption is used to specify the table’s caption or title. The
label argument is used to specify the LaTeX label or HTML anchor. The align
argument indicates the alignment of the corresponding columns, is character vector
with the length equal to the number of columns of the resulting table; the resulting
table has 8 columns, so the number is 8. If the R object is a data.frame, the length of
align is specified to be 1 + ncol(x) because the row names are printed in the first
column. The left, right, and center alignment of each column are denoted by “l”,
“r”, and “c”, respectively. In this table, align=c(“l”,rep(“r”,8) indicates that first
column is aligned left, the remaining 8 columns are aligned right. The digits argu-
ment is used to specify the number of digits to display in the corresponding columns.

Only those significant taxa detected in both Welch’s t-test and Wilcoxon rank
sum test are printed in Table 10.1. We can interpret the table this way, as the
example of Lactobacillus, the absolute difference between Vdr−/− fecal and Vdr−/−

cecal groups can be up to −1.616, implying that the absolute fold change in the ratio
between Lactobacillus and all other taxa between Vdr−/− fecal and Vdr−/− cecal
groups for this organism is on average (1/2) −1.616 = 3.065 fold across samples. The
difference within the groups of 0.945 is roughly equivalent to the standard devia-
tion, giving an effect size of −1.752.
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Run the ALDEX Wrapper
Currently, the aldex wrapper is limited to two sample tests and one-way ANOVA
design. When you run the aldex wrapper, it will link the modular elements together
to emulate ALDEx2 prior to the modular approach.

> vdr_w <- aldex(abund_table, groups, mc.samples=128, test="t", effect=TRUE, 
+                 include.sample.summary=FALSE, denom="iqlr", verbose=FALSE) 
> head(vdr_w) 
                           rab.all rab.win.VdrCecal rab.win.VdrFecal diff.btw diff.win    effect 

Tannerella                  7.9905           5.1624           9.7038  4.60318    2.275  2.067398 

Lactococcus                10.1374          10.1395          10.1319 -0.01517    1.576 -0.006149 

Lactobacillus               9.7087          10.2840           8.4371 -1.75076    1.213 -1.322765 

Lactobacillus::Lactococcus  3.4425           3.7795           3.0984 -0.51921    2.870 -0.169915 

Parasutterella              0.2524          -0.5844           0.7755  1.70280    3.660  0.344842 

Helicobacter                0.7640          -1.0509           4.6825  6.03731    4.118  1.285585 

                             overlap   we.ep we.eBH    wi.ep wi.eBH 

Tannerella                 0.0002193 0.02569 0.2721 0.007937 0.1231 

Lactococcus                0.4968750 0.81617 0.9321 0.862661 0.9552 

Lactobacillus              0.0968759 0.02981 0.2916 0.050409 0.3025 

Lactobacillus::Lactococcus 0.3925235 0.73171 0.8995 0.703497 0.8901 

Parasutterella             0.3177572 0.37140 0.6962 0.441468 0.7210 

Helicobacter               0.1281257 0.06767 0.3583 0.075707 0.3687 

Because there are two test groups, this is a two-sample t-test. We specify
test=“t”, and then the effect should be set to TRUE. The “t” option evaluates the
data as a two-factor experiment using both the Welch’s t-test and the Wilcoxon rank
sum test. If the test is “glm”, then effect should be specified as FALSE. The “glm”
option evaluates the data as a one-way ANOVA using the glm and Kruskal-Wallis
test. All tests include a Benjamini-Hochberg correction of the raw p-values.

Table 10.1 Table of significant taxa detected by ALDEx2

diff.
btw

diff.
win

effect overlap we.
ep

wi.ep we.
eBH

wi.
eBH

Tannerella 4.545 1.800 2.466 0.000 0.023 0.008 0.219 0.103

Lactobacillus −1.616 0.945 −1.752 0.006 0.006 0.009 0.127 0.106

Prevotella 5.360 2.021 2.713 0.000 0.007 0.008 0.112 0.103

Bacteroides 4.242 1.802 2.421 0.000 0.020 0.008 0.201 0.103

Odoribacter 4.027 3.284 1.094 0.069 0.045 0.047 0.283 0.227

Alistipes 5.020 2.256 2.184 0.000 0.007 0.008 0.112 0.103

Paraprevotella 4.249 2.808 1.438 0.047 0.028 0.020 0.235 0.153

Butyricimonas 4.972 2.639 1.912 0.003 0.014 0.010 0.163 0.112

Alistipes::
Bacteroides

4.811 2.856 1.510 0.019 0.014 0.013 0.164 0.130

Paraeggerthella −4.391 3.275 −1.227 0.047 0.033 0.037 0.237 0.194

TM7 (genus) −3.598 3.176 −1.151 0.075 0.045 0.043 0.268 0.208
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10.4.3 Difference Plot, Effect Size and Effect Plot

As downstream analyses, we use the merged data graphically present the differ-
ences and effect sizes.

Bland-Altman Plot
A Bland-Altman plot, named after J. Martin Bland and Douglas G.Altman, is also
known as difference plot or Tukey mean-difference plot. It analyzes the agreement
between two different measures (Altman and Bland 1983; Martin Bland and
Altman 1986; Bland and Altman 1999). The point underlying the method is that
any two methods designing to measure the same property or parameter should have
agreed sufficiently closely, but not merely highly correlated. ALDEx2 provides a
Bland-Altman (MA) style plot to graphically compare the degree of agreement of
measures between median log2 between-condition difference and median log2 rel-
ative abundance. We use the aldex.plot() function to generate MA plot.

> aldex.plot(vdr_all, type="MA", test="welch", cutoff=0.15, all.

cex=0.7, called.cex=1.1,rare.col="grey", called.col="red")

where, type = MA specifies the type of plot to be produced; test=“welch” indicates
using Welch’s t test to calculate significane; cutoff = 0.15 specifies to use 0.15 for
the Benjamini-Hochberg FDR cutoff, default is 0.1; all.cex = 0.7 specifies the
symbol size; called.cex = is used to specify the character expansion of points with
FDR, q � 0.1; rare.col = “grey” specifies grey for rare taxa, default black;
called.col = “red” specifies red points to present those taxa that have a mean
Benjamini-Hochberg adjusted Wilcoxon rank sum test’s p-value (FDR) of 0.15 or
less (Fig. 10.6).

Fig. 10.6 Bland-Altman plot produced by the aldex.plot() function
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Effect Size and Effect Size Plot
In ALDEx2, the effect size is defined as a measure of the mean ratio of the
difference between groups (diff.btw) and the maximum difference within groups
(diff.win or variance). The effect size can be obtained by the aldex.effect() function
when you run the aldex modular, or by specifying effect = TRUE argument when
you run the aldex wrapper (see Table 10.1).

We can use the aldex.plot() function to plot median between-group difference
versus median within-group difference to visualize differential abundance of the
sample data. The plots are refer as to “effect size” plots in ALDEx2.

> par(mfrow=c(1,2))

> aldex.plot(vdr_all, type="MW", test="welch",cutoff=0.15, all.cex=0.7,

called.cex=1.1, rare.col="black", called.col="red")

> aldex.plot(vdr_all, type="MW",test="wilcox", cutoff=0.15, all.

cex=0.7, called.cex=1.1, rare.col="black", called.col="red")

where, type = “MW” specifies the type of plot be MW: a difference between to a
variance within. The Welch’s t-test or the Wilcoxon rank sum test is used for
calculating significance (Fig. 10.7).

The plots show the maximum variance within the Vdr−/− fecal or cecal group
versus between group differences. The left and right panel of this figure uses the
Welch’s t-test, and the Wilcoxon rank sum test, respectively. In both plots, red
points represent the differentially abundant taxa with a mean Benjamini-Hochberg
adjusted Welch’s t-test or Wilcoxon rank sum test’s p-value of 0.15 or less
(q < 0.15). If no red points displayed indicates no significance detected by this test.
The grey points represent the abundant taxa, but non-significant. The grey lines

Fig. 10.7 A plot of differential abundance using either the Welch’s t-test or the Wilcoxon rank
sum test by the aldex.plot() function to exanimate the univariate differences between Vdr−/− fecal
and cecal groups
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represent the line of equivalence for the within and between group values. Black
points are taxa that are less abundant than the mean taxon abundance and
non-significant too. Generally, these taxa are difficult to be precisely estimated.

In general, p-value is less robust than effect size. Thus, researchers prefer to
report effect size more often than the p-value. If sample size is sufficiently large, an
effect size of 0.5 or greater is considered more likely corresponding to biological
relevance. In ALDEx2, an effect size cutoff of 1.5–2 and an overlap cutoff of 0.01 is
considered as more appropriate to identify differential taxa of interest (Fernandes
et al. 2013). Here, we illustrate two more plots about effect size: (1) plot the effect
size versus the p-value, and (2) a volcano plot shows the difference between groups
versus the p-value (Fig. 10.8).

> par(mfrow=c(1,2))

> plot(vdr_all$effect, vdr_all$wi.ep, log="y", pch=19, main="Effect",

+ cex=0.5, xlab="Effect size", ylab="Expected P value of

Wilcoxon rank test")

> abline(h=0.05, lty=2,lwd=3, col =‘red’)

> plot(vdr_all$diff.btw, vdr_all$wi.ep, log="y", pch=19,

main="Volcano",

+ cex=0.5, xlab="Difference", ylab="Expected P value of

Wilcoxon rank test")

> abline(h=0.05, lty=2,lwd=3, col=‘red’)

Fig. 10.8 Effect plot exanimating the univariate differences between Vdr−/− fecal and Vdr−/−

cecal groups. The left plot of this figure shows a plot of the effect size versus the expected p-value
of Wilcoxon rank sum test. The right plot of this figure shows a volcano plot where the difference
between groups is plotted versus the expected p-value of Wilcoxon rank sum test
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10.5 Proportionality: Correlation Analysis for Relative
Data

10.5.1 Correlation Analysis Is Not Appropriate
for Compositional Data

Correlation is a bivariate analysis that measures the strengths of association
between two variables and the direction of the relationship. The correlation coef-
ficient has a value between +1 and −1. As the value is near 0, the relationship
between the two variables is weaker; while the direction of the relationship is
indicated by ±: the + sign indicates a positive relationship between the variables,
and the − sign indicates a negative relationship between them.

Usually, there are four types of correlations: Pearson correlation, Spearman
correlation, Kendall rank correlation, and the Point-Biserial correlation. Of them,
Pearson and Spearman correlations are most frequently used.

Pearson r Correlation
Pearson r correlation is the most widely used correlation statistic to measure the
linear correlation between two variables X and Y. The following formula is used to
calculate the Pearson r correlation:

r ¼ N
P

XY � P
Xð Þ P

Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

P
X2ð Þ � P

Xð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
P

Y2ð Þ � P
Yð Þ2

q ð10:12Þ

where,

r Pearson r correlation coefficient.
N number of value in each data set.P

XY sum of the products of paired values: each X-value should first be
multiplied by its corresponding Y-value. After obtaining all such products,
find their sum.P

X sum of X-values.P
Y sum of Y-values.P
X2 sum of squared X-values.P
Y2 sum of squared Y-values.

The assumptions for appropriate use of the Pearson r correlation include: nor-
mality (both variables should be normally distributed), random sampling (the
sample of paired (X, Y) data is a random sample of quantitative data), linearity (a
straight line relationship between each of the variables), and homoscedasticity (the
data is normally distributed about the regression line).

Spearman’s Rank Correlation
Spearman rs correlation is a nonparametric measure of the strength and direction of
association between two ranked variables X and Y. It is equal to the Pearson
correlation between the rank values of those two variables. The difference is that
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Pearson’s correlation assesses linear relationships, whereas Spearman’s correlation
assesses monotonic relationships. A monotonic relationship occurs when the value
of X variable increases, the value of the Y variable either increases or decreases
(whether linear or not). If there are no repeated data values, a perfect Spearman
correlation of +1 or −1 occurs when each of the variables is a perfect monotone
function of the other.

Spearman rs correlation also assumes the sample of paired (X, Y) data has been
randomly selected; however, unlike the Pearson r correlation, it does not require
that both variables should be normally distributed.

Inappropriateness of Correlation Analysis of Compositional Data
Unfortunately, Pearson and Spearman correlations are inappropriate measures of
association in compositional data. The underlying reasons for the failure are: (1) the
constraint that all components sum to a constant makes each pair of components of
compositional data dependence on each other; while either linear or rank correla-
tion assumes that the sample of paired data is randomly selected (independent), and
(2) The relationship between two components of compositional data is not linear or
monotonic. Consequently, correlation analysis of compositional data results in
meaningless conclusions, because:

(1) Its value depends on which components are analyzed (Aitchison 1986); thus it
is not subcompositionally coherent (Aitchison 2003).

(2) Relative abundance data can also make statistically independent components
appear correlated (Lovell et al. 2011). For example, although statistically
independent variables X, Y, and Z are not correlated, their ratios X/Z and Y/Z
must be, because of their common divisor. This was observed by Pearson
(Pearson 1897) as “spurious correlation.”

(3) In the absence of any other information or assumptions, correlations, including
rank correlations or other measures of statistical association between relative
abundances, tell us absolutely nothing about the relationship between the
absolute abundances that gave rise to them. Lovell et al. show this problem with
the plot of pairs of relative abundances (Lovell et al. 2015) and absolute and
relative gene expression data (2015).

Therefore, we should caution about correlation and other statistical methods that
assume measurements come from real coordinate space. It is suggested that cor-
relation analysis should not be applied to relative abundance data (Lovell et al.
2015). Some researchers pointed out that the available methods, including gene
coexpression networks (López-Kleine et al. 2013), weighted gene co-expression
network analysis (Zhang and Horvath 2005), and heatmap visualization (Eisen et al.
1998), are potentially misleading if applied to relative data. Lovell et al. extended
their concern to the methods based on mutual information (e.g., relevance net-
works) (Butte and Kohane 2000) and advocated caution to gene co-expression
databases that provide correlation coefficients for the relative expression levels of
different genes (Obayashi and Kinoshita 2011).
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In summary, we should not conduct correlation analysis on the data that carry
only relative information.

10.5.2 Introduction to Proportionality

Compositional data analysis is a valid alternative approach for relative data (Shu
et al. 2013). To analyze relative data, such as relative abundances in microbiome
study, we must obey three principles: scaling invariance, subcompositional
coherence, and permutation invariance. Lovell et al. proposed the proportionality
measure for analyzing relative data and think that proportionality obeys all three
principles (Lovell et al. 2015). The proposed proportionality measure is statistic /,
which is used to describe the strength of proportionality between two variables: to
assess the extent to which a pair of random variables (x, y) are proportional. Erb and
Notredame proposed a symmetric proportionality coefficient, called q, partial
proportionality, a definition adopted from partial correlations (Erb and Notredame
2016). They think q has some advantages over / statistic in that it is symmetric, has
a limited range, can also detect reciprocality and allows for the definition of a partial
coefficient.

Consider a matrix of D taxon count values measured across N samples subjected
to condition, treatment status or time. The condition could be a binary or continuous
event. Then the functions phit() and perb() are defined below:

/ðAi;AjÞ ¼ varðAi � AjÞ
varðAiÞ ð10:13Þ

qðAi;AjÞ ¼ 1� varðAi � AjÞ
varðAiÞþ varðAjÞ ð10:14Þ

where, Ai and Aj are two log-ratio transformed vectors of the original sample vectors
Xi and Xj. The naturally symmetric variant of /, labeled as /s, defines the function
phis() below:

/sðAi;AjÞ ¼ varðAi � AjÞ
varðAi þAjÞ ð10:15Þ

The centered log-ratio transformation (clr), clrðXÞ ¼ ½lnð x1
gmðxÞÞ; . . .; lnð

xi
gmðxÞÞ; . . .;

lnð xD
gmðxÞÞ� is used by default to transform the sample vectors of Xi and Xj to vectors of

Ai and Aj. As an alternative, the transformation also can be implemented by the
additive log-ratio transformation (alr), alrðXÞ ¼ ½lnðx1xDÞ; . . .; lnð

xi
xD
Þ; . . .; lnðxD�1

xD
Þ�.
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In summary, proportionality borrowing compositional data analysis principals
uses a log-ratio transformation of the original feature (e.g., taxon, OTU) vectors to
transpose the data from a simplex into real Euclidean space; thus ensure the cal-
culated variance of log-ratio (VLR). Through measuring proportionality does not
change whether applied to relative values or to their absolute equivalent.

Through measuring proportionality, we can identify proportionally abundant
taxa. Recently, a statistic for differential proportionality (called propd method) was
proposed by Erb et al. (2017). It is equivalent to the squared t-statistic of one-way
ANOVA for taxon ratios. To understand differential ratio expression, a change in
the ratio of abundances between experimental groups, the new method takes a
normalization-free approach, applies the techniques developed for the analysis of
the differential expression of genes (Smyth 2004, 2005; Law et al. 2014) to the
analysis of differential ratios. Although differential proportionality analysis was
adopted from differential expression analysis, the interpretation of differential ratios
differs considerably.

If a taxon ratio is detected to remain unchanged across all sample data, it means
that the two taxa change in the same way (or otherwise remain both unchanged). In
the case, the two taxa are correlated in both groups with a similar strength of
correlation, but with different slopes, it suggests that the two taxa have differential
proportionality. In other words, their proportionality factor is group-specific.

Assume n samples are partitioned into two conditions or groups of experimental
replicates of sizes k and n − k, under the ANOVA framework, the variance of the
log ratios of two vectors x, y can be decomposed into between-group variance and
within-group variance. The propd method uses the VLR to test for differential
proportionality. Here, we introduce two forms of differential proportionality:
disjointed proportionality (denoted as hd) and emergent proportionality
(denoted as he).

Given two groups, sized k and n − k, the hd is defined as the pooled (weighted)
VLR within the two groups divided by the total VLR:

hdðX; YÞ ¼ ðk � 1ÞVLR1 þðn� k � 1ÞVLR2

ðn� 1ÞVLR ð10:16Þ

The disjointed proportionality considers the case where the proportionality of a
pair holds in both groups, but the ratio between the partners changes between the
groups (i.e., the slope of the proportionality changes).

Likewise, he is defined as the fraction of variance that remains when subtracting
the fraction of the dominating group variance:

heðX; YÞ ¼ 1�max ðk � 1ÞVLR1; ðn� k � 1ÞVLR2½ �
ðn� 1ÞVLR : ð10:17Þ

The emergent proportionality considers the case where there is proportionality in
only one of the groups (i.e., the strength of the proportionality changes).
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The propd method does not return a vector of p-values; however, we can esti-
mate the false discovery rate (FDR) using permutations of the group assignments to
generate an empiric distribution of h values. To do this, specify each arbitrary cutoff
of h, then the FDR is calculated as the average random number of pairs with
h < cutoff divided by the observed number of pairs with h < cutoff.

The relationship between hd and the F-statistic is defined by: F ¼ ðn� 2Þ 1�hd
hd

.
We can also calculate an F-statistic via this relationship. After obtaining the F-
statistic, we can calculate a moderated F-statistic through borrowing the technique
from the limma package (Smyth 2005) and the use of precision weights (Law et al.
2014). We will cover more material on the borrow information approach in
Chap. 11 when the over-dispersed models are introduced.

10.5.3 Illustrating Proportionality Analysis

In Sect. 10.4, the ALDEx2 package was used to compare differential abundances
between two groups. However, the ALDEx2 package lacks capability for calcu-
lating proportionality or any other compositionally valid measure of association.
The R package propr was designed for identifying proportionally abundant taxa
using compositional data analysis (Lovell et al. 2015; Erb and Notredame 2016; Erb
et al. 2017; Quinn et al. 2017). In this section, we use the propr package to
determine which taxa are most correlated or compositionally associated in our
“VdrFecalGenusCounts” data set. The data set has been used for illustrating
exploratory compositional analysis in Sect. 10.3. We divide the proportionality
analyses into four parts: proportionality calculation, identify proportionally abun-
dant taxa, proportionality visualization, and differential proportionality analysis.

10.5.3.1 Calculating Proportionality

The proportionality metrics /, q, and /s are calculated by the three principal
functions, phit(), perb(), and phis(), respectively. By considering “strength” of
proportionality (goodness-of-fit) rather than testing the hypothesis of proportion-
ality, the three metrics measure proportionality in different ways and have different
interpretations. First, the values of range are different: / 2 0;1½ Þ, q 2 ½�1; 1� and
/s 2 0;1½ Þ. Second, the interpretations are different. The lower values of / or /s

indicates more proportionality (the closer / is to zero, the stronger the propor-
tionality), whereas the greater qj j values indicates more proportionality with neg-
ative q values indicating inverse proportionality. We can consider the measure of /
as a dissimilarity metric (dissimilarity measure), q as a correlation metric. Third, /
lacks symmetry, while /s is a naturally symmetric variant version of /; q is also
symmetric. See the detail of their proportionality metrics below. We can force / to
be symmetry by specifying symmetrize = TRUE in the function phit() like this: phit
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(X, symmetrize = TRUE). This forcing action reflects the lower left triangle of the
matrix across the diagonal. Fourth, the variance corrections are different: / corrects
for just one of the taxa, whereas q and /s correct for the individual variance of each
taxon in the pair. Readers can see above formulas of these metrics to get better
understanding.

Overall Features of the Functions phit(), perb(), and phis().
The functions phit(), perb(), and phis() return the four proportionality matrix
wrapped within an object of the propr class:

@counts—a matrix storing the original “count matrix” input.
@logratio—a matrix storing the log-ratio transformed “count matrix”.
@matrix—a matrix storing the proportionality metrics.
@pairs—a vector indexing the proportionality of interest.

To illustrate these matrices, we load the data set, as we previously did. The
original data set has the taxa (rows)–by–samples (columns) format. For propor-
tionality analysis, the data set needs to be samples (rows)–by–taxa (columns) data
frame. We transform the data set after loading.

> abund_table=read.csv("VdrFecalGenusCounts.csv",row.names=1,

check.names=FALSE)

> head(abund_table)

> abund_table_t<-t(abund_table)

We install and call propr package, then create the objects “phi”, “rho” and “phs”
using the functions phit(), perb(), and phis(), respectively. It returns an alert:
Replacing 0 s in “count matrix” with 1. The propr package simply replaces 0 s with
1. The method of dealing zero values may be considered as a weakness of this
package.

> library(propr)

> phi <- phit(abund_table_t, symmetrize = TRUE)

Alert: Replacing 0s in "count matrix" with 1.

> rho <- perb(abund_table_t, ivar = 0)

Alert: Replacing 0s in "count matrix" with 1.

> phs <- phis(abund_table_t, ivar = 0)

Alert: Replacing 0s in "count matrix" with 1.

Returning the object “phi”, “rho” or “phs” shows the summary of the four propr
classes: counts, logratio, matrix and pairs.

> phi

@counts summary: 8 subjects by 248 features

@logratio summary: 8 subjects by 248 features
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@matrix summary: 248 features by 248 features

@pairs summary: index with `[` method

Obtain the Original Count Matrix.
We can use head() function to either “phi”, “rho” or “phs object to obtain count
matrix formation or release these matrices directly by calling the objects.

> head(phi@counts) 
               Tannerella Lactococcus Lactobacillus 
5_15_drySt-28F        476         326            94 
1_11_drySt-28F        549        2297           434 
2_12_drySt-28F        578         548           719 
3_13_drySt-28F        996        2378           322 
               Lactobacillus::Lactococcus Parasutterella Helicobacter 
5_15_drySt-28F                          1              1           89 
1_11_drySt-28F                         25              1            1 
2_12_drySt-28F                          5              4           13 
3_13_drySt-28F                         17              2           24 

Obtain the Log-Ratio Transformed Count Matrix.
We can call either of “phi”, “rho” or “phs” object to obtain the log-ratio transformed
matrix or review this matrix by the head() function.

> head(phi@logratio) 
               Tannerella Lactococcus Lactobacillus 
5_15_drySt-28F      5.810       5.431         4.188 
1_11_drySt-28F      5.781       7.212         5.546 
2_12_drySt-28F      5.790       5.737         6.009 
3_13_drySt-28F      6.474       7.345         5.345 
               Lactobacillus::Lactococcus Parasutterella Helicobacter 
5_15_drySt-28F                    -0.3557        -0.3557       4.1330 
1_11_drySt-28F                     2.6918        -0.5271      -0.5271 
2_12_drySt-28F                     1.0402         0.8170       1.9957 
3_13_drySt-28F                     2.4038         0.2637       2.7487 

Obtain the Information About Pairs.
The following call releases the information about pairs.

> head(phi@pairs)

numeric(0)

Obtain the Proportionality Metrics.
The following call obtains and reviews the proportionality metric /.
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> head(phi@matrix) 
                           Tannerella Lactococcus Lactobacillus 
Tannerella                      0.000      6.8505       13.3980 
Lactococcus                     6.850      0.0000        1.0599 
Lactobacillus                  13.398      1.0599        0.0000 
Lactobacillus::Lactococcus     18.035      0.6532        0.9773 

     Lactobacillus::Lactococcus Parasutterella 
Tannerella                                    18.0355         8.9163 
Lactococcus                                    0.6532         1.9153 

Lactobacillus                                  0.9773         0.7003 
Lactobacillus::Lactococcus                     0.0000         1.2252 

The following call obtains and reviews the proportionality metric q.

> head(rho@matrix) 
                           Tannerella Lactococcus Lactobacillus 
Tannerella                    1.00000      0.1975       -0.1451 
Lactococcus                   0.19745      1.0000        0.5620 
Lactobacillus                -0.14510      0.5620        1.0000 
Lactobacillus::Lactococcus    0.07874      0.8115        0.6428 

     Lactobacillus::Lactococcus Parasutterella 
Tannerella                                    0.07874        0.08694 
Lactococcus                                   0.81150        0.11458 
Lactobacillus                                 0.64280        0.61507 
Lactobacillus::Lactococcus                    1.00000        0.16756 

The following call obtains and reviews the proportionality metric /s.

> head(phs@matrix) 
                           Tannerella Lactococcus Lactobacillus 
Tannerella                     0.0000      0.6702        1.3395 
Lactococcus                    0.6702      0.0000        0.2804 
Lactobacillus                  1.3395      0.2804        0.0000 
Lactobacillus::Lactococcus     0.8540      0.1041        0.2174 

     Lactobacillus::Lactococcus Parasutterella 
Tannerella                                     0.8540         0.8400 
Lactococcus                                    0.1041         0.7944 
Lactobacillus                                  0.2174         0.2383 
Lactobacillus::Lactococcus                     0.0000         0.7130 

10.5.3.2 Identify Proportionally Abundant Taxa

Below we illustrate how to use the function perb() to identify proportionally
abundant taxa step by step. The /, q and /s metrics seek to identify those pairs of
taxa that have a near constant ratio abundance across all samples in the given
microbiome data sets. Given q 2 �1; 1½ �, its cutoff is easy to choose. Here, we
perform proportionality analysis step by step using the function perb(). Reader can
also try phit() and phs().
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Step 1: Pre-filter to Remove Low Read Counts.
To minimize the number of lowly abundant taxa to be included in the final result,
we subset the data table to include only those taxa with at least 10 counts in at least
5 samples.

> keep <- apply(abund_table_t, 2, function(x) sum(x >= 10) >= 5)

Step 2: Calculate Proportionality and Select the Highly Proportional Taxa.
The current version of the package lacks of hypothesis testing framework. Because
the “highly proportion” has not been defined in literature, we arbitrarily select the
“highly proportional” taxa with q[ 0:80 for the purpose of illustration. By default,
the propr package replaces all zero values with 1 when calculates proportionality.

> rho <- perb(abund_table_t, select = keep)

> best <- rho[">", 0.80]

> best

@counts summary: 8 subjects by 14 features

@logratio summary: 8 subjects by 14 features

@matrix summary: 14 features by 14 features

@pairs summary: 4 feature pairs

> best@pairs

[1] 18 92 108 123

> pirs_taxa<-row.names(abund_table[c(18,92,108,123),])

> pirs_taxa

[1] "Acholeplasma" "Desulfotomaculum"

[3] "Blautia::Lactonifactor" "Ruminococcus::Blautia"

The results above showed that 14 abundant taxa are identified with 4 taxon pairs
indexed with cutoff of q[ 0:80. The 4 most compositionally associated taxa are
Acholeplasma, Desulfotomaculum, Blautia::Lactonifactor and Ruminococcus::
Blautia.

Step 3: Release the Matrix with the Highly Proportional Taxa.

> taxa_best <- colnames(best@logratio) 
> taxa_best 
 [1] "Tannerella"                 "Lactococcus"                
 [3] "Lactobacillus"              "Lactobacillus::Lactococcus" 
 [5] "Prevotella"                 "Bacteroides"                
 [7] "Eubacterium"                "Clostridium"                
 [9] "Butyrivibrio"               "Alistipes"                  
[11] "Coprococcus"                "Parabacteroides"            
[13] "Akkermansia"                "Turicibacter"  
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> head(best@matrix) 
                           Tannerella Lactococcus Lactobacillus 
Tannerella                    1.00000      0.1975       -0.1451 
Lactococcus                   0.19745      1.0000        0.5620 
Lactobacillus                -0.14510      0.5620        1.0000 
Lactobacillus::Lactococcus    0.07874      0.8115        0.6428 
Prevotella                    0.54159      0.2666       -0.4314 
Bacteroides                   0.43676      0.3317       -0.1135 
                           Lactobacillus::Lactococcus Prevotella Bacteroides 
Tannerella                                    0.07874     0.5416      0.4368 
Lactococcus                                   0.81150     0.2666      0.3317 
Lactobacillus                                 0.64280    -0.4314     -0.1135 
Lactobacillus::Lactococcus                    1.00000     0.1422      0.2020 
Prevotella                                    0.14218     1.0000      0.4889 
Bacteroides                                   0.20205     0.4889      1.0000 
                           Eubacterium Clostridium Butyrivibrio Alistipes 
Tannerella                     0.24387     0.14110      0.13534   0.10694 
Lactococcus                    0.23655    -0.09477      0.07611   0.08696 
Lactobacillus                  0.10293    -0.19746     -0.07249   0.13124 
Lactobacillus::Lactococcus     0.07585    -0.09046     -0.03532   0.25285 
Prevotella                    -0.01065     0.15554      0.02341   0.03836 
Bacteroides                    0.54784     0.61234      0.43019   0.52172 
                           Coprococcus Parabacteroides Akkermansia 
Tannerella                    0.063446          0.1318      0.3064 
Lactococcus                  -0.035614         -0.1596      0.5975 
Lactobacillus                -0.036095         -0.6563      0.1382 
Lactobacillus::Lactococcus   -0.042078         -0.3541      0.2978 
Prevotella                    0.003815          0.4041      0.1970 
Bacteroides                   0.577252          0.3865      0.2749 
                           Turicibacter 
Tannerella                      0.10257 
Lactococcus                     0.12376 
Lactobacillus                   0.01101 
Lactobacillus::Lactococcus      0.15175 
Prevotella                      0.22710 
Bacteroides                     0.22721 

10.5.3.3 Visualizing Proportionality

Three kinds of visualization can be done for better understanding proportionality in
the data set: index-aware plots, index-naive plots, and down-stream plots.

Index-Aware Plots
Both functions plot() from the rlang package and dendrogram() from the ggdendro
package are helpful for checking the indexed pairs. Here, we first use the plot()
function to check the pairwise distribution of proportional pairs. It is useful to check
whether the index cutoff has set too low or fine (Fig. 10.9).

> install packages("rlang")

> plot(best)

As an “index-aware” function, the plot() function only plots the 4 taxa pairs
indexed with [. In above figure, the smear of straight diagonal lines shows that
overall the 4 pairs are proportional: they all increases in log-ratio transformed
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abundance. One line deviates considerably from the diagonal, so the index
threshold maybe set low. However, the purpose here is just for illustration.

Next, we use the dendrogram() function to check how the indexed pairs cluster.
The indexed pairs of taxa are clustered based on a hierarchical clustering of the
proportionality matrix. In the propr package, the dissimilarity measure is defined as
as.dist(1-abs(rho@matrix)). Only the indexed taxa pairs with [. method are plotted.
If the used cutoff could not index any pairs, then the plot is generated using all
taxon pairs (Fig. 10.10).

> install.packages(‘ggdendro’)

> dendrogram(best)

Alert: Generating plot using indexed feature pairs.

‘dendrogram’ with 2 branches and 7 members total, at height 0.9647

Index-Naive Plots
Several index-naive plots, which incorporate all taxa in the propr object, can be
conducted on proportionality analysis. They are the pca(), snapshot(), prism(),
bokeh(), bucket() functions. Here, we illustrate two of them: the pca(), bucket().
Readers can try others by themselves.

Fig. 10.9 Index-aware plot
generated by the plot()
function to check the pairwise
distribution of proportional
pairs
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First, we illustrate index-naive plots using the pca() function. Index-naive plots
incorporate all taxa in the propr object. We use the simplify() function to keep those
taxa that belong to an indexed taxa pair.

> best <- simplify(best)

In Sect. 10.3, we incorporate PCA to the log-ratio transformed data to generate
the compositional Biplot. Same idea can be applied here. We can incorporate PCA
to the indexed taxa pair of log-ratio transformed data. For using group membership
to color the sample IDs, we create a group variable as we previously did
(Fig. 10.11).

> grouping<-data.frame(row.names=rownames(abund_table_t),t(as.data.

frame(strsplit(rownames(abund_table_t),"_"))))

> grouping$Group <- with(grouping,ifelse(as.factor(X2)%in% c

(11,12,13,14,15),c("Vdr-/-"), c("WT")))

> pca(best, group = grouping$Group)

Next, we use the bucket() function to visualize the co-cluster of proportional
taxa. The key features of bucket() function include: (1) it is “index-naive”, plots all
in the @matrix slot of the propr object; (2) identifies the taxa pairs where both
constituents co-cluster (with the total number of clusters toggled by k); and
(3) returns a vector of cluster memberships for all taxa in the propr object. The
bucket() function is used to plot an estimation of the degree to which a taxon pair

Fig. 10.10 Index-aware plot generated by the dendrogram() function to inspect how the indexed
pairs cluster
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differentiates the genotype groups versus the proportionality between that pair. We
specify the total number of clusters k = 2 as a try (Fig. 10.12).

> clusts <- bucket(best, group = grouping$Group, k = 2)

Reader can try prism() and bokeh() functions to visualize the co-clustering of
proportional taxa. Both two share above key features with the bucket() function.

Fig. 10.11 Visualizing the samples based on log-ratio transformed data by PCA. This figure
shows all samples projected across the first two components. This plot colors samples based on the
genotype groups

Fig. 10.12 Co-cluster analysis using the bucket() function
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The differences are: the prism() plots the variance of the log-ratio (VLR) against the
variances of log sum (VLS) on the log-ratio transformed taxa. The bokeh() plots
pairs across the individual variances of the constituent log-ratio transformed taxa.
The codes are given below:

> clusts <- prism(best, k = 2)

> clusts <- bokeh(best, k = 2)

Reader may also try the function snapshot() to visualize the density of the
log-ratio transformed data across samples. The code is given below:

> snapshot(best)

Co-cluster analysis can help us to select the highly proportional module for
down-stream analysis.

Down-Stream Plots
The following R codes extract co-cluster 2 from the propr object using the subset
method and use the pca() function to check how well this cluster differentiates the
two genotype groups (Fig. 10.13).

> sub <- subset(best, select = (clusts == 2))

> pca(sub, group = grouping$Group)

The following codes extract the names of the taxa that belong to this cluster.

> taxa <- colnames(sub@logratio)

> taxa

[1] "Eubacterium" "Clostridium" "Butyrivibrio" "Alistipes"

"Coprococcus"

10.5.3.4 Differential Proportionality Analysis

In this subsection, we will show how to perform differential proportionality analysis
using the propd method. The propd() function estimates differential proportionality
by calculating for all pairs of taxa and returns a propd object as a result. The syntax
is given by:

propd counts; group; alpha ¼ NA, p ¼ 1000ð Þ

where:

counts a matrix of samples (as rows) and taxa (as columns);
group experiment groups or conditions to label n-samples belong to;
alpha an optional argument to trigger and guide transformation;
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p the total number of permutations used to estimate the false discovery rate
(FDR).

The resultant propd object contains both hd (by default) and he metrics. Once a h
is active, we can conduct permutation testing (i.e., FDR estimation) and visualize
log-ratio abundance. We illustrate differential proportionality analysis step by step
as below.

Step 1: Estimate the Disjointed Proportionality and Emergent Proportionality
Using the Function propd().
> library(propr)

> pd <- propd(abund_table_t, grouping$Group, alpha = NA, p = 1000)

Alert: Replacing 0s in "count matrix" with 1.

Alert: Replacing NaN theta values with 1.

Alert: Tabulating the presence of 0 counts.

Fig. 10.13 Down-stream PCA with co-cluster analysis to check the performance of cluster
differentiation between groups
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Alert: Use ’setActive’ to select a theta type.

Alert: Use ’updateCutoffs’ to calculate FDR.

Alert: Use ’updateF’ to calculate F-stat.

Step 2: Choose to Activate Which Metric Using the Functions setDisjointed()
and setEmergent().

> theta_d <- setDisjointed(pd)

Alert: Update FDR or F-stat manually.

> theta_d

Not weighted and not alpha-transformed

@counts summary: 8 subjects by 248 features

@group summary: 2 unique groups ( 5 x 3 )

@theta summary: 30628 feature pairs ( theta_d )

@fdr summary: 1000 iterations

See ?propd for object methods

> theta_e <- setEmergent(pd)

Alert: Update FDR or F-stat manually.

> theta_e

Not weighted and not alpha-transformed

@counts summary: 8 subjects by 248 features

@group summary: 2 unique groups ( 5 x 3 )

@theta summary: 30628 feature pairs ( theta_e )

@fdr summary: 1000 iterations

See ?propd for object methods

Step 3: Estimate FDR Using the Function updateCutoffs().

> theta_d <- updateCutoffs(theta_d, cutoff = seq(0.05, 0.95,0.3)) 
|------------(25%)----------(50%)----------(75%)----------| 
> theta_d 
Not weighted and not alpha-transformed  
@counts summary: 8 subjects by 248 features 
@group summary: 2 unique groups ( 5 x 3 ) 
@theta summary: 30628 feature pairs ( theta_d ) 
@fdr summary: 1000 iterations 
  cutoff randcounts truecounts    FDR 
1   0.05      5.861          0    Inf 
2   0.35    150.004         54 2.7779 
3   0.65   1404.046       2117 0.6632 
4   0.95  11927.995      14220 0.8388 
See ?propd for object methods 
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> theta_e <- updateCutoffs(theta_e, cutoff = seq(0.05, 0.95,0.3)) 
|------------(25%)----------(50%)----------(75%)----------| 
> theta_e 
Not weighted and not alpha-transformed  
@counts summary: 8 subjects by 248 features 
@group summary: 2 unique groups ( 5 x 3 ) 
@theta summary: 30628 feature pairs ( theta_e ) 
@fdr summary: 1000 iterations 
  cutoff randcounts truecounts    FDR 
1   0.05      388.7        253 1.5365 
2   0.35    10960.1      10681 1.0261 
3   0.65    16449.1      16152 1.0184 
4   0.95    16916.9      16923 0.9996 
See ?propd for object methods 

Next, we illustrate how to calculate an F-statistic from hd and how to moderate
the F-statistic using voom() function from the limma package.

Step 4: Calculate an F-statistic from hd:
The relationship between hd and the F-statistic is defined by:

F ¼ ðn� 2Þ 1� hd
hd

ð10:18Þ

In above calculation of differential proportionality, we specify alpha = NA in the
propd() function without using the a transformation. Actually, we can calculate h
based on either using a weighted VLR or together a weighted with a-transformed
approximation of the VLR. This defines four variant states of theta:
weighted = FALSE, weighted = TRUE, weighted = FALSE, alpha = a positive
value, and weighted = TRUE, alpha = a positive value.

Above, we use the updateCutoffs()function to calculate a FDR based on hd and
he. Actually, it applies to all types and variant states. In the following R codes, we
specify pd_nn, pd_wn, pd_na, and pd_wa for weighted = FALSE & no alpha,
weighted = TRUE & no alpha, weighted = FALSE & alpha = 0.05, and
weighted = TRUE & alpha = 0.05, respectively.

> pd_nn <- propd(abund_table_t, grouping$Group, weighted = FALSE)

> pd_wn <- propd(abund_table_t, grouping$Group, weighted = TRUE)

> pd_na <- propd(abund_table_t, grouping$Group, weighted = FALSE,

alpha = 0.05)

> pd_wa <- propd(abund_table_t, grouping$Group, weighted = TRUE,

alpha = 0.05)

We can use the update() function to calculate the F-statistic from hd , which
appends an “Fstat” column to the @theta slot.

> pd_nn<-updateF(pd_nn,moderated = FALSE)

> options(digits=4)
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> head(pd_nn@theta$Fstat)

[1] 4.1628 13.4117 1.8338 3.3481 1.0797 0.1475

> pd_wa<-updateF(pd_wa,moderated = FALSE)

> options(digits=4)

> head(pd_wa@theta$Fstat)

[1] 3.0474 16.1341 2.0934 2.2976 0.5021 0.7706

Step 5: Moderate the F-statistic Using voom() Function from the Limma
Package.
The F-statistic is not moderated. By borrowing from the limma package, we can
calculate a moderated F-statistic for differential proportionality analysis, which is
done by fitting the data to an empirical Bayes model through the eBayes() function
with underlying mean-variance modeling through the voom() function.

The voom() function returns a matrix of the per-taxon weights for each sample.
The weights of a taxon ratio can be calculated as the element-wise product of the
per-taxon weights. The moderation and modeling are done for gene ratios. By
applying the per-taxon moderation to ratios, a suitable reference must be selected
and by default, the software uses the geometric mean of all taxa as the reference for
each i-th composition (i.e., sample vector). By using this reference, the normal-
ization becomes the corresponding log-ratio transformation (i.e., the clr transfor-
mation in the default case).

By changing the argument moderated = TRUE in the updateF() function, we
calculate the moderated F-statistic:

> pd_nn<-updateF(pd_nn,moderated = TRUE, ivar = "clr")

> pd_wn<-updateF(pd_wn,moderated = TRUE, ivar = "clr")

> pd_na<-updateF(pd_na,moderated = TRUE, ivar = "clr")

> pd_wa<-updateF(pd_wa,moderated = TRUE, ivar = "clr")

Above the argument ivar = “clr” defines the clr transformation to use as the
reference. We can check the appended “Fstat” and “theta_mod” column in the
@theta slot.

> head(pd_nn@theta$Fstat)

[1] 0.8951 2.6591 0.6399 2.1382 0.8354 0.1123

> head(pd_nn@theta$theta_mod)

[1] 0.8702 0.6929 0.9036 0.7373 0.8778 0.9816

> head(pd_wa@theta$Fstat)

[1] 2.9061 15.8906 1.9659 2.0046 0.3025 0.6381

> head(pd_wa@theta$theta_mod)

[1] 0 0 0 0 0 0
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10.6 Summary and Discussion

In this chapter, we introduced and illustrated the compositional analysis of
microbiome data. The approach of compositional analysis with the development of
the new statistical methods and accompanying packages provides a means to
advance microbiome research. However, compositional analysis of microbiome
data in general still has several main challenges as future research (Lovell et al.
2015; Quinn et al. 2017), including:

(1) Compositional analysis treats the really discrete count data as continuous
(Bacon-Shone 2008) and relative. However, count data is not purely relative
(Lovell, Pawlowsky-Glahn et al. 2015).

(2) Compositional analysis fails in the presence of zero values. The zero problem
directly affects the application of the log-ratio transformations to modern
genomics data sets because it is undefined to divide the zero (Zuur et al. 2009).
Given currently there is no simple general remedy for the treatment of zeroes
(Martín-Fernández et al. 2011), ALDEX package uses the cmultRepl() func-
tion to replace 0 values, while propr package by default replaces all zero
values with 1. The appropriateness of this replacement is not guaranteed. We
need carefully interpret the analysis results that contain zero values.

(3) Sparsity with excess zeros poses a unique challenge to microbiome data
analysis. Compositional analysis cannot solve sparsity problem by replacing
zero values with small non-zero counts, rather than makes the sparsity prob-
lem even more complicated.

(4) Biologically true compositional microbiome data do not exist. We treat
microbiome data set as compositional when comparing to the features of
compositional data. However, the ‘compositional’ in microbiome data is not in
the sense as in the other fields, such as geology, petrology, sedimentology, and
geochemistry.

Specifically, the main challenges of proportionality analysis include (1) it still
lacks a hypothesis-testing framework, and (2) the values of / and q are unstable in
the setting of missing taxon data, unlike the VLR. More research are needed to
solve these problems.
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Chapter 11
Modeling Over-Dispersed Microbiome
Data

In Chap. 10, we treated microbiome abundance data as compositional. When doing
so, we treated the “really discrete count data” as continuous (Bacon-Shone 2008).
However, count data is not purely relative—the count pair (1, 2) carries different
information than counts of (1000, 2000) even though the relative amounts of the
two components are the same. Furthermore, simulation studies suggest that count
models give more statistical power to detect differential expression than approxi-
mate normal models (Robinson and Oshlack 2010). Thus, the high-throughput
sequencing datasets were advised to be treated as count data (Kuczynski et al. 2011;
Anders et al. 2013); and the methods based on count distributions (e.g., logistic
regression and other generalized linear models) or correspondence analysis
(Greenacre 2011) were often used in the literature (Lovell et al. 2015).

In this chapter, we will describe Poisson, Negative Binomial (NB) models and
the descriptive example in Sect. 11.1. In Sect. 11.2, we will review the methods for
estimating dispersion and hypothesis testing in package edgeR, and in Sect. 11.3,
we will discuss the associated implementation in edgeR. In Sect. 11.4, we will
introduce the methods for estimating dispersion and hypothesis testing in package
DESeq and DESeq2 and its implementation in DESeq2 in Sect. 11.5. Section 11.6
is summary and discussion.

11.1 Count-Based Differential Abundance Analysis
of Microbiome Data

In microbiome study, after the composition of the microbiome is estimated at a
given taxonomic level, researchers are often interested in identifying the taxa that
show differential abundance between two or more groups. In the simplest case, the
aim is to compare taxa differential abundance between two conditions, e.g., treated
versus untreated or mutant versus wild type.
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This problem is similar with differential expression analysis for RNA-seq data
(Li 2015). In RNA-Sequencing differential expression analysis, an initial and
fundamental goal or task of data analysis is to differentiate gene expression, based
on sequence count data between conditions. It is to determine whether there is
evidence that sequence read counts for a gene are significantly different across
experimental conditions. Like differentially expressed genes, a species/OTU is
considered differentially abundant if its mean proportion is significantly different
between two or more sample classes in the experimental design. DNA
sequencing-based microbiome investigations not only have same questions to ask,
but also use the same sequencing machines and represent the processed sequence
data in the same manner as RNA-Seq analysis, a feature-by-sample contingency
table where the features are OTUs instead of genes. Thus, the statistical tools that
were originally developed for differential analysis of RNAseq data, such as the
packages edgeR (Robinson et al. 2010) and DESeq, DESeq2 (Anders and Huber
2010; Love et al. 2014) were suggested for directly use to identify differentially
abundant OTUs (McMurdie and Holmes 2014). In this Chapter, we adopt the
methods and models originally used in RNA-Seq and other count data to analyze
microbiome count data.

11.1.1 Biological and Technical Variations

Biological and technical variations are the two sources of variation or noise that
may affect the analysis results in metagenomic analysis (including shotgun and 16S
rRNA gene sequences) using DNA- or RNA-based profiling methods. Biological
variation is intrinsic to all organisms. In contrast, technical variation is the uncer-
tainty with which the abundance of each gene in each sample is estimated by the
sequencing technology.

The design of a DNA- or RNA-based sequencing experiment can be considered as
having three layers from top (biological replicate), to middle(library preparation and
sample storage) and to bottom(sequence, samples/replicates). Many sources of vari-
ation can be partitioned along these three layers. But the twomain sources of variation
are biological variation and technical variation. Biological variation involves in the
top layer, consisting of the experimental units. It occurs within the same specimen or
within an individual over time and may be influenced by genetic or environmental
factors, aswell as bywhether the samples are pooled or individual. Technical variation
or shot noise is produced in the middle layer because various ligations of adaptors and
PCR amplifications involves during the generation of libraries of cDNA fragments. It
measures the variability in a sample subject, e.g., library preparation and sample
storage. Except biological and technical variations, there still exists the third source of
variation at the bottom layer, including other technology-specific effects, e.g., lane and
flow cell effects. These technology-specific effects are beyond the library preparation
effect. Among these sources of variation, biological effect is far larger than other
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effects, and library preparation effect is second largest, flow cell effect is third, while
lane effect is smallest.

Generally, researchers repeatedly perform biological and technical replicates in
each experiment to mitigate the effect of biological and technical variations.

Biological replicates refer to different biological samples. A biological replicate
is where we perform the same test on multiple samples using the same material
(e.g., same type of cells, tissue, et al.). Biological replicates are used to test the
(biological) variations between samples within group, thus providing information
that is necessary to make inferences between groups, and to generalize conclusions.
A technical replicate refers to when we test the same sample multiple times or
places. Its aim is to test the variation in the testing protocol itself. A typical example
of technical replicate is the test of 21 representative DNA extraction protocols on
the same fecal samples (Costea et al. 2017).

Technical variation in metagenomic analysis must be minimized to confidently
assess the contributions of microbiota to human health (Costea et al. 2017). Using
standards in sample processing may be helpful. However, to account for biological
variation, we typically need a suitable statistical model. The count models have the
advantage for separating biological from technical variation (Robinson and Smyth
2007, 2008).

11.1.2 Poisson Model

Application of Poisson Model in High-Throughput Sequencing Data
The high-throughput sequencing technologies measure gene expression by gen-
erating short reads or sequence tags. To evaluate differential expression (or
abundance) between conditions, read counts are summarized at the genomic level
of interest (e.g., genes or exons) or the taxonomic rank (e.g., genus, species/
OTU).

In high-throughput sequencing experiments, we can consider a DNA sample as a
population of cDNA fragments, and consider each genomic feature (in the case of
16s RNA-sequencing, taxon or OTU) as a very large pool of DNA fragments for
which the population size is to be estimated. Thus, we can think sequencing a DNA
sample as random sampling (repeated draws) of each of these cDNA fragments,
with the aim of estimating the relative abundance of each species in the population
(McCarthy et al. 2012).

If each cDNA fragment has the same chance of being selected for sequencing,
and the fragments are selected independently, then the number of read counts for a
given genomic feature or taxon (OTU) should follow a Poisson distribution.

Poisson model is the most popular regression model for count data. It assumes
that each observed count Yi is sampled from a Poisson distribution with the con-
ditional mean li given a vector of covariates/predictors Xi for each i th subject. The
Poisson distribution, derived based on modeling the number of independent events
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from a memory-less Poisson process with a constant event rate, has the following
density function:

PðYi ¼ yjXiÞ ¼ expð�liÞlyi
yi!

; ð11:1Þ

where Yi is the number of read counts and li ¼ expðXT
i bÞ is a real number which

expects from cDNA fragments. We briefly derive it as below.
Consider Yi as a random variable. Suppose the proportion of cDNA fragments

arising from the genomic feature or taxon (OTU) i is p then we can derive the
probability function of Yi. Assume that the total number of sequenced reads is
n. We are interested in the probability that Yi takes a particular value y. If there are
y aligned reads to feature i (successes), then there must be n� y not aligned reads to
feature i (failures). Given y successes and n� y failures, each outcome has the

individual probability pyð1� pÞn�y. Since there are total
n
y

� �
possible ways of

arranging y successes in n trials, thus the total probability of y successes in n in-
dependent trials is:

PðYi ¼ yÞ ¼ n
y

� �
pyð1� pÞn�y; for y ¼ 0; 1; 2; . . .; n ð11:2Þ

This is the binomial distribution with parameters n and p.
Now, suppose that the number of sequenced reads becomes large and the

probability p shrinks.
We consider splitting the pool of DNA fragments into a greater number n of

subintervals, the probability p of one accident in one of these shorter subintervals
will decrease. Let li ¼ np, then above (11.2) become:

PðYi ¼ yÞ ¼ n
y

� �
pyð1� pÞn�y ¼ n

y

� �
li
n

� �y
1� li

n

� �n�y
ð11:3Þ

Take the limit of the binomial probability as n ! 1; then the binomial distri-
bution approximates to the Poisson distribution with parameter li as above.

If we assume the RNA sequencing experiments as random samplings of reads
distribution, the Poisson distribution provides a flexible and convenient model for
analyzing the gene (or taxon, OTU) counts from a fixed pool of genes (or taxa,
OTUs). Comparing to biological replicates (Robinson et al. 2010), technical
replicates have low variation (Marioni et al. 2008; Wang et al. 2010), and the
variation in the read counts of features across technical replicates can be adequately
modeled by a Poisson distribution (Marioni et al. 2008). For example, the Poisson
distribution has been used to test differential expression in early RNA-seq studies,
using a single source of RNA (Marioni et al. 2008; Wang et al. 2010).
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The Biases of Between-Samples and Within-Sample
Related to biological and technical variations, two biases exist in an RNA-seq
experiment: one is “between-samples” and another is “within-sample”. For exam-
ple, the sequencing depths or library sizes (the total number of mapped reads) are
typically different among samples; the observed counts are not directly comparable
between samples (Soneson and Delorenzi 2013). Thus, the between-samples biases
occur. The within-sample biases also occur because the genes (here gene is a
general term, which can refer to taxon at any level in microbiome study) are usually
tested individually for expression (abundance) differences between conditions.
However, researchers usually ignore this factor and assume that all samples affect
similarly (Oshlack et al. 2010).

Poisson Model Has No Capability of Modeling Overdispersed Data
There are several possible causes of overdispersion: correlated gene counts, clus-
tering of subjects, and within group heterogeneity. For example, within RNA
sequencing data context, both biological replicates (e.g., RNA from different
individuals) and technical replicates (e.g., same source of RNA) are often correlated
and/or highly sparse, resulting in a conditional variance VarðYijXiÞ much large than
the mean li ¼ expðXT

i bÞ; a phenomenon known as overdispersion. In other words,
RNA-Seq data are overdispersed due to between and within library variation
(Robinson et al. 2010; Robinson and Oshlack 2010). The variance of sequence
counts tends to be larger than expected for multinomial or Poisson distribution.
Thus, it is difficult to use Poisson model for analyzing the genomic count data.

A distinctive feature of the Poisson is the equality of the variance and mean,
VarðYijXiÞ ¼ li; which unfortunately also becomes a major limitation of this model
in applications to the genomic (including microbiome) count data. Biological
replication of an experiment implies that a new pool of DNA fragments is gener-
ated. It indicates that an identical probability p from feature (taxon) i of the genome
for biological replicates does not exist. Also, when there are biological replicates
(i.e., given an independent sample of biological replicates), overdispersion in the
observed gene counts is most likely due to within group variation (i.e., within group
heterogeneity). Under this situation, the assumption of Poisson distribution is too
restrictive (Robinson and Smyth 2007; Nagalakshmi et al. 2008), and Poisson
model predicts smaller variations than what is seen in the data (Anders and Huber
2010). Thus, the Poisson model does not take account of biological variation or any
technical sources that might cause the relative abundance of different genes to vary
between different RNA samples (McCarthy et al. 2012).

Therefore, when overdispersion is an issue, the estimates based on Poisson
regression will be inefficient (Cameron and Trivedi 1998; Xia et al. 2012) and be
prone to high false positive rates resulting from underestimation of sampling error
(Kvam et al. 2012).

Some software packages, such as SAS, permit estimation of a dispersion
parameter to accommodate overdispersion. For example, the SAS GENMOD and
GLIMMIX procedures allow the modification of the Poisson model by including a
dispersion parameter / to account for such overdispersion. With this technique,
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VarðliÞ ¼ /li (where / > 0), when / < 1, the variance is less than its mean,
indicating underdispersion, while for / > 1, the variance is large than its mean,
implying overdispersion in the data. This approach is ad hoc in the sense that it
addresses overdispersed Poisson distribution at the “back end” estimation stage,
rather than at the “front end” by explicitly modeling the overdispersion such as the
negative binomial (NB) model we discuss next.

11.1.3 Negative Binomial Model

As the most common alternative to Poisson regression, NB regression model
addresses overdispersion by explicitly modeling the correlated and sparse events via
a latent variable. Specifically, NB extends the Poisson by positing that the condi-
tional mean li of Yi is not only determined by Xi but also by a heterogeneity (latent)
component ei independent of Xi. If we assume that expðeiÞ is distributed with a

gamma 1
/ ;

1
/

� �
; we obtain the NB model with the following density function:

PðYijXiÞ ¼ CðYi þ 1=/Þ
CðYi þ 1ÞCð1=/Þ

1=/
1=/þ li

� �1
/ li

1=/þ li

� �Yi

; ð11:4Þ

where li ¼ expðXT
i bþ eiÞ ¼ expðXT

i bÞ expðeiÞ:
Since EðexpðeiÞÞ ¼ 1; EðexpðXT

i bþ eiÞÞ ¼ EðexpðXT
i bÞ; i.e., whether we

assume a Poisson or a negative binomial distribution, the expect value of li does
not change. Because / > 0, under the NB distribution, VarðYijXiÞ ¼
lið1þ/liÞ[ li; the variance of the NB is greater than its mean, making provision
for overdispersion. Note that NB and Poisson models may be viewed as nested
because as / approaches 0, NB approaches the Poisson.

The NB model outperforms the Poisson model in analyzing overdispersed data
by using the overdispersion parameter (Xia et al. 2012) and is commonly used to
model count data when overdispersion presents (Cameron and Trivedi 1998).

11.2 NB Model in edgeR

11.2.1 Development of NB in the Setting of Genomic
Count Data

The NB model has been shown to be a good fit to RNA-seq data (McCarthy et al.
2012). Compared to Poisson regression with only one parameter for mean, NB has
an additional dispersion parameter /. The benefit of NB overdispersion parameter
is to provide more refined possibilities for separating biological variation from
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technical variation (Robinson and Smyth 2007, 2008), which is flexible enough to
account for biological variation. Therefore, NB model can facilitate our under-
standing the variation of features (taxa) among biological replicates to make
inferences that are relevant to the corresponding population. Furthermore, the
simulation studies show that an assumption of a NB distribution can be robust even
if the data are not truly negative binomially distributed (Lu et al. 2005). Thus, the
NB model should provide a powerful framework (e.g., via GLMs) for analyzing
arbitrarily complex experimental designs and a more flexible statistical framework
for real data.

In recent years, many statistical methods have been developed to examine dif-
ferential expression of replicated count data through different statistical models
based on the NB distribution. Here, we briefly describe NB models in the setting of
genomic count data. Assume the genomic count data can be summarized into a
table of counts, with rows corresponding to genes (or taxa, OTUs) and columns to
samples; let Yij denote the observed number of reads for gene i and sample j, then
for gene i and sample j in experimental group k, the data can be modeled by NB
model:

Yij �NBðmjpik;/iÞ; ð11:5Þ

where mj is the library size (total number of reads), /i is the dispersion with /i [ 0
representing overdispersion relative to the Poisson distribution (Robinson and
Smyth 2007). When /i ¼ 0; the NB distribution reduces to Poisson, and pik is the
true relative abundance of gene i in experimental group k to which sample j be-
longs. By using the NB parameterization, the mean and variance are given:

EðYijÞ ¼ lij ¼ mjpik; VarðYijÞ ¼ lijð1þ lij/iÞ: ð11:6Þ

The mean parameters lij depend on the sequencing depth for sample j as well as
on the amount of RNA from gene i in the sample. For RNA-seq data analysis, the
parameters of interest are the relative abundance of gene pik: Statistical models can
be formulated to test for the differences of relative abundance or changes in
expression level between experimental conditions, possibly adjusting for covariates,
and to estimate the log-fold changes in expression.

11.2.2 Dispersion Estimators of NB in edgeR

For reliable statistical testing, it is critical to obtain good estimates of each gene’s
dispersion (Anders et al. 2013). Many methods for modeling RNA-Seq data by NB
regression are available now, mainly differ in their approach to model dispersion
across genes (Yu et al. 2013).

To address the over-dispersion problem, both edgeR and DESeq use the related
NB distribution as statistical framework to develop a dispersion estimator through
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the mean-variance relationship of VarðYijÞ ¼ lijð1þ lij/iÞ: The consistent (though
non-linear) relationship between variance and mean indicates that parameters of a
NB model, especially /i can be adequately estimated among biological replicates of
microbiome data (McMurdie and Holmes 2014).

Conditional and Common Dispersion Estimators
A small number of biological libraries replicates (samples) cause the uncertainty in
estimating the dispersion parameter for every gene. With this in mind, Robinson
and Smyth originally developed a conditional maximum likelihood
(CML) estimator (Robinson and Smyth 2008) with small-sample estimation of NB
dispersion for serial analysis of gene expression (SAGE), and is now applied to
RNA-seq data analysis (Robinson and Smyth 2007). Given a single gene counts Yij
distributed as NB: Yij �NBðmjpij;/iÞ; now assume that all n libraries have the same
size (i.e., mi � m), then the sum of identically distributed NB random variables is
also NB.

We write as:

Z ¼ Y1 þ Y2 � � � þ Yn �NBðnmp;/n�1Þ: ð11:7Þ

An exact conditional maximum likelihood for / that is independent of p is given
as below (Robinson and Smyth 2008):

lY jZ ¼ zð/Þ

¼
Xn
i¼1

logC yi þ/�1� �" #
þ logC n/�1� �� logC zþ n/�1� �� n logC /�1� �

:

ð11:8Þ

If the assumption that all genes had the same dispersion parameter is true (that is,
the dispersion parameter is the same across all genes), then the common dispersion
parameter could be estimated very accurately from all the available data using a
conditional maximum likelihood approach. The common dispersion estimator
maximizes the common likelihood:

lCð/Þ ¼
PG

i¼1 lið/iÞ; where G is the number of genes.

Quantile-Adjusted Dispersion Estimators
When the library sizes are unequal, the counts are not identically distributed, and
the conditioning argument does not hold exactly. A quantile adjusted conditional
maximum likelihood (qCML) was devised to adjust the observed counts up or
down depending on whether the corresponding library sizes are below or above the
geometric mean (Robinson and Smyth 2008). This creates the quantile-adjusted
“pseudodata” for allowing the use of the CML machinery to achieve an accurate
estimate of /.
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Gene-Wise Dispersion Estimator
A common dispersion for all genes may be a too restrictive assumption and be rare
in practice. Thus, methods of estimating the gene-wise dispersion have received
considerable attention (Anders et al. 2013). It has been shown that borrowing
information across genes could provide better estimate the variance (Smyth 2004;
Cui et al. 2005).

A moderated test was proposed for RNA-seq data to allow different genes to
have different dispersion parameters, and by using a weighted likelihood approach
to borrow information across genes to average the variability across all genes
(Robinson and Smyth 2008; Anders et al. 2013), the individual gene-wise disper-
sion /ið Þ were squeezed towards the common value (/) (Robinson and Smyth
2007). The weighted conditional log-likelihood is given by:

WLð/Þ ¼ lið/iÞþ alCð/iÞ; ð11:9Þ

where a is the weight given to the common likelihood. In general, /i represents the
coefficient of variation of biological variation between the samples. Initially the
methods worked only for a two-group comparison. Later, the capabilities of esti-
mating and moderating the dispersion have been extended for multiple-groups
comparison.

11.2.3 Hypothesis Testing in edgeR

The Wald test and Fisher’s exact test are two main statistical tests in edgeR to detect
differentially expressed (or abundant) genes (taxa, OTUs) between conditions.

11.2.3.1 The Wald Test

Consider each single gene i, let Yij denote the observed count for class k and library
j for a particular gene. Here, j ¼ 1; . . .; nk and for simplicity, assume just a
two-group comparison so that k = 1, 2. This analysis specially requires only one of
n1 or n2 to be greater than 1.

Under the NB statistical framework, for the gene counts Yij; Yij �NBðlij;/Þ;
where / is the dispersion. It exists the following mean-variance relationship:
VarðYijÞ ¼ lij þ/il

2
ij; making / = 0 the Poisson distribution. When parametrized

in terms of its mean lij and variance VarðYijÞ; we get pi ¼ lij
VarðYijÞ and

/i ¼ VarðYijÞ�lij
l2ij

:

Now let pik be the true relative abundance of this gene in RNA of class k, then
lij ¼ mijpik; where mij is the library size for sample j. To assess differences in
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relative abundance, the null hypothesis H0 : Pi1 ¼ Pi2 is proposed to test against the
two-sided alternative; and the test is repeated for each gene.

The default test statistic in edgeR is the Wald test used in Lu et al. (2005), which
is based on the beta-binomial model (Baggerly et al. 2003). The test statistic simply
divides the difference of the two estimated proportions Pi2 � Pi1 by its estimated
standard error. Actually, this is the classical two-sample Welch’s t-test.

11.2.3.2 NB-Based Exact Test

For a 2 � 2 contingency table with the columns representing different treatment
groups, the rows presenting different outcomes, the null hypothesis of Fisher’s
exact test is that treatments do not affect outcomes. The null hypothesis could be
interpreted as the probability of having a particular outcome not being influenced by
the treatment group, and the test is to evaluate whether the two treatment groups
differ in the proportions with each outcome.

Under the null hypothesis of no association, Fisher showed that the probability
of obtaining the frequencies a, b, c and d in Table 11.1 is given by the hyperge-
ometric distribution:

aþ b
a

� �
cþ d
c

� �
n

aþ c

� � ¼ aþ bð Þ! cþ dð Þ! aþ cð Þ! bþ dð Þ!
a!b!c!d!n!

ð11:10Þ

To calculate the significance of the observed data, Fisher showed that we need
only calculating the total probability of observing data as extreme or more extreme
if the null hypothesis is true. Two-sided test is to compute the p-value by summing
the probabilities for all tables with probabilities less than or equal to that of the
observed table. However, similar as Poisson model, Fisher’s exact test only deals
with the technical variation and fails to take into account the variation between
libraries (Robinson et al. 2010).

A variation of the Fisher’s exact test is developed for contingency tables, but
replacing the hypergeometric probabilities with NB, using quantile adjustment
(Robinson and Smyth 2008).

Table 11.1 A design 2 � 2
contingency table

Group A Group B Row total

outcome 1 a b a + b

outcome 2 c d c + d

Column
total

a + c b + d a + b + c + d
(= n)

Where n represent the grand total
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For the 2-sample test, let ZtA and ZtB be the sum of pseudocounts for class A and
class B, respectively, over the number of libraries, nA and nB. Then under the null
hypothesis,

Ztk �NBðnkm�pt;/n�1
k Þ; k 2 A;B: ð11:11Þ

where m� ¼ Qnk
j¼1 mj

� �1
n
; pt represents the proportion of the sum library.

nk ¼ nA þ nB.
This approach showed improvements in accuracy compared with the overdis-

persed logistic and log-linear approaches, but the methods initially were limited to
pairwise comparisons and worked only for a two-group comparison; later, the
capabilities of estimating and moderating the dispersion have been extended for
multiple-groups comparison. For the more complex experimental designs, edgeR
needs a generalized linear model. The multiple hypothesis correction is adjusted by
the standard statistical methods (e.g., Benjamini-Hochberg method).

11.3 The edgeR Package

The edgeR and DESeq2 are R packages for differential expression analysis of
RNA-Seq, SAGE-Seq, ChIP-Seq or HiC count data. The simulation studies show
that edgeR and DESeq2 remain among the top performers (Soneson and Delorenzi
2013; McMurdie and Holmes 2014) and widely enjoyed success for highly similar
RNA-Seq data. The edgeR and DESeq2 were recommended for performing anal-
ysis of differential abundance in microbiome experiment data (McMurdie and
Holmes 2014).

11.3.1 Introduction

The package edgeR, is an implementation of the methodology developed by
Robinson and Smyth (Robinson and Smyth 2007, 2008; Robinson et al. 2010). It
was reviewed as one of most popular implementations of variance stabilization
technique currently used in RNA-Seq analysis and can be adapted for microbiome
count data (McMurdie and Holmes 2014). This approach allows valid comparison
across OTUs (features) while substantially improving both power and accuracy in
the detection of differential abundance.

As a penalized approach to identify differences, the current version of package
edgeR has a variety of penalized overdispersion approaches to commonly penalize
dispersion, shrink individual genes/tags, or use the tag-wise procedure with a trend
as a function of expression level. The edgeR package implements an exact binomial
test, which generalized for overdispersed counts via the function exactTest().

11.2 NB Model in edgeR 405



The total number of aligned reads is very different in RNA- and DNA-
sequencing. Thus, normalization is one of the key issues in analysis of gene dif-
ferential expression in RNA-seq and differential abundance of taxa in microbiome.
The common method of normalization is to divide read count by the total number of
aligned reads in the sample. However, the edgeR deals with normalization in a
different way. The authors of edgeR argued that normalization issues arise only to
the extent that technical factors have sample-specific effects (Chen et al. 2017)
because edgeR concerns the differential expression analysis rather than the quan-
tification of expression levels. The edgeR estimates relative changes in expression
levels between conditions, but not directly estimates absolute expression levels.
Thus, the aim of normalization is to identify and remove systematic technical
differences among samples occurring in the data to ensure the minimal impact of
technical bias on the results.

In edgeR package, the overall strategy of normalization is to choose an appro-
priate baseline, and then express sample counts relative to that baseline. The nor-
malization methods associated with edgeR and DESeq2 have been shown to
outperform other methods, particularly in the cases of expressed RNA varying
across biological conditions or in the presence of highly expressed genes. There are
several approaches of normalization implemented in edgeR package. We briefly
describe them below.

(1) Total read count normalization implemented by the function: cpm(…, nor-
malized.lib.sizes = TRUE) (Robinson et al. 2010)

This approach assumes that read counts are proportional to expression level and
sequencing depth. Its calculation is to divide the read count by total number of reads
and then rescale the factors to counts per million: Cj ¼ 106

Dj
; where, Cj is the nor-

malization factor associated with sample j, Dj is the total number of reads for
sample j.

(2) Upper quantile normalization implemented by the function calcNormFactors
(…, method = “upperquartile”, p = 0.75) (Bullard et al. 2010)

Due to the preponderance of zero and low-count genes, the median is uninfor-
mative for the different levels of sequencing effort. Thus, this method uses the
per-sample upper-quartile (75-th percentile) to scale counts within samples. The
formula of calculation is given below:

Cj ¼ exp 1
N

PN

l¼1
log DlQ

ðpÞ
lð Þ

� 	
DjQ

ðpÞ
j

; where, QðpÞ
j is the upper quantile (p-th percentile) of

sample j after of library-size scaling the reads count; DjQ
ðpÞ
j is the re-scale of the

upper quantile by the total reads count; Cj ¼ 1
DjQ

ðpÞ
j

is the correction multiplicative
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factor; p = 0.75 upper quartile normalization; and factors should multiple to one

Cj ¼ exp 1
N

PN

l¼1
log DlQ

ðpÞ
lð Þ

� 	
DjQ

ðpÞ
j

:

(3) Relative Log Expression (RLE) implemented in the function calcNormFactors
(…, method = “RLE”) (Anders and Huber 2010)

In this method, each size factor estimate Cj is computed as the median of the
ratios of the j-th sample’s counts to those of a pseudo-reference sample—the
geometric mean across samples:

Cj ¼ mediani
YijQN

l¼1
Yil

� �1=N

( )
; where, Cj is the correction factor: the median

across genes for each sample; Yij is counts for i-th gene in j-th sample;
QN

l¼1 Yil
� �1=N

is the geometric mean across samples, the pseudo-reference sample; YijQN

l¼1
Yil

� �1=N is

centering samples with rapport to the pseudo-reference sample. To normalized

counts, the factors should multiple to one Cj ¼ exp
PN

l¼1
log Clð Þ

� 	
Cj

:

(4) Trimmed Mean of M-values (TMM) implemented by the function
calcNormFactors (…, method = “TMM”) (Robinson and Oshlack 2010)

If the most genes are not differentially expressed, the total read count is strongly
dependent on a few highly expressed transcripts. The method of a trimmed mean is
the average after removing the upper and lower percentages of the data. The TMM
procedure is doubly trimmed, by log-fold-changes Miðj; rÞ (sample j relative to
sample r for gene i) and by absolute intensity:

Miðj; rÞ ¼ log2 Yij=Dj � log2ðYir=DrÞ

and Aiðk; rÞ ¼ 1
2 log2ðYij=DjÞþ log2ðYir=DrÞ
� �

.
By default, the method trims the Mi values by 30% and the Ai values by 5%, but

these settings can be tailored to a given experiment. The weighted mean of Mi is
given:

TMMðj; rÞ ¼
P

i2G wiðj;rÞMiðj;rÞP
i2G wiðj;rÞ ; where G represents the set of genes with valid Mi

and Ai values.
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11.3.2 Step-by-Step Implementing edgeR

In this section, we illustrate the edgeR package using a human microbiome data.
The analysis process consists of three main procedures, namely normalization,
dispersion estimation, and test for differential expression.

Cigarette Smokers Data Set
This data set was used in Chap. 7. It was collected to study on the effect of smoking
on the upper respiratory tract microbiome (Charlson et al. 2010). This data set
consists of 60 subjects (32 non-smokers and 28 smokers). Bacterial communities
were profiled using 454 pyrosequencing of 16S sequence tags. The original paper
analyzed the microbiome from the right and left throat and nose to assess micro-
biome composition and effects of cigarette smoking. Here we use a subset of throat
samples from left side of body to illustrate the overdispersion which is typical of
such datasets. The packages edgeR was one of the recommended differential
(abundant) analysis tools for RNA-seq data and microbiome data to identify dif-
ferentially represent genes or abundant OTUs (McMurdie and Holmes 2014). We
here directly use the otu-table from this study.

Step-by-Step Implementing edgeR
The edgeR requires two types of input files: count data files containing raw counts
or OTUs, and sample or meta data containing group and covariate information. The
edgeR works on a specific feature (taxa)-by-sample matrix, a table of integer read
counts, with rows corresponding to a unique feature identifier (e.g., the gene ids)
and columns to independent libraries (e.g., the sample ids). The edgeR also needs
an experimental design matrix to process the specific designed study. A typical
bioinformatics workflow for identifying differentially expressed genes (DEGs) in
RNA-seq and differentially abundant taxa (DAT) in DNA-seq data includes map-
ping short reads, quantification of gene expression (taxon abundance), normaliza-
tion, and DEG and DAT identification. The statistical analysis of RNA-seq and
DNA-seq data is considered more to focus on last two stages and consist of several
steps for data management, exploration and statistical hypothesis testing. We
illustrate the implementation of the edgeR package by the following steps:

Step 1: Load Datasets and Setting Up the Count Matrix
We use the left-side throat data from the GUniFrac package, we first install the
package and load datasets.

> install.packages("GUniFrac")

> library(GUniFrac)

> data(throat.otu.tab)

> head(throat.otu.tab)

The original format of OTU-table is samples-by-OTUs, we transpose it to
OUTs-by-samples format to meet the edgeR input data requirement.
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> throat<-t(throat.otu.tab)

> counts<-throat

> head(counts)

Step 2: Build the edgeR Object
We install Bioconductor package edgeR by issuing the command R in a terminal
window and type:

Source (“http://www.Bioconductor.org/biocLite.R”)
biocLite(c(edgeR))
This retrieves an automatic installation tool (biocLite) to install the

version-matched packages, and automatically download and install all other pre-
requisite packages.

The edgeR stores data in a simple list-based data object called a DGEList. This
type of object can be manipulated like any list in R, thus, it is easy to use. To cover
the count matrix into an edgeR object in R, we first create a group variable or
extract group information from meta-table: tell the edgeR which samples belong to
which group, and then specify the count matrix and the groups in the function
DGEList(). However, before make edgeR object, we need to check to make sure the
dimension of counts table is equal to the length of group. If these two numbers are
not matched, it indicates something wrong in the data processing and the edgeR
object can not be built. Extract group information from meta-table and assign group
variable.

> data(throat.meta)

> group <- throat.meta$SmokingStatus

> head(group)

[1] NonSmoker

Smoker Smoker Smoker Smoker Smoker

Levels: NonSmoker Smoker

> dim(counts)

[1] 856 60

> length(groups)

[1] 60

The following codes build the edgeR object:

> library(edgeR)

> y <- DGEList(counts=counts,group=group)

We can use the names() function to look at the elements that the object contains.

> names(y)

[1] "counts" "samples"
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These elements can be accessed using the $ symbol:

> head(y$counts) # original count matrix

> y$samples # contains a summary of samples

> sum(y$all.zeros) # How many genes have 0 counts across all samples

[1] 0

Step 3: Filter the Data
Typically, several thousand genes or taxa are expressed or abundant in all samples
in a DNA/RNA-Seq experiment. Too low count reads suggest something wrong
with samples or the sequencing. To effectively detect truly differentially expressed
genes or abundant taxa and conduct downstream analysis, it usually removes very
low expressed genes or abundant taxa in the any of experimental conditions in the
early stage, before processing the normalization and differential abundance testing.
This is called filtering. Filtering increases sensitivity and precision to identify the
differentially expressed genes or abundant taxa (Sha et al. 2015). However, the
critical thing is to choose an optimal filtering threshold.

Filtering can be done by many ways (Rau et al. 2013; Sha et al. 2015). Such as
independent data filtering, in which the filter is independent from the subsequent
test (Bourgon et al. 2010). But most data filters belong to ad hoc data filters,
including filtering genes or taxa with a total read count or average counts smaller
than or below an empirical threshold (Sultan et al. 2008; Anders and Huber 2010;
Robinson et al. 2010; Law et al. 2014; Love et al. 2014), or with at least one zero
count in each experimental condition (Bottomly et al. 2011).

For ad hoc data filters, it is critical to choose an appropriate filtering threshold.
Obviously selecting an arbitrary threshold value as filtering criterion is not a good
way. Thus, in practice, most proposed and routinely used data filters have some
algorithms considered, such as, using the distribution (Harati et al. 2014), linking to
normalization in some way, based on external controls (Munro et al. 2014), rather
than directly to the raw counts.

The mean-based filters and maximum-based filters are the two broad categories
of filters for DNA-and RNA-seq data (Rau et al. 2013). The mean-based and
maximum-based filters remove those genes (taxa) with mean or maximum nor-
malized counts across all samples less than or equal to a pre-specified cutoff from
the analysis, respectively.

CPM filter used in the edgeR actually is a generalized version of the
maximum-based filter. It is based on counts per million (CPM), calculated as the
raw counts divided by the library sizes and multiplied by one million. For
example, we choose a cutoff, such as, at least 100 counts per million (calculated
with cpm() in R) in more number of samples (i.e., 10) to remove those genes
(taxa) with a CPM value less than this cutoff from the analysis. When we choose
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the number of samples, the group labels are ignored, but the number should be
larger than the size of the smallest group. The example count data have been
filtered. To show the procedure, we keep an OTU with a cpm of 100 in greater at
least two samples.

> dim(y)

[1] 856 60

> y_full <- y # keep the old one in case we mess up

> head(y$counts)

> apply(y$counts, 2, sum) # total OTU counts per sample

> keep <- rowSums(cpm(y)>100) >= 2

> y <- y[keep,]

> dim(y)

[1] 616 60

This reduces the dataset from 856 OTUs to 616. The filtered OTUs is very little
power to detect differential expression (abundance), so little information is lost by
filtering. Now we reset the library sizes:

> y$samples$lib.size <- colSums(y$counts)

> y$samples

Step 4: Normalize the Data
Normalization is often used to ensure that parameters are comparable because
different libraries are sequenced to different depths. After filtering, we start to
normalize the data. First, calculate the normalization factors to correct for the
different compositions of the samples. In edgeR, RNA or DNA composition is
normalized by finding a set of scaling factors for the library sizes that minimize
the log-fold changes between the samples for most genes (OTUs in this case).
The calcNormaFactors() function is used to a set of scaling factors. The default
method for calculating these scale factors uses the TMM method (Trimmed Mean
of M-values) to calculate normalization factors between samples. The method of
total read count normalization has been shown to perform equally well (Dillies
et al. 2013). It should be noted that the raw read counts are not actually altered
after normalization. Here, we use the default normalization method.

11.3 The edgeR Package 411



> y <- calcNormFactors(y)

> y

> y$samples
group lib.size norm.factors

ESC_1.1_OPL  NonSmoker     1053       0.5461
ESC_1.3_OPL     Smoker     1060       2.2958
ESC_1.4_OPL     Smoker     1281   1.2167
ESC_1.5_OPL     Smoker     1212       1.4487
ESC_1.6_OPL     Smoker      922       1.6580
ESC_1.10_OPL    Smoker     1264       2.3956
ESC_1.11_OPL NonSmoker     1512       0.8739
ESC_1.12_OPL NonSmoker     1095       0.8154
ESC_1.13_OPL NonSmoker      897       2.1827
ESC_1.14_OPL NonSmoker     1016       1.2246
ESC_1.15_OPL    Smoker      792       2.1339
ESC_1.18_OPL NonSmoker     1420       1.4727
ESC_1.19_OPL NonSmoker     3733       0.5375
ESC_1.20_OPL    Smoker     1530       0.6201
......

The effective library size is the product of the original library size and the scaling
factor. In all downsteam analyses, the effective library size replaces the original
library size.

> # effective library sizes
> y$samples$lib.size*y$samples$norm.factors
[1]  575.0 2433.5 1558.6 1755.8 1528.7 3028.0 1321.3  892.8
[9] 1957.9 1244.2 1690.1 2091.3 2006.4  948.7  839.3 4353.3

[17]  666.7 1497.9  887.4 2524.1 2214.9  685.2  853.8 1787.3
[25]  969.5  533.9 1904.0  535.1 2129.8 2776.1 3614.0 1487.8
[33] 2613.0 2119.7 2342.6 1687.5  896.4 2375.8 1424.7  800.2
[41] 1452.5 1550.9 2131.5 1080.7 1202.6 1081.9 1123.1 2047.1
[49] 2865.9 1599.1 1140.0 1089.5 1816.4 2120.3  654.4 1049.6
[57] 1849.9 2560.0 2815.2  333.2

Without the replacement, the default value is 1 for all values in y$samples$
norm.factors.

Step 5: Explore the Data by Multi-dimensional Scaling (MDS) Plot
An MDS plot measures the similarity of the samples and projects this measure into
2-dimensions.

In the plot, the samples, which are similar, are near to each other while samples
that are dissimilar are far from each other. The following R codes create the MDS
plot (Fig. 11.1):

> plotMDS(y, method="bcv", main = "MDS Plot for throat Count Data",

+ col=as.numeric(y$samples$group), labels = colnames(y$-

counts))

> legend(“topright”, as.character(unique(y$samples$-

group)), col=1:2, cex=0.8, pch=16)

412 11 Modeling Over-Dispersed Microbiome Data



To create a pdf format file, use following R codes:

> # Output plot as a pdf

> pdf("MDS_plot.pdf", width = 7, height = 7 ) # in inches

> plotMDS(y, method="bcv", main = "MDS Plot for throat Count Data",

+ col=as.numeric(y$samples$group), cex=0.8, labels = colnames

(y$counts))

> legend("topright", as.character(unique(y$samples$-

group)), col=1:2, cex=0.8, pch=16)

> dev.off() # tells R to turn off device and writing to the pdf.

If the plots are created in R, we can also save plots as pdf’s, png’s, etc. (see ?
pdf).

Step 6: Estimate the Dispersions
The first major step in the analyses of RNA-seq differential expression and
microbiome abundance count data using the NB model is to estimate the dispersion
parameter for each gene or taxon (OTU). The dispersion measures the biological
variability of within-group variability, i.e., variability between replicates (or called
inter-library variation) for that gene (taxon, OTU). For strongly abundant genes, the
dispersion can be understood as a squared coefficient of variation: that is, a dis-
persion value of 0.01 indicates that the gene’s expression tends to differ usually byffiffiffiffiffiffiffiffiffi
0:01

p ¼ 10% between samples of the same treatment group. Typically, the shape

Fig. 11.1 Multi-dimensional scaling (MDS) plot to show sample similarity and dissimilarity
between groups. This plot shows that most samples are dissimilar by non-smokers and smokers
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of the dispersion fit is an exponentially decaying curve. We fit a model in edgeR to
estimate the dispersions as below:

(1) Estimate the common dispersion.

The common dispersion measure will give an idea of overall variability across
the genome for the dataset. We rename the variable to y1 and estimate common
dispersion as below:

> y1 <- estimateCommonDisp(y, verbose=T)

Disp = 5.61103 , BCV = 2.3688

> names(y1)

[1] "counts" "samples" "common.dispersion" "pseudo.counts"

[5] "pseudo.lib.size" "AveLogCPM"

The output of the estimation includes the estimate and some other elements
added to the edgeR object, y1.

(2) Fit a trended model to get a tag/taxon wise dispersion.

In steep 2, we fit a trended model. If a trend model is not fit, edgeR by default
uses the common dispersion as a trend. Once the trend model is fitted, we can
estimate the tag-wise (in term of microbiome data, taxa-wise) dispersions, which is
a function of this model. In this scenario, each gene will get its own unique
dispersion estimate. But the common dispersion is still used in the calculation. The
tag-wise dispersions are squeezed toward the common value: a trended estimate
computed by the “moving average” approach.

> #estimate the tag-wise dispersion
> y1 <- estimateTagwiseDisp(y1)
> names(y1)

[1] "counts"             "samples"      "common.dispersion"  "pseudo.counts" 
[5] "pseudo.lib.size"    "AveLogCPM"     "prior.df"           "prior.n"      
[9] "tagwise.dispersion" "span"

We can use the plotBCV() function to plot the tag-wise biological coefficient of
variation (square root of dispersions) against log2-CPM (Fig. 11.2).

> plotBCV(y1)

(3) Fit a generalized linear model to estimate the genewise dispersion.

We can also fit a generalized linear model (GLM) using edgeR to estimate the
genewise dispersion. Before fitting GLMs, we need to define the design matrix. In
this case, the design matrix is created as:
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attr(,"assign")

[1] 0 1

attr(,"contrasts")

attr(,"contrasts")$group

[1] "contr.treatment"

Fig. 11.2 Plot of gene (taxon)-wise biological coefficient of variation (BCV) against gene
abundance (in log2 counts per million). The BCV is the square root of the negative binomial
dispersion

> #use a generalized linear model to estimate the dispersion
> design <- model.matrix(~group)
> rownames(design) <- colnames(y)
> design

(Intercept) groupSmoker
ESC_1.1_OPL            1  0 
ESC_1.3_OPL            1           1
ESC_1.4_OPL            1           1
ESC_1.5_OPL            1           1
ESC_1.6_OPL            1           1
ESC_1.10_OPL           1           1

……

attr(,"assign")
[1] 0 1
attr(,"contrasts")
attr(,"contrasts")$group
[1] "contr.treatment"
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Now we can estimate the genewise dispersion over all genes /OTUs, allowing
for a possible abundance trend. The estimation is also robust against potential
outlier genes/OTUs.

> library(statmod)

> y2 <- estimateDisp(y, design, robust=TRUE)

> y2$common.dispersion

[1] 7.348

Again we plot the tagwise biological coefficient of variation (square root of
dispersions) against log2-CPM (Fig. 11.3).

> plotBCV(y2)

The coefficient of biological variation (BCV) is the square root of dispersion.
The plot shows that the trended dispersion decreases with expression level. At low
logCPM, the dispersions are very large indeed.

Note that only the trended dispersion is used under the quasi-likelihood
(QL) pipeline, whereas the tagwise and common estimates are not. The following R
codes estimate the QL dispersions using the glmQLFit() function, and then visu-
alize them with the plotQLDisp () function (Fig. 11.4).

Fig. 11.3 Plot of gene (taxon)-wise biological coefficient of variation (BCV) against gene
abundance (in log2 counts per million) based on fitted GLM

416 11 Modeling Over-Dispersed Microbiome Data



> fit <- glmQLFit(y2, design, robust=TRUE)

> plotQLDisp(fit)

Step 7: Test the Differential Abundance
Once NB models are fitted and dispersion estimates are obtained for each gene, we
can test the differentially expressed (abundant) genes (OTUs) between conditions
either using the function exactTest () or GLM approach.

The exactTest() Approach
The classic edgeR approach uses the function exactTest() to make the pairwise
comparisons between the groups. The output of exactTest() is a list of elements, one
of which is a table of the results.

The null hypothesis of this example study is that there is no effect of the smoking
on the OTUs: the observed difference between Smoker and NonSmoker was merely
caused by experimental variability, i.e., the type of variability that we can just as
well expect between different samples in the same group. The hypothesis testing for
each OTU is to find whether there is a sufficient evidence to decide against the null
hypothesis. The codes below find differential abundance of the OTUs in Smoker
versus NonSmoker.

Fig. 11.4 Plot of quarter-root mean deviance against gene abundance (in log2 counts per million)
based on fitted the quasi-likelihood GLM
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Comparison of groups:  Smoker-NonSmoker 
logFC   logCPM       PValue         FDR

411   6.582714 12.14801 1.844586e-06 0.001136265
1280 -3.914412 10.79061 1.325503e-04 0.039145889
3538  1.903514 13.59133 2.126347e-04 0.039145889
4363  3.505148 10.61836 2.541941e-04 0.039145889
4357 -4.064894 11.95855 3.373681e-04 0.041563749
2621 -3.961877 13.89518 4.753634e-04 0.048803980
1437 -4.917752 11.21345 7.964182e-04 0.062239716
1490  1.181922 16.09314 8.083080e-04 0.062239716
444  -2.290007 11.34563 1.116190e-03 0.076396983
4036  1.685491 13.91434 1.348299e-03 0.079674392

> topTags(et)
> et <- exactTest(y1,pair = c( "NonSmoker", "Smoker" ))

The test statistic is reported as a p-value, which is the probability that a log fold
change as strong or even stronger as the observed one would be seen under the null
hypothesis.

edgeR uses the Benjamini-Hochberg(BH) method for adjusting the false dis-
covery rate (FDR). The BH-adjusted p-values are given in the column FDR of the
test object.

Alternatively, we can specify the number to compare the smoking status. The
pair = c (1, 2) is equivalent to pair = c (“NonSmoker”, “Smoker”). By default the
levels of group are in alphabetical order; in this case, the alphabetical order is same
as the numerical order.

> et1 <- exactTest(y1, pair=c(1,2))

Below we use the function topTags () to tabulate the top differentially expressed
(abundant) genes (or taxa or OTUs, etc.).

Comparison of groups:  Smoker-NonSmoker 
logFC   logCPM       PValue         FDR

411   6.582714 12.14801 1.844586e-06 0.001136265
1280 -3.914412 10.79061 1.325503e-04 0.039145889
3538  1.903514 13.59133 2.126347e-04 0.039145889
4363  3.505148 10.61836 2.541941e-04 0.039145889
4357 -4.064894 11.95855 3.373681e-04 0.041563749
2621 -3.961877 13.89518 4.753634e-04 0.048803980
1437 -4.917752 11.21345 7.964182e-04 0.062239716
1490  1.181922 16.09314 8.083080e-04 0.062239716
444  -2.290007 11.34563 1.116190e-03 0.076396983
4036  1.685491 13.91434 1.348299e-03 0.079674392

> topTags(et1)

We can use the function relevel () to relevel “Smoker” as the control or reference
level.

> y3 <- y

> y3$samples$group <- relevel(y3$samples$group, ref="Smoker")

> levels(y3$samples$group)

[1] "Smoker" "NonSmoker"
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When pair is not specified, the default is to compare the first two group levels, so
following two lines of R codes both compare Smoker versus NonSkoker.

> et <- exactTest(y1)

> et <- exactTest(y1,pair = c("NonSmoker", "Smoker"))

GLM Approach
GLM approach of differential abundance analysis is similar to the exactTest ()
approach, but is more feasible. This approach requires a design matrix to describe
the treatment conditions. We use the function model.matrix () to construct the
design matrix.

> design <- model.matrix(~group)
> rownames(design) <- colnames(y)
> design

(Intercept) groupSmoker
ESC_1.1_OPL            1           0
ESC_1.3_OPL            1           1
ESC_1.4_OPL            1           1
ESC_1.5_OPL            1           1
ESC_1.6_OPL            1           1
ESC_1.10_OPL           1   1 

……

attr(,"assign")
[1] 0 1
attr(,"contrasts")
attr(,"contrasts")$group
[1] "contr.treatment"

As shown below, we first conduct GLM F test and likelihood ratio test using this
design as one argument. Then we use the glmQLFTest() function with the contrast
argument to compare smokers versus non-smokers.

Coefficient:  -1*(Intercept) 1*groupSmoker 
logFC   logCPM        F       PValue          FDR

328  14.78231 10.27672 189.2938 7.599979e-25 3.211365e-22
1583 14.90000 10.28153 181.9246 1.042651e-24 3.211365e-22
4817 14.77254 10.33648 140.5660 9.779248e-23 2.008006e-20
3336 14.47977 10.32503 138.9352 1.467443e-22 2.259861e-20
4116 14.68436 10.32269 137.2099 2.260429e-22 2.784848e-20
5682 14.22083 10.32289 132.1039 8.252121e-22 8.472178e-20
1039 14.64245 10.27005 199.6868 2.257737e-21 1.218636e-19
1592 14.71278 10.27451 191.2489 2.257881e-21 1.218636e-19
2053 14.76317 10.27667 186.3259 2.257943e-21 1.218636e-19
4365 15.07973 10.30524 152.8595 2.258943e-21 1.218636e-19

> topTags(qlf)

> fit <- glmQLFit(y1, design)
> qlf <- glmQLFTest(fit, contrast=c(-1,1))
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The following R codes use the glmLRT() function with the contrast argument to
compare smokers versus non-smokers.

Below we illustrate an alternative way to define a coefficient for each level of
groups using the model.matrix() function. The argument “0+ group” tells the func-
tion: not to include an intercept column, instead to include a column for each group.

> #another design
> design1 <- model.matrix(~0+group, data=y$samples)
> colnames(design1) <- levels(y1$samples$group)
> design1

NonSmoker Smoker
ESC_1.1_OPL          1      0
ESC_1.3_OPL          0      1
ESC_1.4_OPL          0      1
ESC_1.5_OPL          0      1
ESC_1.6_OPL          0      1
ESC_1.10_OPL       0      1

……

attr(,"assign")
[1] 1 1
attr(,"contrasts")
attr(,"contrasts")$group
[1] "contr.treatment"

Coefficient:  -1*(Intercept) 1*groupSmoker 
logFC   logCPM       LR       PValue          FDR

411  20.27118 12.14801 73.23177 1.152849e-17 7.101551e-15
5227 18.24855 10.97486 64.71055 8.674936e-16 2.671880e-13
330  17.93663 10.85406 63.48383 1.616884e-15 3.002041e-13
1724 17.85291 10.82525 63.11546 1.949377e-15 3.002041e-13
4363 17.19547 10.61836 60.40577 7.718646e-15 9.509372e-13
4816 17.07590 10.59608 59.72834 1.088973e-14 1.118013e-12
2047 17.33654 10.85711 58.56713 1.964718e-14 1.722583e-12
913  16.82513 10.55138 58.31168 2.237121e-14 1.722583e-12
2775 16.62499 10.50933 57.38676 3.580098e-14 2.450378e-12
4697 16.52253 10.47702 57.16818 4.000920e-14 2.464567e-12

> topTags(qlf_lrt)
> qlf_lrt <- glmLRT(fit, contrast=c(-1,1))

Coefficient:  
> topTags(qlf,n=15)

> FDR <- p.adjust(qlf$table$PValue, method="BH")
> sum(FDR < 0.05)
[1] 514

-1*(Intercept) 1*groupSmoker 
logFC   logCPM        F       PValue          FDR

328  14.78231 10.27672 189.2938 7.599979e-25 3.211365e-22
1583 14.90000 10.28153 181.9246 1.042651e-24 3.211365e-22
4817 14.77254 10.33648 140.5660 9.779248e-23 2.008006e-20
3336 14.47977 10.32503 138.9352 1.467443e-22 2.259861e-20
4116 14.68436 10.32269 137.2099 2.260429e-22 2.784848e-20
5682 14.22083 10.32289 132.1039 8.252121e-22 8.472178e-20
1039 14.64245 10.27005 199.6868 2.257737e-21 1.218636e-19
1592 14.71278 10.27451 191.2489 2.257881e-21 1.218636e-19
2053 14.76317 10.27667 186.3259 2.257943e-21 1.218636e-19
4365 15.07973 10.30524 152.8595 2.258943e-21 1.218636e-19
1947 15.19313 10.31343 142.9830 2.372648e-21 1.218636e-19
4859 14.01220 10.31780 128.0090 2.373967e-21 1.218636e-19
589  15.09218 10.36253 125.0654 5.126725e-21 2.429279e-19
5603 15.32280 10.32720 136.0716 1.062377e-20 4.674457e-19
4164 15.30893 10.32517 132.2279 2.492027e-20 1.023393e-18
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We conduct the same tests but use an alternative design.

Step 8: Interpret the Results of Differential Expression Analysis with
Diagnostic Plots
Once the data have been processed and the dispersion estimates aremoderated, we can
use diagnostic plots to help interpreting the results of differential abundance analysis.
In Chap. 10, we introduced the volcano plot to illustrate relationship between effect

Coefficient:  -1*NonSmoker 1*Smoker 
logFC   logCPM        F       PValue          FDR

411   6.581023 12.14801 41.83656 3.163184e-09 1.948521e-06
898  -5.831264 12.11934 31.54269 1.051140e-07 2.224466e-05
2047  3.960646 10.85711 30.34414 1.738782e-07 2.224466e-05
5227  4.558393 10.97486 31.14861 1.863529e-07 2.224466e-05
5661 -5.829844 11.74643 30.59848 2.181289e-07 2.224466e-05
4363  3.505305 10.61836 29.98538 2.965998e-07 2.224466e-05
330   4.246471 10.85406 29.87519 3.100209e-07 2.224466e-05
1437 -4.904218 11.21345 29.54856 3.335261e-07 2.224466e-05
1280 -3.916511 10.79061 29.36615 3.591945e-07 2.224466e-05
1724  4.162745 10.82525 29.49614 3.611146e-07 2.224466e-05
3427 -5.304055 11.42595 29.11452 3.979515e-07 2.228528e-05
4816  3.385737 10.59608 26.99928 9.986558e-07 5.126433e-05
292  -3.660121 10.71986 24.57597 2.622920e-06 1.158191e-04
990  -4.061853 11.02059 24.04396 2.632253e-06 1.158191e-04
1840 -3.814417 10.78399 23.87888 3.527299e-06 1.387900e-04

> topTags(qlf1,n=15)

> FDR1 <- p.adjust(qlf1$table$PValue, method="BH")
> sum(FDR1 < 0.05)
[1] 106

Coefficient:  -1*NonSmoker 1*Smoker 
logFC   logCPM        F       PValue          FDR

411   6.581023 12.14801 41.83656 3.163184e-09 1.948521e-06
898  -5.831264 12.11934 31.54269 1.051140e-07 2.224466e-05
2047  3.960646 10.85711 30.34414 1.738782e-07 2.224466e-05
5227  4.558393 10.97486 31.14861 1.863529e-07 2.224466e-05
5661 -5.829844 11.74643 30.59848 2.181289e-07 2.224466e-05
4363  3.505305 10.61836 29.98538 2.965998e-07 2.224466e-05
330   4.246471 10.85406 29.87519 3.100209e-07 2.224466e-05
1437 -4.904218 11.21345 29.54856 3.335261e-07 2.224466e-05
1280 -3.916511 10.79061 29.36615 3.591945e-07 2.224466e-05
1724  4.162745 10.82525 29.49614 3.611146e-07 2.224466e-05

> topTags(qlf1)

> fit1 <- glmQLFit(y1, design1)
> qlf1 <- glmQLFTest(fit1, contrast=c(-1,1))

Coefficient:  -1*NonSmoker 1*Smoker 
logFC   logCPM       LR       PValue          FDR

411   6.581023 12.14801 41.89863 9.613021e-11 5.921621e-08
5661 -5.829844 11.74643 32.12473 1.445855e-08 4.453233e-06
898  -5.831264 12.11934 28.88847 7.666809e-08 1.417283e-05
3427 -5.304055 11.42595 28.53476 9.203134e-08 1.417283e-05
1437 -4.904218 11.21345 26.08075 3.274322e-07 3.871834e-05
5227  4.558393 10.97486 25.80798 3.771267e-07 3.871834e-05
330   4.246471 10.85406 23.82571 1.054646e-06 9.280885e-05
1724  4.162745 10.82525 23.20645 1.455082e-06 1.120413e-04
1280 -3.916511 10.79061 19.88884 8.207813e-06 5.519126e-04
2047  3.960646 10.85711 19.72132 8.959620e-06 5.519126e-04

> topTags(qlf1_lrt)
> qlf1_lrt <- glmLRT(fit1, contrast=c(-1,1))

11.3 The edgeR Package 421



size and p-value in compositional data analysis. Here, we use MA-plot and volcano
plot to help interpret the results of differential expression analysis.

MA-Plot Using the plotSmear()
MA plots is used to visualize high-throughput sequencing analysis. It is a plot of
log-fold change (M-values, i.e., the log of the ratio of level counts for each OTU
between two samples) against the log-average (A-values, i.e., the average level
counts for each OTU across the two samples). In edgeR, the function plotSmear()
can visualize the differential abundance data to provide a useful overview for an
experiment with a two-group comparison. For illustration, we use the result in the
et1 object from above exact test (Fig. 11.5).

> da = decideTestsDGE(et1 , p.value = 0.1)

> da_OTUs = rownames(y1)[as.logical(da)]

> plotSmear(et1 , de.tags = da_OTUs, cex = 0.5)

> abline(h = c(-2, 2), col = "blue")

Volcano Plot
The “volcano plot” is an effective way to summarize both fold-change and a
measure of statistical test, usually with a p-value. It is a scatter-plot of the negative
log10-transformed p-values from the gene-specific test (on the y-axis) against the
log2 fold change (on the x-axis).

To graph a volcano plot, we first construct a table containing the log2 fold
change and the negative log10-transformed p-values:

Fig. 11.5 MA-plot generated by the function plotSmear () in edgeR. Red points present those
taxa with the adjusted p-value less than 0.1. The horizontal blue lines show 4-fold changes
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> tab = data.frame(logFC = et1$table[, 1], negLogPval = -log10(et1$table[, 3]
))
> head

logFC negLogPval
1  0.8494     0.3418
2  0.9128     0.6619
3  0.5919     0.2681
4 -0.1413     0.0000
5 -1.4131     0.5129
6 -5.8721     2.7097

(tab)

Then we use the functions par () and plot () to generate the volcano plot.

> par(mar = c(5, 4, 4, 4))

> plot(tab, pch = 16, cex = 0.6, xlab = expression(log[2]*fold*change),

+ ylab = expression(-log[10]*pvalue))

Finally, we identify OTUs (points) in the two regions of interest on the plot: dots
with large magnitude fold changes (being left- or right-of center) and points with
high statistical significance (being towards the top) (Fig. 11.6).

> # Log2 fold change and p-value cutoffs

> lfc = 2

> pval = 0.1

Fig. 11.6 Volcano plot. The red points indicate OTUs of interest that display both
large-magnitude fold-changes (x-axis) as well as high statistical significance (−log10 of p-value,
y-axis). The dashed green-line shows the p-value cutoff (pval = 0.1) with points above the line
having p-value < 0.1 and points below the line having p-value > 0.1. The vertical dashed blue
lines shows 2-fold changes
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> # Selecting interest OTUs

> sig_OTUs = (abs(tab$logFC) > lfc & tab$negLogPval > -log10(pval))

> # Identifying the selected OTUs

> points(tab[sig_OTUs, ], pch = 16, cex = 0.8, col = "red")

> abline(h = -log10(pval), col = "green3", lty = 2)

> abline(v = c(-lfc, lfc), col = "blue", lty = 2)

> mtext(paste("pval =", pval), side = 4, at = -log10(pval), cex = 0.8,

line = 0.5, las = 1)

> mtext(c(paste("-", lfc, "fold"), paste("+", lfc, "fold")), side = 3,

at = c(-lfc, lfc),

+ cex = 0.8, line = 0.5)

11.4 NB Model in DESeq and DESeq2

11.4.1 NB Model in DESeq

Similar in edgeR, Anders and Huber (2010) proposed a NB model to account for
biological variations for high-throughput sequencing count data via the relationship
of mean and variance:VarðYijÞ ¼ lijð1þ lij/iÞ. Instead of using a single propor-
tionality constant /i that is the same throughout the experiment and can be esti-
mated from the data in edgeR, DESeq extends this model by allowing more general,
data-driven relationships of variance and mean. Variance and mean are linked by
local linear regression.

As the above NB model under genomic data, let’s Yij present the number of
reads in sample j that assigned to gene i, and the expectation value of the observed
counts for gene i in sample j is lij and VarðYijÞ ¼ r2ij; then Yij �NBðlij; r2ijÞ:
The NB method in DESeq is based on the following assumptions:

First, decompose lij into a condition-dependent per-gene value qi;qðjÞ and a size
factor sj and assume that lij is the product of a condition-dependent per-gene value
qi;qðjÞ and a size factor sj: lij ¼ qi;qðjÞsj; where qðjÞ is the experimental condition of
sample j, qi;qðjÞ is proportional to the expectation value of the true concentration of
fragments from gene i under condition qðjÞ. The size factor sj represents the cov-
erage, or sampling depth, of library j.

Second, decompose the variance r2ij into shot noise lij
� �

and raw variance

(s2j mi;qðjÞ): r
2
ij ¼ lij þ s2j mi;qðjÞ:

Third, assume that the per-gene raw variance parameter mi;q is a smooth function
of qi; q : mi;qðjÞ ¼ mqðqi;qðjÞÞ.

After decomposition of NB parameters in genomic data setting, the model has
three sets of parameters: size factors sj; strength parameters qiq and the smooth
functions mq; which are estimated from the data. Especially, each size factor
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estimate sj is computed as the median of the ratios of the j-th sample’s counts to
those of the pseudo-reference sample obtained by taking the geometric mean across
samples. qiq is estimated by averaging the counts from the samples j corresponding
to condition q; then transforms it to the common scale. The smooth function mq is
obtained by using a local regression. The approach of statistical testing for differ-
ential expression (abundance) is similar as in edgeR and is analogous to what is
taken by other conditioned tests (e.g., Fisher’s exact test).

In summary, both DESeq and edgeR assume a NB distribution and incorporate
information sharing in the dispersion estimation. However, there are two main
distinctions of DESeq from edgeR: (1) DESeq adds the assumption of a locally
linear relationship between over-dispersion and mean expression levels of the data;
and (2) the way of the information sharing in the dispersion estimation accounts for
the main difference between the two methods. Compared to edgeR, DESeq first
uses either parametric or local regression to estimate the dispersion by modeling the
observed mean variance relationship for the genes in the data set. The dispersion of
a gene is conservatively defined as the largest of the fitted values and the individual
dispersion estimate for the gene.

11.4.2 NB Model in DESeq2

Love, Huber and Anders proposed the DESeq2 NB model for differential analysis
of count data (Love et al. 2014). This method is a successor to DESeq and uses
shrinkage estimation for dispersions and fold changes to improve stability and
interpretability of estimates. The authors emphasized that the DESeq2 method is
focused on the strength rather than the mere presence of differential expression, thus
it enables to assess quantitative differences across groups of samples.

11.4.2.1 Model and Normalization

With the same count matrix, one row for each gene i and one column for each
sample j, as DESeq and edgeR, let us Yij present the number of reads in sample j
that assigned to gene i, then

Yij �NBðlij;/il
2
ijÞ; ð11:12Þ

where lij is fitted mean, is taken as a quantity qij; proportional to the concentration
of cDNA fragments from the gene in the sample, scaled by a normalization factor
(library size factor) sij; i.e., lij ¼ sijqij.

If we assume all genes in a sample having the same constant sj; which accounts
for differences in sequencing depth between samples, then these size factors can be
estimated by the median-of-ratios method already used in DESeq. However, it is
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better to calculate gene-specific normalization factors sij to account for sources of
technical biases, such as differing dependence on GC content or gene length.
DESeq2 fits the data by a generalized linear model (GLM) (McCullagh and Nelder
1989). With a logarithmic link, qij is modeled as log2ðqijÞ ¼ xj:bi; where xj: is
model matrix column for sample j, bi is moderated log-fold change for gene i.

11.4.2.2 Estimation of Dispersions

The gene-specific dispersion parameter /i in VarðYijÞ ¼ lijð1þ lij/iÞ is to estimate
the within-group variability, i.e., the variability between replicates. DESeq2 assumes
that genes of similar average expression strength have the similar dispersion and fits
the gene-specific dispersion towards the average dispersion, using an empirical Bayes
approach. It estimates the width of the prior distribution from data and automatically
controls the amount of shrinkage, based on the observed properties of data.

The details of formula for estimating dispersions are beyond the book. For
simplicity, first, the dispersion parameter /i is assumed to follow a lognormal prior
distribution that is centered around a trend that depends on the gene’s mean nor-
malized read count. Next, for a gene i, a negative binomial GLM without an
logarithmic fold change (LFC) prior for the design matrix X to the gene’s count data
is fitted to get a gene-wise dispersion estimate. Then, the final dispersion estimate is
obtained by forming a logarithmic posterior for the dispersion from the Cox-Reid
adjusted logarithmic likelihood and the logarithmic prior (Love et al. 2014).

11.4.2.3 Shrinkage Estimation of Logarithmic Fold Changes

A common difficulty in analyzing high-throughput sequencing data is the strong
variance of the LFC estimation for genes with low read count. DESeq2 overcomes
this issue by shrinking LFC estimates toward zero in a manner so that shrinkage is
stronger when the available information for a gene is low due to lower counts,
possible higher dispersion, or fewer degrees of freedom.

To incorporate empirical Bayes shrinkage of LFCs, DESeq2 postulates a
zero-centered normal prior for the coefficients bi of model log2ðqijÞ ¼ xj:bi that
represent LFCs (i.e., typically, all coefficients except for the intercept bi0):
bi �Nð0; r2Þ. Here, r is for the empirical prior widths. The shrunken LFCs and
their standard errors are used in the Wald tests for differential expression or
abundance.

11.4.2.4 Hypothesis Testing in DESeq2

After GLMs are fitted for each gene, DESeq2 uses a Wald test for significance of
differential expression or abundance. This is the default inference method in the
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package DESeq2 and one of main changes compared to the (older) version DESeq.
The Wald test compares the beta estimate bi (the shrunken estimate of LFC) divided
by its estimated standard error SE (bi), resulting in a z-statistic, which is compared
to a standard normal distribution. It allows testing of individual coefficients and
contrasts of coefficients. The p-values from the subset of genes are adjusted for
multiple testing, using the Benjamini and Hochberg method.

11.5 The DESeq and DESeq2 Packages

11.5.1 Introduction

DESeq is another variance stabilization technique based on a NB model that was
recommended and adapted for microbiome count data (McMurdie and Holmes
2014). With the variance stabilization technique, the DESeq and DESeq2 packages
have the capability to model overdispersed microbiome data from 16S rRNA gene
sequencing.

The differential abundance analysis in DESeq and DESeq2 needs raw counts
as input. Generally, homoskedastic data works best for exploratory statistical
methods for multidimensional data, especially methods for data visualization (e.g.,
clustering and ordination). However, microbiome data and other DNA-and
RNA gene sequencing data are sparse with many zero values. It is challenging to
use standard statistical methods to analyze these data. To avoid the issue, a simple
strategy is to take the logarithm of the normalized count values plus a small
pseudocount. DESeq2 offers three transformation methods to transform count
data. One method is to use the pseudocounts to transform count data, i.e., in the
form y ¼ log 2ðnþ n0Þ, where n represents the count values and n0 is a positive
constant.

The genes or taxa with low counts often show the strongest relative differences
between samples, and tend to dominate the analysis results. DESeq2 has offered
two alternative approaches, the regularized logarithm (rlog) and variance stabilizing
transformations (VST), to solve to the potential problems. These approaches also
offer more theoretical justification and rationale of choosing the parameter to plug
in n0 above. For genes (taxa) with high counts, the rlog transformation differs not
much from an ordinary log2 transformation. For genes with lower counts, however,
the values are shrunken towards the genes’ averages across all samples. The
algorithm is implemented via an empirical Bayesian prior in the form of a ridge
penalty to ensure the rlog-transformed data being approximately homoscedastic.

The nbinomTest() in DESeq and the nbinomWaldTest() in DESeq2 are two main
functions implement the NB methods. The nbinomTest() is a NB conditioned test
similar to the edgeR test above. The nbinomWaldTest is a NB Wald Test using
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standard maximum likelihood estimates for GLM coefficients assuming a
zero-mean normal prior distribution. DESeq and DESeq2 use the relative log
expression (RLE) normalization method (Anders and Huber 2010), which is
implemented via the function estimateSizeFactors().

11.5.2 Step-by-Step Implementing DESeq2

The DESeq2 needs count data in the form of a rectangular table (matrix) of integer
values as input data. The table cell in the i-th row and the j-th column of the table
tells how many reads have been mapped to gene (OTU) i in sample j. The count
tables typically generated from RNA-Seq or other high-throughput sequencing
experiments. Like in the edgeR, the DESeq2 also need several procedures to
conduct differential abundance analysis of microbiome data. Here, we use the same
data set implemented in the edgeR package and conduct the analysis step-by-step,
using the DESeq2:

Step 1: Create the Count Table
The example data sets consist of two parts: otu-table and meta-table. Below, we
show how to build a DESeqDataSet object from these two tables. The object is
needed for analysis using the DESeq2 package.

First, load the package GUniFrac and bring otu-table to R workplace.

> library("DESeq2")
> library(GUniFrac)
> data(throat.otu.tab)
> otu_tab<-throat.otu.tab
> head(otu_tab)

4695 2983 2554 3315 879 1313 5661 4125 2115 3309
ESC_1.1_OPL     1    0    0    0   0    0    0    0    0    0
ESC_1.3_OPL     0    0    0    0   0    0    0    0    0    0
ESC_1.4_OPL     0    0    0    0   0    0    0    0    0    0
ESC_1.5_OPL     1    0    0    0   0    0    0    0    0    0
ESC_1.6_OPL     0    0    0    0   0    0    0    0    0    0
ESC_1.10_OPL    0    0    0    0   0    0    0    0    0    0

……

Then, convert the countData object to a matrix in order to use the function
DESeqDataSetFromMatrix() to create a DESeq object.

> countData<-as(otu_tab, "matrix")
> head(countData)

4695 2983 2554 3315 879 1313 5661 4125 2115 3309
ESC_1.1_OPL     1    0    0    0   0    0    0    0    0    0
ESC_1.3_OPL     0    0    0    0   0    0    0    0    0    0
ESC_1.4_OPL     0    0    0    0   0    0    0    0    0    0
ESC_1.5_OPL     1    0    0    0   0    0    0    0    0    0
ESC_1.6_OPL     0    0    0    0  0    0    0    0    0    0
ESC_1.10_OPL    0    0    0    0   0    0    0    0    0    0
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> countData<-(t(countData))#DESeq2 need taxa(genes=rows) by samples(=columns)
format
> head(countData)

ESC_1.1_OPL ESC_1.3_OPL ESC_1.4_OPL ESC_1.5_OPL ESC_1.6_OPL
4695           1           0           0           1           0
2983           0           0           0           0           0
2554           0           0           0           0         0 
3315           0           0           0           0           0
879            0           0           0           0           0
1313           0           0           0           0           0

……

In this count table, each row represents a gene (OTU), each column represents a
sequenced RNA library, and the values give the raw numbers of sequencing reads
that were mapped to the respective gene (OTU) in each library.

Step 2: Create the Sample Metadata Table

> data(throat.meta)
> head(throat.meta)

BarcodeSequence LinkerPrimerSequence SmokingStatus
ESC_1.1_OPL         ACGTCATG      CTGCTGCCTYCCGTA     NonSmoker
ESC_1.3_OPL         ACTCGTGA      CTGCTGCCTYCCGTA        Smoker
ESC_1.4_OPL         ACTGCTGA      CTGCTGCCTYCCGTA        Smoker
ESC_1.5_OPL         AGACTGTC      CTGCTGCCTYCCGTA        Smoker
ESC_1.6_OPL         AGCTGATC      CTGCTGCCTYCCGTA        Smoker
ESC_1.10_OPL        ATGCGCTA      CTGCTGCCTYCCGTA        Smoker
……

The metadata mainly consist of the sample information of our interest, here the
smoking status. We extract it from meta-table.

> group<-throat.meta$SmokingStatus

> head(group)

[1] NonSmoker Smoker Smoker Smoker Smoker Smoker

Levels: NonSmoker Smoker

Step 3: Build the DESeq2 Object
In the sequencing experiment, the bioinformatics tools produce the count tables,
called count files, count matrix or SummarizedExperiment, depending on the used
tools. Different kinds of outputs need different DESeq2 functions to input to R
workplace. For example, both packages GenomicAlignments (Bioc) and
easyRNASeq (Bioc) generate SummarizedExperiment output, which needs the
DESeqDataSet() input function to read. The HTSeq (Python) package produces
count files, the function DESeqDataSetFromHTSeq() is required, whereas the
output of Rsubread (Bioc) is a count matrix, needing the function
DESeqDataSetFromMatrix(). Count matrix is easy to understand. Here, we briefly
introduce the output SummarizedExperiment.

A SummarizedExperiment is an object. One of its subclasses is the
DESeqDataSet, the data object of the DESeq2. The object SummarizedExperiment
has three components: the assay(s) (e.g., counts), the rowData and the colData. The
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assay(s) contains the matrix (or matrices) of summarized values, the rowData
contains information about the genomic ranges, and the colData contains infor-
mation about the samples or experiments. The first row of each data table represents
the ids. The first row of colData (ids) lines up with the first column of the assay.

The DESeqDataSet object is built on the SummarizedExperiment object. It must
have an associated design formula to tell which variables in the column metadata
table (colData) specify the experimental design and how these factors should be
used in the analysis. The formula is like a typical “lm” formula in R: a tilde (*)
followed by the variables with plus signs between them. To effectively use the
default settings of the package, for two or more variables, put the variable of
interest at the end of the formula and the control level at the first level. The
DESeqDataSet can be constructed either from a SummarizedExperiment object or
more generally, from a count table (i.e., matrix) and a column metadata table which
have been loaded into R.

After both count table and sample metadata table are created, it is critical to
make the row names of metadata dataframe to equal to the column names of the
countData, which makes the i-th gene (OTU) to match the j sample.

> metaData<-data.frame(row.names=colnames(countData),group=group)
> head(metaData)

group
ESC_1.1_OPL  NonSmoker
ESC_1.3_OPL     Smoker
ESC_1.4_OPL     Smoker
ESC_1.5_OPL     Smoker
ESC_1.6_OPL     Smoker
ESC_1.10_OPL    Smoker

We now have both “countdata” (a table with the read counts) and “coldata” (a
table with metadata on the count table’s columns). These are all the ingredients
what we need for our data object in a form that is suitable for analysis, To construct
the data object from the matrix of counts and the metadata table, we call library
DESeq2 and use the function DESeqDataSetFromMatrix() as below:

> library("DESeq2")

> dds <- DESeqDataSetFromMatrix(countData = countData,

+ colData = metaData,

+ design = * group)

Step 4: Filter the Data
We have already created a count table and fed it into a DESeq2 object, the next step
is to filter the data. The datasets have passed the quality control, so we do not expect
this procedure conducted below will affect the data. The codes are just for
illustration.

> dds <- dds[rowSums(counts(dds)) > 0,]

> dds

430 11 Modeling Over-Dispersed Microbiome Data



class: DESeqDataSet

dim: 856 60

metadata(1): version

assays(5): counts mu cooks replaceCounts replaceCooks

rownames(856): 4695 2983 … 434 3447

rowData names(22): baseMean baseVar … maxCooks replace

colnames(60): ESC_1.1_OPL ESC_1.3_OPL … ESC_1.69_OPL

ESC_1.70_OPL

colData names(3): group sizeFactor replaceable

Step 5: Normalize the Count Data
DESeq2 uses the “median ratio method” described in Anders and Huber (2010) to
estimate the size factors. It first defines a virtual reference sample by taking the
median of each gene’s values across samples and then computes size factors as the
median of ratios of each sample to the reference sample (Anders and Huber 2010).
An offset is built in the statistical model of DESeq2.

Generally, the ratios of size factors roughly match those of the library sizes. Thus,
the size factors are considered as a measure of library. It suggests that the libraries
have been sequenced equally deeply if all size factors are roughly equal to one.

The codes below compute the size factors:

> dds <- estimateSizeFactors(dds)

The estimated size factors can be accessed using the accessor function
sizeFactors().

> sizeFactors(dds)
ESC_1.1_OPL  ESC_1.3_OPL  ESC_1.4_OPL  ESC_1.5_OPL  ESC_1.6_OPL 
0.0569773    1.8232736    1.5953644    1.6523417    0.4558184 

ESC_1.10_OPL ESC_1.11_OPL ESC_1.12_OPL ESC_1.13_OPL ESC_1.14_OPL 
2.3360693    2.9058423    1.5953644    0.3418638    1.3104779 

ESC_1.15_OPL ESC_1.18_OPL ESC_1.19_OPL ESC_1.20_OPL ESC_1.21_OPL 
0.3988411    4.1023656    2.5070012    0.5697730    1.0825687 

ESC_1.22_OPL ESC_1.23_OPL ESC_1.24_OPL ESC_1.25_OPL ESC_1.26_OPL 
2.3360693    0.5697730    1.2535006    3.5895699    3.8744564 

ESC_1.27_OPL ESC_1.28_OPL ESC_1.29_OPL ESC_1.30_OPL ESC_1.31_OPL 
0.4558184    0.5127957    0.1139546    0.5697730    0.4558184 

ESC_1.32_OPL ESC_1.33_OPL ESC_1.34_OPL ESC_1.35_OPL ESC_1.36_OPL 
0.0569773    5.1849343    0.7976822    0.9686141    0.6267503 

ESC_1.37_OPL ESC_1.39_OPL ESC_1.40_OPL ESC_1.42_OPL ESC_1.43_OPL 
3.5325926    3.3616607    1.5383871    1.7093190    1.8802509 

ESC_1.44_OPL ESC_1.45_OPL ESC_1.46_OPL ESC_1.47_OPL ESC_1.48_OPL 
3.8744564    5.7547073    0.6837276    1.8232736    0.1139546 

ESC_1.49_OPL ESC_1.50_OPL ESC_1.51_OPL ESC_1.52_OPL ESC_1.53_OPL 
0.6837276    2.1651374 3.6465472    0.1709319    0.7407049 

ESC_1.55_OPL ESC_1.56_OPL ESC_1.57_OPL ESC_1.58_OPL ESC_1.59_OPL 
0.8546595    2.9628196    4.5012067    1.7093190    1.3674552 

ESC_1.60_OPL ESC_1.61_OPL ESC_1.62_OPL ESC_1.63_OPL ESC_1.64_OPL 
0.2848865    1.8232736    0.0569773    0.4558184    2.2221147 

ESC_1.65_OPL ESC_1.67_OPL ESC_1.68_OPL ESC_1.69_OPL ESC_1.70_OPL 
1.0255914    2.1081601    0.7976822    1.4244325    0.1139546 
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You can obtain the normalized count values by dividing each column of the
count table by the corresponding size factor. Then you can re-scale it to give a
counts-per million interpretation.

Step 6: Estimate the Dispersion
DESeq2 also uses the NB model. The first task in the analysis of abundance
microbiome data is to estimate the dispersion parameter for each OTU. When a NB
model is fitted, within-group variability, i.e., the variability between replicates, is
modeled by the dispersion parameter /i. The dispersion parameters are estimated
using the function estimateDispersions():

> dds<- estimateDispersions(dds)

Step 7: Test the Differential Abundance
In DESeq2, we can make a single call using the function DESeq() to estimate the
size factors, the dispersion for each gene, to fit a generalized linear model and
among others. The returned results table contains all the fitted information and can
be extracted out.

DESeq2 conducts the differential expression analysis based on the NB distri-
bution. It performs a default analysis through the following steps:

1. estimation of size factors: estimateSizeFactors
2. estimation of dispersion: estimateDispersions
3. Negative Binomial GLM fitting and Wald statistics: nbinomWaldTest

After the DESeq function returns a DESeqDataSet object, results tables (log2
fold changes and p-values) can be generated using the results() function. An
independent filtering and p-value adjustment for multiple test correction also can be
performed. One sample of use is as below:

DESeq(object, test = c(“Wald”, “LRT”), fitType = c(“parametric”, “local”,
“mean”))
where,

object = a DESeqDataSet object.
test = either “Wald” or “LRT”, which will then use either Wald significance

tests (defined by nbinomWaldTest()) , or the likelihood ratio test on the difference
in deviance between a full and reduced model formula (defined by nbinomLRT()).

fitType either = “parametric”, “local”, or “mean” for the type of fitting of dis-
persions to the mean intensity.

Run the Function DESeq()
Before run the DESeq(), make sure that “NonSmoker” is the first level in the
condition factor, so that the default log2 fold changes are calculated as “Smoker”
over “NonSmoker” and not the other way around. We can use the following two
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ways to set the factor levels to make sure to get fold change Smoker-NonSmoker:
either by

> dds$group <- relevel(dds$group, "NonSmoker") or by

> dds$group <- factor(dds$group, levels = c("NonSmoker", "Smoker"))

Now we are ready to run the abundance analysis by making a single call to the
function DESeq():

> dds <- DESeq(dds)

Extract the Results Table
The following R codes call the results () function to generate and extract the results
tables including the results with log2 fold changes, p-values and adjusted p-values.
Other results, adjusted p-values according to the Benjamini-Hochberg rule to
control the FDR, also can be extracted. Without providing any arguments, this
function will extract the estimated log2 fold changes and p-values for the last
variable in the design formula.

> res <- results(dds)
> res
log2 fold change (MLE): group Smoker vs NonSmoker 
Wald test p-value: group Smoker vs NonSmoker 
DataFrame with 856 rows and 6 columns

baseMean log2FoldChange     lfcSE        stat    pvalue      padj
<numeric>      <numeric> <numeric>   <numeric> <numeric> <numeric>

4695  0.40826356     0.81077907  1.964026 0.412814755 0.6797423        NA
2983  0.07751625     0.66023009  2.935580 0.224906156 0.8220523        NA
2554  0.09788960     0.50406423  2.812641 0.179213864 0.8577698        NA
3315  0.05745814     0.25158195  2.936180 0.085683412 0.9317181        NA
879   0.01290504     0.01563854  2.936103 0.005326293 0.9957503        NA
...          ...            ...       ...         ...       ...       ...
596  75.26585401      0.2175720 0.5196639   0.4186783 0.6754513 0.8384913
4225  0.01125054      0.4340144 2.9364195   0.1478039 0.8824975        NA
3675  0.01470834 0.2816641 2.9362770   0.0959256 0.9235797        NA
434   0.40220696     -0.4274031 2.9346973  -0.1456379 0.8842073        NA
3447  0.01500073      0.4864376 2.9362344   0.1656671 0.8684189        NA

More information on results columns, such as which variables and tests were
used, can be found by calling the function mcols() on the results object. All
row-wise calculated values (intermediate dispersion calculations, coefficients,
standard errors, etc.) are stored in the DESeqDataSet object, e.g., dds in this case.
These values are accessible by calling the mcols () function on dds. Descriptions of
the columns are accessible by two calls to the mcols().
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> mcols(res, use.names=TRUE)
DataFrame with 6 rows and 2 columns

type
<character>

baseMean       intermediate
log2FoldChange      results
lfcSE               results
stat                results
pvalue              results
padj                results

description
<character>

baseMean               mean of normalized counts for all samples
log2FoldChange log2 fold change (MLE): group Smoker vs NonSmoker
lfcSE                  standard error: group Smoker vs NonSmoker
stat                   Wald statistic: group Smoker vs NonSmoker
pvalue              Wald test p-value: group Smoker vs NonSmoker
padj                                        BH adjusted p-values

The first column, baseMean, is just the average of the normalized count values,
dividing by size factors, taken over all samples. The remaining four columns refer
to a specific contrast: the comparison of the levels Smoker versus NonSmoker of
the factor variable group.

The column log2FoldChange is the effect size estimate. It tells us how much the
OTU’s abundance seems to be different due to group with Smoker in comparison to
NonSmoker. This value is reported on a logarithmic scale to base 2. Thus, for
example, a log2 fold change of 2 means that the OTU’s abundance is increased by a
multiplicative factor of 22 ¼ 4.

We extract some results of interest as below.

> mcols(dds,use.names=TRUE)[1:4,1:4]
DataFrame with 4 rows and 4 columns

baseMean   baseVar   allZero dispGeneEst
<numeric> <numeric> <logical>   <numeric>

4695 0.40826356 5.2748513     FALSE 19.64448160
2983 0.07751625 0.1360280     FALSE  0.00000001
2554 0.09788960 0.1639122     FALSE  0.00000001
3315 0.05745814 0.1048561     FALSE  0.00000001

> substr(names(mcols(dds)),1,10)
[1] "baseMean"   "baseVar"    "allZero"    "dispGeneEs" "dispFit"   
[6] "dispersion" "dispIter"   "dispOutlie" "dispMAP"    "Intercept" 

[11] "group_Smok" "SE_Interce" "SE_group_S" "WaldStatis" "WaldStatis"
[16] "WaldPvalue" "WaldPvalue" "betaConv"   "betaIter"   "deviance"  
[21] "maxCooks"   "replace"   

> head(assays(dds)[["mu"]])
ESC_1.1_OPL ESC_1.3_OPL ESC_1.4_OPL ESC_1.5_OPL ESC_1.6_OPL

4695  0.01229007   0.6898793   0.6036444   0.6252031  0.17246982
2983  0.01037213   0.5245259   0.4589601   0.4753516  0.13113147
2554  0.01134357   0.5147996   0.4504496   0.4665371  0.12869989
3315  0.01134877   0.4323469   0.3783035   0.3918144  0.10808672
879   0.01226195   0.3966589   0.3470765   0.3594721  0.09916472
1313  0.01505693   0.4323476   0.3783041   0.3918150  0.10808690
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3.5325926    3.3616607    1.5383871    1.7093190    1.8802509 
ESC_1.44_OPL ESC_1.45_OPL ESC_1.46_OPL ESC_1.47_OPL ESC_1.48_OPL 

3.8744564    5.7547073    0.6837276    1.8232736    0.1139546 
ESC_1.49_OPL ESC_1.50_OPL ESC_1.51_OPL ESC_1.52_OPL ESC_1.53_OPL 

0.6837276    2.1651374    3.6465472    0.1709319    0.7407049 
ESC_1.55_OPL ESC_1.56_OPL ESC_1.57_OPL ESC_1.58_OPL ESC_1.59_OPL 

0.8546595    2.9628196    4.5012067    1.7093190    1.3674552 
ESC_1.60_OPL ESC_1.61_OPL ESC_1.62_OPL ESC_1.63_OPL ESC_1.64_OPL 

0.2848865    1.8232736    0.0569773    0.4558184    2.2221147 
ESC_1.65_OPL ESC_1.67_OPL ESC_1.68_OPL ESC_1.69_OPL ESC_1.70_OPL 

1.0255914    2.1081601    0.7976822    1.4244325    0.1139546 

> head(dispersions(dds))
[1] 25.98183 60.00000 54.94283 60.00000 60.00000 60.00000
> head(mcols(dds)$dispersion)
[1] 25.98183 60.00000 54.94283 60.00000 60.00000 60.00000

> sizeFactors(dds)
ESC_1.1_OPL  ESC_1.3_OPL  ESC_1.4_OPL  ESC_1.5_OPL  ESC_1.6_OPL 
0.0569773    1.8232736    1.5953644    1.6523417    0.4558184 

ESC_1.10_OPL ESC_1.11_OPL ESC_1.12_OPL ESC_1.13_OPL ESC_1.14_OPL 
2.3360693    2.9058423    1.5953644    0.3418638    1.3104779 

ESC_1.15_OPL ESC_1.18_OPL ESC_1.19_OPL ESC_1.20_OPL ESC_1.21_OPL 
0.3988411    4.1023656    2.5070012    0.5697730    1.0825687 

ESC_1.22_OPL ESC_1.23_OPL ESC_1.24_OPL ESC_1.25_OPL ESC_1.26_OPL 
2.3360693    0.5697730    1.2535006    3.5895699    3.8744564 

ESC_1.27_OPL ESC_1.28_OPL ESC_1.29_OPL ESC_1.30_OPL ESC_1.31_OPL 
0.4558184    0.5127957    0.1139546    0.5697730    0.4558184 

ESC_1.32_OPL ESC_1.33_OPL ESC_1.34_OPL ESC_1.35_OPL ESC_1.36_OPL 
0.0569773    5.1849343    0.7976822    0.9686141    0.6267503 

ESC_1.37_OPL ESC_1.39_OPL ESC_1.40_OPL ESC_1.42_OPL ESC_1.43_OPL 

> head(coef(dds))
Intercept group_Smoker_vs_NonSmoker

4695 -2.212894                0.81077907
2983 -2.457675                0.66023009
2554 -2.328513                0.50406423
3315 -2.327852                0.25158195
879  -2.216199                0.01563854
1313 -1.919960               -0.15630774

Compare Differential Abundance Between Groups Using Contrast
We can compare any two levels of a variable by specifying three values: the
variable name, the numerator name, and the denominator name. The contrast results
can be extracted using the function results(). The following results show the log2 of
the fold change of Smoker over NonSmoker. The extracted results are same as
those extracted by using res <- results(dds) because these two ways are actually
same.
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> res <- results(dds, contrast = c("group", "Smoker", "NonSmoker") )
> res
log2 fold change (MLE): group Smoker vs NonSmoker 
Wald test p-value: group Smoker vs NonSmoker 
DataFrame with 856 rows and 6 columns

baseMean log2FoldChange     lfcSE        stat    pvalue      padj
<numeric>      <numeric> <numeric>   <numeric> <numeric> <numeric>

4695  0.40826356     0.81077907  1.964026 0.412814755 0.6797423        NA
2983  0.07751625     0.66023009  2.935580 0.224906156 0.8220523        NA
2554  0.09788960     0.50406423  2.812641 0.179213864 0.8577698        NA
3315  0.05745814     0.25158195  2.936180 0.085683412 0.9317181        NA
879   0.01290504     0.01563854  2.936103 0.005326293 0.9957503        NA
...          ...            ...       ...         ...       ...       ...
596  75.26585401      0.2175720 0.5196639   0.4186783 0.6754513 0.8384913
4225  0.01125054      0.4340144 2.9364195   0.1478039 0.8824975        NA
3675  0.01470834      0.2816641 2.9362770   0.0959256 0.9235797        NA
434   0.40220696     -0.4274031 2.9346973  -0.1456379 0.8842073        NA
3447  0.01500073      0.4864376 2.9362344   0.1656671 0.8684189        NA

Adjust p-Values Using FDR
Let’s check how many OTUs that have a p-value below and greater than 0.01.

> sum(res$pvalue < 0.01, na.rm=TRUE )

[1] 17

> table(is.na(res$pvalue))

FALSE

856

As edgeR, DESeq2 uses the Benjamini-Hochberg(HB) method to adjust FDR. In
hypothesis testing, we usually set up a small value, say, 0.01, as threshold. Briefly,
the FDR method calculates for each OTU an adjusted p-value which answers the
following question: if one called significant all OTUs with a p-value less than or
equal to this OTU’s p-value threshold, what would be the fraction of false positives
(FDR) among them? The BH-adjusted p-values are given in the column FDR of the
test object.

Now, if the null hypothesis is true for all OTUs, i.e., no OTU is affected by
smoking. Then, by the definition of p-value, we expect up to 1% of the OTU to
have a p-value below 0.01. This amounts to 8.56 OTUs. Thus, if we consider these
17 OTUs with p-value less than 0.01 as differentially being abundant, then there
should be 8.56/17 = 50% false positives.

Now we consider a fraction of 10% false positives acceptable, that is, all OTUs
with an adjusted p-value below 0.1 as significant, let’s check haw many OTUs
there.

> table(res[,"padj"] < 0.1)

FALSE TRUE

85 23
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In publications, we often report the significant OTUs with the strongest
down-regulation and upregulation. We sort the results by the log2 fold change
estimate. Then, head the order to get the significant OTUs with the strongest
down-regulation; tail the order to get the significant OTUs with the strongest
upregulation.

> res_Sig <- res[which(res$padj < 0.1 ),]
> head(res_Sig[order(res_Sig$log2FoldChange),])
log2 fold change (MLE): group Smoker vs NonSmoker 
Wald test p-value: group Smoker vs NonSmoker 
DataFrame with 6 rows and 6 columns

baseMean log2FoldChange     lfcSE      stat       pvalue
<numeric>      <numeric> <numeric> <numeric>    <numeric>

2621 24.466720      -4.375709  1.195949 -3.658775 0.0002534236
797   3.761548      -3.847800  1.555247 -2.474076 0.0133581159
2300 11.930517      -3.791208  1.150284 -3.295889 0.0009811082
4551  5.637375      -3.670423  1.574858 -2.330638 0.0197724787
4357  3.603393      -3.650119  1.278209 -2.855650 0.0042948785
444   3.250048      -2.797241  0.981123 -2.851060 0.0043573687

padj
<numeric>

2621 0.005473949
797  0.072735125
2300 0.010595968
4551 0.092844682
4357 0.033613987
444  0.033613987

> tail(res_Sig[order( res_Sig$log2FoldChange ),])
log2 fold change (MLE): group Smoker vs NonSmoker 
Wald test p-value: group Smoker vs NonSmoker 
DataFrame with 6 rows and 6 columns

baseMean log2FoldChange     lfcSE      stat       pvalue
<numeric>      <numeric> <numeric> <numeric>    <numeric>

2831 42.999603       3.164360 0.8879625  3.563619 3.657762e-04
1633  4.202140       3.175464 0.9448628  3.360768 7.772617e-04
2434 76.272020       3.181675 0.7098175  4.482384 7.381376e-06
2893  5.182641       3.431377 0.9893132  3.468444 5.234820e-04
171   2.476577       4.257418 1.7694243  2.406103 1.612371e-02
411   4.561144       5.746783 2.1643727  2.655172 7.926787e-03

padj
<numeric>

2831 0.0056434045
1633 0.0093271403
2434 0.0007971886
2893 0.0070670066
171  0.0829219216
411  0.0503584097

Step 8: Diagnose and Improve the Testing Results
Data visualization and clustering can diagnose and help interpreting the results of
differential abundance analysis. Here, we introduce several different plots that are
associated with diagnostics, clustering, interpretation of differential abundance
analysis.
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Diagnostic Plot Using the plotMA()
In Sect. 11.3.2, when we implement the edgeR package, a MA-plot is done by the
function plotSmear() to visualize the differential abundance data. Here, we use the
function plotMA() to review the analysis results. It first transforms the data onto M
(log ratio) and A (mean average) scales, then overview the differences of values for
comparing the OTUs between Smokers versus Non-smokers (Fig. 11.7).

> plotMA(res)

Diagnostic Plot Using the plotDispEsts()
The dispersion of a gene (taxon, OTU) measures a gene (taxon, OTU)’s variance. In
DESeq2, it is used to model the overall variance of a gene (taxon, OTU)’s count
values. The dispersion can be interpreted as the square of the coefficient of bio-
logical variation. The DESeq2’s dispersion estimates can be plotted by the function
plotDispEsts(). The function visualizes DESeq2’s dispersion estimates in this way:
plots the per-gene dispersion estimates together with the fitted mean-dispersion
relationship (Fig. 11.8).

> plotDispEsts(dds, ylim = c(1e-2, 1e3))

Fig. 11.7 The MA-plot shows the log2 fold changes from the smoking status over the mean of
normalized counts, i.e., the average of counts normalized by size factor. Points represent the
OTUs. The red points indicate those OTUs with the adjusted p-value below a threshold (here 0.1,
the default). Points that fall out of the window are plotted as open triangles pointing either up or
down. The x axis is the average abundance over all samples, the y axis the log2 fold change
between smoker and non smoker
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Clustering with Heatmap
Heatmap is often used to explore the degrees of similarity and more distant rela-
tionships among groups of closely related genes (taxa, OTUs in this case). It
combines clustering methods with a graphical representation of the count table. In
Chap. 7, we illustrate heatmap using the phyloseq package. Here, we use heatmap
to cluster OTUs via the DESeq2 package.

The first step to make a heatmap with 16S RNA-seq data is to transform the raw
counts of reads to approximately homoskedastic data. The transformation can be
done either by the rlog()or varianceStabilizingTransformation(). The latter is rec-
ommended by the DESeq2. Below we do rlog and variance stabilizing transfor-
mations to transform the data.

> rld <- rlog(dds)

> vst <-varianceStabilizingTransformation(dds)

To show the effect of the transformation, we do three plots: (1) the first sample
against the second by using the log2 () function (after adding 1, to avoid taking the
log of zero); (2) rlog-transformed values; and (3) variance-stabilizing transformed
values.

> par(mfrow = c(1, 3))

> plot(log2( 1+counts(dds, normalized=TRUE)[,1:2] ), main="Ordinary log2

Fig. 11.8 Plot of dispersion estimates. The black points are the dispersion estimates for each OTU
as obtained by considering the information from each gene separately. Usually these values
fluctuate strongly around their true values. Blue points present the final estimated values. The red
trend line is fitted to show how the dispersions dependence on the mean, and then shrink each
OTU’s estimate towards the red line to obtain the final estimates (blue points). The final estimated
values are used in the hypothesis test. Blue circles present the dispersion outliers above the main
“cloud” of points. They are OTUs which have high otu-wise dispersion estimates and are therefore
not shrunk toward the fitted trend line and therefore are not used for the hypothesis test. We did not
see in this case
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transformation",col="#00000020", pch=20, cex=0.3 )

> plot(assay(rld)[,1:2], main="regularized-logarithm transformation

(rlog)", col="#00000020", pch=20, cex=0.3 )

> plot(assay(vst)[,1:2], main="Variance stabilizing transformations

(VST). ",col=“#00000020", pch=20, cex=0.3 )

The plot shows that sample 1 and sample 2 are positively correlated after the rlog
transformation. The function rlogTransform() returns a SummarizedExperiment
object which contains the rlog-transformed values in its assay slot. We check these
values (Fig. 11.9):

> head(assay(rld))[,1-3]
ESC_1.1_OPL ESC_1.4_OPL ESC_1.5_OPL ESC_1.6_OPL

4695      -1.406      -1.958      -1.755      -1.828
2983      -1.999      -2.194      -2.196      -2.121
2554      -1.923      -2.143      -2.145      -2.060
3315      -2.079      -2.243      -2.245      -2.181
879       -2.172      -2.225      -2.226      -2.205
1313      -1.860      -2.077      -2.079      -1.995

Finally, we cluster the OTUs with heatmap below. Several packages are required
for completing a high quality of plot. Load these packages before call the heatmap.2
() function. The clustering is only relevant to OTUs that actually are differentially
abundant. Here, we select the 10 OTUs with the highest variance across samples for
demonstration (Fig. 11.10).

Fig. 11.9 Scatter plot of sample 2 versus sample 1. Left: using an ordinary log2 transformation.
Middle: using regularized-logarithm transformation. Right: using variance stabilizing
transformations
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> library("gplots")

> library("RColorBrewer")

> library("genefilter")

> library(SummarizedExperiment)

> topVarGenes <- head(order(rowVars(assay(rld)), decreasing=TRUE ),10)

> heatmap.2(assay(rld)[topVarGenes,], scale="row",

+ trace="none", dendrogram="column",

+ col = colorRampPalette(rev(brewer.pal(9, "RdBu")))(255))

Histogram of p-Values
We can also plot the histogram of the p-values to diagnose the distribution of the
p-values. P-values are uniformly distributed under the null hypothesis: the his-
togram of p-values looks flat and uniformly distributed over the interval [0, 1]
(Murdoch et al. 2008). Significant p-values thus become visible as an enrichment of
p-values near zero in the histogram. In other words, if the p-values are computed
correctly, then the histogram of the p-values will have a rectangular shape with a

Fig. 11.10 Heatmap with OTU clustering. The dendrogram at the top shows us a hierarchical
clustering of the samples. Red-blue and white in cells reflect high and low abundance levels,
respectively, as indicated in the color key bar (rlog-transformed value). Hierarchical clustering was
derived using the Euclidean distance as the similarity measure and the Ward clustering as
agglomeration method. On the heatmap, the blocks of OTUs covary across subjects. Heatmap with
clustering is often insightful because we can see the OTUs–subjects covarying effects between
groups
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peak at zero. To check whether p-values have been computed correctly here, we
plot the histogram of p-values as below (Fig. 11.11):

> hist(res$pvalue, breaks=20, col="grey",

+ main = "Smoker vs. NonSmoker", xlab = "p-values")

Clearly the p-values returned by DESeq2 are not correctly computed, which
suggest something wrong with the assumed variance of the null distribution. Thus,
the Wald test is not appropriate for the data here. Before finally correct the wrongly
computed p-values, we first introduce the independent filtering because the cor-
rection of the p-values needs this procedure.

Independent Filtering
DESeq2 automatically performs independent filtering to filter out weakly differ-
ential OTUs. Although these weak OTUs are tested as non-significant; however,
they affect the multiple testing procedure. Thus, it is better to remove them for the
analysis. The independent filtering is performed to maximize the number of OTUs
that will have a BH-adjusted p-value less than a critical value (by default, alpha is
set to 0.1). The adjusted p-values for the OTUs that do not pass the filter
threshold are set to NA. The filter threshold value and the number of rejections at
each quantile of the filter statistic are stored as metadata of the object returned by
results.

Fig. 11.11 Histogram of the p-values returned by the test for differential abundance. The figure
indicates a wrong null distribution of p-values
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2.921% 0.02921     10
4.8%   0.04800     10
6.679% 0.06679     10
8.558% 0.08558     10
10.44% 0.10437     10
12.32% 0.12316     11
14.2%  0.14196     11
16.07% 0.16075     11
17.95% 0.17954     11
19.83% 0.19833     11
21.71% 0.21712     11
23.59% 0.23591     11
25.47% 0.25471     11
27.35% 0.27350     11
29.23% 0.29229     11
31.11% 0.31108     11
32.99% 0.32987     11
34.87% 0.34866     11
36.75% 0.36746     11
38.62% 0.38625     11
40.5%  0.40504     11
42.38% 0.42383 11
44.26% 0.44262     11
46.14% 0.46142     11
48.02% 0.48021     11
49.9%  0.49900     12
51.78% 0.51779     12
53.66% 0.53658     12
55.54% 0.55537     12
57.42% 0.57417     12
59.3%  0.59296     12
61.17% 0.61175     12
63.05% 0.63054     14
64.93% 0.64933     14
66.81% 0.66812     14
68.69% 0.68692     16
70.57% 0.70571     16
72.45% 0.72450     16
74.33% 0.74329     16
76.21% 0.76208     17
78.09% 0.78087     17
79.97% 0.79967     17
81.85% 0.81846     17
83.72% 0.83725     20
85.6%  0.85604     21
87.48% 0.87483     23
89.36% 0.89362     23
91.24% 0.91242     27
93.12% 0.93121     22
95%    0.95000     18

> metadata(res)
$filterThreshold
87.48% 
1.191 

$filterTheta
[1] 0.8748

$filterNumRej
theta numRej
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$lo.fit
$lo.fit$x
[1] 0.02921 0.04800 0.06679 0.08558 0.10437 0.12316 0.14196
[8] 0.16075 0.17954 0.19833 0.21712 0.23591 0.25471 0.27350

[15] 0.29229 0.31108 0.32987 0.34866 0.36746 0.38625 0.40504
[22] 0.42383 0.44262 0.46142 0.48021 0.49900 0.51779 0.53658
[29] 0.55537 0.57417 0.59296 0.61175 0.63054 0.64933 0.66812
[36] 0.68692 0.70571 0.72450 0.74329 0.76208 0.78087 0.79967
[43] 0.81846 0.83725 0.85604 0.87483 0.89362 0.91242 0.93121
[50] 0.95000

$lo.fit$y
[1]  9.811  9.952 10.104 10.262 10.418 10.582 10.749 10.899
[9] 10.983 11.000 11.000 11.000 11.000 11.000 11.000 11.000

[17] 11.000 11.000 11.000 11.000 11.000 11.017 11.101 11.252
[25] 11.418 11.584 11.761 11.924 12.061 12.392 12.765 13.113
[33] 13.527 14.043 14.558 15.006 15.450 15.933 16.388 16.916
[41] 17.687 18.437 19.218 20.044 20.653 21.007 21.351 21.696
[49] 22.035 22.368

$alpha
[1] 0.1

We can extract them by using following codes:

> metadata(res)$alpha

[1] 0.1

> metadata(res)$filterThreshold

87.48%

1.191

As seen in Fig. 11.12, we can plot the filterNumRej attribute of the results object
to see how the number of rejections changes for various cutoffs based on mean
normalized count.

> plot(metadata(res)$filterNumRej,

+ type="b", ylab="number of rejections",

+ xlab="quantiles of filter")

> lines(metadata(res)$lo.fit, col="red")

> abline(v=metadata(res)$filterTheta)

Re-estimate the p-Values.
After performing the independent filtering, we can re-estimate the p-values via the
fdrtool package. For a convenient reference, we reprint the partial result output
below:
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> res
log2 fold change (MLE): group Smoker vs NonSmoker 
Wald test p-value: group Smoker vs NonSmoker 
DataFrame with 856 rows and 6 columns

baseMean log2FoldChange     lfcSE      stat    pvalue
<numeric>      <numeric> <numeric> <numeric> <numeric>

4695   0.40826        0.81078     1.964  0.412815    0.6797
2983   0.07752        0.66023     2.936  0.224906    0.8221
2554   0.09789        0.50406     2.813  0.179214    0.8578
3315   0.05746 0.25158     2.936  0.085683    0.9317
879    0.01291        0.01564     2.936  0.005326    0.9958
...        ...            ...       ...       ...       ...
596   75.26585         0.2176    0.5197   0.41868    0.6755
4225   0.01125         0.4340  2.9364   0.14780    0.8825
3675   0.01471         0.2817    2.9363   0.09593    0.9236
434    0.40221        -0.4274    2.9347  -0.14564    0.8842
3447   0.01500         0.4864    2.9362   0.16567    0.8684

padj
<numeric>

4695        NA
2983        NA
2554        NA
3315        NA
879         NA
...        ...
596     0.8385
4225        NA
3675        NA
434         NA
3447        NA

The filtered out OTUs by independent filtering are set to NA, let’s remove them
by the function !is.na() with the padj object.

Fig. 11.12 Plot of independent filtering. The figure plots the number of rejections (adjusted
p-value less than a significance level) against the quantiles of a filter statistic (the mean of
normalized counts). The number of rejections is maximized by the function results(). The vertical
line presents the threshold chosen
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> # remove filtered out OTUs by independent filtering

> # they have NA adj. pvals

> res <- res[ !is.na(res$padj),]

> # with NA pvals (outliers)

> res <- res[ !is.na(res$pvalue),]

Now, let’s remove the adjusted p-values from the result object because we will
add the correct p-values based on the results of fdrtool package later.

> res <- res[, -which(names(res) == "padj")]

Below we install and call fdrtool package. The function fdrtool() is used to
re-estimate the adjusted p-values based on “res$stat”. We specify statistic = “nor-
mal” for using z-scores as input to fdrtool() to re-estimate the p-value (Fig. 11.13).

> install.packages("fdrtool")

> library(fdrtool)

> res_fdr <- fdrtool(res$stat, statistic= "normal", plot = T)

We can check the parameters of the fdrtool output using the head () function, and
then print the parameters of interest.

> head(res_fdr)

Fig. 11.13 Plot of false discovery rate from the fdrtool package
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The estimated parameters in the output include: ‘pval’, ‘qval’, ‘lfdr’, ‘statistic’
from ‘normal’ and ‘param’ (‘cutoff’, ‘N.cens’, ‘eta0’, ‘eta0.SE’, ‘sd’, ‘sd.SE’).
They can be printed using $ sign. For example, to print the estimated null model
standard deviation, use the codes:

> res_fdr$param[1, "sd"]

sd

0.9102

> sd

standardGeneric for "sd" defined from package "BiocGenerics"

The null model ‘sd’ estimated by the fdrtool package is 0.91, which is less than
the theoretical ‘sd’ of 1, as expected from the p-value histogram. The re-estimated
values and the new BH-adjusted p-values can be added to the previous result
dataframe using below codes:

> res[,"padj"] <- p.adjust(res_fdr$pval, method = "BH")

The updated result dataframe can be used for downstream analysis and reporting.
Let’s check the distribution of the ‘correct’ p-values (Fig. 11.14).

> hist(res_fdr$pval, col = "gray", main = "Smoker vs. NonSkoer, correct

null model", xlab = "Corrected p-values")

Fig. 11.14 Histogram of the p-values re-estimated by the fdrtool package. The figure indicates a
‘correct’ null distribution of p-values. The histogram of the p-values has a rectangular shape with a
peak at zero
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Step 9: Extract Differentially Abundant OTUs and Export Results Table
Now we are ready to extract the number of differential abundant OTUs from the
result dataframe.

# Now, table the adjusted p-values to see how many

> table(res[,"padj"] < 0.1)

FALSE TRUE

79 29

Before removing the weakly abundant OTUs from the input to the BH-FDR
procedure, 23 significant OTUs are identified; now the significant OTUs increase to
29 at an FDR of 0.1. Thus, removing the weakly abundant OTUs improves the
power of test.

Finally, we save the results table in a CSV format, which can be easily loaded
with a spreadsheet program such as Excel.

> res[1:2,]
log2 fold change (MLE): group Smoker vs NonSmoker 
Wald test p-value: group Smoker vs NonSmoker 
DataFrame with 2 rows and 6 columns

baseMean log2FoldChange     lfcSE      stat    pvalue      padj
<numeric>      <numeric> <numeric> <numeric> <numeric> <numeric>

4194     1.631         -1.899    1.4916    -1.273  0.202922   0.38476
3227    69.083         -1.968    0.7154    -2.751  0.005934   0.01691
> write.csv( as.data.frame(res), file="results.csv" )

11.6 Summary and Discussion

In this chapter, we reviewed differential expression data analysis in genomic data
setting, especially presented the statistical framework of NB models in the edgeR,
and DESeq and DESeq2 approaches. We illustrated implementations of the edgeR
and DESeq2 with human microbiome data to demonstrate their capabilities to
analyze differential abundant microbiome data. We chose edgeR and DESeq2
because they are frequently used in the RNA-sequencing literature and they have
been demonstrated that their methods based on negative binomial modeling have
improved specificity and sensitivities as well as good control of false positive errors
with comparable performance. It does not indicate that they are the best methods to
be used for analyzing all microbiome data. Each study is specific; the users need to
choose their methods and packages based on the design, data, and preference or
combining several methods in their study since no single method dominates another
across all settings (Nookaew et al. 2012; Rapaport et al. 2013; Soneson and
Delorenzi 2013).
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We noticed the differences in several important areas between the methods
implemented in the edgeR and DESeq(2), for example, the data structures, their
default normalization, the dispersion estimation (Anders et al. 2013). But we have
no intention to compare these two methods. Effective comparisons of different
statistical methods need not only apply them to real data, but also more statistical
tools, such as simulation studies. Several studies in RNA-sequencing data literature
have done comprehensive comparisons of edgeR and DESeq(2) among methods
(Harris et al. 2010; Nookaew et al. 2012; Rapaport et al. 2013; Soneson and
Delorenzi 2013). However, the comparisons with application to microbiome data
are still limited.

The packages edgeR and DESeq were recommended to identify differentially
abundant OTUs (McMurdie and Holmes 2014). However, these methods may not
perform well in identifying the differential abundant OTUs, as the counts at the
OTU level are very sparse and the models cannot account for many zeros observed
(Li 2015). Although the NB formulations in edgeR and DESeq are adjusted to
ensure the over-dispersion parameter ai locally to fit the unobserved heterogeneity
of RNA sequence data, these approaches may not be appropriate if the
over-dispersion is due to excess zeros because they underestimate the probability of
zeros and consequently underestimate the variability present in the outcome. In
such situations, alternative methods and models with the capability to incorporate
excess zeros, such as zero inflated/hurdle models that account for over-dispersion
due to excess zeros, are useful and necessary. Chapter 12 will present the models
which have the parameters to dealing with the zero-inflated and over-dispersed data.
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Chapter 12
Modeling Zero-Inflated Microbiome
Data

In this chapter, we introduce and illustrate how to model zero-inflated microbiome
data. In Sect. 12.1, we briefly introduce modeling zero-inflated data. The remaining
of this chapter is organized as follows: Sect. 12.2 introduce zero-inflated Poisson
(ZIP) and negative binomial model (ZINB) and their implementations in real
microbiome data. Section 12.3 introduce zero-hurdle Poisson (ZHP) and
zero-hurdle negative binomial (ZHNB) and implement them with the same data set.
The zero-inflated beta regression model with random-effects (ZIBR) is covered and
illustrated in Sect. 12.4. We conclude this chapter by a summary and discussion in
Sect. 12.5.

12.1 Introduction

In microbiome study, identifying the significantly differentially abundant taxa
among groups or different conditions is the main interest for microbiome
researchers, after estimating a given level of taxonomic microbiome composition.
Two general approaches can reach the goal: either consider the taxa as composi-
tional components in the whole ecosystem and use compositional data analysis, or
directly use count data-based models. In Chap. 11, we introduced two
negative-binomial (NB) count data-based models and their implementation via the
edgeR and DESeq2 packages.

Microbiome data typically is overdispersed and sparse with many zeros. When
the number of zeros is excess than the standard distributions (e.g., normal, Poisson,
binomial, NB, beta or gamma) can be readily fit, the data set is considered as ‘zero
inflated’ (Heilbron 1994; Martin et al. 2005; Tu and Liu 2014).

The zero-inflated data may reduce overdispersion due to two sources:
‘zero-driven overdispersion’ and ‘Poisson overdispersion’. In zero-driven
overdispersion, preponderance of zeros drives the variance greater than the mean.
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And in Poisson overdispersion, overdispersion is caused by the unobserved
heterogeneity in the event stage.

In omics, the zero issues are more complicated. Dealing with zeros is one of the
biggest challenges in microbiome research. The available approaches and tools for
compositional data analysis have not fully addressed the data complexity, including
sparsity issue. Under the framework of compositional data analysis, the zeros are
treated as different categories: rounded, sampling, or structural zeros.
Compositional data analysis typically takes log-ratio approach. However, the zero
problem directly affects the application of the log-ratio transformations to modern
genomics data sets because it is undefined to divide the zero (Zuur et al. 2009).
Generally, to ensure log-ratio approach appropriate, zero is either replaced by a
small value generated by a function, or directly replaced by a small value, i.e., one,
although the zero issue is handled according to the differentiating zero sources. This
simple general remedy faces many difficulties, problems, and challenges, especially
in the field of omics research. NB methods are appropriate for dealing with gen-
erally overdispersed data, but may not perform well in identifying the OTUs with
differential abundances when many zeros are observed. Currently, microbiome
researchers including compositional data analysts, especially biostatisticians, prefer
to using the mixture models to analyze the excessive zeros jointly or two-part
models to analyze zeros and non-zeros as two steps.

The difference between the mixture and two-part models is how to deal with the
different types of zeros (Zuur et al. 2009). Mixture models consist of two distri-
butions. In mixture models, the rounded zeros are explicitly modeled with a dis-
tribution, i.e., the binomial distribution. The structural zeros are modeled as the
probability of expecting a zero under the considered distribution, i.e., the negative
binomial or the Poisson distribution; and the nonzero values are analyzed as the rest
of the data. As suggested by the names, the two-part models consist of two parts:
first, the data are considered as zeros versus non-zeros and the probability of a zero
value is modeled by a binomial distribution; and second, the non-zero values are
analyzed via a truncated Poisson or truncated negative binomial models.

In summary, the overdispersed and sparse microbiome data pose a big challenge
for microbiome researchers and biostatisticians to choose an appropriate model to
analyze.

12.2 Zero-Inflated Models: ZIP and ZINB

Although NB is capable of addressing overdispersion, it is not appropriate for
modeling the data with a high percentage of zero counts. To model such excess of
zeros, zero-inflated regression (e.g., ZIP or ZINB) may be applied. There is a long
history of using ZIP and ZINB to fit data (Cohen 1963), but the early application of
ZIP and ZINB have without covariates. ZIP regression models originated in the
econometrics literature (Mullahy 1986), but until 1992, Lambert provided the
general form of ZIP regression with covariates to model defects in a manufacturing
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process (Lambert 1992). Since this publication, the general application of
zero-inflated models has become widespread in a wide range of disciplines,
including econometrics (Freund et al. 1999), epidemiology (Bohning et al. 1999;
Lewsey and Thomson 2004), occupational health (Lee et al. 2002; Yau et al. 2004),
medicine including aging (Campbell et al. 1991; Bin 2002; Yusuf et al. 2017),
ecology (Martin et al. 2005), and currently microbiome (Xu et al. 2015; Wang et al.
2016).

12.2.1 ZIP Model

ZIP is a mixture of two statistical processes: one always generating zero counts and
the other with both zero and nonzero counts. ZIP assumes that each observation
comes from one of two potential distributions, with one (group 1) consisting of a
constant zero while the other (group 2) following Poisson. In a ZIP model, a logit
model is typically used to analyze the probability of the constant zero or structural
zero, whereas the count data is analyzed by the Poisson regression. Thus, two kinds
of zeros are modeled by this mixture model: the sampling zeros due to sampling
variability under Poisson and the structural zeros above and beyond the expected
zero frequency under Poisson. In other words, an observed zero is generated by
either the logistic process or the Poisson process.

Specifically, let pi ¼ Pr ði 2 group 1 ðstructural zeroÞjZiÞ, and 1� pi ¼ Pr
ði 2 group 2 ðsampling zero)jZiÞ. Then, ZIP has the following distribution:

PðYijXi; ZiÞ ¼ pi þð1� piÞ expð�liÞ for Yi ¼ 0; ð12:1Þ

P YijXi; Zið Þ ¼ ð1� piÞ expð�liÞðliÞYi
Yi!

for Yi [ 0; ð12:2Þ

where Zi and Xi are two sets of covariates linked to the logit and count data modules

by Log pi
1�pi

� �
¼ Zic, and LogðliÞ ¼ Xib. It is clear from (12.1) that the observed

zeros arise from both the zero-component distribution and the Poisson distribution.
i.e., the two sources of structural and sampling zeros. Therefore, the
zero-component distribution provides the capability to model the ‘excess’ or
‘inflated’ zeros that are observed in addition to the zeros that are expected to be
observed under the assumed Poisson distribution. The mean and variance of a ZIP
model are given by:

E YijXi; Zið Þ ¼ pi0þ lið1� piÞ ¼ lið1� piÞ; ð12:3Þ

Var YijXi; Zið Þ ¼ lið1� piÞð1þ li piÞ: ð12:4Þ
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By (12.3) and (12.4), Var YijXi; Zið Þ =E YijXi; Zið Þ ¼ 1þ li pi ¼ 1þ pi =½
ð1� piÞ�E YijXi; Zið Þ. Therefore, if pi approaches zero, that is, the amount of
structural zeros decreases to zero, ZIP reduces to Poisson.

12.2.2 ZINB Model

By replacing the Poisson distribution for the count data in ZIP with the negative
binomial distribution, we obtain the zero-inflated negative binomial distribution, or
ZINB. Thus, a ZINB has the general form:

P YijXi; Zið Þ ¼ pi þð1� piÞgðliÞ; if Yi ¼ 0; ð12:5Þ

P YijXi; Zið Þ ¼ ð1� piÞ f ðliÞ; Yi [ 0; ð12:6Þ

where gðliÞ ¼ P Yi ¼ 0jXið Þ ¼ a�1

li þ a�1

� �1=a
in the count data model, and f ðliÞ is the

density of the negative binomial distribution. f ðliÞ ¼
C yi þ a�1ð Þ
yi!C a�1ð Þ

1
1þ ali

� �1=a

ali
1þ ali

� �yi
, for a[ 0, yi � 0:

The binary process can be modeled using either logit or probit or other models
for binary outcomes. The mean and variance of the ZINB are

E YijXi; Zið Þ ¼ lið1� piÞ; ð12:7Þ

Var YijXi;Zið Þ ¼ lið1� piÞð1þ liðpi þ aÞÞ; ð12:8Þ

where, a is the dispersion parameter. It follows from (12.7) and (12.8) that

Var YijXi; Zið Þ
E YijXi; Zið Þ ¼ 1þ liðpi þ aÞ ¼ 1þ pi þ a

1� pi

� �
E YijXi; Zið Þ

For ZINB, Var YijXi; Zið Þ[E YijXi; Zið Þ, demonstrating that ZINB has the capa-

bility to model overdispersion. Because ðpi þ aÞ
ð1�piÞ is a function of both zero-inflated

parameter p and dispersion parameter a, ZINB accounts for both population hetero-
geneity (mixture) and overdispersion in the distribution of the NB component of
ZINB. Thus, NB is capable tomodel overdispersion due to unobserved heterogeneity;
ZIP focuses on the violation of the Poisson by the population heterogeneity in the
presence of structural zeros, while ZINB addresses both sources of heterogeneity.
Both ZIP and ZINB models demonstrate Var YijXi; Zið Þ[E YijXi; Zið Þ, thereby
accounting for overdispersion resulting from structural zeros. As Poisson is nested
within NB, ZIP is nested within ZINB. ZINB can be viewed as an extension of ZIP in
analogous to NB being an extension of Poisson.
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12.2.3 Modeling Using ZIP and ZINB

12.2.3.1 Vaginal Microbiota Data

The data are from a published study (Romero et al. 2014), which included
non-pregnant women (n = 32) and pregnant women who delivered at term (38–
42 weeks) without complications (n = 22). The purpose of this study is to analyze
whether the composition and stability of the vaginal microbiota of normal pregnant
women is different from that of non-pregnant women. For statistical methods,
briefly, the linear mixed-effects models including Poisson, NB, ZINB were used to
identify the phenotypes, whose relative abundance was different between the
non-pregnant and pregnant women for each OTU. The statistical analyses were
carried out using SAS. Here, we conduct the analyses with ZIP, ZINB, PH and
NBH in R using the sequence counts data called ‘allTD_long’. The data structure
and format are presented in Table 12.1.

In Table 12.1, the ID represents the identifier of a given subject; nReads is the
total number of reads in the sample, DX is the group indicator (0 = non-pregnant;
1 = pregnant); Y is the number of sequences (count); Spec gives the name of the
OTU; and Ind is a numeric indicator for the OTU (1,…, 28).

As shown in the histogram of Fig. 12.1, the sequencing count data are charac-
terized by many zero-valued observations and the variance is much larger than its
mean. It indicates overdispersion in the data. This histogram shows that the mar-
ginal distribution does not resemble a typical Poisson distribution.

12.2.3.2 Analyzing Data with Excess Zeros and Overdispersion

Count data are typically modeled via Poisson regression. However, due to the
limitation of the Poisson, its application is problematic in the presence of excess
zeros. Failure to account for the extra zeros may result in biased parameter esti-
mation and misleading inference. In the Poisson model, the Var(Y) = E(Y),
overdispersion is said to occur when this ratio is greater than 1. If overdispersion is
ignored, the standard errors for the parameter estimates will be seriously underes-
timated, resulting in overly optimistic standard errors, smaller p-values and lack of
fit from deviance tests (Hinde and Demétrio 1998; Hall 2000; Agresti 2002; Yau
et al. 2003; Atkins and Gallop 2007; Xia et al. 2012; Desjardins 2016).

Table 12.1 The first three
rows of the sequence counts
data

ID nReads DX Y Spec Ind

432 2209 0 4 Lactobacillus iners 1

424 4485 0 7 Lactobacillus iners 1

439 2447 0 175 Lactobacillus iners 1
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The abundance of all bacteria species (OTUs) have their variances greater than
their means, as shown in Fig. 12.1 here, and Table 2.6 in Chap. 2. Particularly, the
abundance data of species have many zeros (average 58.57% of all 28 species) with
the lowest Lactobacillus having 14.44% zeros, the highest Streptococcus anginosus
having 73.78% zeros. The large percent of zeros in each of these outcomes, coupled
with overdispersion, does not allow the analysis of these data using the traditional
model Poisson log-linear model.

In Chap. 11, we analyzed bacteria OTUs via packages edgeR and DESeq2
implementing NB regression. As mentioned, NB is an extension of Poisson to
address overdispersion and may be the best fitting of the count distributions without
zero-inflation. However, the NB models were used to describe the distribution
assuming that overdispersion is only due to unobserved heterogeneity and/or
clustering, but not due to excess zeros. Therefore, if the abundance data involve
overdispersion due to unobserved heterogeneity and/or clustering, as well as the
preponderance of zero frequency (absent species or OTU in the case of vaginal
microbiota), Poisson and NB models likely lead to underestimating the probability
of absent species (Yan et al. 2013) status and misleading results.

Zero inflated regression addresses excess zeros with increasing predictability
in situations with excess zeros. It models structural zeros separately from the

Fig. 12.1 The observed distribution of number of sequencing count for OTU Lactobacillus
vaginalis. This figure shows the right-skewed distribution of the number of OTU (species)
Lactobacillus vaginalis, with a preponderance of zeros.

458 12 Modeling Zero-Inflated Microbiome Data



sampling zeros and the positive counts. ZIP or ZINB regression employs a mixture
of a logistic regression for modeling structural zeros, and a log-linear regression for
modeling the remaining count data. In the example data set, Lactobacillus is a
keystone genus in the vagina. Lactobacillus spp. are described as being part of the
gastrointestinal endogenous flora and as a regulator of the vaginal ecosystem in
women in their reproductive age (Shopova 2001). It is important in human health as
well. In women of European ancestry, Lactobacillus species including
Lactobacillus vaginalis, Lactobacillus jensenii, Lactobacillus crispatus and
Lactobacillus gasseri, are normally a major part of the vaginal microbiota (Ma et al.
2012; Fettweis et al. 2014; Petrova et al. 2015). Thus, the presence of Lactobacillus
species is a biomarker of vaginal health and may protect reproductive age women
from non-indigenous pathogens (Romero et al. 2014).

Within our context, p models the at-risk subgroup of bacteria species as repre-
sented by the structural zeros, while l models the non-risk subgroup comprised of
the positive abundance and sampling zeros (in this case, absence of Lactobacillus
species is thought as ‘risk’). ZIP and ZINB both use a logistic model to model the
at-risk p, but they use different regressions to model the non-risk subgroup: ZIP
uses Poisson, whereas ZINB uses NB to account for overdispersion.

12.2.3.3 Conceptual Adjustment for Using ZIP and ZINB

ZIP and ZINB are conceptually appropriate for analyzing microbiome data. For
example, within our context, it is plausible to assume that the bacteria species
belong to one of the two groups of women, with one consisting of abstinent
Lactobacillus species, and the other with presence of Lactobacillus species. The
subjects in the first group had absence of Lactobacillus species during the pregnant
period because of the nature of their abstinence. Those in the second group also had
absence of Lactobacillus species in pregnancy, but happened to have no
Lactobacillus species present. Thus, the number of observed zeros is inflated by the
structural zeros representing the abstinent pregnant women in the first group, which
could not be explained in the same manner as the sampling zeros from the pregnant
women with presence of Lactobacillus species. In concept, NB does not have two
types of zeros, whereas ZIP and ZINB do distinguish two types of zero observation.

Within the context of the example, the subjects continually abstinent from
Lactobacillus species during the pregnant period would have structural zeros as
their outcomes. These subjects formed the at-risk subgroup for the medical outcome
under consideration, while the remaining subjects with either sampling zeros or
positive count outcomes constituted the non-risk subgroup. The logistic regression
module of ZIP models the probability of structural zeros, allowing us to assess
whether the pregnancy had triggered abstinence from the non-risky medical con-
dition under the examined example. The Poisson module models the mean fre-
quency of the count outcome for the non-risk subgroup, providing information on
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the effect of the pregnancy for maintaining the frequency of the medical condition
for these subjects. Thus, we obtain two sets of estimates: one contains information
about the effect of the pregnancy for triggering abstinence, while the other for
maintaining the frequency of the medical condition for those who continued to be at
non-risk.

12.2.3.4 Step-by-Step Implementing ZIP and ZINB

Both zero-inflated and hurdle models are readily fit in most major statistical soft-
ware. The pscl package in R (Zeileis et al. 2008) is capable of fitting a variety of
zero-inflated and hurdle models. Here, we illustrate zero-inflated models: ZIP and
ZINB. In Sect. 12.3, we illustrate zero-hurdle models: ZHP and ZHNB.

There are 28 bacteria species in the example data set. We choose the last one
“Lactobacillus vaginalis” for illustration. The response variable is the number of
sequences (count) Y, the explanatory variable of interest is DX (group), the offset is
the total number of reads (nReads). The analysis will be performed by each species.

Step 1: Load Abundance Data and Prepare Analysis Dataset
Load abundance data and check first few lines:

> abund_table=read.csv("allTD_long.csv",header=TRUE)
> head(abund_table)

ID nReads DX    Y                Spec Ind
1 432   2209  0    4 Lactobacillus.iners   1
2 424   4485  0    7 Lactobacillus.iners   1
3 439   2447  0  175 Lactobacillus.iners   1
4 410   2679  0 2040 Lactobacillus.iners   1
5 410   3383  0 2879 Lactobacillus.iners   1
6 403   3024  0   36 Lactobacillus.iners   1
> tail(abund_table)

ID nReads DX Y                    Spec Ind
25195 412   2912  0 0 Lactobacillus.vaginalis  28
25196 407   2468  0 0 Lactobacillus.vaginalis  28
25197 432   3332  0 0 Lactobacillus.vaginalis  28
25198 442   3044  0 0 Lactobacillus.vaginalis  28
25199 442   2844  0 0 Lactobacillus.vaginalis  28
25200 405   3398  0 0 Lactobacillus.vaginalis  28

> library(dplyr)
> abund_table_28 <- filter(abund_table, Ind == 28)
> head(abund_table_28)

ID nReads DX Y                    Spec Ind
1 432   2209  0 0 Lactobacillus.vaginalis  28
2 424   4485  0 0 Lactobacillus.vaginalis  28
3 439   2447  0 0 Lactobacillus.vaginalis  28
4 410   2679  0 0 Lactobacillus.vaginalis  28
5 410   3383  0 0 Lactobacillus.vaginalis  28
6 403   3024  0 0 Lactobacillus.vaginalis  28
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The following R codes create the group variable “x”, and define it as a factor:

> abund_table_28$x<- with(abund_table_28,ifelse(as.factor(DX)%in% "0",0, 1))
> head(abund_table_28)

ID nReads DX Y                    Spec Ind x
1 432   2209  0 0 Lactobacillus.vaginalis  28 0
2 424   4485  0 0 Lactobacillus.vaginalis  28 0
3 439   2447  0 0 Lactobacillus.vaginalis  28 0
4 410   2679  0 0 Lactobacillus.vaginalis  28 0
5 410   3383  0 0 Lactobacillus.vaginalis  28 0
6 403   3024  0 0 Lactobacillus.vaginalis  28 0
> names(abund_table_28)
[1] "ID"     "nReads" "DX"     "Y"      "Spec"   "Ind"   
[7] "x"  
> abund_table_28$fx <- factor(abund_table_28$x)
> names(abund_table_28)
[1] "ID"     "nReads" "DX"     "Y"      "Spec"   "Ind"   
[7] "x"      "fx"   

Removing missing values is not really necessary, but it makes model validation
easier.

> I = is.na(abund_table_28$Y) | is.na(abund_table_28$fx)|is.na(abund_-

table_28$nReads)

> abund_table_28a < - abund_table_28[!I,]

Step 2: Check Outcome Distribution and Zeros
The following R codes are used to check outcome distribution and zeros
(Fig. 12.2):

Fig. 12.2 Distribution of outcome Lactobacillus vaginalis
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> par(mfrow = c(1,2))

> plot(table(abund_table_28a$Y),ylab = "Frequencies",main =

"Lactobacillus.vaginalis", xlab = "Observed read values")

> plot(sort(abund_table_28a$Y),ylab = "Frequencies",main =

"Lactobacillus.vaginalis", xlab = "Observed read values")

Step 3: Create the Offset
The total count read is used to create the offset. The offset will be adjusted as a
covariate in the model later to ensure microbiome response is relative abundance
instead of count data. This step is critical for fitting linear mixed effects models in
microbiome study.

> abund_table_28a$Offset < - log(abund_table_28a$nReads);

> head(abund_table_28a$Offset)

[1] 7.700 8.408 7.803 7.893 8.127 8.014

Step 4: Create a Formula for Fitting ZIP and ZINB
The formula can be used to specify both components of the model. If a formula of
type y * x1 + x2 is supplied, then the same covariates (independent variables) are
employed in both components. This is equivalent to y * x1 + x2| x1 + x2. Of
course, a different set of covariates could be specified for the structural zero
component, e.g., y * x1 + x2| z1 + z2 + z3 giving the count data model y *
x1 + x2 conditional on (|) the structural zero model y * z1 + z2 + z3.

> f28 < - formula(Y * fx + offset(Offset)|1)

Offsets can be specified in both parts of the model pertaining to count and
structural zero models: y * x1 + offset(x2)| z1 + z2 + offset(z3), where x2 is used
as an offset (i.e., with coefficient fixed to 1) in the count part and z3 analogously in
the structural zero part. The y * x1 + offset(x2) is equivalent to y * x1 + offset
(x2)| x1 + offset(x2). The offset() can be wrapped within the formula, or the zeroinfl
() function as below Zip28 <- zeroinfl(f28, dist = “poisson”, link = “logit”,
offset = Offset, data = abund_table_28a). The offset argument can also be set only
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for the count model as above, such as, formula = y * x1 + offset(x2)|x1. The
formula Y * fx|1 specifies the following link functions for the count and the
binomial data, respectively:

li ¼ expðaþ b� fxiÞ and pi ¼ expðmÞ
1þ expðmÞ

The mean li for the Poisson count data is modeled in terms of the covariate fx
and the probability pi for the binomial distribution with a constant. The above fitting
is actually based on the study design of the example data. In the formula, the
random effect is allowed only on the non-zero inflation component (Poisson mean
for the ZIP model, negative binomial mean for the ZINB model).

If we think that based on biology the probability of structural zeros is also a
function of fx, then use the formula Y * fx|fx, which specifies the following link
functions for the count and the binomial data, respectively:

li ¼ expðaþ b� fxiÞ and pi ¼ expðmþ c fxiÞ
1þ expðmþ c fxiÞ

The mean li for the Poisson count data is modeled in terms of the covariate fx
and the probability pi for the binomial distribution with a same covariate fx. The set
of covariates for the Poisson count data and the binomial data can be different. To
illustrate more features of zero-inflated and zero-hurdle models and to compare
these features, in this chapter, we choose the same covariate for both count and
binomial distributions, but only set offset argument to count component:

> f28 < - formula(Y * fx + offset(Offset)| fx)

Step 5: Fit ZIP and ZINB.

The following R codes load the “pscl” package and use its function zeroinfl() to fit a
zero-inflated Poisson model for response variable Lactobacillus vaginalis with main
effect for the group (fx), indicating pregnant women versus non-pregnant women:

> library(pscl)

> ZIP28 < - zeroinfl(formula = f28, dist = "poisson",

link = "logit", data = abund_table_28a)

In above formula, the dist option specifies the distribution for the count data.
Currently Poisson, negative binomial, and geometric distributions are available in
this package. The link = logit option specifies the logistic link for the structural
zeros versus the non-structural zeros (the sampling zeros plus the positive counts).
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A binomial distribution is always used to model the distinction. The offset term (the
log of the total number of reads in a given sample) is used here to allow for a
comparison in the relative abundance (and not absolute counts) between groups.

The row with BFGS optimization refers to the number of optimal iterations. The
group variable (fx1) is significant for log-link function. However, the ZIP model is
fitted here for assuming no overdispersion in the non-zero count data. Recall that
ZIP model only deal with overdispersion caused by the excessive number of zeros,
but not directly with overdispersion in the non-zero count data. We can fit ZINB
model and check the overdispersion parameter. The comprehensive model com-
parisons will be presented in Sect. 12.3.4. The following codes fit a ZINB using the
same function zeroinfl() and predictor variable as ZIP:

> ZINB28 < - zeroinfl(formula = f28, dist = "negbin",

link = "logit", data = abund_table_28a)

The ZINB outputs are printed below.

> summary(ZIP28)
Call:

zeroinfl(formula = f28, data = abund_table_28a, dist = "poisson", 
link = "logit")

Pearson residuals:
Min     1Q Median     3Q    Max 

-1.013 -0.485 -0.472 -0.447 34.683 

Count model coefficients (poisson with log link):
Estimate Std. Error z value Pr(>|z|)    

(Intercept)  -6.2729     0.0304  -206.1   <2e-16 ***
fx1           0.8080     0.0412    19.6   <2e-16 ***

Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)    

(Intercept)   1.2594     0.0878   14.35  < 2e-16 ***
fx1          -1.3601     0.1912   -7.11  1.1e-12 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Number of iterations in BFGS optimization: 13 
Log-likelihood: -2.28e+03 on 4 Df
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The theta value indicates that the data are overdispersed.

12.3 Zero-Hurdle Models: ZHP and ZHNB

Closely related to the Zero-inflated models, are the zero-hurdle (hurdle-at-zero)
models. Hurdle models were first proposed and applied for continuous data by
Cragg (1971). In principle, the hurdle could be set at any value, but the
hurdle-at-zero models are most useful. The term “with-zeros” was used by Johnson
and Kotz when they discussed the discrete distributions (count data) (Johnson and
Kotz 1969). Thus, the hurdle models are getting particularly popular by addressing
the frequently observed “too many” or “too few” zero counts, compared to the
Poisson model. The zero-hurdle models were further developed by Mullahy in the
econometrics context in 1986, where the econometric treatment was first allowed
for regression effects (Mullahy 1986). Hurdle models were popularized by Cameron
and Trivedi (2013) in order to deal with count data sets having more zero counts
than allowed for by the Poisson and NB models. They are more commonly used as
an alternative class of mixture models in various fields, such as econometrics
(Cameron and Trivedi 2013), ecology (Welsh et al. 1996; Sileshi et al. 2009),
public health (Rose et al. 2006; Hu et al. 2011) and cancer research (Dwivedi et al.
2010). Recently, Xu et al. assessed their suitability for use to model microbiome
data (Xu et al. 2015). Wang et al. applied them to analyze bacteria species (OTUs)
in the vitamin D receptor and gut microbiota study (Wang et al. 2016). The
zero-hurdle models can be expressed as the zero-hurdle Poisson (ZHP) model and
zero-hurdle negative Binomial (ZHNB) model.

> summary(ZINB28)

Call:
zeroinfl(formula = f28, data = abund_table_28a, dist = "negbin", 

link = "logit")

Pearson residuals:
Min     1Q Median     3Q    Max 

-0.483 -0.327 -0.323 -0.232 23.302 

Count model coefficients (negbin with log link):
Estimate Std. Error z value Pr(>|z|)    

(Intercept)   -6.835      0.186  -36.80  < 2e-16 ***
fx1            1.101      0.218    5.05  4.3e-07 ***
Log(theta)    -1.024      0.276   -3.70  0.00021 ***

Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)    

(Intercept)    0.431      0.268    1.61  0.10771    
fx1           -1.399      0.373   -3.75  0.00017 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Theta = 0.359 
Number of iterations in BFGS optimization: 54 
Log-likelihood: -1.22e+03 on 5 Df
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12.3.1 ZHP Model

ZHP model is a two-component model: a hurdle component models the zero versus
the non-zero counts, and a truncated Poisson count component is employed for the
non-zero counts:

P YijXi; Zið Þ ¼ pi for Yi ¼ 0; ð12:9Þ

P YijXi; Zið Þ ¼ ð1� piÞ expð�liÞðliÞYi
Yi!ð1� expð�liÞÞ

for Yi � 0: ð12:10Þ

In contrast to the zero-inflated model, the zero and non-zero counts are separated
in the hurdle model. The first component is a binomial probability model to
determine whether a zero or non-zero outcome occurs; and the second being count
data truncated-at-zero to analyze the positive counts.

Specifically, zero-hurdle models do not make the distinction between structural
and sampling zeros and handle them identically: unlike pi in the zero-inflated model
(12.1), the pi in (12.9) does not model the excess zeros, but all zeros. The mean and
variance of Yi for the ZHP model are given by:

E YijXi; Zið Þ ¼ ð1� piÞli
1� expð�liÞ

; ð12:11Þ

Var YijXi; Zið Þ ¼ ð1� piÞli
1� expð�liÞ

1þ lið Þ � ð1� piÞli
1� expð�liÞ

� �2

; ð12:12Þ

By (12.11) and (12.12), we can obtain Var YijXi;Zið Þ
E YijXi;Zið Þ ¼ 1þ l� ð1�piÞli

1�expð�liÞ. Thus, the
model can be used to analyze over or underdispersed data, depending on the values
of li:

It is not straightforward to show ZHP and ZHNB have the capability to analyze
over-dispersed and under-dispersed data by comparing above Var YijXi; Zið Þ=
E YijXi; Zið Þ. However, we can compare Var(Y)=E(Y) in a general hurdle formu-
lation to show that the hurdle models naturally admit overdispersion or underdis-
persion (Mullahy 1986). Given any two probability distribution functions for
nonnegative integers f1 and f2, presenting the hurdle part and the parent process, the
hurdle-at-zero model has the probability distribution:

PðY ¼ 0Þ ¼ f1ð0Þ ð12:13Þ

PðY ¼ yÞ ¼ f2ðyÞ 1� f1ð0Þ
1� f2ð0Þ ¼ Uf2ðyÞ; y ¼ 1; 2; . . . ð12:14Þ
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where U ¼ 1�f1ð0Þ
1�f2ð0Þ. The numerator of U can be interpreted as the probability of

crossing the hurdle (or more precisely in case of bacteria species (OTU), the
probability to present at least one read) and the denominator is a normalization for
f2. It follows immediately that the hurdle model collapses to the parent model if
f1 ¼ f2, U ¼ 1. The corresponding mean and variance are given by:

EðYÞ ¼ Ul2 ¼
X1
y¼1

yf2ðyÞU: ð12:15Þ

VarðYÞ ¼ PðY [ 0ÞVarðY jY [ 0ÞþPðY ¼ 0ÞEðY jY [ 0Þ

¼
X1
y¼1

y2f2ðyÞU� U
X1
y¼1

yf2ðyÞ
" #2

: ð12:16Þ

where l2 is the expected value associated with the probability distribution function
f2. By (12.15) and (12.16),

VarðYÞ
EðYÞ ¼

P1
y¼1 y

2f2ðyÞU� U
P1

y¼1 yf2ðyÞ
h i2

P1
y¼1 yf2ðyÞU

: ð12:17Þ

Consequently, the model can be over or underdispersed, depending on the values
of the parent processes f1 and f2. For example, for U ¼ 1, (12.17) reduces to the
variance-mean ratio of the parent model. If f2 is a Poisson distribution, this is case
of equidispersion with VarðYÞ=EðYÞ ¼ 1. For f2 Poisson and U 6¼ 1, (12.13) and
(12.14) define a hurdle Poisson model. 0\U\1 yields overdispersion, 1\U\c
underdispersion. You can find those also in the other paper (Winkelmann and
Zimmermann 1995). Thus, from a statistical point of view, the
hurdle-at-zero-models have ability to address either more or less zeros in the data
than predicted by the Poisson and NB models. The first situation leads to handle
overdispersion (zero inflation) compared to the Poisson or NB model, the second to
underdispersion (zero deflation).

The variance of the hurdle model can be written as:

VarðYijXiÞ ¼ EðYijXiÞþ r2i EðYijXiÞ½ �2: ð12:18Þ

where EðYijXiÞ is given in (12.17) and r2i ¼ ð1� UiÞ=Ui.

12.3.2 ZHNB Model

The ZHNB is obtained by replacing the zero-truncated Poisson with a truncated NB
model to analyze the truncated-at-zero count.
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P YijXi; Zið Þ ¼ pi for Yi ¼ 0; ð12:9Þ

P YijXi; Zið Þ

¼ ð1� piÞ Cðyi þ a�1Þ
1� a�1

a�1 þ li

� �1=a
� �

Cðyi þ 1ÞCða�1Þ
a�1

a�1 þ li

� �1=a
li

a�1 þ li

� �yi

for Yi [ 0;

ð12:19Þ

where a ð� 0Þ is a dispersion parameter that is assumed not to depend on covari-
ates. It can be seen in Eq. 12.19 (and noted above), that the positive count is
governed by a truncated-at-zero negative binomial as the probability function for
the positive count is divided by 1 minus the probability function of a negative
binomial evaluated at zero. The mean and variance of NHNB are given by:

E YijXi; Zið Þ ¼ ð1� piÞli
1� p0

; where p0 ¼ a�1

li þ a�1

� �1=a

; ð12:20Þ

Var YijXi; Zið Þ ¼ ð1� piÞli
1� p0

1þ li þ alið Þ � ð1� piÞli
1� p0

� �2

¼ ð1� piÞli
1� p0

1þ li þ ali �
ð1� piÞli
1� p0

� � : ð12:21Þ

By (12.20) and (12.21), we obtain that Var YijXi;Zið Þ
E YijXi;Zið Þ ¼ 1þ li þ ali � ð1�piÞli

1�p0
: Thus,

the model can be over or underdispersed, depending on the values of a and li .

12.3.3 Modeling ZHP and ZHNB

12.3.3.1 Zero Hurdle Models Deal with Excess Zeros

Except zero inflated models, Zero hurdle models can also be used to model count
data in situations with excess zeros. In medical and health fields, researchers pre-
ferred the zero-hurdle models when only at-risk zeros are present in the population
and in epidemiologic studies, researchers thought the hurdle models not only may
satisfactorily account for excess zeros, but also perhaps even as good as
zero-inflated models (Dwivedi et al. 2010). However, the zero-hurdle regressions
model the zeros by different ways. The hurdle models have two-components: a
hurdle component for zeros versus non-zeros and a truncated count component for
positive counts. Thus, they model zeros separately from the positive counts: treat
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the data as a presence and absence level and analyze the presence data with a count
model.

The zero-hurdle models do not make the distinction between structural and
sampling zeros, and assume all zeros to come from a single population. The zero
values are either considered as structural zeros (Potts and Elith 2006) or sampling
zeros (Dwivedi et al. 2010) regardless of the single population or source of zeros.
Actually, the formulation of the zero-hurdle models does not tell us the source of
zeros.

12.3.3.2 Conceptual Adjustment for Using Zero-Hurdle Models

In the example data set, the zero-hurdle models could be employed to estimate the
Lactobacillus species frequency among pregnant women. The theoretical ground
for using zero-hurdle models is: all the pregnant women are indeed at some risk of
having absence of Lactobacillus species. The risk of pregnant women could be
estimated by a two-stage process within the framework of zero hurdle models. In a
first stage, the individual’s risk is evaluated on whether or not the Lactobacillus
species present in pregnancy and conditional on an absence, in a second stage how
large of the risk is assessed. The zero-hurdle models also possess a natural inter-
pretation for the positive counts (presence of Lactobacillus species). It is reasonable
to believe that the women who have presence of Lactobacillus species in pregnancy
have different risks compared to those who are absent of the species.

The assumption of single source of zeros is considered as a weaknesses of the
zero-hurdle models (Chipeta et al. 2014). Actually, if the existence of a distinct
structural-zero class does not seem to be justified, a hurdle model should be used
(Desjardins 2016). Such situation exists in real studies: multiple data-generating
processes are at play, but without first-hand knowledge of the data collection
process and response variable measure and the data generating mechanism of the
zeros. In microbiome data, another reason to use the zero-hurdle models is that
sometime it is difficult to differentiate zeros into structural and sampling zeros from
conceptual and data generating perspectives.

For example, it is unclear to what extent a structural-zero class of women who
are never at a risk for being absent of Lactobacillus species. Instead, researchers are
more likely interested in understanding predictors of pregnant women who are not
absent of Lactobacillus species and predictors that put pregnant women at a high
risk for a high number of Lactobacillus species absent. Thus, in this context,
zero-hurdle models would be the more conceptually and theoretically intriguing
model.
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To illustrate zero-hurdle models, we fit the ZPH and ZHNB models, using the
same data set as the ZIP and ZINB models. Please remember, the probability that
modeled by the binomial regression are different between ZIP and ZINB, and ZHP
and ZHNB models. In ZIP and ZINB, the binomial regression models the proba-
bility of a structural zero versus other types of data, whereas in ZHP and ZHNB, it
models the probability of presence versus absence of a taxon.

Hence, the estimated regression parameters obtained by ZHP and ZHNB have
opposite signs from those obtained by ZIP and ZINB due to the different def-
inition of pi. In the illustrating example, the binomial distribution is used to
model the absence (zero) versus presence (positive counts) of Lactobacillus
species, and a Poisson (for ZHP) or negative binomial (for ZHNB) distribution
for the counts.

We use same formula and offset as fitting ZIP and ZINB models above to fit
ZHP and ZHNB models using the function hurdle() from the “pscl” package.

The ZHNB modeling results are printed using the summary() function as follow:

> summary(ZHP28)

Call:
hurdle(formula = f28, data = abund_table_28, dist = "poisson")

Pearson residuals:
Min     1Q Median     3Q    Max 

-1.014 -0.484 -0.473 -0.448 34.655 

Count model coefficients (truncated poisson with log link):
Estimate Std. Error z value Pr(>|z|)    

(Intercept)  -6.2715     0.0303  -206.7   <2e-16 ***
fx1           0.8066     0.0412    19.6   <2e-16 ***
Zero hurdle model coefficients (binomial with logit link): 

Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -1.2689     0.0876  -14.49  < 2e-16 ***
fx1           1.3697     0.1911    7.17  7.7e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Number of iterations in BFGS optimization: 11 
Log-likelihood: -2.28e+03 on 4 Df

> ZHNB28 <- hurdle(formula = f28, dist= "negbin", data = abund_table_28)

> ZHP28 <- hurdle(formula = f28, dist= "poisson", data = abund_table_28)
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12.3.4 Comparing Zero-Inflated and Zero-Hurdle Models

So far, we describe and differentiate between zero-inflated models and hurdle
models from modeling and concepts. In general, ZIP versus ZHP, ZINB vs ZHNB,
respectively, give similar model fit and predicted values, but different estimated
parameters. These two models differ from their interpretation of model parameters,
conceptualization of the zeros, and their ability to deal with zero-deflation (fewer
zeros than would be expected by the data-generating process). Particularly, it is
difficult to tell whether they are the appropriate choice for the data at hand, although
ZIP and ZINB address structural zeros. Such zeros are latent and not directly
observed. Thus, it is important to apply goodness of fit statistics to help guide the
selection of models appropriate and optimal for the data. Here, we compare ZIP,
ZINB, ZHP, and ZHNB models using likelihood ratio test in Sect. 12.3.4.1,
Akaike’s information criterion (AIC) in Sect. 12.3.4.2, Bayesian information cri-
terion (BIC) in Sect. 12.3.4.3, Vuong test in Sect. 12.3.4.4.

12.3.4.1 Using Likelihood Ratio Test

In general, nested models are compared using likelihood or score test, while
non-nested models are evaluated using AIC and/or the Vuong test (Vuong 1989;
Long 1997). For the models considered, ZIP is nested within ZINB, ZHP nested
within ZHNB. The function lrtest() from the package “lmtest” perform likelihood

> summary(ZHNB28)

Call:
hurdle(formula = f28, data = abund_table_28, dist = "negbin")

Pearson residuals:
Min     1Q Median     3Q    Max 

-0.510 -0.334 -0.328 -0.240 22.839 

Count model coefficients (truncated negbin with log link):
Estimate Std. Error z value Pr(>|z|)    

(Intercept)   -6.760      0.169  -40.00  < 2e-16 ***
fx1            1.069      0.212    5.05  4.5e-07 ***
Log(theta)    -0.927      0.255   -3.63  0.00028 ***
Zero hurdle model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -1.2689     0.0876  -14.49  < 2e-16 ***
fx1           1.3697     0.1911    7.17  7.7e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Theta: count = 0.396
Number of iterations in BFGS optimization: 20 
Log-likelihood: -1.23e+03 on 5 Df
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ratio test. The package “lmtest” is not part of the base installation, let us install it
now and conduct the test.

> library(lmtest)

> lrtest(ZIP28,ZINB28)

Likelihood ratio test

Model 1: Y * fx + offset(Offset) | fx

Model 2: Y * fx + offset(Offset) | fx

#Df LogLik Df Chisq Pr(> Chisq)

1 4 -2284

2 5 -1224 1 2121 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The likelihood ratio test is used to test whether or not the Poisson variance
equals the NB variance, i.e., the variance structure of the Poisson of varðYiÞ ¼ li is
same as that of the NB of varðYiÞ ¼ lið1þ aliÞ. The testing results show that these
two variances are very significant, thus the ZIP model is not appropriate. ZINB
model should be chosen.

> lrtest(ZHP28,ZHNB28)

Likelihood ratio test

Model 1: Y * fx + offset(Offset) | fx

Model 2: Y * fx + offset(Offset) | fx

#Df LogLik Df Chisq Pr(> Chisq)

1 4 -2285

2 5 -1229 1 2111 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The likelihood ratio test is conducted by running the function lrtest(), which
produces a v2 statistic of 2111. It provides an overwhelming evidence to support the
negative binomial model and hence the ZHNB model.

12.3.4.2 Using AIC

Akaike’s information criterion (AIC) (Akaike 1973, 1974; Burnham and Anderson
2004; Aho et al. 2014) is one of the traditional model-comparison criteria; can be used
for comparing non-nested models. Here, we use AIC to choose between non-nested
mixture models (e.g., ZHNB vs. ZINB). This statistic takes into consideration model
parsimony penalizing for the number of predictors in the model; the AIC is defined
as −2 log(L) + 2k, where L is the likelihood of the estimated model and k is the
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number of parameters. The first term is essentially the deviance and the second a
penalty for the number of parameters. The smaller the AIC value, the better the model
fit. The following R codes call the AIC() function to obtain the AIC values for each
fitted model and then use the t() function to transpose the matrix.

> #lower is better

> t(AIC(ZIP28, ZINB28, ZHP28, ZHNB28))

ZIP28 ZINB28 ZHP28 ZHNB28

df 4 5 4 5

AIC 4576 2458 4577 2468

In the four fitted models, the AIC of the corresponding zero-inflated models and
zero-hurdle models is very close. The lowest AIC is observed with the ZINB and
ZHNB is second lowest model.

The AIC values from these four fitted models suggest that overdispersion of the
data is not only caused by the excess zero observations, but also due to non-zero
count frequencies. The ZIP and ZHP models can address the lack of fit for the zero
observations, but fail to capture the nonzero frequencies correctly, whereas the
ZINB and ZHNB fit the data best.

12.3.4.3 Using BIC

It turns out that there is no or little difference in AIC between the according
zero-hurdle and zero-inflated models, although we could rely on the AIC to select
between non-nested mixture models (e.g., ZHNB vs. ZINB) (Cameron and Trivedi
2013). Indeed, for a single binary predictor, the ZHNB model and the ZINB model
can be seen as re-parametrization of each other. This provides evidence that, it is
difficult to use AIC to differentiate the zero-hurdle and zero-inflated models in some
situations. Thus, other indices, such as BIC (Schwarz 1978) and Vuong test, may be
the competing alternatives. Furthermore, the simulation study showed that if
unobserved heterogeneity is large, the relative predictive performance of BIC often
perform better than AIC (Brewer et al. 2016).

The BIC is defined as −2log L + Log(N) � k, where L is the likelihood of the
estimated model, N is the number of case, and k is the number of parameters. As in
AIC, the penalties are there to reduce the effects of overfitting, and note that the
penalty is stronger for BIC than AIC for any reasonable sample size. As BIC
imposes a harsher penalty for the estimation of each additional covariate, it often
yields oversimplified models. When the data have large heterogeneity, it is just due
to the stronger penalty that afforded the BIC performs better than AIC (Brewer et al.
2016). Although the simulation study is under the framework of linear models, we
need further confirm whether the general principles can extend to all classes of
model. However, large heterogeneity often presents in microbiome and ecology
data. Thus, we use BIC as an alternative AIC to compare the models.
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Currently, the “pscl” package had no function to calculate BIC values.
Therefore, we use the “nonnest2” package here. Package “nonnest2” was developed
to test non-nested models via theory supplied by Vuong test. This package has the
capabilities to test model distinguishability and model fit for both nested and
non-nested models. It also includes functionality to calculate AIC and BIC and
associated confidence intervals. The syntax is given:

icci(object1, object2, conf.level = 0.95)

where, object1 = a model object, object2 = a model object, and conf.level = con-
fidence level of the interval. Note: if models are nested or if the “variance test” from
vuongtest() indicates models are indistinguishable, then the intervals returned from
icci() will be incorrect.

> library(nonnest2)

> #lower is better

> icci(ZIP28,ZINB28)

Model 1

Class: zeroinfl

Call: zeroinfl(formula = f28, data = abund_table_28a, dist =

"poisson")

AIC: 4576.392

BIC: 4595.602

Model 2

Class: zeroinfl

Call: zeroinfl(formula = f28, data = abund_table_28a, dist =

"negbin")

AIC: 2457.649

BIC: 2481.661

95% Confidence Interval of AIC difference (AICdiff = AIC1 - AIC2)

1074.887 < AICdiff < 3162.601

95% Confidence Interval of BIC difference (BICdiff = BIC1 - BIC2)

1070.084 < BICdiff < 3157.798

> icci(ZHP28,ZHNB28)

Model 1

Class: hurdle

Call: hurdle(formula = f28, data = abund_table_28a, dist = "poisson")

AIC: 4577.106

BIC: 4596.316
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Model 2

Class: hurdle

Call: hurdle(formula = f28, data = abund_table_28a, dist = "negbin")

AIC: 2467.693

BIC: 2491.705

95% Confidence Interval of AIC difference (AICdiff = AIC1 - AIC2)

1067.104 < AICdiff < 3151.721

95% Confidence Interval of BIC difference (BICdiff = BIC1 - BIC2)

1062.302 < BICdiff < 3146.919

The BIC results are consistent with those of AIC. ZINB is the best model,
followed by ZHNB model.

12.3.4.4 Using Vuong Test

Vuong proposes a general model selection approach to test whether the competing
models are nested, overlapping, or non-nested, or whether the models are correctly
specified. Especially, in the context of zero-inflated and zero-hurdle models, Vuong
test is associated to test for overdispersion and zero-inflation. Vuong’s statistic is
the average log-likelihood ratio suitably normalized so that it can be compared to a
standard normal. The test statistic is defined by:

V ¼
ffiffiffi
n

p
�m

Sm
; ð12:22Þ

where n is the sample size, Sm is the standard error of the test statistic, �m ¼
1
n

	 
Pn
i¼1 mi and S2m ¼ 1

n�1

	 
Pn
i¼1 mi � �mð Þ2, and mi ¼ log f1ðyiÞ

f2ðyiÞ
h i

, f1 and f2 are two

competing probability models such as ZIP versus ZHP within our context. The
statistic has an asymptotically standard normal distribution and the test is direc-
tional, with a large positive (negative) value favoring f1 f2ð Þ, and a value close to
zero indicating that neither model fits the data well (Vuong 1989; Long 1997; Xia
et al. 2012). In practice, we need to choose a critical value, c, for a significance level
(often 1.96 to correspond to a = 0.05). When V > c, the statistic favors the model in
the numerator, when V < −c, the statistic favors the model in the denominator, and
when V 2 (−c, c) neither model is favored. Here, c is set as 1.96 to be consistent
with standard convention.
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> # compare ZIP vs. ZHP
> vuong(ZIP28, ZHP28)
Vuong Non-Nested Hypothesis Test-Statistic: 
(test-statistic is asymptotically distributed N(0,1) under the
null that the models are indistinguishible)

-------------------------------------------------------------
Vuong z-statistic             H_A p-value

Raw                       1.425 model1 > model2   0.077
AIC-corrected             1.425 model1 > model2   0.077
BIC-corrected             1.425 model1 > model2   0.077

> # compare ZIP vs. ZHNB
> vuong(ZIP28, ZHNB28)
Vuong Non-Nested Hypothesis Test-Statistic: 
(test-statistic is asymptotically distributed N(0,1) under the
null that the models are indistinguishible)

-------------------------------------------------------------
Vuong z-statistic             H_A p-value

Raw                      -3.964 model2 > model1 3.7e-05
AIC-corrected            -3.964 model2 > model1 3.7e-05
BIC-corrected            -3.964 model2 > model1 3.7e-05

> # compare ZINB vs. ZHP
> vuong(ZINB28, ZHP28)
Vuong Non-Nested Hypothesis Test-Statistic: 
(test-statistic is asymptotically distributed N(0,1) under the
null that the models are indistinguishible)

-------------------------------------------------------------
Vuong z-statistic             H_A p-value

Raw                       3.984 model1 > model2 3.4e-05
AIC-corrected             3.984 model1 > model2 3.4e-05
BIC-corrected             3.984 model1 > model2 3.4e-05

> # compare ZINB vs. ZHNB
> vuong(ZINB28, ZHNB28)
Vuong Non-Nested Hypothesis Test-Statistic: 
(test-statistic is asymptotically distributed N(0,1) under the
null that the models are indistinguishible)

-------------------------------------------------------------
Vuong z-statistic             H_A p-value

Raw                       3.985 model1 > model2 3.4e-05
AIC-corrected             3.985 model1 > model2 3.4e-05
BIC-corrected             3.985 model1 > model2 3.4e-05

> # compare ZHNB vs. ZHP
> vuong(ZHNB28, ZHP28)
Vuong Non-Nested Hypothesis Test-Statistic: 
(test-statistic is asymptotically distributed N(0,1) under the
null that the models are indistinguishible)

-------------------------------------------------------------
Vuong z-statistic             H_A p-value

Raw                       3.968 model1 > model2 3.6e-05
AIC-corrected             3.968 model1 > model2 3.6e-05
BIC-corrected             3.968 model1 > model2 3.6e-05
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Results from the model comparison using the AIC, BIC and Vuong’s statistic are
presented in Table 12.2. These statistics simultaneously test for overdispersion and
zero-inflation.

Please note, LRT: the Likelihood Ratio test, AIC: Akaike’s Information
Criterion; BIC: Bayesian information criterion; ZIP: the zero-inflated Poisson
model; ZINB: zero-inflated negative binomial model; ZHP: zero-hurdle Poisson
model; ZHNB: zero-hurdle negative binomial model; and the Vuong test ranking
corresponds to the order of the best fitting models.

Table 12.2 shows overwhelming support for the ZINB model best on the AIC,
BIC. The ZINB model is ranked first, fitting significantly better than the ZHNB,
ZIP, and ZHP models (V > 3.9, p < 0.001 for three comparisons); the ZHNB is
ranked second, fitting significantly better than the ZIP and the ZHP models
(V > 3.9, p < 0.001 for both comparisons).

12.3.5 Interpreting Main Effects of Modeling Results

In this example, we fit the models including only group variable (pregnant vs.
non-pregnant women) as main effect. The coefficient represents the difference in
mean log relative abundance between samples from pregnant and non-pregnant
women.

We extract the most important output from the fitted ZINB model as follows:

Table 12.2 Model
comparison based on
likelihood ratio, AIC, BIC
and Vuong Test

Model LRT AIC BIC Ranking based on
Vuong test

ZIP
ZINB

ZINB 4576
2458

4595.6
2481.7

3
1

ZHP
ZHNB

ZHNB 4577
2468

4596.3
2491.7

4
2

Count model coefficients (negbin with log link):
Estimate Std. Error z value Pr(>|z|)    

(Intercept)   -6.835      0.186  -36.80  < 2e-16 ***
fx1            1.101      0.218    5.05  4.3e-07 ***
Log(theta)    -1.024      0.276   -3.70  0.00021 ***

Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)    

(Intercept)    0.431      0.268    1.61  0.10771    
fx1           -1.399     0.373   -3.75  0.00017 ***
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For the fitted ZHNB model we obtain the following:

Count model coefficients (truncated negbin with log link):
Estimate Std. Error z value Pr(>|z|)    

(Intercept)   -6.760      0.169  -40.00  < 2e-16 ***
fx1       1.069      0.212    5.05  4.5e-07 ***
Log(theta)    -0.927      0.255   -3.63  0.00028 ***
Zero hurdle model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -1.2689     0.0876  -14.49  < 2e-16 ***
fx1           1.3697     0.1911    7.17  7.7e-13 ***

By default, the output shows estimated coefficients, standard errors, values for
the Wald test and associated p-values, but no confidence intervals. Two main
observations can be made here. First, both models yield similar results for the count
component. Second, the zero component has not only the estimated parameters
different in magnitude, but also their signs reversed. The difference in signs between
ZINB and ZHNB is due to the hurdle() function(binomial regression) in the “pscl”
package modeling the probability of a non-zero count, instead of the probability of
a zero count.

We further convert the estimated log odds of coefficients into the odds of
coefficients for convenient interpretation. The following R codes use the expo-
nential function to convert the coefficients from the fitted ZINB model:

> expZINB28Coef <- exp(coef((ZINB28)))
> expZINB28Coef <- matrix(expZINB28Coef, ncol = 2)
> expZINB28Coef 

[,1]   [,2]
[1,] 0.001075 1.5388
[2,] 3.008239 0.2469
> colnames(expZINB28Coef) <- c("Count_model","Zero_inflation_model")
> expZINB28Coef

Count_model Zero_inflation_model
[1,]    0.001075               1.5388
[2,]    3.008239               0.2469

The following R codes use the exponential function to convert the coefficients
from the fitted ZHNB model:

> expZHNB28Coef <- exp(coef((ZHNB28)))
> expZHNB28Coef <- matrix(expZHNB28Coef, ncol = 2)
> colnames(expZHNB28Coef) <- c("Count_model","Zero_hurdle_model")
> expZHNB28Coef

Count_model Zero_hurdle_model
[1,]     0.00116            0.2811
[2,]     2.91183            3.9341

It is very important to carefully interpret the zero-count parameters from
zero-inflated and hurdle models. The correct parameter interpretation should be

478 12 Modeling Zero-Inflated Microbiome Data



based on the model definitions. As defined, the logistic component in the
zero-inflated models corresponds to inferences about the structural zero group; in
contrast, the logistic component in the hurdle corresponds to inferences about the
zeros, in general.

From the ZINB model we can derive that the estimated odds of observing an
excess zero in pregnant women is exp(−1.399) = 0.2469 times the odds in
non-pregnant women (p = 0.00017).

It is not correct if we interpret that the odds of observing no Lactobacillus
vaginalis is significantly smaller in pregnant women than that in non-pregnant
women. Actually, we could not make such conclusion based on above odds from
ZIP and ZINB. Remember in the zero-inflated model, structural zeros belong to
latent class; it cannot be directly verified from the data, and hence it is difficult to
intuitively interpret the notion of ‘excess’ zeros in the these models(ZIP and ZINB).
However, we could interpret the odds of excess zero as the odds of membership in
the ‘always zero’ group (i.e., the group of women who would never have present of
any Lactobacillus vaginalis) is estimated to be 0.2469 lower in pregnant women
than in non-pregnant women, based on the literature (Karazsia and van Dulmen
2008; Xia et al. 2012). The baseline odds of being among those who never have
present of any Lactobacillus vaginalis is 1.5388.

In contrast to zero-inflated models, the zero-component has an intuitive inter-
pretation in the zero-hurdle models. By definition, the zero component of ZHNB
model clearly separates the non-zero count and zeros. The results from the zero
component can be interpreted: the expected odds of a pregnant woman having
positive Lactobacillus vaginalis are exp(1.3697) = 3.9341 times the expected odds
for a non-pregnant woman, holding the other variables constant with p < 0.00001.
Thus, the odds of observing Lactobacillus vaginalis is significantly larger in
pregnant women than that in non-pregnant women. We can reverse the odds to
compare the zeros and non-zeros, equals exp(−1.3697) = 0.2542, which supports
the conclusion: the odds of no observing Lactobacillus vaginalis is significantly
smaller in pregnant women than in non-pregnant women. The baseline odds of
having a positive count versus zero is 0.2811.

Next, the parameters from the count component can be elaborated this way. For
the log-linear component in the zero-inflated model, parameters are interpreted with
respect to the non-structural zero group, whereas for the hurdle model they are
interpreted with respect to the non-zero group. In ZINB, we find that the mean
frequency of Lactobacillus vaginalis is li ¼ expð�6:835Þ ¼ 0:0011 in the
non-pregnant women and exp(−6.835 + 1.101) = 0.0032 in the pregnant women.
This is only correct in the ‘not always zero’ group (i.e., the women who are at
non-risk of presenting Lactobacillus vaginalis). However, the mean frequency of all
subjects under the ZINB model is not li, but is given by ð1� piÞli. Thus, the mean
frequency of Lactobacillus vaginalis for non-pregnant women is exp(−6.835)/
(1 + exp(0.431)) = 0.00042, and the mean frequency of this outcome for pregnant
women is exp(−6.835 + 1.101)/(1 + exp(0.431 − 1.399)) = 0.0023. The increase
of this outcome in pregnant women is (0.0023 − 0.00042)/0.0023 = 81.7%.
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For the count component from ZHNB model—that is, parameter estimates
conditional on a woman having positive Lactobacillus vaginalis—the mean fre-
quency of Lactobacillus vaginalis for a pregnant woman are exp(1.069) = 2.91
times the mean frequency of Lactobacillus vaginalis for a non-pregnant woman
holding the other variables constant.

In summary, we compared zero-inflated and zero-hurdle models based on LRT,
AIC, BIC and Vuong’s statistic. The best model is ZINB; the second best model is
ZHNB. There was clear evidence of overdispersion based on the estimated dis-
persion parameter from the ZINB and ZHNB models. There was also strong sup-
port of zero-inflation as the zero-inflated counterparts from ZIP, ZINB, ZHP and
ZHNB, although we did not explicitly compare them with the models not
accounting for zero-inflation such as Poisson and NB.

Overall ZINB outperforms ZHNB to fit the data for this specific outcome
(Lactobacillus vaginalis). However, the zero-inflated models assume the existence
of a latent structural-zero class. If such a class does not seem justified, a hurdle
model should be preferred to use for the easier interpretation of zeros. For example,
it is difficult to know the data-generating mechanism of zeros in microbiome study.
Additionally, hurdle models can handle zero-deflation, whereas zero-inflated
models are not able to do.

We suggest that model section should be based on (1) model fitting (to choose
better-fitted models); (2) conceptual appropriateness (the chosen models should be
conceptually interpretable); and (3) parsimony (i.e., Occam’s razor, given all the
criteria met, the simplest is selected as the best model).

12.3.6 Multiple Testing Issue and Adjusting P-Values

In this illustrating example, there are 28 vaginal bacteria defined at the genus and
the species levels. We fit one of them (Lactobacillus vaginalis). The interested
reader can analyze and compare the relative abundance of the 27 remaining bacteria
using the codes and procedures above. Because we are making 28 tests on the same
sample, an adjustment for multiple testing is needed. We can convert the p-values
into q-values using the formula provided in Sect. 8.4.4.3. As noted, the q-value is
an adjusted p-value, taking into account the false discovery rate (FDR). A q-value
of 0.05 implies that we are willing to accept 5% of the tests found to be statistically
significant (e.g., by p-value) being false positives. In microbiome studies, the final
significance level is usually defined by fold change of the outcome variable and
q-value. For example, a q-value < 0.1 and fold change >1.5 is used to claim
significance.
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12.4 Zero-Inflated Beta Regression Model with Random
Effects

12.4.1 Introduction

Longitudinal study designs have become increasingly common now in microbiome
studies, because they capture both between-individual differences and within subject
dynamics. It offers the opportunity to study how microbial abundance changes
across time and its association with treatments, clinical conditions or other covari-
ates. For example, we can use a longitudinal study design to identify the bacterial
taxa that change their differential abundances under different treatments across time.

Chen and Li (2016) developed a two-part zero-inflated Beta regression model
with random-effects (ZIBR) for testing the association between microbial abun-
dance and clinical covariates for longitudinal microbiome data. The development of
ZIBR was motivated by the zero-inflated beta regression model (Peng et al. 2015)
and zero-or-one inflated beta regression model (Ospina and Ferrari 2012) for pro-
portion data in order to provide statistical methods to handle longitudinal or
repeatedly measured proportion data. ZIBR includes a logistic regression compo-
nent to model presence/absence of the taxon in the samples and a Beta regression
component to model non-zero abundance of the taxon. Each component has a
random effect to account for the correlations among the repeated measurements on
the same subject. ZIBR includes two random intercept terms in order to model the
dependency of the data measured over time and allows modeling multiple sources
of variance that cannot be accounted for by the observed covariates.

12.4.2 ZIBR Model

The model considers each taxon separately. For each given bacterial taxon, let
Yit ði ¼ 1; 2; . . .;N; t ¼ 1; 2; . . .; TÞ be its relative abundance for subject i at time t,
where 0� Yit\1. Assume that:

Yit � 0 with probability 1� pit ð12:23Þ

Yit �Betaðlit/; ð1� litÞ/Þ with probability pit; ð12:24Þ

where the density function of the Beta distribution is parameterized as

f ðyit; lit;/Þ ¼
Cð/Þ

Cðlit/ÞCðð1� litÞ/Þ
ylit/�1
it ð1� yitÞð1�litÞ/�1

with litð0\lit\1Þ and /ð/[ 0Þ being the mean and dispersion parameters of the
Beta distribution, respectively. The parameter pit is the probability that the obser-
vation Yit is generated from the Beta component.
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Under the statistical framework, both the probability pit of the logistic compo-
nent and the mean of the Beta component lit depend on the covariates through the
logit link functions:

log itðpitÞ ¼ log
pit

1� pit

� �
¼ a0 þXT

it aþ ai; ð12:25Þ

log itðlitÞ ¼ log
lit

1� lit

� �
¼ b0 þ ZT

it bþ bi; ð12:26Þ

where a0 and b0 are intercepts, ai and bi are the individual-specific random inter-
cepts, Xi and Zi are the covariates that can be time dependent and are not necessarily
the same, and a and b are the corresponding vectors of the regression coefficients.

This model is considered as a two-part model with a logistic component and a
Beta component. The logistic component models the presence/absence of the taxon
in the samples and the Beta component models the non-zero abundance of the
taxon. The data observed are from a mixture of these two models. The model is
flexible to allow that the covariates can affect the microbiome composition in two
different ways: affecting either the presence/absence of the taxon in the samples, or
the relative abundance when the taxon presents in the samples.

To capture correlations and to account for multiple sources of variance, ZIBR
model allows the repeated measures Yitðt ¼ 1; . . .; TÞ on the same subject i to share
the same individual-specific random effects of ai and bi across different time points.
In practice, for accommodating often adequate to capture the longitudinal corre-
lations, the model only includes the random intercepts.

The random effects are assumed to follow an independent normal distribution:
ai �Nð0; r21Þ, bi �Nð0; r22Þ. The parameters can be estimated by the standard
maximum likelihood estimation.

12.4.3 Hypothesis Testing of ZIBR

Three statistical hypotheses proposed in ZIBR model are as below:

H0 : aj ¼ 0; H0 : bj ¼ 0; H0 : aj ¼ 0 and bj ¼ 0 for each covariate Xj and Zj:

They are used to test the following three biologically relevant null hypotheses by
the likelihood ratio test, respectively: (1) the covariates associated with the bacterial
taxon affect the bacterial taxon presence or absence; (2) the taxon associated with
the covariates show different abundances; and (3) the covariates affect the taxon in
terms of both presence/absence and its abundance.

The p-value can be obtained for each of these hypotheses. If the covariate X and
Z are the same, the joint null (3) is H0 : aj ¼ 0 and bj ¼ 0, which tests the overall
association between the covariate and the taxon abundance.
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The setting of the proposed model is similar to the zero-inflated Poisson, binomial
and negative binomial regression with random effects (Hall 2000; Min and Agresti
2005). It allows subject-specific random effect to be included in the model in order to
model the dependency of the observations across time. Furthermore, ZIBR equips
two components to have different individual-specific random effects to allow pos-
sible different dependency structures for the zero and non-zero parts of the data.

12.4.4 Modeling Using ZIBR

12.4.4.1 Pediatric IBD Patients

The illustrating data sets are from a real microbiome study (Lee et al. 2015; Lewis
et al. 2015; Chen and Li 2016), which compared different therapies for pediatric
IBD patients. The study collected 90 children with IBD who received one of the
three study therapies: anti-TNF (N = 52), exclusive enteral nutrition
(EEN) (N = 22) and partial enteral nutrition with ad lib diet (PEN) (N = 16). The
taxa abundance data are generated by shotgun metagenomic analysis. Gut micro-
biome samples were collected at four time points: baseline, 1 week, 4 weeks and 8
weeks into the therapy. The bacterial abundances at genus level were used. The
purpose of this study was to identify the bacterial genera comparing overall dif-
ferent abundances between EEN and anti-TNF treatments over three time points,
adjusting covariates (treatment, week and baseline abundance).

12.4.4.2 Step-by-Step Implementing ZIBR

The ZIBR model and its associated likelihood ratio tests are implemented via the
zibr() function in ZIBR package. The syntax of zibr() function is as follows:

zibr(logistic.cov = logistic.cov,beta.cov = beta.cov,Y = Y,subject.ind = subject.
ind,time.ind = time.ind)

where, logistic.cov = covariates for the logistic component with format of samples
(= rows) by covariates (= columns); beta.cov = covariates for the beta component
with format of samples (= rows) by covariates (= columns); time.ind = the variable
with time points. The ordering of the samples in the above matrix or vectors must
be consistent. Y = response variable, it can be any level of taxa depending which
level of taxa we choose to fit. From scientific point, species or genus is often used;
subject.ind = subject or sample id indicator.

The zibr() function will return the following results:

(1) logistic.est.table: the estimated coefficients for logistic component;
(2) logistic.s1.est: the estimated standard deviation for the random effect in the

logistic component;
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(3) beta.est.table: the estimated coefficients for beta component;
(4) beta.s2.est: the estimated standard deviation for the random effect in the beta

component;
(5) beta.v.est: the estimated dispersion parameter in the beta component;
(6) joint.p: the p-values for jointly testing each covariate in both logistic and beta

component.

In order to fit ZIBR model by using the ZIBR package, we need to install and
make it available to R workplace first. We install the ZIBR package from Github
website and set R work directory folder.

> install.packages("devtools")

> devtools::install_github("chvlyl/ZIBR")

> library(ZIBR)

> setwd("E:/Home/MicrobiomeStatR/Analysis")

The ZIBR example from the authors of this package is an excellent sample for
illustrating ZIBR model. We promote this method and its application. Here, we
modify the programs and illustrate and explain its application step by step.

Step 1: Import Taxa Abundance Data and Meta Data
As fitting regression in microbiome study, ZIBR regression needs two kinds of
data: taxa abundance data and meta data. The response variable (abundance read
counts) is typically stored in taxa file, covariates including group and sample
information in meta file. Abundance read counts are either or not included in the
taxa file depending on the data generating pipelines. In this example, these data files
are separately stored, thus need to import them into R workplace, and merge them
together before fitting the model.

The following R codes import the raw taxa data and name the object as
‘taxa_table’, then check the first few rows of data.

> rawfile<-
"https://raw.githubusercontent.com/chvlyl/PLEASE/master/1_Data/Raw_Data/MetaP
hlAn/PLEASE/G_Remove_unclassfied_Renormalized_Merge_Rel_MetaPhlAn_Result.xls"
> taxa_table <- read.table(rawfile,sep='\t',header=TRUE,row.names = 1,
+                          check.names=FALSE,stringsAsFactors=FALSE)
> head(taxa_table)

5001-01 5001-02  5001-03  5001-04 5002-01
g__Bacteroides       0.4272  0.2319  0.02041  0.00533 72.3830
g__Ruminococcus      0.0000  0.0000  0.00613  0.00000  4.9632

5002-02 5002-03 5002-04  5003-01 5003-02
g__Bacteroides       58.558  6.7429   4.247 20.98819 24.2252
g__Ruminococcus       4.528 17.5592   5.952  1.29717  1.8270

5003-03 5003-04 5004-01 5004-02 5004-03
g__Bacteroides      58.72660 55.1687 83.0756 44.8019 61.7801
g__Ruminococcus      0.46149  0.8113  2.8420  0.3798 17.6647
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The original taxa data have the format of taxa (in rows)-by-samples (in col-
umns). Below the data are converted to samples (in rows)-by-taxa (in columns) data
table.

> taxa_table_t <- t(taxa_table)
> head(taxa_table_t)                         

g__Bacteroides g__Ruminococcus g__Faecalibacterium
5001-01        0.42722         0.00000               0.000
5001-02        0.23188         0.00000         0.000
5001-03        0.02041         0.00613               0.000
5001-04        0.00533         0.00000               0.000
5002-01       72.38299         4.96320               8.471
5002-02       58.55836         4.52818              20.786

Check the data table dimensions to make sure the data loaded correctly. There
are total 335 samples and 105 bacteria taxa in the taxa table.

> cat('samples','taxa',dim(taxa_table_t),'\n')
samples taxa 335 105 
> taxa_table_t[1:3,1:3]

g__Bacteroides g__Ruminococcus g__Faecalibacterium
5001-01        0.42722         0.00000                   0
5001-02        0.23188         0.00000                   0
5001-03        0.02041         0.00613                   0

Below load total read counts data and name the object as ‘abund_table’, then
check the first few rows of data.

> totalreadfile <- 
'https://raw.githubusercontent.com/chvlyl/PLEASE/master/1_Data/Raw_Data/MetaP
hlAn/Human_Reads/please_combo_human_reads.xls'
> abund_table <- read.table(totalreadfile,sep='\t',header=TRUE,
+                          row.names=1,stringsAsFactors=FALSE)
> head(abund_table)

NonHumanReads TotalReads HumanReads HumanPer GroupFcp GroupPcdai
4000      17525422   19515697    1990275 10.19833    Combo      Combo
4001      18089762   18185930      96168  0.52880    Combo      Combo
4002      27311061   27338002      26941  0.09855    Combo      Combo
4004      11051439   11092808      41369  0.37294    Combo      Combo
4005       9434025    9492196   58171  0.61283    Combo      Combo
4006      23327496   23634581     307085  1.29930    Combo      Combo

You can see that the data are already in the format of samples (in rows)-by-taxa
(in columns).

Now, load meta data and name the object as ‘meta_table’, then check the first or
last few rows of data to check the dataset format and treatment information.
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> samplefile <- 
'https://raw.githubusercontent.com/chvlyl/PLEASE/master/1_Data/Processed_Data
/Sample_Information/2015_02_13_Processed_Sample_Information.csv'
> meta_table <- read.csv(samplefile,row.names=1)
> head(meta_table)
> tail(meta_table)

Subject Species.Cluster   Cluster Treatment FCPResponse      Type
7014-03    7014       cluster 1 cluster 1      Diet           0 PLEASE-T3
7014-04    7014       cluster 1 cluster 1      Diet           0 PLEASE-T4
7015-01    7015       cluster 1 cluster 1      Diet     1 PLEASE-T1
7015-02    7015       cluster 1 cluster 1      Diet           1 PLEASE-T2
7015-03    7015       cluster 1 cluster 1      Diet           1 PLEASE-T3
7015-04    7015       cluster 1 cluster 1      Diet           1 PLEASE-T4

Time BristolScore  FCP PCDAI PUCAI log.FCP  Group     Response
7014-03    3            6 1123    NA    25   7.024 PLEASE Non.Response
7014-04    4           NA   NA    15    15      NA PLEASE Non.Response
7015-01    1            4 1968    40    35 7.585 PLEASE     Response
7015-02    2            4 1003    NA    25   6.911 PLEASE     Response
7015-03    3            4  459    NA    25   6.129 PLEASE     Response

7015-04    4            5  202    10    20   5.308 PLEASE     Response
Antibiotics.visit Steroids Treatment.Specific Disease NonHumanReads

7014-03           Not.Use  Not.Use                EEN   Crohn        480246
7014-04              <NA>  Not.Use                EEN   Crohn            NA
7015-01               Use  Not.Use         EEN   Crohn       7191073
7015-02               Use  Not.Use                EEN   Crohn        207572
7015-03               Use  Not.Use                EEN   Crohn      14681706
7015-04               Use  Not.Use                EEN   Crohn       1339882

Human.Per Fungi.Per Distance Bact.Div Species.Distance
7014-03    3.9754 0.0004165   0.6667    87.66           0.6889
7014-04        NA        NA       NA       NA               NA
7015-01   10.0875 0.0132386   0.3333   130.55           0.4066
7015-02    0.3677 0.0289056   0.7619   109.03           0.7640
7015-03    0.2664 0.0002861   0.3571    93.35           0.3556
7015-04    1.8486 0.0053736   0.5238    94.42           0.5556

The data have the format of samples (in rows)-by-covariates (in columns). The
column ‘Treatment.Specific’ includes the treatment information.

Step 2: Filter Low Abundant Taxa Data
To filter low read counts from abundance data table, you need define one cutoff of
low depth. It is often based researcher’s experience or literature. Here, it is based
low non-human reads (NonHumanReads < 10000).

> low_samples <- subset(abund_table,NonHumanReads<10000)
> low_samples[,1:5]

NonHumanReads TotalReads HumanReads HumanPer GroupFcp
5010-02          1014       1104         90  8.15217    TNF.N
5018-03          6101       6121         20  0.32674   Diet.R
5023-04          1954       2679   725 27.06234    TNF.R
6007-01          1809       4249       2440 57.42528    TNF.R
7001-02          9965       9971          6  0.06017   Diet.N
7001-03           566        613         47  7.66721   Diet.N
7001-04           626        637         11 1.72684   Diet.N
7002-04           683        696         13  1.86782   Diet.N
7003-02          4681       5719       1038 18.15003  Diet.NR
7003-03          4935       5049        114  2.25787  Diet.NR
7009-02          1895       1916         21  1.09603   Diet.N
7009-03          5319       5361         42  0.78344   Diet.N
7010-02          2375       2400         25  1.04167   Diet.N
7010-03          6312       6495        183  2.81755   Diet.N
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There are 14 samples with NonHumanReads < 10,000 in abundance table. You
can check how many taxa with low depth counts in the raw taxa data using fol-
lowing R codes.

> rownames(taxa_table_t)[which(rownames(taxa_table_t) %in% rownames

(low_samples))]

[1] "5018-03" "7001-02" "7003-02" "7003-03" "7009-03" "7010-03"

There are 6 taxa with NonHumanReads < 10,000 in the raw taxa data. Now, you
can use the which() function with negative sign ‘−’ to delete these 6 low depth
samples from the taxa table:

> taxa_table_t < - taxa_table_t[-which(rownames(taxa_table_t) %in%

rownames(low_samples)),]

As recall, before deletion, there are 335 samples with 105 bacteria taxa. After
deletion the updated taxa table now has 329 samples with 105 bacteria taxa.

> # Before deletion

> dim(taxa_table_t)

[1] 335 105

> # After deletion

> dim(taxa_table_t)

[1] 329 105

For effectively modeling, we need further filter and remove the low abundant
taxa data. In this case, the authors of this example use both sum () and quantile()
functions to process further filtering. You can apply the double criteria to remove
the low sequencing depth samples and low abundant taxa.

> filter_index1 <- apply(taxa_table_t,2,function(X){sum(X>0)>0.4*length(X)})
> filter_index2 <- apply(taxa_table_t,2,function(X){quantile(X,0.9)>1})
> taxa_filter <- taxa_table_t[,filter_index1 & filter_index2]
> head(taxa_filter)

g__Bacteroides g__Ruminococcus g__Faecalibacterium
5001-01        0.42722         0.00000               0.000
5001-02        0.23188         0.00000               0.000
5001-03        0.02041       0.00613               0.000
5001-04        0.00533         0.00000               0.000
5002-01       72.38299         4.96320               8.471
5002-02       58.55836         4.52818              20.786

g__Bifidobacterium g__Escherichia g__Clostridium
5001-01             0.3757        38.3172         0.2228
5001-02             2.0725        21.4206        21.0454
5001-03             1.0331        41.2590        20.4835
5001-04             0.6021        36.0904        12.0391
5002-01             1.3608         0.8564         4.1348
5002-02             3.7974         1.0430         3.0277
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Now, create a taxa data table for ZIBR modeling. The following R codes re-sum
the bacteria by samples (rows) and time 100 to make sure the sum of row is 100.

> taxa_filter <- 100*sweep(taxa_filter, 1, rowSums(taxa_filter), FUN="/")
> head(taxa_filter)

g__Bacteroides g__Ruminococcus g__Faecalibacterium g__Bifidobacterium
5001-01       0.451461        0.000000               0.000             0.3970
5001-02 0.234517        0.000000               0.000             2.0961
5001-03       0.020862        0.006266               0.000             1.0559
5001-04       0.007695        0.000000               0.000             0.8692
5002-01      73.264555       5.023647               8.574             1.3774
5002-02      59.815023        4.625356              21.232             3.8789

> cat('after filter:','samples','taxa',dim(taxa_filter),'\n')
after filter: samples taxa 329 18 

After filter, there remains 18 bacteria in the taxa table. The following R codes
check which taxa remain:

> cat(colnames(taxa_filter),’\n’)

g__Bacteroides g__Ruminococcus g__Faecalibacterium g__Bifidobacterium

g__Escherichia g__Clostridium g__Dialister g__Eubacterium g__Roseburia

g__Streptococcus g__Dorea g__Parabacteroides

g__Lactobacillus g__Veillonella g__Haemophilus

g__Alistipes g__Collinsella g__Coprobacillus

Check to see if the row sum is 100.

> head(rowSums(taxa_filter))
5001-01 5001-02 5001-03 5001-04 5002-01 5002-02

100     100     100     100     100     100 

We rename the filtered taxa table as ‘taxa_data’ for analysis later.

> taxa_data <- taxa_filter
> head(taxa_data)

g__Bacteroides g__Ruminococcus g__Faecalibacterium g__Bifidobacterium
5001-01       0.451461        0.000000               0.000             0.3970
5001-02       0.234517        0.000000               0.000             2.0961
5001-03       0.020862        0.006266               0.000             1.0559
5001-04       0.007695        0.000000               0.000             0.8692
5002-01      73.264555        5.023647               8.574             1.3774 
5002-02      59.815023        4.625356              21.232             3.8789

> dim(taxa_data)
[1] 329  18
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Step 3: Create Covariates for Meta Table
Any randomized longitudinal study setting should have a treatment variable and a
time variable for testing the dynamic variability between treatments over time. The
following R codes are used to create covariates: Time, Treat(antiTNF + EEN) and
Time by Treatment interaction term.

> library(dplyr)
> # create covariates:Time, antiTNF+EEN
> reg_cov <- 
+ data.frame(Sample=rownames(taxa_data),stringsAsFactors = FALSE) %>% 
+   left_join(add_rownames(meta_table,var = 'Sample'),by='Sample')%>%
+   # exclude PEN, just keep antiTNF and EEN
+   dplyr::filter(Treatment.Specific!='PEN') %>% 
+   # subset meta table
+   dplyr::select(Sample,Time,Subject,Response,Treatment.Specific) %>%# 
+   group_by(Subject) %>% summarise(count = n()) %>% dplyr::filter(count==4) 
%>%
+   dplyr::select(Subject) %>%
+   left_join(add_rownames(meta_table,var = 'Sample'),by='Subject') %>%
+   # create treatment variable Treat and code antiTNF as 1, EEN as 0
+   mutate(Treat=ifelse(Treatment.Specific=='antiTNF',1,0)) %>%
+   dplyr::select(Sample,Subject,Time,Response,Treat) %>%
+   dplyr::mutate(Subject=paste('S',Subject,sep='')) %>%
+ # recode Time variable
+   
dplyr::mutate(Time=ifelse(Time=='1',0,ifelse(Time=='2',1,ifelse(Time=='3',4,
ifelse(Time=='4',8,NA))))) %>%
+   # create Time by Treatment interaction term
+   dplyr::mutate(Time.X.Treatment=Time*Treat) %>%
+   as.data.frame
> # take out first time point
> reg_cov_t1   <- subset(reg_cov,Time==0)
> rownames(reg_cov_t1) <- reg_cov_t1$Subject
> reg_cov_t234 <- subset(reg_cov,Time!=0)
> reg_cov_t234 <- data.frame(
+   baseline_sample=reg_cov_t1[reg_cov_t234$Subject,'Sample'],
+   baseline_subject=reg_cov_t1[reg_cov_t234$Subject,'Subject'],
+   reg_cov_t234,
+   stringsAsFactors = FALSE)

> head(reg_cov_t234)
baseline_sample baseline_subject  Sample Subject Time     Response Treat

2         5001-01            S5001 5001-02   S5001 1 Non.Response     1
3         5001-01            S5001 5001-03   S5001    4 Non.Response     1
4         5001-01            S5001 5001-04   S5001    8 Non.Response     1
6         5002-01            S5002 5002-02   S5002    1 Non.Response     1
7     5002-01            S5002 5002-03   S5002    4 Non.Response     1
8         5002-01            S5002 5002-04   S5002    8 Non.Response     1
Time.X.Treatment

2                1
3                4
4                8
6                1
7                4 
8                8
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Step 4: Fit ZIBR Model
The following R codes fit ZIBR model on the example data using the zibr() function
from the ZIBR package. ZIBR considers each taxon separately and independently
analyzes each taxon. As we fit all 18 taxa together, before fitting we need create a
matrix to hold these taxa and list to hold the p-values. This is done by calling the
Matrix package.

> library(Matrix)
> library(ZIBR)
> # create a matrix to hold taxa
> taxa_all <- colnames(taxa_data)
> taxa_all
[1] "g__Bacteroides"      "g__Ruminococcus"     "g__Faecalibacterium"
[4] "g__Bifidobacterium"  "g__Escherichia"      "g__Clostridium"     
[7] "g__Dialister"        "g__Eubacterium"      "g__Roseburia"       

[10] "g__Streptococcus"    "g__Dorea"            "g__Parabacteroides" 
[13] "g__Lactobacillus"    "g__Veillonella"      "g__Haemophilus"     
[16] "g__Alistipes"        "g__Collinsella"      "g__Coprobacillus"   
> # create a list to hold p-values
> p_taxa_list_zibr <- list()
> p_taxa_list_zibr
list()
> #ZIBR independently fit each taxon. 
> for (taxa in taxa_all){
+   #for example,taxa = "g__Bacteroides"      
+   ###create covariates
+   X <- data.frame(
+     Baseline=taxa_data[reg_cov_t234$baseline_sample, taxa]/100,
+     reg_cov_t234[,c('Time','Treat')]
+   )
+   rownames(X) <- reg_cov_t234$Sample

+   Z <- X 
+   subject_ind <- reg_cov_t234$Subject
+   time_ind   <- reg_cov_t234$Time
+   ###create a table to summarize statistics
+   cat(taxa,'\n')
+   Y <- taxa_data[reg_cov_t234$Sample, taxa]/100
+   cat('Zeros/All',sum(Y==0),'/',length(Y),'\n')
+   if (sum(Y>0)<10 | sum(Y==0) <10 | max(Y)<0.01){
+     print('skip')
+     next
+   }else{
+     est <- zibr(logistic.cov=X,beta.cov=Z,Y=Y,
+                 subject.ind=subject_ind,
+                 time.ind=time_ind,
+                 quad.n=30,verbose=TRUE)
+     p_taxa_list_zibr[[taxa]] <- est$joint.p
+     
+   }
+ }
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The following are the summarized statistics from fitting ZIBR.

g__Bacteroides

Zeros/All 3 / 177

[1] "skip"

g__Ruminococcus

Zeros/All 18 / 177

g__Faecalibacterium

Zeros/All 27 / 177

g__Bifidobacterium

Zeros/All 35 / 177

g__Escherichia

Zeros/All 34 / 177

g__Clostridium

Zeros/All 19 / 177

g__Dialister

Zeros/All 83 / 177

g__Eubacterium

Zeros/All 42 / 177

g__Roseburia

Zeros/All 61 / 177

g__Streptococcus

Zeros/All 24 / 177

g__Dorea

Zeros/All 83 / 177

g__Parabacteroides

Zeros/All 74 / 177

g__Lactobacillus

Zeros/All 94 / 177

g__Veillonella

Zeros/All 61 / 177

g__Haemophilus

Zeros/All 77 / 177

g__Alistipes

Zeros/All 23 / 177

g__Collinsella

Zeros/All 106 / 177

g__Coprobacillus

Zeros/All 89 / 177
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Step 5: Adjust p-Values
We print the unadjusted p-values:

> # unadjusted p values
> p_taxa_zibr <- t(as.data.frame(p_taxa_list_zibr))
> p_taxa_zibr

Baseline     Time     Treat
g__Ruminococcus     1.303e-03 0.220442 6.135e-03
g__Faecalibacterium 1.042e-06 0.639001 1.791e-03
g__Bifidobacterium  1.249e-04 0.495912 1.452e-03
g__Escherichia      1.099e-12 0.060012 5.520e-02
g__Clostridium      5.517e-04 0.864729 2.035e-01
g__Dialister        1.314e-03 0.345004 6.046e-03
g__Eubacterium      1.184e-02 0.026991 1.631e-02
g__Roseburia        3.834e-05 0.250054 1.300e-01
g__Streptococcus    1.162e-02 0.238892 9.931e-05
g__Dorea            2.974e-07 0.795932 1.050e-01
g__Parabacteroides  7.027e-08 0.099298 1.722e-01
g__Lactobacillus    9.565e-08 0.358874 3.136e-03
g__Veillonella      2.138e-07 0.989408 9.800e-03
g__Haemophilus      2.883e-08 0.346125 3.654e-05
g__Alistipes        1.508e-12 0.003998 3.036e-08
g__Collinsella      1.887e-09 0.604587 1.348e-02
g__Coprobacillus    2.970e-06 0.818501 5.358e-01

In Chap. 8, we illustrated how to adjust p-values for multiple comparisons using
various approaches, here we nest the p.adjust() function in the mutate_each()
function to make FDR correction.

> library(dplyr)

> p_taxa_zibr_adj < -

+ add_rownames(as.data.frame

(p_taxa_zibr),var = ’Taxa’) % > % mutate_each(funs(p.adjust(.,’fdr’)),

-Taxa)

We print the FDR-adjusted p-values as below:

> p_taxa_zibr_adj
# A tibble: 17 x 4

Taxa  Baseline    Time     Treat
<chr>     <dbl>   <dbl>     <dbl>

1     g__Ruminococcus 1.489e-03 0.60727 1.304e-02
2 g__Faecalibacterium 1.969e-06 0.83562 6.090e-03
3  g__Bifidobacterium 1.770e-04 0.76641 6.090e-03
4      g__Escherichia 1.282e-11 0.34007 7.819e-02
5      g__Clostridium 7.215e-04 0.91877 2.163e-01
6        g__Dialister 1.489e-03 0.61009 1.304e-02
7      g__Eubacterium 1.184e-02 0.22942 2.521e-02
8        g__Roseburia 5.925e-05 0.60727 1.579e-01
9    g__Streptococcus 1.184e-02 0.60727 5.627e-04

10            g__Dorea 6.319e-07 0.91877 1.373e-01
11  g__Parabacteroides 2.389e-07 0.42202 1.951e-01
12    g__Lactobacillus 2.710e-07 0.61009 8.886e-03
13      g__Veillonella 5.193e-07 0.98941 1.851e-02
14      g__Haemophilus 1.225e-07 0.61009 3.106e-04
15        g__Alistipes 1.282e-11 0.06797 5.161e-07
16      g__Collinsella 1.069e-08 0.83562 2.291e-02
17 g__Coprobacillus 5.049e-06 0.91877 5.358e-01
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Step 6: Write Results Table
We print the results table with html format and write the results table to file called
“Results_antiTNF_EEN_ZIBR.csv” in the R directory folder “E:/Home/
MicrobiomeStatR/Analysis”.

> # make the table

> library(xtable)

> table < -xtable

(p_taxa_zibr_adj, caption = "Table of significant taxa", digits = 3,

label = "sig_taxa_table")

> print.xtable(table, type = "html", file = "IBD_Table.html")

> write.csv(p_taxa_zibr_adj,file = paste(‘Results_antiTNF_PEN_ZIBR.csv’,

sep = ’’))

For the detail of interpretation of fitting ZIBR using this example, readers can
reference the original research paper. Briefly ZIBR identified 11 genera, including
Ruminococcus, Faecalibacterium, Bifidobacterium, Dialister, Eubacterium,
Streptococcus, Lactobacillus, Veillonella, Haemophilus, Alistipes, Collinsella. The
results show that the baseline abundance of these taxa had large effects on their
abundance of the treatment and these taxa were relatively stable during the 8 weeks
of treatments (see Table 12.3).

Table 12.3 Result from
fitted ZIBR on dataset of
pediatric IBD patients

Taxa Baseline Time Treat

1 g__Ruminococcus 0.001 0.607 0.013

2 g__Faecalibacterium 0.000 0.836 0.006

3 g__Bifidobacterium 0.000 0.766 0.006

4 g__Escherichia 0.000 0.340 0.078

5 g__Clostridium 0.001 0.919 0.216

6 g__Dialister 0.001 0.610 0.013

7 g__Eubacterium 0.012 0.229 0.025

8 g__Roseburia 0.000 0.607 0.158

9 g__Streptococcus 0.012 0.607 0.001

10 g__Dorea 0.000 0.919 0.137

11 g__Parabacteroides 0.000 0.422 0.195

12 g__Lactobacillus 0.000 0.610 0.009

13 g__Veillonella 0.000 0.989 0.019

14 g__Haemophilus 0.000 0.610 0.000

15 g__Alistipes 0.000 0.068 0.000

16 g__Collinsella 0.000 0.836 0.023

17 g__Coprobacillus 0.000 0.919 0.536

Table of significant taxa
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12.5 Summary and Discussion

In this chapter, we first introduced zero-inflated and zero hurdle models for dealing
with excess zeros. Then, we illustrated step-by-step implementing two zero-inflated
(ZIP and ZINB), and two zero hurdle (ZHP and ZHNB) models in a real microbiome
data set. We interpreted model fitting results of these four models and compared them
using various methods. Furthermore, we introduced the zero-inflated beta regression
model with random-effects (ZIBR). The advantages of ZIBR include extension of
zero-inflated regressions to longitudinal setting, jointly modeling the covariates that
affect the taxon in terms of both presence/absence (via a logistic regression compo-
nent) and its abundance (via a Beta regression component). We also highlighted
ZIBR’s joint modeling capability by step-by-step implementing ZIBR using a real
data set.

In the context of zero-inflated models, two recently developed models and
packages drew our attention: one is the general framework of differential distri-
bution analysis of microbiome data based on a ZINB regression model and the
“MicrobiomeDDA” package for implementing the proposed methods. Another is
the “metamicrobiomeR” package, which was designed to perform meta-analysis
across microbiome studies using random effect models based on zero-inflated beta
GAMLSS. We have reviewed and briefly introduced these two methods and
packages in Chap. 3.
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