
Enhancing Levenshtein’s Edit Distance
Algorithm for Evaluating Document Similarity

Shama Rani and Jaiteg Singh(&)

Chitkara University, Chandigarh, India
shamajhansla@gmail.com, Jaiteg.singh@chitkara.edu.in

Abstract. The content directly taken from pre-published sources is called
plagiarized text. Plagiarism is considered to be a major challenge in contem-
porary research manuscripts. It is very easy to use internet as a source of
information. There is a need to find suitable technique, so as to find similarity
between two documents. Though there are several methods for text comparison,
yet this paper is primary focused on Levenshtein’s edit distance. It is a string
metric, which is an effective technique for comparing text documents and for
calculating efforts required to transforms one document to another. An effort has
been made to improve the performance of Levenshtein’s edit distance algorithm
by eliminating stop words while calculating transformation effort.

Keywords: Comparison of documents � Levenshtein’s edit distance
Modified Levenshtein’s edit distance � Similarity between documents
Cost and time evaluation

1 Introduction

Plagiarism is defined as the use of another’s thoughts, literature, and information, when
done without proper citation of the original source. Plagiarism for the text documents
occurs in different ways. Plagiarized text may be copied from one-to-one passages may
be modified to a larger or reduced extent or text may be interpreted [15]. Data Com-
parison relates to the methods of calculating differences and similarities so to replace
the strings and data objects. The objects that are compared usually program code,
algorithms, computer files, text versions, or complex data structures [16].

To detect plagiarism in software presents some problems due to the nature of
programming. The reasons for similarity between the programs can be categorized in
different categories, one of which is plagiarism. Similarities including metric, textual,
features in depth and some recommendations are made for measures of syntax and
semantics, program execution, input-output, shared information, program dependency
graph similarity [3, 4].

There are two most probable features used to compare documents are: importing
one single file for online plagiarism check, or matching two file for a comparative
check. It follows the following steps:

Step1. The text is exported from the file with ignorance of images and other
diagrams.

Step 2. The text is divided into n –grams or sets of words.

© The Author(s) 2018
R. Sharma et al. (Eds.): ICAN 2017, CCIS 805, pp. 72–80, 2018.
https://doi.org/10.1007/978-981-13-0755-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0755-3_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0755-3_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0755-3_6&domain=pdf

Step 3. Each group is searched by the software.
Step 4. The search engine results are stored and loaded on pages.
Step 5. The page is parsed when the website has been loaded to extract the text

from the HTML code.
Step 6. The string is explored inside the mined text.
Step 7. If a matching sentence has been found, the input text is added to the source

list and the next Sentence is starting to be analyzed.
Step 8. If the sentence has not been found, another website is loaded until results

were analyzed. The two algorithms used for the detection of Text is Levenshtein’s Edit
distance method [5, 13].

2 Levenshtein’s Edit Distance

The Levenshtein’s distance between two documents is defined as the minimum number
of edit operations required to transform one text document into the other. The following
edit operations are used by Levenshtein’s edit distance algorithm to modify one doc-
ument to another:

• Insertion
• Deletion
• Substitution

Example: Levenshtein’s edit Distance between different strings:
right ! fight (substitution of ‘f’ for ‘r’)
book ! books (insert operation is performed at the end ‘s’)
The Levenshtein’s edit Distance between given strings depends on three basic

operations to replace one string to another.
The results of Levenshtein’s distance is based on the perception that if a matrix

holds the edit distance between all prefixes of the first string and all the prefixes of the
second, Thus find the distance between the two full strings as the last value calculated
[6, 10].

The algorithm:

Step 1: Initialization

I. Set a is the length of document 1 say d1, set b is length of document 2 say d2.
II. Create a matrix that consists 0 – b rows and 0 – a columns.
III. Initialize the first row from 0 to a.
IV. Initialize the first column from 0 to b.

Step2: Processing

I. Observe the value of d2 (i from 1 to a).
II. Observe the value of d1 (j from 1 to b).
III. If the value at d2[i] is equals to value at d1[j], the cost becomes 0.
IV. If the value at d2[i] does not equal d1[j], the cost becomes 1.
V. Set block of matrix M[d1, d2] of the matrix equal to the minimum of:
i. the block immediately above add 1: M [d2–1, d1]

Enhancing Levenshtein’s Edit Distance Algorithm 73

ii. the block immediately to the left add 1: M [d2, d1–1] +1.
iii. The block is diagonally above and to the left adds the cost: M [d2–1, d1–

1] + cost.

Step 2 is repeated till the distance M[a, b] value is found.
Step 3: Result [1, 5].

2.1 Computing Techniques

• Dis(i,j) = score of best alignment from d11..d1i to d21…..d2j
• Dis (i–1, j–1) + d (d1i, d2j) //copy Dis (i–1, j) + 1 //insert
• Dis (i, j–1) + 1 //delete

Cost depend upon following factors:

• Dis (0, 0) = 0 cost // if both strings are same
• Dis (i, 0) = dis (i–1, 0) +1 = 0 // if source string is empty
• Dis (0, j) = dis (0, j–1) +1 = 0 // if target string is empty [6, 7].

3 Modified Levenshtein’s Edit Distance Algorithm

Levenshtein’s edit distance algorithm can be modified by removing the stop words. The
words such as also, is, am, are, they, them, their, was, were etc. are ignored by search
engine during processing are called stop words [4, 8].

Most search engines are programmed to eliminate such words while indexing or
retrieving as the outcome of search query. Stop words are considered inappropriate for
searching purposes because they occur commonly in the language for which the
indexing engine has been tuned [4]. These words are dropped in order to save both time
and space at the time of searching in the text documents. The words which are often
used are is, am, are, they, them, also, the, of, and, to, in which are insignificant in IR
and text mining. Stop words are removed to reduce due to following reasons:

• Each documents approximately consists 20–25% stop words.
• Efficiency of document is improved by removing the stop words.
• Stop words are not useful for searching or text mining
• To reduce indexing [9].

4 Performance Analysis

Levenshtein’s edit Distance is not considered as an absolute value. If the first string is
‘Race’ and the second string is ‘spaces’, it’s very unlikely that one of them is misspelled.
However, if the first string is ‘I have a pet’ and the second string is ‘I have a cat’, the
second string is probably misspelled. But in both cases, the Levenshtein’s Distance is 2.
The first value means that 2/3 of the characters are different, the second value tells us that
the difference is little. Another method to calculate Levenshtein’s edit distance algorithm

74 S. Rani and J. Singh

is matrix method. The Levenshtein’s Edit Distance algorithm calculates the minimum
edit operations that are needed to modify one document to obtain second document.
A matrix is initialized measuring in the (m, n)-cell the Levenshtein’s distance between
the m-character prefix of one with the n-prefix of the other word [12, 13].

The following example will determine the use of Matrix method. Let the first string
is PEON and second string is SPEND the minimum path is selected by comparing at
each stage. The calculation process of the Levenshtein’s distance between two strings
of different length is based on the number of operations to transform first string to
another and the edit distance between the substrings X1m = x1x2…xn and Ymn = y1
y2…yn is calculated as follows:

• Dis m,nð Þ ¼ Dis X1m;Y1nð Þ
� Dis m,nð Þ ¼ min Dis m� 1; nð Þþ 1;Dis m; n� 1ð Þþ 1;Dis m� 1; n� 1ð ÞþCostf g

With 0 if Xm� 1 ¼ Yn� 1
1 else

and the initializations are: Dðm;£Þ ¼ m and Dð£; nÞ ¼ n, where £ represents the
empty string [11].

In this way, we calculate the Levenshtein’s distance between two strings is shown
in lower right most block in Fig. 1 [13]. In above example there are different ways to
replace “PEON” with “SPEND”, but the minimum cost path is taken by this method is
shown with arrows. The experimental details of Levenshtein’s Edit distance in terms of
space and time is follows. The inputs given in two Documents and number of words
after removing stop words are calculated in all the documents by using Levenshtein’s
Edit distance formula is shown in Fig. 2. The time taken to calculate Levenshtein’s
distance with Stop words is shown in Fig. 3. The calculated time and cost represented
in separately in view of easy understanding of graphs. The time taken to compare
documents is calculated in milliseconds and later be converted into asymptomatic time
by applying on some other algorithms.

• D(m,n) = score of best alignment from s1..si to tm…….tn.

Here 51 Text length of Document A and B means the document size. The document
size means it contains the defined number of words. The experiment is done by taking
different document size from 50–1000.

P E O N
0 1 2 3 4

S 1 1 2 3 4
P 2 1 2 3 4

E 3 2 1 2 3

N 4 3 2 2 2

D 5 4 3 3
3

Fig. 1. Edit distance between two strings

Enhancing Levenshtein’s Edit Distance Algorithm 75

The time taken to calculate Levenshtein’s distance with Stop words is represented
in Fig. 3. The Time taken to calculate Levenshtein’s distance after removing Stop
words is shown in Fig. 4.

The length of Document A and the length of same document after removing the
stop words is shown in Fig. 5. Where case A1 represents the complete text length of
Document A and case A2 represents the length of Document A after removing the stop
words.

Similarly, in Fig. 6. case, B1 represents the complete text length of Document B
and case B2 represents the length of Document B after removing the stop words. Of the
Levenshtein’s distance between the words “PEON” and “SPEND”, the distance is three
as shown in Fig. 1.

The matrix completes the blocks from the top most corner of left to the lower right
corner. Each move vertically or horizontally corresponds to insertion or a deletion and
substitution respectively. Each operation is initially set to costs.

1. The diagonal move costs one, if the two characters in the row and do not match and
one if they do. The cost is locally minimizes by each block.

Text Length of
Document A

Text Length of
Document B

Document A after
removing stop words

Document B after
removing stop words

51 62 27 38
103 90 59 53
203 192 124 119
395 410 242 233
798 750 470 474

Fig. 2. Text length of Document A and B with and without using stop words

Text Length
of

Document A

Text Length of
Document B

Time taken to calculate Levenshtein’s distance with
Stop words (in milliseconds)

51 62 14

103 90 16

203 192 23
395 410 62

798 750 218

Fig. 3. Time taken to calculate Levenshtein’s distance after removing stop words

76 S. Rani and J. Singh

• case TW1 represent the time with stop words and TWO represents the time
taken to calculate Levenshtein’s distance without stop words.

Text
Length of
Document A

Text
Length of Document B

Time taken to calculate
Levenshtein's distance after
removing Stop words (in
milliseconds)

51 62 7
103 90 5
203 192 12
395 410 30
798 750 119

Fig. 4. Time taken to calculate Levenshtein’s distance after removing stop words

90
0

80
0

70
0

60
0

50
0

40

case A1

case A2

1 2 3 4

Fig. 5. Text length of document A with
and without using stop words

80
0

70
0

60
0

50
0

40

case B1

case B2

1 2 3 4

Fig. 6. Text length of document B with
and without using stop words

900
800

700

600

500

400

300

200

100

case A1
case B1

case TW1

1 2 3 4 5

Fig. 7. Time taken to calculate Leven-
shtein’s distance with stop words

500
450
400
350
300
250
200
150
100

case A2

case B2

case TWO

50

1 2 3 4 5

Fig. 8. Time taken to calculate Leven-
shtein’s distance without stop words

Enhancing Levenshtein’s Edit Distance Algorithm 77

The time taken to calculate Levenshtein’s edit distance with Stop words is shown in
Fig. 7. where Case A1 represents the complete text length of Document A and case B1
represents the complete text length of Document B. The case TW1 is the time taken by
algorithm to compare the lengths of Document A and Document B.

The Fig. 8. represents the comparison of Documents after removing the Stop
words. Case A2 signifies the length of Document A after removing the stop words, case
B2 represents the length of Document B after removing the stop words and The final
comparison of the times taken by Levenshtein’s in different documents with and
without stop words. In Fig. 9. case TW1 is time taken to calculate Levenshtein’s
distance with stop words and case TWO is time taken to calculate edit distance after
removing the stop words in the text Documents.

The cost calculated by Levenshtein’s Algorithm of two dissimilar documents is
shown in Fig. 10.

case TW1

case TWO

1 2 3 4 5

250

200

150

100

50

Fig. 9. Time taken to calculate before and after removing stopwords

Text length of
Document A

Text
length of Document B

Cost with Stopwords (in
characters)

Cost after removing
Stop words
(in characters)

51 62 257 202

103 90 534 418

203 192 1011 794

395 410 1907 1469

798 750 2483 1859

Fig. 10. Cost to replace one document to another

78 S. Rani and J. Singh

5 Conclusion

The documents with different text length 50, 100, 200, 400, 800 is taken to calculate
the Levenshtein edit distance and the time need to compare both documents by using
Levenshtein edit distance algorithm. This is observed that each document consists 20–
30% stop words, which are not useful for any calculation. Therefore, it is observed that
if 20% stop words are removed from any text document, 50% time can be reduced to
calculate the Levenshtein’s edit distance. The Comparison of time with stop words and
after removing stop words from the documents of different text length is shown in
Fig. 9.

References

1. Gueddah, H., et al.: Introduction of the weight edition errors in the Levenshtein distance.
IJARAI Int. J. Adv. Res. Artif. Intell. 1(5) (2012)

2. Dang, Q.T.: Determining restricted Damerau-Levenshtein edit-distance of two languages by
extended automata. In: International Conference on Computing and Communication

3. Burkhardt, S., Kärkkäinen, J.: One-Gapped q-Gram filters for Levenshtein distance. In:
Apostolico, A., Takeda, M. (eds.) Combinatorial Pattern Matching. CPM 2002. Lecture
Notes in Computer Science, vol. 2373, pp. 225–234. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45452-7_19

4. Hubert, C.: A contextual normalized edit distance. In: 2008 IEEE 24th International
Conference on Source Data Engineering Workshop, ICDEW 2008 (2008)

5. Aouragh, S.I.: Adaptating Levenshtein distance to contextual spelling correction. Int.
J. Comput. Sci. Appl. 12(1), 127–133 (2015)

6. Danny, H.: A unified algorithm for accelerating edit distance computation via text
compression. In: Symposium on Theoretical Aspects of Computer Science year (city)

7. Ndiaye, M., Faltin, A.V.: Correcteur Orthographique Adapté à Apprentissage du Français.
Revue Bulag no. 29, pp. 117–134 (2004)

8. Mitton, R.: Ordering the suggestions of a spellchecker without using context. Nat. Lang.
Eng. 15(2), 173–192 (2009)

9. Damerau, F.J.: A technique for computer detection and correction of spelling errors.
Commun. Assoc. Comput. Mach. 7, 171–176 (1964)

10. Kobzdej, P.: Parallel application of Levenshtein’s distance to establish similarity between
strings. Front. Artif. Intell. Appl. 12(4) (2003)

11. Yujian, L., Bo, L.: A normalized Levenshtein’s distance metric. IEEE Trans. Pattern Anal.
Mach. Intell. 29(6), 1091–1095 (2007)

12. Haldar, R., Mukhopadhyay, D.: Levenshtein distance technique in dictionary lookup
methods: an improved approach. Web Intell. Distrib. Comput. Res. Lab

13. Andoni, A.: Approximating edit distance in near linear time. In: Proceedings of the 41st
Annual ACM Symposium on Theory of Computing (STOC 2009), Bethesda, MD, USA,
pp. 199–204 (2009)

14. Oberreuter, G., Velasquez, J.D.: Expert system with applications: text mining applied to
plagiarism detection. Web Intelligence Consortium Chile Research Centre, Department of
Industrial Engineering, Chile (2013)

15. Kharat, R., et al.: Semantically detecting plagiarism for research papers. Int. J. Eng. Res.
Appl. (IJERA) 3(3), 077–080 (2013). ISSN: 2248-9622, https://www.ijera.com

Enhancing Levenshtein’s Edit Distance Algorithm 79

http://dx.doi.org/10.1007/3-540-45452-7_19
http://dx.doi.org/10.1007/3-540-45452-7_19
https://www.ijera.com

16. Caroline, L., et al.: Plagiarism is Easy, But also Easy to Detect. MPublishing, University of
Michigan Library, Ann Arbor, vol. 1 (2006)

17. Journal of technology management for growing economies (JTMGE) (2015). http://
tmgejournal.com/abstract.php?id=513. Accessed 14 Jan 2017

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

80 S. Rani and J. Singh

http://tmgejournal.com/abstract.php?id=513
http://tmgejournal.com/abstract.php?id=513
http://creativecommons.org/licenses/by/4.0/

	Enhancing Levenshtein’s Edit Distance Algorithm for Evaluating Document Similarity
	Abstract
	1 Introduction
	2 Levenshtein’s Edit Distance
	2.1 Computing Techniques

	3 Modified Levenshtein’s Edit Distance Algorithm
	4 Performance Analysis
	5 Conclusion
	References

