Skip to main content

Polypyrrole as Electrically Conductive Biomaterials: Synthesis, Biofunctionalization, Potential Applications and Challenges

  • Chapter
  • First Online:
Cutting-Edge Enabling Technologies for Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1078))

Abstract

Electrical phenomenon is ubiquitous in any biological system. However, most synthetic biomaterials are insulators to either electrical or ionic current. To mimic the electrical and ionic conductivities of natural tissues, electrically conductive polymers have been studied and are becoming a new class of biomaterials. This chapter focuses on polypyrrole, one of the most widely investigated synthetic and intrinsically conductive polymers. Polypyrrole is a heterocyclic polymer that is both electrically conductive and ionically active. It can be easily synthesized through electrochemical polymerization or oxidative polymerization. Because of its unique properties, polypyrrole has been studied for sensing, drug delivery, and actuation. Because of its good biocompatibility, it has been used to interface electrical elements and tissues, either for recording or stimulation purpose. Polypyrrole can also be chemically modified to carry functional groups and biomolecules, allowing both specific biological recognition and electrical stimulation. This chapter also discusses a unique soft polypyrrole membrane that can be easily used as biomaterials. Hopefully, the readers of this chapter would appreciate the importance of electrical conductivity for biomaterials and the usefulness of polypyrrole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spitzer NC (2006) Electrical activity in early neuronal development. Nature 444(7120):707–712

    Article  CAS  PubMed  Google Scholar 

  2. Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y (2006) Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 442(7101):457–460

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Z, Rouabhia M, Moulton S (2017) Conductive polymers: electric interactions in cell biology and medicine. CRC Press, Boca Raton

    Google Scholar 

  4. Bolto BA, Mcneill R, Weiss D (1963) Electronic conduction in polymers. III. Electronic properties of polypyrrole. Aust J Chem 16(6):1090–1103

    Article  CAS  Google Scholar 

  5. Diaz A, Kanazawa KK, Gardini GP (1979) Electrochemical polymerization of pyrrole. J Chem Soc Chem Commun 14:635–636. https://doi.org/10.1039/C39790000635

    Article  Google Scholar 

  6. Sasso C, Beneventi D, Zeno E, Chaussy D, Petit-Conil M, Belgacem N (2011) Polypyrrole and polypyrrole/wood-derived materials conducting composites: a review. Bioresources 6(3):3585–3620

    Google Scholar 

  7. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10(6):2341–2353

    Article  CAS  PubMed  Google Scholar 

  8. Ateh D, Navsaria H, Vadgama P (2006) Polypyrrole-based conducting polymers and interactions with biological tissues. J Royal Soc Interface 3(11):741–752

    Article  CAS  Google Scholar 

  9. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci. 32(8):876–921

    Article  CAS  Google Scholar 

  10. Vernitskaya TYV, Efimov ON (1997) Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ Chem Rev 66(5):443–457

    Article  Google Scholar 

  11. Rao SS, Winter J (2009) Adhesion molecule-modified biomaterials for neural tissue engineering. Front Neuroeng 2:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ansari R (2006) Polypyrrole conducting electroactive polymers: synthesis and stability studies. J Chem 3(4):186–201

    CAS  Google Scholar 

  13. Rapi S, Bocchi V, Gardini GP (1988) Conducting polypyrrole by chemical synthesis in water. Synth Met 24(3):217–221

    Article  CAS  Google Scholar 

  14. Meng S, Zhang Z, Rouabhia M (2010) Surfactant-templated crystalline polygon nanoparticles of heterocyclic polypyrrole prepared with Fenton’s reagent. Synth Met. 160(1):116–122

    Article  CAS  Google Scholar 

  15. De Jesus M, Fu Y, Weiss R (1997) Conductive polymer blends prepared by in situ polymerization of pyrrole: a review. Polym Eng Sci 37(12):1936–1943

    Article  Google Scholar 

  16. Kudoh Y, Akami K, Matsuya Y (1998) Properties of chemically prepared polypyrrole with an aqueous solution containing Fe2(SO4)3, a sulfonic surfactant and a phenol derivative. Synth Met. 95(3):191–196

    Article  CAS  Google Scholar 

  17. Machida S, Miyata S, Techagumpuch A (1989) Chemical synthesis of highly electrically conductive polypyrrole. Synth Met 31(3):311–318

    Article  CAS  Google Scholar 

  18. Omastova M, Trchova M, Kovářová J, Stejskal J (2003) Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth Met 138(3):447–455

    Article  CAS  Google Scholar 

  19. Reung-U-Rai A, Prom-Jun A, Prissanaroon-Ouajai W, Ouajai S (2008) Synthesis of highly conductive polypyrrole nanoparticles via microemulsion polymerization. J Met Mater Miner 18(2):27–31

    Google Scholar 

  20. Tran HD, Li D, Kaner RB (2009) One-dimensional conducting polymer nanostructures: bulk synthesis and applications. Adv Mater 21(14–15):1487–1499

    Article  CAS  Google Scholar 

  21. Pan L, Qiu H, Dou C, Li Y, Pu L, Xu J, Shi Y (2010) Conducting polymer nanostructures: template synthesis and applications in energy storage. Int J Mol Sci 11(7):2636–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu J, Wan M (2001) Studies on formation mechanism of polypyrrole microtubule synthesized by template-free method. J Polym Sci Part A: PolymChem 39(7):997–1004

    Article  CAS  Google Scholar 

  23. Chang JH, Aleman De Leon CR, Hunter IW (2012) Self-assembled, nanostructured polypyrrole films grown in a high-gravity environment. Langmuir 28(10):4805–4810

    Article  CAS  PubMed  Google Scholar 

  24. Chen M, Fang X, Tang S, Zheng N (2012) Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy. Chem Commun 48(71):8934–8936

    Article  CAS  Google Scholar 

  25. Dong Z, Zhang J, Zhao X, Tu J, Su Q, Du G (2013) Sulfur@ hollow polypyrrole sphere nanocomposites for rechargeable Li–S batteries. RSC Adv 3(47):24914–24917

    Article  CAS  Google Scholar 

  26. Zhong W, Liu S, Chen X, Wang Y, Yang W (2006) High-yield synthesis of superhydrophilic polypyrrole nanowire networks. Macromolecules 39(9):3224–3230

    Article  CAS  Google Scholar 

  27. Shi K, Zhitomirsky I (2013) Polypyrrole nanofiber-carbon nanotube electrodes for supercapacitors with high mass loading obtained using an organic dye as a co-dispersant. J Mater Chem A 1(38):11614–11622

    Article  CAS  Google Scholar 

  28. Peng T, Sun W, Huang C, Yu W, Sebo B, Dai Z, Guo S, Zhao X-Z (2013) Self-assembled free-standing polypyrrole nanotube membrane as an efficient FTO-and Pt-free counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 6(1):14–17

    Article  PubMed  CAS  Google Scholar 

  29. Qi G, Huang L, Wang H (2012) Highly conductive free standing polypyrrole films prepared by freezing interfacial polymerization. Chem Commun 48(66):8246–8248

    Article  CAS  Google Scholar 

  30. He W, Li G, Zhang S, Wei Y, Wang J, Li Q, Zhang X (2015) Polypyrrole/silver coaxial nanowire aero-sponges for temperature-independent stress sensing and stress-triggered joule heating. ACS Nano 9(4):4244–4251

    Article  CAS  PubMed  Google Scholar 

  31. Wei D, Lin X, Li L, Shang S, Yuen MC-W, Yan G, Yu X (2013) Controlled growth of polypyrrole hydrogels. Soft Matter 9(10):2832–2836

    Article  CAS  Google Scholar 

  32. Liao Y, Wang X, Qian W, Li Y, Li X, Yu D-G (2012) Bulk synthesis, optimization, and characterization of highly dispersible polypyrrole nanoparticles toward protein separation using nanocomposite membranes. J Colloid Interface Sci 386(1):148–157

    Article  CAS  PubMed  Google Scholar 

  33. Stejskal J (2001) Colloidal dispersions of conducting polymers. J Polym Mater 18(3):225–258

    CAS  Google Scholar 

  34. Hong J-Y, Yoon H, Jang J (2010) Kinetic study of the formation of polypyrrole nanoparticles in water-soluble polymer/metal cation systems: a light-scattering analysis. Small 6(5):679–686

    Article  CAS  PubMed  Google Scholar 

  35. Pecher J, Mecking S (2010) Nanoparticles of conjugated polymers. Chem Rev 110(10):6260–6279

    Article  CAS  PubMed  Google Scholar 

  36. Yan F, Xue G, Zhou M (2000) Preparation of electrically conducting polypyrrole in oil/water microemulsion. J Appl Polym Sci 77(1):135–140

    Article  CAS  Google Scholar 

  37. Ghalib H, Abdullah I, Daik R (2013) Electrically conductive polystyrene/polypyrrole nanocomposites prepared via emulsion polymerization. Polym-Plast Technol Eng 52(5):478–484

    Article  CAS  Google Scholar 

  38. Kim MW, Moon IJ, Choi HJ, Seo Y (2016) Facile fabrication of core/shell structured SiO2/polypyrrole nanoparticles with surface modification and their electrorheology. RSC Adv 6(61):56495–56502

    Article  CAS  Google Scholar 

  39. Marinakos SM, Novak JP, Brousseau LC, House AB, Edeki EM, Feldhaus JC, Feldheim DL (1999) Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation. JACS 121(37):8518–8522

    Article  CAS  Google Scholar 

  40. Deng J, Peng Y, He C, Long X, Li P, Chan AS (2003) Magnetic and conducting Fe3O4–polypyrrole nanoparticles with core-shell structure. Polym Int 52(7):1182–1187

    Article  CAS  Google Scholar 

  41. Liu X, Wu H, Ren F, Qiu G, Tang M (2008) Controllable fabrication of SiO2/polypyrrole core–shell particles and polypyrrole hollow spheres. Mater Chem Phys 109(1):5–9

    Article  CAS  Google Scholar 

  42. Yang X, Dai T, Wei M, Lu Y (2006) Polymerization of pyrrole on a polyelectrolyte hollow-capsule microreactor. Polymer 47(13):4596–4602

    Article  CAS  Google Scholar 

  43. Zhang X, Zhang J, Liu Z, Robinson C (2004) Inorganic/organic mesostructure directed synthesis of wire/ribbon-like polypyrrole nanostructures. Chem Commun 16:1852–1853

    Article  CAS  Google Scholar 

  44. Hassanzadeh N, Omidvar H, Tabaian SH (2012) Chemical synthesis of high density and long polypyrrole nanowire arrays using alumina membrane and their hydrogen sensing properties. Superlattice Microst 51(3):314–323

    Article  CAS  Google Scholar 

  45. Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30(26):4325–4335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nair S, Hsiao E, Kim SH (2008) Fabrication of electrically-conducting nonwoven porous mats of polystyrene–polypyrrole core–shell nanofibers via electrospinning and vapor phase polymerization. J Mater Chem 18(42):5155–5161

    Article  CAS  Google Scholar 

  47. Zhang X, Manohar SK (2005) Narrow pore-diameter polypyrrole nanotubes. JACS 127(41):14156–14157

    Article  CAS  Google Scholar 

  48. Jang J, Yoon H (2005) Formation mechanism of conducting polypyrrole nanotubes in reverse micelle systems. Langmuir 21(24):11484–11489

    Article  CAS  PubMed  Google Scholar 

  49. Zhao CE, Wu J, Kjelleberg S, Loo JSC, Zhang Q (2015) Employing a flexible and low-cost Polypyrrole nanotube membrane as an anode to enhance current generation in microbial fuel cells. Small 11(28):3440–3443

    Article  CAS  PubMed  Google Scholar 

  50. Mao J, Li C, Park HJ, Rouabhia M, Zhang Z (2017) Conductive polymer waving in liquid nitrogen. ACS Nano 11(10):10409–10416

    Article  CAS  PubMed  Google Scholar 

  51. Singh A, Salmi Z, Jha P, Joshi N, Kumar A, Decorse P, Lecoq H, Lau-Truong S, Aswal DK, Gupta SK (2013) One step synthesis of highly ordered free standing flexible polypyrrole-silver nanocomposite films at air–water interface by photopolymerization. RSC Adv 3(32):13329–13336

    Article  CAS  Google Scholar 

  52. Qi G, Wu Z, Wang H (2013) Highly conductive and semitransparent free-standing polypyrrole films prepared by chemical interfacial polymerization. J Mater Chem C 1(42):7102–7110

    Article  CAS  Google Scholar 

  53. Shen M, Han Y, Lin X, Ding B, Zhang L, Zhang X (2013) Preparation and electrochemical performances of porous polypyrrole film by interfacial polymerization. J Appl Polym Sci 127(4):2938–2944

    Article  CAS  Google Scholar 

  54. Chen Y, Han M, Tang Y, Bao J, Li S, Lan Y, Dai Z (2015) Polypyrrole–polyoxometalate/reduced graphene oxide ternary nanohybrids for flexible, all-solid-state supercapacitors. Chem Commun 51(62):12377–12380

    Article  CAS  Google Scholar 

  55. Wang Z, Tammela P, Strømme M, Nyholm L (2015) Nanocellulose coupled flexible polypyrrole@ graphene oxide composite paper electrodes with high volumetric capacitance. Nanoscale 7(8):3418–3423

    Article  CAS  PubMed  Google Scholar 

  56. Pan L, Yu G, Zhai D, Lee HR, Zhao W, Liu N, Wang H, Tee BC-K, Shi Y, Cui Y (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci 109(24):9287–9292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu Y, He W, Cao T, Guo H, Zhang Y, Li Q, Shao Z, Cui Y, Zhang X (2014) Elastic, conductive, polymeric hydrogels and sponges. Sci Rep 4. https://doi.org/10.1038/srep05792

  58. Luo S-C (2013) Conducting polymers as biointerfaces and biomaterials: a perspective for a special issue of polymer reviews. Polym Rev 53(3):303–310

    Article  CAS  Google Scholar 

  59. Williams R, Doherty P (1994) A preliminary assessment of poly (pyrrole) in nerve guide studies. J Mater Sci Mater Med 5(6–7):429–433

    Article  CAS  Google Scholar 

  60. Wang X, Gu X, Yuan C, Chen S, Zhang P, Zhang T, Yao J, Chen F, Chen G (2004) Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J Biomed Mater Res Part A 68(3):411–422

    Article  CAS  Google Scholar 

  61. Zhang Z, Roy R, Dugré FJ, Tessier D, Dao LH (2001) In vitro biocompatibility study of electrically conductive polypyrrole-coated polyester fabrics. J Biomed Mater Res 57(1):63–71

    Article  CAS  PubMed  Google Scholar 

  62. Shi G, Rouabhia M, Meng S, Zhang Z (2008) Electrical stimulation enhances viability of human cutaneous fibroblasts on conductive biodegradable substrates. J Biomed Mater Res A 84(4):1026–1037

    Article  PubMed  CAS  Google Scholar 

  63. Schmidt CE, Shastri VR, Vacanti JP, Langer R (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci 94(17):8948–8953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rivers TJ, Hudson TW, Schmidt CE (2002) Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Adv Funct Mater 12(1):33–37

    Article  CAS  Google Scholar 

  65. Lee JY, Bashur CA, Milroy CA, Forciniti L, Goldstein AS, Schmidt CE (2012) Nerve growth factor-immobilized electrically conducting fibrous scaffolds for potential use in neural engineering applications. IEEE Trans Nano 11(1):15–21

    Article  Google Scholar 

  66. Rouabhia M, Park H, Meng S, Derbali H, Zhang Z (2013) Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS One 8(8):e71660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang Y, Rouabhia M, Zhang Z (2016) Pulsed electrical stimulation benefits wound healing by activating skin fibroblasts through the TGFβ1/ERK/NF-κB axis. Biochim Biophys Acta Gen Subj 1860(7):1551–1559

    Article  CAS  Google Scholar 

  68. Rouabhia M, Park HJ, Zhang Z (2016) Electrically activated primary human fibroblasts improve in vitro and in vivo skin regeneration. J Cell Physiol 231(8):1814–1821

    Article  CAS  PubMed  Google Scholar 

  69. Wang Y, Rouabhia M, Lavertu D, Zhang Z (2015) Pulsed electrical stimulation modulates fibroblasts’ behaviour through the Smad signalling pathway. J Tissue Eng Regen Med. https://doi.org/10.1002/term.2014.Epub 2015 Feb 25

  70. Park HJ, Rouabhia M, Lavertu D, Zhang Z (2015) Electrical stimulation modulates the expression of multiple wound healing genes in primary human dermal fibroblasts. Tissue Eng Part A 21(13–14):1982–1990

    Article  CAS  PubMed  Google Scholar 

  71. Wang Y, Rouabhia M, Zhang Z (2013) PPy-coated PET fabrics and electric pulse-stimulated fibroblasts. J Mater Chem B 1(31):3789–3796

    Article  CAS  PubMed  Google Scholar 

  72. Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2010) Applications of conducting polymers and their issues in biomedical engineering. J Roy Soc Interface/Roy Soc 7(Suppl 5):S559–S579

    Article  CAS  Google Scholar 

  73. Grill WM, Norman SE, Bellamkonda RV (2009) Implanted neural interfaces: biochallenges and engineered solutions. Annu Rev Biomed Eng 11:1–24

    Article  CAS  PubMed  Google Scholar 

  74. Higgins MJ, Molino PJ, Yue Z, Wallace GG (2012) Organic conducting polymer–protein interactions. Chem Mater 24(5):828–839

    Article  CAS  Google Scholar 

  75. Cui X, Lee VA, Raphael Y, Wiler JA, Hetke JF, Anderson DJ, Martin DC (2001) Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J Biomed Mater Res 56(2):261–272

    Article  CAS  PubMed  Google Scholar 

  76. Wadhwa R, Lagenaur CF, Cui XT (2006) Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release 110(3):531–541

    Article  CAS  PubMed  Google Scholar 

  77. Richardson RT, Wise AK, Thompson BC, Flynn BO, Atkinson PJ, Fretwell NJ, Fallon JB, Wallace GG, Shepherd RK, Clark GM (2009) Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials 30(13):2614–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gomez N, Schmidt CE (2007) Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension. J Biomed Mater Res A 81(1):135–149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Gerard M, Chaubey A, Malhotra B (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17(5):345–359

    Article  CAS  PubMed  Google Scholar 

  80. Malhotra BD, Chaubey A, Singh S (2006) Prospects of conducting polymers in biosensors. Anal Chim Acta 578(1):59–74

    Article  CAS  PubMed  Google Scholar 

  81. Ahuja T, Mir IA, Kumar D (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28(5):791–805

    Article  CAS  PubMed  Google Scholar 

  82. Fang Y, Ni Y, Zhang G, Mao C, Huang X, Shen J (2012) Biocompatibility of CS–PPy nanocomposites and their application to glucose biosensor. Bioelectrochemistry 88:1–7

    Article  CAS  PubMed  Google Scholar 

  83. Soares JC, Brisolari A, Rodrigues VDC, Sanches EA, Gonçalves D (2012) Amperometric urea biosensors based on the entrapment of urease in polypyrrole films. React Funct Polym 72(2):148–152

    Article  CAS  Google Scholar 

  84. Jiang H, Zhang A, Sun Y, Ru X, Ge D, Shi W (2012) Poly (1-(2-carboxyethyl) pyrrole)/polypyrrole composite nanowires for glucose biosensor. Electrochim Acta 70:278–285

    Article  CAS  Google Scholar 

  85. Arora K, Prabhakar N, Chand S, Malhotra B (2007) Immobilization of single stranded DNA probe onto polypyrrole-polyvinyl sulfonate for application to DNA hybridization biosensor. Sensors Actuators B Chem 126(2):655–663

    Article  CAS  Google Scholar 

  86. Jiang X, Lin X (2005) Overoxidized polypyrrole film directed DNA immobilization for construction of electrochemical micro-biosensors and simultaneous determination of serotonin and dopamine. Anal Chim Acta 537(1):145–151

    Article  CAS  Google Scholar 

  87. Fu Y, Yuan R, Chai Y, Zhou L, Zhang Y (2006) Coupling of a reagentless electrochemical DNA biosensor with conducting polymer film and nanocomposite as matrices for the detection of the HIV DNA sequences. Anal Lett 39(3):467–482

    Article  CAS  Google Scholar 

  88. Ko S, Jang J (2008) Label-free target DNA recognition using oligonucleotide-functionalized polypyrrole nanotubes. Ultramicroscopy 108(10):1328–1333

    Article  CAS  PubMed  Google Scholar 

  89. Palecek E (1960) Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature 188:656–657

    Article  CAS  PubMed  Google Scholar 

  90. Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108(1):109–139

    Article  CAS  PubMed  Google Scholar 

  91. Baur J, Gondran C, Holzinger M, Defrancq E, Perrot H, Cosnier S (2009) Label-free femtomolar detection of target DNA by impedimetric DNA sensor based on poly (pyrrole-nitrilotriacetic acid) film. Anal Chem 82(3):1066–1072

    Article  CAS  Google Scholar 

  92. Kausaite-Minkstimiene A, Ramanaviciene A, Kirlyte J, Ramanavicius A (2010) Comparative study of random and oriented antibody immobilization techniques on the binding capacity of immunosensor. Anal Chem 82(15):6401–6408

    Article  CAS  PubMed  Google Scholar 

  93. Ramanavicius A, Finkelsteinas A, Cesiulis H, Ramanaviciene A (2010) Electrochemical impedance spectroscopy of polypyrrole based electrochemical immunosensor. Bioelectrochemistry 79(1):11–16

    Article  CAS  PubMed  Google Scholar 

  94. Hu W, Li CM, Dong H (2008) Poly (pyrrole- co-pyrrole propylic acid) film and its application in label-free surface plasmon resonance immunosensors. Anal Chim Acta 630(1):67–74

    Article  CAS  PubMed  Google Scholar 

  95. Hu W, Li CM, Cui X, Dong H, Zhou Q (2007) In situ studies of protein adsorptions on poly (pyrrole-co-pyrrole propylic acid) film by electrochemical surface plasmon resonance. Langmuir 23(5):2761–2767

    Article  CAS  PubMed  Google Scholar 

  96. Chen W, Lei Y, Li CM (2010) Regenerable leptin Immunosensor based on protein G immobilized Au-pyrrole Propylic acid-Polypyrrole nanocomposite. Electroanalysis 22(10):1078–1083

    Article  CAS  Google Scholar 

  97. Truong LTN, Chikae M, Ukita Y, Takamura Y (2011) Labelless impedance immunosensor based on polypyrrole–pyrolecarboxylic acid copolymer for hCG detection. Talanta 85(5):2576–2580

    Article  CAS  PubMed  Google Scholar 

  98. Kwon OS, Park SJ, Jang J (2010) A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor. Biomaterials 31(17):4740–4747

    Article  CAS  PubMed  Google Scholar 

  99. Bangar MA, Shirale DJ, Chen W, Myung NV, Mulchandani A (2009) Single conducting polymer nanowire chemiresistive label-free immunosensor for Cancer biomarker. Anal Chem 81(6):2168–2175

    Article  CAS  PubMed  Google Scholar 

  100. Minett AI, Barisci JN, Wallace GG (2002) Immobilisation of anti-Listeria in a polypyrrole film. React Funct Polym 53(2–3):217–227

    Article  CAS  Google Scholar 

  101. Chartuprayoon N, Chartuprayoon Y, Ng J, Nam W, Chen N (2013) Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. Anal Methods 5(14):3497–3502

    Article  CAS  Google Scholar 

  102. Zinger B, Miller LL (1984) Timed release of chemicals from polypyrrole films. JACS 106(22):6861–6863

    Article  CAS  Google Scholar 

  103. Meng S, Rouabhia M, Shi G, Zhang Z (2008) Heparin dopant increases the electrical stability, cell adhesion, and growth of conducting polypyrrole/poly (L, L-lactide) composites. J Biomed Mater Res Part A 87(2):332–344

    Article  CAS  Google Scholar 

  104. Lin Y, Wallace G (1994) Factors influencing electrochemical release of 2, 6-anthraquinone disulphonic acid from polypyrrole. J Control Release 30(2):137–142

    Article  CAS  Google Scholar 

  105. Thompson BC, Moulton SE, Ding J, Richardson R, Cameron A, O’Leary S, Wallace GG, Clark GM (2006) Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole. J Control Release 116(3):285–294

    Article  CAS  PubMed  Google Scholar 

  106. Bidan G, Lopez C, Mendes-Viegas F, Vieil E, Gadelle A (1995) Incorporation of sulphonated cyclodextrins into polypyrrole: an approach for the electro-controlled delivering of neutral drugs. Biosens Bioelectron 10(1):219–229

    Article  CAS  PubMed  Google Scholar 

  107. Svirskis D, Travas-Sejdic J, Rodgers A, Garg S (2010) Electrochemically controlled drug delivery based on intrinsically conducting polymers. J Control Release 146(1):6–15

    Article  CAS  PubMed  Google Scholar 

  108. George PM, Lavan DA, Burdick JA, Chen CY, Liang E, Langer R (2006) Electrically controlled drug delivery from biotin-doped conductive polypyrrole. Adv Mater 18(5):577–581

    Article  CAS  Google Scholar 

  109. García-Córdova F, Valero L, Ismail YA, Otero TF (2011) Biomimetic polypyrrole based all three-in-one triple layer sensing actuators exchanging cations. J Mater Chem 21(43):17265–17272

    Article  CAS  Google Scholar 

  110. Aydemir N, Malmström J, Travas-Sejdic J (2016) Conducting polymer based electrochemical biosensors. PCCP 18(12):8264–8277

    Article  CAS  PubMed  Google Scholar 

  111. Dicks J, Cardosi M, Turner A, Karube I (1993) The application of ferrocene-modified n-type silicon in glucose biosensors. Electroanalysis 5(1):1–9

    Article  CAS  Google Scholar 

  112. Sanghvi AB, Miller KP-H, Belcher AM, Schmidt CE (2005) Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer. Nat Mater 4(6):496

    Article  CAS  PubMed  Google Scholar 

  113. Nickels JD, Schmidt CE (2012) Surface modification of the conducting polymer, polypyrrole, via affinity peptide. J Biomed Mater Res A 101A(5):1464–1471

    Article  CAS  Google Scholar 

  114. Ekanayake EM, Preethichandra DM, Kaneto K (2007) Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. Biosens Bioelectron 23(1):107–113

    Article  CAS  PubMed  Google Scholar 

  115. Bendrea A-D, Cianga L, Cianga I (2011) Review paper: progress in the field of conducting polymers for tissue engineering applications. J Biomater Appl 26(1):3–84

    Article  CAS  PubMed  Google Scholar 

  116. Meng S, Zhang Z, Rouabhia M (2011) Accelerated osteoblast mineralization on a conductive substrate by multiple electrical stimulation. J Bone Miner Metab 29(5):535–544

    Article  CAS  PubMed  Google Scholar 

  117. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Baharvand H, Kiani S, Al-Deyab SS, Ramakrishna S (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 5(4):e17–e35

    Article  CAS  PubMed  Google Scholar 

  118. Gelmi A, Higgins MJ, Wallace GG (2010) Physical surface and electromechanical properties of doped polypyrrole biomaterials. Biomaterials 31(8):1974–1983

    Article  CAS  PubMed  Google Scholar 

  119. Wang J, Jiang M, Fortes A, Mukherjee B (1999) New label-free DNA recognition based on doping nucleic-acid probes within conducting polymer films. Anal Chim Acta 402(1):7–12

    Article  CAS  Google Scholar 

  120. Barisci J, Hughes D, Minett A, Wallace G (1998) Characterisation and analytical use of a polypyrrole electrode containing anti-human serum albumin. Anal Chim Acta 371(1):39–48

    Article  CAS  Google Scholar 

  121. Ramanavicius A, Habermüller K, Csöregi E, Laurinavicius V, Schuhmann W (1999) Polypyrrole-entrapped quinohemoprotein alcohol dehydrogenase. Evidence for direct electron transfer via conducting-polymer chains. Anal Chem 71(16):3581–3586

    Article  CAS  PubMed  Google Scholar 

  122. Zhou Q-X, Miller LL, Valentine JR (1989) Electrochemically controlled binding and release of protonated dimethyldopamine and other cations from poly (N-methyl-pyrrole)/polyanion composite redox polymers. J Electroanal Chem 261(1):147–164

    Article  CAS  Google Scholar 

  123. Hepel M, Mahdavi F (1997) Application of the electrochemical quartz crystal microbalance for electrochemically controlled binding and release of chlorpromazine from conductive polymer matrix. Microchem J 56(1):54–64

    Article  CAS  Google Scholar 

  124. Lange U, Roznyatovskaya NV, Mirsky VM (2008) Conducting polymers in chemical sensors and arrays. Anal Chim Acta 614(1):1–26

    Article  CAS  PubMed  Google Scholar 

  125. Roy CJ, Leprince L, De Boulard A, Landoulsi J, Callegari V, Jonas AM, Demoustier-Champagne S (2011) Electrosynthesis of pyrrole 3-carboxylic acid copolymer films and nanotubes with tunable degree of functionalization for biomedical applications. Electrochim Acta 56(10):3641–3648

    Article  CAS  Google Scholar 

  126. Janmanee R, Baba A, Phanichphant S, Sriwichai S, Shinbo K, Kato K, Kaneko F (2012) In situ electrochemical-transmission surface plasmon resonance spectroscopy for poly (pyrrole-3-carboxylic acid) thin-film-based biosensor applications. ACS Appl Mater Interfaces 4(8):4270–4275

    Article  CAS  PubMed  Google Scholar 

  127. Rapiphun J, Akira B, Sukon P, Saengrawee S, Kazunari S, Keizo K, Futao K (2011) Detection of human IgG on Poly(pyrrole-3-carboxylic acid) thin film by electrochemical-surface plasmon resonance spectroscopy. Jpn J Appl Phys 50(1S2):01BK02

    Article  Google Scholar 

  128. Shi W, Cao H, Song C, Jiang H, Wang J, Jiang S, Tu J, Ge D (2010) Poly(pyrrole-3-carboxylic acid)-alumina composite membrane for affinity adsorption of bilirubin. J Membr Sci 353(1–2):151–158

    Article  CAS  Google Scholar 

  129. Patterson JM, Brasch J, Drenchko P (1962) Synthesis and pyrolysis of some cycloalkano[a]pyrroles1. J Org Chem 27(5):1652–1659

    Article  CAS  Google Scholar 

  130. Maeda S, Corradi R, Armes SP (1995) Synthesis and characterization of carboxylic acid-functionalized polypyrrole-silica microparticles. Macromolecules 28(8):2905–2911

    Article  CAS  Google Scholar 

  131. Rajesh BV, Takashima W, Kaneto K (2005) A novel thin film urea biosensor based on copolymer poly(N-3-aminopropylpyrrole-co-pyrrole) film. Surf Coat Technol 198(1–3):231–236

    Article  CAS  Google Scholar 

  132. Khan W, Kapoor M, Kumar N (2007) Covalent attachment of proteins to functionalized polypyrrole-coated metallic surfaces for improved biocompatibility. Acta Biomater 3(4):541–549

    Article  CAS  PubMed  Google Scholar 

  133. Bozgeyik İ, Şenel M, Çevik E, Abasıyanık MF (2011) A novel thin film amperometric urea biosensor based on urease-immobilized on poly(N-glycidylpyrrole-co-pyrrole). Curr Appl Phys 11(4):1083–1088

    Article  Google Scholar 

  134. Zhang L, Zhang Z (2011) Electrical field directed electropolymerization of free-standing film of polypyrrole and poly (1-(2-carboxyethyl)) pyrrole at the air/liquid interface. Synth Met 161(9):724–730

    Article  CAS  Google Scholar 

  135. Lee JY, Lee J-W, Schmidt CE (2009) Neuroactive conducting scaffolds: nerve growth factor conjugation on active ester-functionalized polypyrrole. J R Soc Interface 6(38):801–810

    Article  CAS  PubMed  Google Scholar 

  136. Ko S, Jang J (2007) Controlled amine functionalization on conducting polypyrrole nanotubes as effective transducers for volatile acetic acid. Biomacromolecules 8(1):182–187

    Article  CAS  PubMed  Google Scholar 

  137. Shimomura M, Miyata R, Kuwahara T, Oshima K, Miyauchi S (2007) Immobilization of glucose oxidase on the films prepared by electrochemical copolymerization of pyrrole and 1-(2-carboxyethyl) pyrrole for glucose sensing. Eur Polym J 43(2):388–394

    Article  CAS  Google Scholar 

  138. Madani A, Nessark B, Brayner R, Elaissari H, Jouini M, Mangeney C, Chehimi MM (2010) Carboxylic acid-functionalized, core–shell polystyrene@polypyrrole microspheres as platforms for the attachment of CdS nanoparticles. Polymer 51(13):2825–2835

    Article  CAS  Google Scholar 

  139. Li W, Qiu T, Wang L, Ren S, Zhang J, He L, Li X (2013) Preparation and electromagnetic properties of core/shell polystyrene@ polypyrrole@ nickel composite microspheres. ACS Appl Mater Interfaces 5(3):883–891

    Article  CAS  PubMed  Google Scholar 

  140. Mao J, Zhang Z (2016) One-step reactivity-driven synthesis of core–shell structured electrically conducting particles for biomedical applications. J Mater Chem B 4(32):5429–5436

    Article  CAS  PubMed  Google Scholar 

  141. Mao J, Zhang Z (2016) Conductive poly(pyrrole-co-(1-(2-carboxyethyl)pyrrole)) core-shell particles: synthesis, characterization, and optimization. Polymer 105:113–123

    Article  CAS  Google Scholar 

  142. Lee J-W, Serna F, Nickels J, Schmidt CE (2006) Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion. Biomacromolecules 7(6):1692–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shi W, Cao H, Shen Y, Song C, Li D, Zhang Y, Ge D (2009) Chemically modified PPyCOOH microtubes as an affinity matrix for protein purification. Macromol Chem Phys 210(17):1379–1386

    Article  CAS  Google Scholar 

  144. Kojima K, Yamauchi T, Shimomura M, Miyauchi S (1998) Covalent immobilization of glucose oxidase on poly [1-(2-carboxyethyl) pyrrole] film for glucose sensing. Polymer 39(11):2079–2082

    Article  CAS  Google Scholar 

  145. Şenel M, Nergiz C (2012) Novel amperometric glucose biosensor based on covalent immobilization of glucose oxidase on poly (pyrrole propylic acid)/Au nanocomposite. Curr Appl Phys 12(4):1118–1124

    Article  Google Scholar 

  146. Oshima K, Nakamura T, Matsuoka R, Kuwahara T, Shimomura M, Miyauchi S (2005) Immobilization of alcohol dehydrogenase on poly [1-(2-carboxyethyl) pyrrole] film for fabrication of ethanol-responding electrode. Synth Met 152(1):33–36

    Article  CAS  Google Scholar 

  147. Shimomura M, Kuwahara T, Iizuka K, Kinoshita T (2010) Immobilization of alcohol dehydrogenase on films prepared by the electrochemical copolymerization of pyrrole and 1-(2-carboxyethyl) pyrrole for ethanol sensing. J Appl Polym Sci 116(5):2651–2657

    CAS  Google Scholar 

  148. Dong H, Li CM, Chen W, Zhou Q, Zeng ZX, Luong JHT (2006) Sensitive amperometric immunosensing using polypyrrolepropylic acid films for biomolecule immobilization. Anal Chem 78(21):7424–7431

    Article  CAS  PubMed  Google Scholar 

  149. Chu Y-M, Lin C-C, Chang H-C, Li C, Guo C (2011) TiO2 nanowire FET device: encapsulation of biomolecules by electro polymerized pyrrole propylic acid. Biosens Bioelectron 26(5):2334–2340

    Article  CAS  PubMed  Google Scholar 

  150. Serafín V, Agüí L, Yáñez-Sedeño P, Pingarrón JM (2014) Determination of prolactin hormone in serum and urine using an electrochemical immunosensor based on poly(pyrrolepropionic acid)/carbon nanotubes hybrid modified electrodes. Sens Actuators B 195:494–499

    Article  CAS  Google Scholar 

  151. Pan L, Chortos A, Yu G, Wang Y, Isaacson S, Allen R, Shi Y, Dauskardt R, Bao Z (2014) An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat Commun 5:3002

    Article  PubMed  CAS  Google Scholar 

  152. Wang C, Ding Y, Yuan Y, Cao A, He X, Peng Q, Li Y (2016) Multifunctional, highly flexible, free-standing 3D polypyrrole foam. Small 12(30):4070–4076

    Article  CAS  PubMed  Google Scholar 

  153. Muller D, Silva JP, Rambo CR, Barra GMO, Dourado F, Gama FM (2013) Neuronal cells’ behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3D) scaffolds. J Biomater Sci Polym Ed 24(11):1368–1377

    Article  CAS  PubMed  Google Scholar 

  154. Laforgue A, Robitaille L (2010) Deposition of ultrathin coatings of polypyrrole and poly (3, 4-ethylenedioxythiophene) onto electrospun nanofibers using a vapor-phase polymerization method. Chem Mater 22(8):2474–2480

    Article  CAS  Google Scholar 

  155. Tessier D, Dao LH, Zhang Z, King MW, Guidoin R (2000) Polymerization and surface analysis of electrically-conductive polypyrrole on surface-activated polyester fabrics for biomedical applications. J Biomater Sci Polym Ed 11(1):87–99

    Article  CAS  PubMed  Google Scholar 

  156. Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P (2015) Electrically conductive polymers and composites for biomedical applications. RSC Adv 5(47):37553–37567

    Article  CAS  Google Scholar 

  157. Brigandi PJ, Cogen JM, Pearson RA (2014) Electrically conductive multiphase polymer blend carbon-based composites. Polym Eng Sci 54(1):1–16

    Article  CAS  Google Scholar 

  158. Shi G, Zhang Z, Rouabhia M (2008) The regulation of cell functions electrically using biodegradable polypyrrole–polylactide conductors. Biomaterials 29(28):3792–3798

    Article  CAS  PubMed  Google Scholar 

  159. Huang J, Hu X, Lu L, Ye Z, Zhang Q, Luo Z (2010) Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers. J Biomed Mater Res Part A 93A(1):164–174

    CAS  Google Scholar 

  160. Wang Z, Roberge C, Wan Y, Dao LH, Guidoin R, Zhang Z (2003) A biodegradable electrical bioconductor made of polypyrrole nanoparticle/poly(D,L-lactide) composite: a preliminary in vitro biostability study. J Biomed Mater Res Part A 66A(4):738–746

    Article  CAS  Google Scholar 

  161. Shi G, Rouabhia M, Wang Z, Dao LH, Zhang Z (2004) A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials 25(13):2477–2488

    Article  CAS  PubMed  Google Scholar 

  162. Guo B, Glavas L, Albertsson A-C (2013) Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci 38(9):1263–1286

    Article  CAS  Google Scholar 

  163. Severt SY, Ostrovsky-Snider NA, Leger JM, Murphy AR (2015) Versatile method for producing 2D and 3D conductive biomaterial composites using sequential chemical and electrochemical polymerization. ACS Appl Mater Interfaces 7(45):25281–25288

    Article  CAS  PubMed  Google Scholar 

  164. Nabid MR, Entezami AA (2004) A novel method for synthesis of water-soluble polypyrrole with horseradish peroxidase enzyme. J Appl Polym Sci 94(1):254–258

    Article  CAS  Google Scholar 

  165. Lv G, Zhang S, Wang G, Shao J, Tian H, Yu D (2017) A methacryl ethyl-functionalized soluble polypyrrole: synthesis, characterization, and potentiality in rapid fabrication of high-aspect-ratio pillar arrays. React Funct Polym 111:44–52

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mao, J., Zhang, Z. (2018). Polypyrrole as Electrically Conductive Biomaterials: Synthesis, Biofunctionalization, Potential Applications and Challenges. In: Chun, H., Park, C., Kwon, I., Khang, G. (eds) Cutting-Edge Enabling Technologies for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1078. Springer, Singapore. https://doi.org/10.1007/978-981-13-0950-2_18

Download citation

Publish with us

Policies and ethics